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Figure 1: Traditional frameworks typically separate human and agent training, requiring operators
first to learn the task environment before data collection. This often leads to inefficiencies due to de-
layed and insufficient data gathering. In our framework, we integrate human and agent training from
the start in a joint learning model. This enables simultaneous development and adapts the agents to
human operation more effectively, enhancing overall efficiency and promoting better collaboration
between humans and machines allowing for human effortless adaptation data collection.

Abstract: Employing a teleoperation system for gathering demonstrations offers
the potential for more efficient learning of robot manipulation. However, teleop-
erating a robot arm equipped with a dexterous hand or gripper, via a teleoper-
ation system presents inherent challenges due to the task’s high dimensionality,
complexity of motion, and differences between physiological structures. In this
study, we introduce a novel system for joint learning between human operators and
robots, that enables human operators to share control of a robot end-effector with
a learned assistive agent, simplifies the data collection process, and facilitates si-
multaneous human demonstration collection and robot manipulation training. As
data accumulates, the assistive agent gradually learns. Consequently, less human
effort and attention are required, enhancing the efficiency of the data collection
process. It also allows the human operator to adjust the control ratio to achieve
a trade-off between manual and automated control. Through user studies and
quantitative evaluations, it is evident that the proposed system could enhance data
collection efficiency and reduce the need for human adaptation while ensuring the
collected data is of sufficient quality for downstream tasks.
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1 Introduction

Inspired by shared autonomy [1, 2, 3], we introduce a novel teleoperation system that enables col-
laboration between humans and learning-based agents to control a robot jointly during the data
collection and learning process. In particular, our proposed system provides the flexibility to adjust
a “control ratio” between the human operator and a learning-based agent. A lower control ratio, in
the beginning, emphasizes the human’s role in teaching the agent finer-grained knowledge under the
structure of human intention and principal actions. As the agent’s learning improves, a higher ratio
indicates greater autonomy from the learned agent to replace the human effort to “inpaint” the whole
process given only human intention and principal actions.
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With the proposed system, the human effort will be reduced due to the shared control during data
collection. Additionally, the agent learning process is integrated with the data collection, improving
the efficiency of the whole process. In addition, the quality of the collected data is also improved,
benefiting different kinds of downstream tasks.

We conducted experiments in six simulation environments using two end-effectors: a dexterous hand
and a gripper, as well as three real-world tasks. Results show our system significantly enhances
data collection efficiency, increasing success rate by 30% and nearly doubling collection speed.
Additionally, data collected in shared autonomy mode is as effective for downstream tasks as data
collected directly from teleoperation. Our main contributions are summarized as follows:

* Proposing a human-agent joint learning paradigm to reduce human adaptation while main-
taining data quality in teleoperation data collection.

* Developing a system that enables concurrent development of the human operator and as-
sistive agent, streamlining learning and expediting autonomous robot manipulation.

* Conducting both simulation and real-world experiments to demonstrate the efficiency and
effectiveness of our proposed system. Our system achieved significant performance im-
provements, including a 30% increase in data collection success rate and double the col-
lection speed.

2 Proposed Method

The primary contribution of this work is the development of a novel and highly efficient data col-
lection method. To achieve this, the system is designed in two key stages: first, the proposed system
allows human operators to control the robot via a teleoperation system to gather an initial but insuf-
ficient training dataset. Second, using these data, we train a diffusion-model-based assistive agent
(Sec. 2.1) to establish shared control between the human operator and the agent, thereby improving
the efficiency of the data collection process (Sec. 2.2).

2.1 Diffusion-Model-Based Assistive Agent.
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agent to exert more influence over the blended action.
During data collection, the proposed system
offers the option to control the robot in a shared control mode rather than directly applying the col-

lected action a” from the teleoperation system. This leads to a reduced human workload during
the data collection process. The classical shared autonomy method is achieved through the equa-

tion [4]: a® = va" + (1 — )a", where a” is generated by the learned agent. However, considering
that the agent operates as a diffusion policy (Fig. 2), we blend the action from the human with the
forward and reverse processes. Given action a”, a forward process diffuses the action as follows:
a® = a" + €*. Subsequently, a reverse process denoises the action a”:

a® = f(a"|s, k). )



Applying action a enables shared control between the human and the assistive agent. The control
ratio v = k/K adjusts this sharing by varying k. When v = 0, a®* = a”, and the robot is entirely
human-controlled. As <y approaches 1, a® becomes the autonomous action a”. Thus, a higher v
grants the agent more control to stabilize and direct the dexterous hand.

2.2 Integrating Data Collection and Manipulation Learning.

In this section, we show how to integrate data collection and manipulation learning into a unified
framework that progressively reduces human effort and enhances robot autonomy.

Control Ratio Adjustment. Algorithm 1 Overall Process
For each data collection, we offer users two

options to adjust the control ratio : (1) ~ Require: The human operator 74;
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Eq. 2 (shown in Fig. 2). 8: end while

9: return D and f;

3 Experiments

Tasks. We consider six multi-stage manipulation tasks (Fig. 3): Pick-and-Place involves picking an
object and placing it into a container. In Articulated-Manipulation, the dexterous hand unscrews a
door handle; the gripper pulls open a drawer. Push-cube requires pushing a cube to a target position.
Tool-Use involves picking up a hammer to drive a nail into a board.

