
Under review as a conference paper at ICLR 2023

BEYOND GRAPHS: LEARNING WITH RELATIONAL DBS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advancements in representation learning on graphs, there still lacks
a unified framework that addresses the challenges of learning from real-world
relational data, which can involve heterogeneous, dynamic, and multi-ary rela-
tionships. Existing efforts focus on extending graph learning to alternative graph
representations, including heterogeneous graphs and hypergraphs; however, these
approaches are highly specific to particular use cases, therefore introducing com-
plexity into their application and deployment. We propose to unify and extend
existing graph learning research with relational databases (RDBs). RDBs, char-
acterized by their simplicity and versatility, consist of multiple tables linked by
shared key columns. We show that diverse types of graphs can be unified as RDBs
and different graph learning tasks can be formulated as predicting column values
in RDB tables. Furthermore, we introduce Relational Database Neural Networks
(RDNNs), the first family of deep learning models that can holistically learn from
multi-table information inside a relational DB, without the need for converting it to
graphs. RDNNs provide a more flexible and comprehensive deep learning design
space for modeling relational data, capable of solving problems beyond the scope
of graph learning. Through extensive experimentation on a range of graph and
multi-table datasets, we demonstrate that the RDNNs offer competitive or superior
performance in comparison to Graph Neural Networks (GNNs) on graph learning
tasks and tabular machine learning methods on RDB prediction tasks.

1 INTRODUCTION

The field of graph representation learning has greatly advanced in recent years, showing promising
applications in industrial and scientific applications (Zitnik & Leskovec, 2017; Jin et al., 2018;
Dauparas et al., 2022). Due to the complex relationships in real-world data, researchers have explored
machine learning beyond classic graphs1 (Kipf & Welling, 2017), including multigraphs (Butler et al.,
2023), dynamic graphs (Pareja et al., 2020), heterogeneous graphs (Schlichtkrull et al., 2018), and
hypergraphs (Feng et al., 2019). However, these graph representations still carry distinct assumptions
about the type of relational data that they can model, and therefore, fail to fully capture the diverse
relational information that pervades real-world data. Notably, this limitation of graph representation
not only prevents researchers from generalizing their method to other types of relational data but also
leaves practitioners perplexed in selecting the optimal representation for their data.

Stepping back, we realize that graphs are not the sole representation of relational data; instead,
relational databases (RDBs), consisting of multiple tables, have been the gold standard for representing
relational data (Codd, 1970). In fact, the abovementioned graph representations can all be considered
special cases of RDBs. Despite its generality, RDBs have received much less attention from the
machine learning community and have not yet fully benefited from the recent advancement of deep
learning research. A possible reason is that RDBs create strict constraints on the underlying data, e.g.,
entity and referential integrity constraints (Grefen & Apers, 1993), although essential for relational
database management systems (RDBMS)2, making the representation less flexible for deep learning
models. The complexity of RDBMS interface, which requires SQL programming, further makes it
complex to integrate with modern deep learning systems.

1Also known as simple graph, undirected graph, or homogeneous graph.
2RDB is a data representation. Not to be confused with RDBMS, which is a system that manages RDB.

1

Under review as a conference paper at ICLR 2023

2

3

4

1

Hypergraph

Author
Author ID Feature

1 Value 1
2 Value 2

Author-author edge
A-A ID Author ID Author ID Feature

1 1 2 Value 1
2 1 1 Value 2

Paper
Paper ID Feature

a Value 1
b Value 2
c Value 3

Author-paper edge
A-P ID Author ID Paper ID Feature

1 1 a Value 1
2 1 c Value 2
3 2 b Value 3

2

31

(Dynamic) graph

Paper-paper edge
P-P ID Paper ID Paper ID Feature

1 a b Value 1
2 a c Value 2

(a)

(b)

Heterogeneous graph

2
b

a

1

c

Author Paper
(c)Node

Node ID Feature
1 Value 1
2 Value 2
3 Value 3

Edge

Edge ID Node ID Node ID Time Feature
1 1 2 Value 1
2 2 3 Value 2
3 1 3 Value 3

Node
Node ID Feature

1 Value 1
2 Value 2
3 Value 3
4 Value 4

Hyperedge
Hyp ID Node ID Node ID Node ID Feature

1 1 2 3 Value 1
2 2 3 4 Value 2

Figure 1: Unifying diverse graph representations into RDBs. We show that (a) (dynamic) graphs,
(b) hypergraphs, and (c) heterogeneous graphs can be succinctly represented as RDBs. Columns
with underscores in the “header” indicate that itis a primary key column in the table. For clarity of
presentation, we omit the curves for indicating primary-foreign key linkages which are commonly
presented in relational DB diagrams. The linkage can be easily inferred based on matching the key
column names.

Consequently, existing works either focus on learning from a single table (Chen & Guestrin, 2016;
Ke et al., 2017), potentially with additional merges from multiple tables into one table using SQL join
(Chaudhuri et al., 1999), or covert relational DB to graph representations and apply graph machine
learning (Cvitkovic, 2020; Bai et al., 2021) at the cost of loss of information and computational
overhead. Evidently, these approaches are not ideal due to the additional human efforts from skilled
data engineers and computational overhead. Developing deep learning approaches native to relational
databases not only circumvents the limitations of graph machine learning but also revolutionizes our
capability to organize, learn, and predict with databases.

In this paper, we propose to unify and extend existing graph learning research by representing graphs
as relational databases (RDBs). As is shown in Figure 1, our key observation is that diverse types of
graphs, e.g., simple graphs, heterogeneous graphs, and hypergraphs, can be represented as multiple
tables with shared key columns. Notably, our proposed RDB representation of graphs abstracts away
the concept of a node, an edge, and a hyperedge; instead, they all correspond to a row in a given
table, where the table has 1, 2, or multiple key columns respectively. Consequently, researchers and
practitioners no longer need to worry about properly defining nodes, edges, and hyperedges from
their data; instead, they only need to prepare their data into multiple tables and declare columns that
refer to the same semantic meaning, i.e., keys. Moreover, our proposed RDB representation further
unifies and simplifies different graph learning tasks, e.g., node/edge/graph-level tasks, into column
value prediction tasks in (different) tables.

Based on this perspective, we propose Relational Database Neural Networks (RDNNs), the first
family of deep learning models that can holistically learn from multi-table information inside a
relational DB, without the need of converting them to graphs. Notably, RDNNs can support general
multi-table data, which do not need to follow the constraints in conventional RDB (Section 4.1 and
Figure 6). Each layer in RDNNs defines a 2-stage computation: cross-table communication and
inner-table transformation. Overall, compared to designing specialized GNNs such as heterogeneous
GNNs and hypergraph GNNs, RDNN provides a more flexible and general neural architecture design
space for relational data.

We implement a simple instantiation of RDNN and validate its effectiveness on a variety of datasets
and tasks, ranging from diverse types of graphs to real-world relational DB datasets. We demonstrate
that RDNNs are comparable with GNNs on various graph datasets and node/edge/graph-level graph
learning tasks, and out-performs GNNs when learning on sophisticated heterogeneous graphs. We
then show RDNNs demonstrate superior performance compared to existing machine learning methods
for relational DBs. In summary, by proposing RDNNs that can be conveniently applied to generic
relational data, we hope to circumvent the limitations in graph machine learning and pave the path
for a new machine learning frontier of deep learning for databases.

2 RELATED WORK

Deep learning with generalized graphs. GNNs Scarselli et al. (2008); Kipf & Welling (2017)
are originally defined over simple/homogenous graphs, where a pair of nodes are connected with

2

Under review as a conference paper at ICLR 2023

edges, without node/edge type information. Many research works have extended GNNs beyond
simple graph representations, such as heterogeneous graphs Schlichtkrull et al. (2018); Wang et al.
(2019); Hu et al. (2020b), hypergraphs Feng et al. (2019); Huang & Yang (2021), and dynamic graphs
Pareja et al. (2020); You et al. (2022). Although these GNNs have achieved amazing results under
their corresponding graph representations, they do not apply to other types of graphs or generic
relational data such as RDBs. Our proposed RDNNs apply to diverse graph representations and
generic relational data as well.

Machine learning for RDBs. Existing works focus on machine learning from a single table,
such as gradient boosting decision trees Chen & Guestrin (2016); Ke et al. (2017) and neural
networks Arik & Pfister (2021). However, generalizing these methods to multiple tables requires
manually joining different tables and is bounded by the cost and complexity of table joins. There are
recent works on learning from multiple tables, but they require first converting databases to graphs
Cvitkovic (2020), heterogeneous hypergraphs Bai et al. (2021), or text data Arora et al. (2021), then
applying existing deep learning methods such as GNNs and BERT. The additional conversion from
RDBs to other representations creates additional complexity, loss of information, and computation
overhead. In contrast, RDNN is a novel neural network architecture that natively builds on multi-table
representations, capable of automatically learning from multi-table information in an RDB.

Deep learning for RDB management systems. Existing works have also explored using neural
network’s predictive power to optimize for RDB management systems, such as buffer tuning Tan
et al. (2019), view selection Yuan et al. (2020); Lan et al. (2020), plan enumerator Marcus &
Papaemmanouil (2018), and cardinality estimation Kipf et al. (2018); Park et al. (2020). Orthogonal
to this line of work where deep learning is developed for optimizing RDB/RDBMS, our work extends
the capability of deep learning by enabling it to take RDBs as a new type of input data modality.

3 PRELIMINARIES AND PERSPECTIVES

Relational databases. An RDB consists of a set of tables T = {Tt}, each table Tt ∈ Rn×c has n
rows and c columns, where Tt[r, :] represents the r-th row and Tt[:, c] represents the c-th column.
Given a table Tt, some columns are defined as keys, where a primary key Tt[:, cpkey] has unique
values in each row, and foreign keys Tt[:, cfkey] can be linked to primary keys in other tables within
the RDB. Next, we show how different graph representations and prediction tasks can be unified with
this succinct representation. Figure 1 and 2 provide concrete visualized examples.

Graphs as RDBs. A graph is commonly represented as G = (V, E), where V = {vi} is the node
set and E ⊆ V × V is the edge set. Each node can have dnode-dim feature, and each edge can have
dedge-dim feature. From an RDB perspective, a graph G can be represented with two tables, Tnode and
Tedge. Tnode has |V| rows, 1 primary key column cnode, and dnode number of feature columns. Tedge
has |E| rows, 1 primary key column cedge, 2 foreign key columns that link to cnode, and dedge number
of feature columns.

Heterogeneous graphs as RDBs. Heterogeneous graphs introduce node types and edge types to the
graph definitions. Specifically, each node v is mapped to a node type with ϕ(v) : V → A, where
there are |A| node types in total, and each edge e that connects node vi and vj is mapped to an
edge type ϕ(vi, e, vj) : E → R, where there are |R| edge types in total. Although it is nontrivial
to manage a heterogeneous graph, it can be succinctly described by an RDB with |A| node tables
for each node type and R edge types for each edge type. Similar to simple graphs, each node table
represents each node as a row, with 1 primary key column and additional feature columns; each
edge table represents each edge as a row, with 1 primary key column, 2 foreign key columns, and
additional feature columns; note that different node/edge tables often have different shapes.

Hypergraphs as RDBs. A hypergraph further generalizes the definition of edge set E from connecting
pairs of nodes to any number of nodes. In practice, researchers often focus on k-uniform hypergraph,
where all the hyperedges connect to k nodes. In this case, a k-uniform hypergraph can be represented
as 2 tables, Tnode and Thyperedge. Compared to converting a simple graph to RDB, Tnode has an identical
definition, while table Thyperedge has k foreign key columns that link to cnode. A general hypergraph,
where a hyperedge can connect an arbitrary number of nodes, can be equivalently represented as

3

Under review as a conference paper at ICLR 2023

? ?

Graph

Graph ID Feature Label
1 Value 1 True
2 Value 2 ?

Edge

Edge ID Node ID Node ID Feature Label
1 1 2 Value 1 True
2 2 3 Value 2 ?
3 1 3 Value 3 True
4 4 5 Value 4 FalseGraph 1

4

5

Graph 2

2

31

"Predict Node.Label"

?

Node

Node ID Graph ID Feature Label
1 1 Value 1 ?
2 1 Value 2 True
3 1 Value 3 False
4 2 Value 4 False
5 2 Value 5 True

"Predict Edge.Label" "Predict Graph.Label"Node/edge/graph-level task

Figure 2: Unifying prediction tasks on graphs into RDB column prediction task. Node, edge, and
graph level prediction tasks on graphs can be equivalently converted to predicting missing column
values in node, edge, and graph tables in an RDB.

a heterogeneous graph with 2 node types (node and hyperedge) and 1 edge type (describing the
incidence between hyperedges and the nodes), therefore, it can be succinctly represented as 3 tables.

Dynamic graphs as RDBs. A common approach to representing a dynamic graph is to associate
a time stamp with each node/edge/hyperedge. For RDBs, it corresponds to simply adding a time
column for each node/edge/hyperedge table. In the case where nodes and edges may appear and
disappear in a graph, we could use 2 time columns to record the time period when a node/edge exists.

Graph learning tasks as predicting RDB column values. In addition to unifying diverse graph
representations into RDBs, we further show that prediction tasks on graphs, either at node, edge,
or graph level, can be equivalently converted into predicting column values in an RDB, illustrated
in Figure 2. Concretely, a node-level prediction task associates each node v with node label yv, an
edge-level task associates each edge e with label ye, and a graph-level task associates each graph G
with label yG ; these labels yv, ye, and yG can then be conveniently represented as columns in node,
edge, and graph tables, respectively. Note that when multiple graphs are present in a dataset, we can
introduce a graph table Tgraph, whose primary key column cnode is referred to as an additional foreign
key column in node table Tnode (and/or Tedge).

Perspective: from analytical to predictive queries on RDBs. Demonstrating the expressiveness
of column prediction tasks on RDBs has a profound impact beyond just unifying graph prediction
tasks. Currently, the majority of user interactions with RDBs rely on SQL queries, which focus
on processing and analyzing the existing information in a given RDB. As is shown in Figure 2,
users could write generic declarative predictive queries, e.g., “Predict Node.Label”, to define
any column prediction tasks on RDBs. Such predictive queries provide users with an intuitive yet
powerful interface to predict unknown/future information based on an RDB, beyond just analyzing
existing information from RDB with SQL queries. In sum, predictive queries have the potential
to revolutionize the interaction with RDBs and the application/deployment of machine learning
algorithms. Properly instantiating these predictive queries requires powerful machine models that
can holistically leverage information in RDBs; our solution, RDNNs, will be discussed in Section 4.

Summary: why viewing graphs as RDBs. The discussions above have clearly demonstrated
that diverse graph representations can be unified as RDBs which are succinct and expressive, and
prediction tasks on graphs can be further unified as column prediction tasks on RDBs. By developing
RDNNs, the first family of neural networks native to RDBs (Section 4), we refrain from developing
specialized GNNs for each type of graph and each type of machine learning task; instead, we can learn
from all the diverse types of graphs and generic RDBs with the same neural network architecture,
with the potential of revolutionizing how users interact with RDBs.

As a concrete example, we could easily define a “dynamic heterogenous hypergraph” from real-world
data, but managing it with graph representations would be highly non-trivial, let alone developing a
specialized GNN that can learn from the graph. In contrast, by representing it as an RDB, it is merely
an RDB with a few more tables than what we have discussed above; in real-world scenarios, it is not
uncommon to work with RDBs with hundreds of tables.

4 RELATIONAL DATABASE NEURAL NETWORKS

Next, we introduce Relational Database Neural Networks (RDNN), the first deep learning architecture
native to RDBs without the need for converting RDBs to other data representations. An RDNN

4

Under review as a conference paper at ICLR 2023

T1: Author
Author ID Feature

1 Value 1
2 Value 2
2 Value 3

T2: Author-paper edge

Author ID Paper ID Feature

1 a Value 1

1 b Value 2

3 b Value 3

One RDNN layer

Example of a relational DB
with relaxed constraints

1
2
2

Author ID

Table embeddings

1
1
3

Author
ID

a
b
b

Paper
ID

1
2
3

Author ID
1
2

Author ID

a
b

Paper ID

1
3

Author ID

a
b

Paper IDSc
at

te
rR

ed
uc

e

Ag
gr

eg
at

io
n

1
1
3

Author
ID

a
b
b

Paper
ID

IndexSelect

IndexSelect

1
2
2

MLP

MLP

Meta-key embeddings

Author ID

Table embeddings

PredictionEn
co

de

Figure 3: Illustration of RDNN architecture. The input tables are transformed to initial table em-
beddings X(0)

Tt
through an encoder layer. Each RDNN layer comprises a cross-table communication

step followed by an inner-table transformation step using MLP. During cross-table communication,
we first compute meta-key embeddings through scatter-reduce and aggregation of table embeddings
(table-to-key communication). We then update the table embeddings by combining previous table
embeddings with corresponding meta-key embeddings selected based on the index (key-to-table
communication). We use an example of a multi-table input where several constraints of standard
relational databases are relaxed to demonstrate the flexibility of RDNN in modeling real-world
relational data. We do not mandate the inclusion of a typical primary key that comprises all possible
and unique values of the key in the database.

takes a relational DB, i.e., multiple tables, as its input, and pass it through multiple RDNN layers
to generate embeddings for each row in the tables, which we refer to as table embeddings X

(l)
Tt

.
By attaching proper prediction heads over the learned table embeddings, RDNNs can be trained
end-to-end to perform classification or regression predictions over one or multiple columns.

4.1 INPUT: RELATIONAL DBS WITH RELAXED CONSTRAINTS

A standard relational database (RDB) in conventional RDB management systems (RDBMS) must
adhere to various constraints to enforce many-to-one relationships needed for identifying paths along
which related tables are joined together. However, our observation reveals that many real-world
relational datasets deviate from these constraints. In the example in Figure 6, there lacks a table
where author ID (or paper ID) is presented as a typical primary key where the values need to be
unique across all rows and comprise a super-set of all author IDs. Instead, there could be duplicated
author ID in both tables (relaxed key constraints) and there is no one table that contains all the author
IDs existing in the other tables (relaxed referential constraints). The author-paper edge table does not
contain a unique A-P ID as the primary key (relaxed entity integrity constraints).

Rather than necessitating the intervention of experienced RDB experts to manually rectify these
violated constraints, our proposed Relational Deep Neural Network (RDNN) can seamlessly accept
RDBs with relaxed constraints as input. Notably, when the naming conventions for key columns are
standardized, such as designating the primary key column as "table name id," RDNN can efficiently
process multiple tabular datasets. This feature holds significant value for practitioners, as it eliminates
the need for complex RDBMS systems to apply RDNN. Instead, the input can be as straightforward
as multiple CSV files or Pandas data frames (McKinney et al., 2011). Essentially, we have expanded
the input capabilities of RDNN from exclusively handling strict RDBs to encompass a wide range of
multi-table databases. In the following discussions, we make the assumption that the input provided
to RDNNs consists of relational databases with relaxed constraints.

4.2 TABLE ENCODER

We first apply preprocessing on the input tables {Ti}, which involves column type identification,
missing value imputation, and data normalization. We obtain 3 types of feature columns: numerical,
categorical, and other modalities. These features are then fed into a table encoder that transforms them
into the initial table embeddings X(0)

Tt
∈ Rd to be passed into RDNN layers. The numerical columns

cnum are mapped to d dimensional embeddings through a linear layer. For categorical columns ccat,

5

Under review as a conference paper at ICLR 2023

we create a lookup table that stores trainable d-dim embeddings for each category. For columns
with other complex modalities cother such as text or molecule string representations, we could apply
the corresponding pre-trained encoders e.g., BERT(Devlin et al., 2018), to generate d-dimensional
embeddings. As a final step, we sum up the embeddings for different columns to derive the initial
table embeddings X(0)

Tt
.

X
(0)
Tt

=
∑
cnum

Tt[:, cnum]Wcnum +
∑
ccat

Wccat

[
Tt[:, ccat], :

]
+

∑
cother

ϕ(Tt[:, cother]) (1)

We exclude key columns from table features, as they usually contain meaningless identifiers and only
serve as index. Note that designing the optimal feature engineering methods is not the focus of the
paper. RDNN could easily work with other manual or automatic feature engineering methods. It is
also worth mentioning that many public datasets have already preprocessed the column values for
users, in which case the abovementioned table encoder can be skipped.

4.3 CROSS-TABLE COMMUNICATION

The forward pass of an RDNN layer takes as input the table embeddings from previous layer, and
updates the embeddings through two steps: cross-table communication and inner-table transformation.
To facilitate efficient information exchange across tables, we introduce the concept of meta-key.

Definition 1 Meta-key K represents the set of key columns across all the tables in an RDB that refers
to the same ID space. We define M(T [:, ckey]) = K as the map from a key column ckey in table T to
its corresponding meta-key K.

In the example in Figure 6, two meta-keys, author and paper, can be derived and the authorID
column from the two tables are mapped to author whereas the paperID column from the author-
paper edge table is mapped to paper. We accomplish cross-table communication through a 2-stage
procedure: table-to-key communication and key-to-table communication.

Table-to-key communication. In this stage, we derive embeddings for each index in the meta-keys,
referred to as meta-key embeddings X(l)

Ks
, by aggregating the information from tables that contain

the corresponding key column. We start with deriving the per-table key embeddings X
(l)
kj |Tt

for
each key column kj of a given table Tt. To address duplicated key values, we use a scatter reduce
function SCATTER3 to map multiple rows in the table embeddings to a unique key embedding. Next,
we aggregate per-table key embeddings into meta-key embeddings. The aggregator AGG could be
standard operators such as MEAN or SUM. Note that there could be non-overlapped key values when
merging key embeddings, e.g., merging Author ID 1, 2 and Author ID 1, 3 to obtain X

(l)
author in Figure

6. In this case, we zero-pad the missing key embeddings such that their shapes are identical. In
summary, the table-to-key communication in the l-th RDNN layer can be summarized as

X
(l)
Ks

[r, :] = AGG
{

SCATTER
{
X

(l)
Tt

[i, :]
∣∣∀i, Tt[i, ckey] = r

}∣∣∣∀Tt,∀ckey,M(Tt[:, ckey]) = Ks

}
(2)

where the output is the meta-key embeddings X(l)
Ks

, SCATTER and AGG has been discussed above,
Ks refers to a meta-key column, ckey refers to a key column.

Key-to-table communication. In this stage, each row in the table embeddings X
(l)
Tt

[i, :] will be

updated by aggregating information from all the meta-key embeddings X
(l)
Ks

with corresponding
index (i.e., INDEXSELECT) based on the meta-key column mapping M .

X̃
(l)
Tt

[i, :] = X
(l)
Tt

[i, :] + AGG
{
X

(l)
Ks

[
Tt[i, k], :

]∣∣∣∀k,Ks = M(Tt[:, k])
}

(3)

where the [·, ·] notation refers to INDEXSELECT, and a similiar AGG to Equation (2) is applied to
aggregate from multiple meta-keys Ks to a given table Tt.

3Scatter reduce is natively supported in deep learning frameworks, e.g., torch.scatter_reduce

6

Under review as a conference paper at ICLR 2023

4.4 INNER-TABLE TRANSFORMATION

After the table embeddings are updated with information exchanged during cross-table communica-
tion, we apply a non-linear table transformation ϕTt

over the table embeddings before passing it to the
next layer. We used a 2-layer multi-layer perceptron (MLP) with skip connection in the experiments
and therefore final table embeddings in the output of the l-th RDNN layer can be computed with:

X
(l+1)
Tt

= σ(X̃
(l)
Tt

WTt +BTt) + X̃
(l)
Tt

(4)

where σ is a non-linear function such as ReLU, WTt
and BTt

are trainable weights. Note that rows in
a table are treated as the batch dimension when applying table transformation; therefore, the trainable
weights WTt

and bias vector bTt
(broadcasted into BTt

) are shared across different rows of the table.

4.5 SUPERVISED LEARNING WITH RDNN

Here we describe the concrete steps for making column value predictions based on the generated
RDNN embeddings. Given a target table Tt, we obtain the final table embeddings X(L)

Tt
from the

output of the last RDNN layer and apply a prediction head (e.g., linear or shallow MLP) on top
of the embeddings to output predictions in the desired shape. To train RDNN end-to-end, we can
define loss functions based on the designated supervised learning tasks, such as cross-entropy loss for
classification and mean-squared-error for regression. For the column(s) that are selected as prediction
targets, we exclude them from the table features and use them as labels for training the RDNN. We
randomly split the rows into train, test, and validation sets following conventional machine learning
practices. Note that the prediction tasks on RDBs are naturally self-supervised since the labels are
defined as columns in RDB with predictive queries. RDNN can be used for multi-task learning and
we defer discussions on the extension to multi-task learning setting to the Appendix.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Graph datasets. We perform experiments over 7 different graph datasets. We consider 3 types
of prediction tasks: node classification, graph classification, and heterogeneous node classification.
The node classification datasets include (1) Citeseer (Sen et al., 2008), (2) Pubmed (Sen et al.,
2008), and larger scale (3) ogbn-arxiv (Hu et al., 2020a) datasets, which are real-world citation
networks. We consider graph classification datasets from TUDatasets (Morris et al., 2020), including
(4) ENZYMES, (5) PROTEINS, and (6) D&D, which are real-world protein networks. We further
consider node classification on a heterogeneous graph dataset, (7) DBLP (Gao et al., 2009).

RDB datasets. We further prepare 3 different RDB datasets to compare different methods. We
consider the following datasets: (1) Financial, an RDB dataset provided in PKDD’99 Challenge,
recording the information in a banking system including loans, transactions, accounts, etc. (Levin
et al., 1999); (2) Hepatitis, and RDB dataset provided in PKDD’02 Challenge, which describes
206 instances of Hepatitis B patients (Khosravi et al., 2012); (3) PTC, an RDB dataset from Pre-
dictive Toxicology Challenge 2000, which includes organic molecules marked according to their
carcinogenicity (Helma et al., 2001). For each RDB dataset, we prepare different predictive queries to
represent different column prediction tasks within the RDB. We downloaded the RDB datasets from
the website4. Visualization of the data schema and dataset statistics can be found in the Appendix.

Tasks. In graph datasets, we use the dataset splits provided by ogbn-arxiv dataset; for the
remaining node and graph classification dataset, we use a random 80%/10%/10% train/validation/test
split, where we report the test metrics under the best validation epoch; for the heterogeneous node
classification dataset DBLP, following prior works Jin et al. (2021), we consider 3 different dataset
splits, where we have 10%, 20%, and 40% data for training, respectively. Following the practice in
prior works, we report ROC AUC for the ogbn-arxiv dataset, and Marco-F1 score for the DBLP
dataset; we report classification accuracy for the remaining datasets.

4https://relational.fit.cvut.cz/

7

https://relational.fit.cvut.cz/

Under review as a conference paper at ICLR 2023

Table 1: Comparing GNNs with RDNNs on real-world graph learning tasks, with simple graphs
(Left) and heterogeneous graphs (Right). Hyperparameters for all the models are controlled. Numbers
are reported as ROC AUC (ogbn-arxiv), Marco-F1 (DBLP), and accuracy (remaining datasets).

Node classification Graph classification

CiteSeer Pubmed ogbn-arxiv ENZYMES PROTEINS D&D

GCN 78.98 87.32 71.24 36.67 72.32 75.42
GraphSAGE 78.38 88.24 70.15 41.67 73.21 79.66

GAT 77.18 86.51 71.48 40.00 71.17 72.03
GIN 77.18 83.32 41.47 55.00 74.10 74.58

RDNN 79.88 89.05 71.03 58.33 73.21 83.05

Heterogeneous node class.

DBLP 10% train 20% train 40% train

GCN 43.70 44.75 45.26
GAT 53.61 54.81 55.09
HAN 57.02 57.61 57.75

MAGNN 56.39 58.11 59.39

RDNN 56.70 60.48 64.15

Models. For node classification and graph classification datasets, we use 4 widely adopted GNN
models as the baseline models, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), GAT (Velickovic et al., 2018), where we use an improved GAT implementation based
on (Brody et al., 2021)), and GIN (Xu et al., 2019). For node classification on heterogeneous
graphs, we further include HAN (Wang et al., 2019) and MAGNN (Fu et al., 2020) as representative
heterogeneous GNN baselines. For RDB prediction tasks, we consider tabular machine-learning
baselines, including MLP, which follows all the designs of RDNN, except that there is no cross-table
communication stage, and XGBoost (Chen & Guestrin, 2016); we further consider variants for MLP
and XGBoost, where we additionally use SQL Left Join operation to merge all the available tables
to the target table, mimicking how a real-world data scientist would approach the task with tabular
learning methods.

Note that our goal is not to pursue state-of-the-art performance on any of the datasets; instead, we want
to provide informative comparisons between RDNNs and existing methods; consequently, we do our
best to control the hyperparameters during the experimentation. Specifically, all the GNNs, MLPs, and
RDNNs have 3 layers and a hidden dimension of 128, unless a model experience notable overfitting,
where we will switch them to 64 dimensions. We use ReLU activation and Layer Normalization (Ba
et al., 2016) for all the models; when Layer Normalization provides unstable results, we consider
using Batch Normalization (Ioffe & Szegedy, 2015) as an alternative approach to stabilize training.
For all the models. We use Adam optimizer with a learning rate choosing between 0.01 and 0.001.
For all the graph datasets, we converted them into tabular data following the illustration in Figure 1
and fed them into RDNN. Note that the reported performance of baselines may be different from
the reported value from other sources, e.g., OGB leaderboard, since we fix all the hyperparameters
to ensure a fair comparison as discussed above. Restricted by computational resources, performing
architecture searches and evaluating all the models under optimal hyperparameters are left for future
research. We will release all the code and datasets at the time of publication to ensure reproducibility.

5.2 PREDICTION RESULTS ON GRAPH DATASETS

First, we compare RDNNs against popular GNNs on diverse graph prediction datasets and tasks.
As is shown in Table 1, RDNN could outperform all the baselines in 6 out of 9 settings that we
have experimented with. In the cases where a GNN method performs the best, the performance
gap between RDNN and the best method is often negligible. Notably, on D&D and DBLP with 40%
training data, RDNN could significantly outperform the GNN baselines. It is worth emphasizing
that when we apply GNN models to node/graph classification and heterogeneous graphs, we have
to develop a completely different machine learning pipeline to handle the input data, prediction
heads, and evaluation. In contrast, we use the same RDNN implementation pipeline for all the diverse
graph learning tasks, without any special customization for the task of interest. We only use 2
different predictive queries, “node.label” and “graph.label” to inform RDNN which column to predict
Given the discussions above, we found the fact that a general-purpose RDNN can often outperform
specialized GNN models is quite encouraging.

5.3 RESULTS ON RDB DATASETS

Next, we compare RDNNs with tabular machine-learning methods on RDB datasets. We have created
multiple predictive queries for each RDB dataset, where “loan.status” means we predict the column
“status” in table “loan”. As is shown in Table 2, RDNNs can significantly outperform all the baselines

8

Under review as a conference paper at ICLR 2023

Table 2: Comparing GNNs with RDNNs on real-world RDB prediction tasks. We control the
hyperparameters for all the models. Numbers are reported as the accuracy (higher is better).

Financial PTC Hepatitis

Predictive query: “loan.status” “orders.symbol” “molecule.label” “atom.type” “indis.alb” “indis.got” “indis.gpt”

MLP 80.88 69.35 N/A N/A 86.47 69.95 82.95
MLP+Join 82.35 55.74 53.46 47.31 86.82 74.69 83.13
XGBoost 82.35 70.92 N/A N/A 77.57 68.54 82.25

XGBoost+Join 81.25 50.00 55.88 45.87 74.72 73.81 82.65

RDNN 94.12 77.80 80.28 91.57 88.05 78.38 85.59

Table 3: Ablation study: varying the number of RDNN layers on Financial dataset with
predictive query “loan.status”. We report accuracy as the metric.

Number of RDNN layers

0 1 2 3 4
RDNN’s accuracy on Financial “loan.status” 80.88 81.25 89.85 94.12 93.52

in all the tasks we considered, even after we include manual data engineering processing for the MLP
and XGBoost baselines. Notably, in the Financial dataset that consists of 8 tables, RDNN could
effectively leverage the tables that are multi-hops away to make accurate predictions. We show an
ablation study in table 3, where we vary the number of RDNN layers on the Financial dataset.
Interestingly, we observed a significant performance jump when we started using 2-layer RDNNs;
in the schema of Financial dataset, the table “transaction”, which has over 1 million rows and
therefore has rich information, is exactly 2-hop away from the target table “loan”. Therefore, this
observation demonstrates that RDNN could make effective information communication across tables,
and consequently, holistically utilize the information across a given RDB.

6 CONCLUSIONS AND DISCUSSION

Limitations. Due to limitations in computational resources, most of our experiments are run with
CPU nodes and we were not able to systematically assess RDNNs’ scalability on larger-scale datasets.
Furthermore, despite the abundant presence of relational DB in real-world applications, there is
limited available benchmark dataset and open-source implementation of ML algorithms on RDBs,
and therefore refrain from a more exhaustive comparison.

Future directions. In the Appendix, we describe a multi-task learning strategy to extend RDNN
beyond single-column prediction. The idea is to perform masked self-supervised prediction. We
envision that such a methodology can be further extended to pre-train RDNNs for more versatile
and flexible predictive queries over RDB, which could pave the path for the exciting direction of
building foundational models for relational databases and beyond. Additionally, since real-world
relational databases could have billions of rows, studying memory-efficient algorithms for inference
and training for RDNNs is quite valuable. Some preliminary results based on per-layer RDNN
training have shown encouraging outcomes, and we encourage the community to further investigate
the directions in the future.

Conclusion. In this paper, we demonstrate how leveraging relational databases (RDBs) can stream-
line the representation of relational data and unify diverse graph-based learning approaches. The
transformative influence of the Transformer architecture on AI is evident in recent years; while not
universally optimal, its versatility has cultivated a thriving ML ecosystem and remarkable achieve-
ments. Likewise, considering the widespread presence of RDBs in scientific and industrial realms,
our modest aspiration is for our holistic perspective and RDB-focused approach to kindle a novel
path in deep learning for this context. We aspire to catalyze an improved ML ecosystem tailored to
relational data, mirroring the success prompted by Transformer’s universality. Collaboratively engag-
ing with the community, encompassing open-source initiatives, ML system optimization, benchmark
establishment, and broadened applications, we envision endowing AI with the novel ability to learn
from relational data — a key to unlocking an uncharted realm of knowledge.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Siddhant Arora, Vinayak Gupta, Garima Gaur, and Srikanta Bedathur. Bert meets relational db:
Contextual representations of relational databases. arXiv preprint arXiv:2104.14914, 2021.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Jinze Bai, Jialin Wang, Zhao Li, Donghui Ding, Ji Zhang, and Jun Gao. Atj-net: Auto-table-join
network for automatic learning on relational databases. In Proceedings of the Web Conference
2021, pp. 1540–1551, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

Landon Butler, Alejandro Parada-Mayorga, and Alejandro Ribeiro. Convolutional learning on
multigraphs. IEEE Transactions on Signal Processing, 71:933–946, 2023.

Surajit Chaudhuri, Usama Fayyad, and Jeff Bernhardt. Scalable classification over sql databases.
In Proceedings 15th International Conference on Data Engineering (Cat. No. 99CB36337), pp.
470–479. IEEE, 1999.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Edgar F Codd. A relational model of data for large shared data banks. Communications of the ACM,
13(6):377–387, 1970.

Milan Cvitkovic. Supervised learning on relational databases with graph neural networks. arXiv
preprint arXiv:2002.02046, 2020.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–based
protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558–3565, 2019.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated graph neural
network for heterogeneous graph embedding. In Proceedings of The Web Conference 2020, pp.
2331–2341, 2020.

Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, and Jiawei Han. Graph-based consensus maximization
among multiple supervised and unsupervised models. Advances in neural information processing
systems, 22, 2009.

Paul WPJ Grefen and Peter MG Apers. Integrity control in relational database systems—an overview.
Data & Knowledge Engineering, 10(2):187–223, 1993.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Christoph Helma, R. D. King, S. Kramer, and A. Srinivasan. The Predictive Toxicology Chal-
lenge 2000-2001. Bioinformatics, 17(1):107–108, January 2001. ISSN 1367-4803. doi:
10.1093/bioinformatics/17.1.107. URL http://bioinformatics.oxfordjournals.
org/cgi/doi/10.1093/bioinformatics/17.1.107.

10

http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/17.1.107
http://bioinformatics.oxfordjournals.org/cgi/doi/10.1093/bioinformatics/17.1.107

Under review as a conference paper at ICLR 2023

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
Neural Information Processing Systems (NeurIPS), 2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pp. 2704–2710, 2020b.

Jing Huang and Jie Yang. Unignn: a unified framework for graph and hypergraph neural networks.
arXiv preprint arXiv:2105.00956, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.
mlr.press/v37/ioffe15.html.

Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. Heterogeneous graph neural network via
attribute completion. In Proceedings of the web conference 2021, pp. 391–400, 2021.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. International Conference on Machine Learning (ICML), 2018.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Hassan Khosravi, Oliver Schulte, Jianfeng Hu, and Tianxiang Gao. Learning compact Markov logic
networks with decision trees. Machine Learning, 89(3):257–277, 2012. ISSN 08856125. doi:
10.1007/s10994-012-5307-6.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kemper. Learned
cardinalities: Estimating correlated joins with deep learning. arXiv preprint arXiv:1809.00677,
2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
International Conference on Learning Representations (ICLR), 2017.

Hai Lan, Zhifeng Bao, and Yuwei Peng. An index advisor using deep reinforcement learning. In
Proceedings of the 29th ACM International Conference on Information & Knowledge Management,
pp. 2105–2108, 2020.

Boris Levin, Abraham Meidan, Alex Cheskis, Ohad Gefen, and Ilya Vorobyov. Pkdd’99 discovery
challenge—financial domain. In Workshop Notes on Discovery Challenge. Workshop at 3rd
European Conference on Principles and Practice of Knowledge Discovery and Data Mining
(PKDD’99), 1999.

Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order enumeration. In
Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, pp. 1–4, 2018.

Wes McKinney et al. pandas: a foundational python library for data analysis and statistics. Python
for high performance and scientific computing, 14(9):1–9, 2011.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pp. 5363–5370, 2020.

11

https://proceedings.mlr.press/v37/ioffe15.html
https://proceedings.mlr.press/v37/ioffe15.html

Under review as a conference paper at ICLR 2023

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learning with mix-
ture models. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, pp. 1017–1033, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In The Semantic Web: 15th
International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15,
pp. 593–607. Springer, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin Qiao, Yue Shi,
Wei Cao, and Rui Zhang. ibtune: Individualized buffer tuning for large-scale cloud databases.
Proceedings of the VLDB Endowment, 12(10):1221–1234, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations (ICLR),
2018.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In The world wide web conference, pp. 2022–2032, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations (ICLR), 2019.

Jiaxuan You, Tianyu Du, and Jure Leskovec. Roland: graph learning framework for dynamic graphs.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 2358–2366, 2022.

Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. Automatic view generation with
deep learning and reinforcement learning. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pp. 1501–1512. IEEE, 2020.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 33(14):i190–i198, 2017.

12

Under review as a conference paper at ICLR 2023

A DISCUSSIONS: COMPARING WITH GNNS AND TABLE JOIN + MLP

Benefits and limitations of RDNNs comparing with GNNs. Compared to GNNs, a majority
difference of RDNN is that node and edge are treated equally (they are regarded as two different
tables), whereas in GNN designs, computation defined on node and edge are different. This leads to
several benefits of RDNNs. (1) User no longer need to worry about properly defining node, edge,
and hyperedge from their relational data, everything is rows in tables. (2) When defining the model,
the same set of computations is applied across all the tables, without the need to define specialized
computations for different tables. (3) RDNN is simpler for machine learning researcher to explore
new designs; furthermore, the homogeneous computation behind RDNN provide additional room for
system researchers to optimize the pipeline. Indeed, if simple graphs are of concern, then RDNN
does not seem to have an obvious advantage and incur additional computation on the edge case,
which may be redundant; we would recommend researchers continually use GNNs over RDNNs if
the input is simple graphs. However, when the relational data are complex, then the generality of
RDB representation and simplicity of defining RDNN has a clear advantage over the alternatively
GNN approach, where a user would have to first organize the data into heterogeneous graphs, then
define Heterogenous GNN.

Connectsions with MLP+Join. The concept of RDNN is also related to the approach of table join +
MLP. The index selection phase is conceptually related to many-to-one join, while the scatter reduce
phase is conceptually related to one-to-many join. The one-to-many join operation is particularly
challenging as it entails either losing information by selecting a single row for joining or facing
scalability issues. This is due to the exponential expansion of target rows, necessitating a late
aggregation over all the expanded rows, which can be a complex task. Instead, RDNN can be
understood as a neural version of table join + MLP that can be optimized end-to-end.

B MULTI-TASK SELF-SUPERVISED LEARNING WITH RDNN

So far, we have assumed that RDNNs are used to predict a single column within a database. In
practice, we could define multiple-column prediction tasks for a database. The common practice of
separating features and labels in ML task formulation is not ideal: excluding known labels inevitably
results in the loss of useful information for the prediction task. In the extreme case of a missing value
imputation task where all columns have missing values, all the columns should be regarded as labels,
and there are no features.

Instead, we propose an effective approach to handling multiple prediction tasks in an RDB. First, we
record the masks for the missing values and apply naive missing value imputation methods to fill the
unknown values. For numerical columns, we impute with the mean values of a given column, and
for categorical columns, we impute by creating an additional ’UNK’ category. Then, we feed the
full RDB with completed feature values to RDNN, generate the embeddings for rows with masked
missing values, and attach a different prediction head for each column to be predicted. We will
synthetically create different training, validation, and optionally test masking to consistently train
RDNN under the same setting. With this simple yet effective approach, a single RDNN can be trained
for multiple prediction tasks in an RDB. Due to the limited computational resources, we defer the
exploration of multi-task self-supervised learning for the future work.

C STATISTICS OF THE RDB DATASETS IN EXPERIMENTS

Table 4: Statistics of the RDB datasets used in the experiment
Dataset Domain # Tables Diameter # Cols # Rows

Financial Economic 8 3 55 1,079,680
Hepatitis Society 7 4 26 12,927

PTC Economic 4 2 11 49,239

13

Under review as a conference paper at ICLR 2023

Figure 4: Financial RDB dataset

D VISUALIZATIONS OF THE RDB DATASETS IN EXPERIMENTS

Here we include the RDB schemas for the datasets investigated in this paper, obtained from https:
//relational.fit.cvut.cz/.

14

https://relational.fit.cvut.cz/
https://relational.fit.cvut.cz/

Under review as a conference paper at ICLR 2023

Figure 5: Hepatitis RDB dataset

Figure 6: PTC RDB dataset

15

	Introduction
	Related Work
	Preliminaries and Perspectives
	Relational Database Neural Networks
	Input: Relational DBs with Relaxed Constraints
	Table encoder
	Cross-Table Communication
	Inner-Table Transformation
	Supervised learning with RDNN

	Experiments
	Experimental Setup
	Prediction Results on Graph Datasets
	Results on RDB datasets

	Conclusions and Discussion
	Discussions: Comparing with GNNs and Table Join + MLP
	Multi-task Self-supervised Learning with RDNN
	Statistics of the RDB Datasets in experiments
	Visualizations of the RDB Datasets in experiments