Quantitative Evaluation. To gain deeper insight into how the learned agent assists the human
operator, we visualize several keyframes from the data collection process of three dexterous hand
tasks. Visualizations in Fig. 4 show that with the assistive agent, human operators need only pro-
vide high-level intentions, like movement direction or grasp motions, rather than precise control.
In multi-stage tasks, such as using a hammer, operators merely provide trigger actions to guide
transitions between sub-stages, reducing effort and speeding up data collection.

To evaluate the agent’s ability to correct imperfect human control, we simulate human input using
a baseline Behavior Cloning (BC) agent as a proxy. As shown in Fig. 5, with limited data, the
assistive agent effectively aids the simulated operator. As more data is collected and the agent is
further trained, its ability to correct actions improves, reducing operator effort and enhancing data
collection efficiency.
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Figure 3: Simulation tasks overview. Here are six task settings and their task flow for Pick-and-
Place (left), Articulated-Manipulation (middle), Gripper-Push (upper-right) and Dexterous-Tool-
Use (bottom-right).
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Figure 4: Shared control process overview. The white one is the hand controlled purely by the
human operator, while the cyan one is under shared control between the human and the assistive
agent.
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Figure 5: Agent performance over time. The x-axis represents the control ratio v and the y-axis
represents the success rate. We train a simulated operator to evaluate our system, it shows that
even with limited data, the learned assist agent can improve the success rate of data collection to
improve the efficiency. With the data accumulated, the performance of the learned agent keeps
rising. Moreover, the learned agent could be transitioned to a full autonomy agent (v = 1).
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Once sufficient data is collected, the assistive agent can transition to full autonomy by setting v = 1
and generating actions from Gaussian noise. We achieve success rates of 0.76, 0.78, and 0.89 across
three dexterous manipulation tasks, indicating the agent can effectively operate autonomously.

Dexterous Pick-and-Place Articulated-Manipulation Tool-Use Dexterous Tool-Use | Gripper Push-cube

Hand 40H  10H + 30S | 40H 10H + 308 40H  10H + 308 BC DP BC DP
BC 0.30 0.50 0.22 0.57 0.39 0.40 01 | 029 045 023 042

BC-RNN | 0.54 0.67 0.47 0.50 0.27 0.25
DP 0.73 0.76 0.77 0.78 0.88 0.89 10H + 10H | 0.28 0.67 0.37 0.78
il o e o 10H + 204 | 0.28 0.82 0.51 0.67

aralle; ICK-and-rlace rticulatea-Manipulation ush-cube
Gripper ‘ 40 10H + 305 ‘ 40H  10H +308 ‘ 40H  10M +30s _|OHH30H 039 088 088 083
BC 042 0.44 035 037 0.88 085 10H + 108 | 0.31 0.71 0.33 0.81
BC-RNN | 0.39 0.36 0.71 0.73 0.59 0.67 104 +205 | 0.30 0.79 0.61 0.62
DP 0.51 0.60 0.42 0.67 0.83 0.82 104 + 308 | 0.40 0.89 0.85 0.82

Table 1: Data quality on downstream tasks. Table 2: Tool-Use and Push-cube task

success rate under increasing data.

Data Quality on Downstream Task. We show that shared control does not compromise data qual-
ity. We collect dexterous hand and gripper demonstrations in two modes: human-only control (H)
and shared control (S) between the operator and assistive agent. These datasets are used to train
agents like BC, BC-RNN [5], and Diffusion Policy (DP) [6].

In Tab. 1, data collected through shared control between the human and the assistive agent shows
comparable or even better performance with BC and BC-RNN compared to expert human demon-
strations. Their results are comparable with DP, possibly as DP can better fit the tasks, which is in
line with [6].

In Tab. 2, adding more shared control data significantly improves policy learning, yielding similar
performance to human-expert data on tool-use and push-cube tasks at a lower cost. This confirms
the quality and efficiency of data collected under our shared control approach for downstream tasks.

4 Conclusion

In this paper, we introduce a novel human-agent joint learning paradigm that enables simultaneous
human demonstration collection and robot manipulation teaching. This approach allows the hu-
man operator to share control with a diffusion-model-based assistive agent within a vision-based
teleoperation system to control multiple robot end-effectors such as grippers and dexterous hands.
Given our paradigm, the human operator can reduce the effort spent on data collection and adjust the
control ratio between the human and agent based on different scenarios. Our system offers a more
efficient and flexible solution for data collection and robot manipulation learning via teleoperation.
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Appendix

In this appendix, we provide additional details to support our main paper. We briefly discuss related
work in teleoperation for data collection and interactive robot learning in Sec. A. We then present
background on the Denoising Diffusion Probabilistic Model (DDPM) in Sec. B. Next, we explain
our algorithm’s steps for training the assistive agent in Sec. C and efficiency of data collection in
Sec. D. Additionally, in Sec. E, we demonstrated the applicability of our method across various
human-machine interfaces (HMIs). Moreover, we conducted ablation studies in Sec. F and data
analysis in Sec. G to further validate the effectiveness and robustness of our approach. Finally, we
describe our real-world experiments and summarize user feedback from our evaluations in Sec. H.

A Related Works

Teleoperation for Data Collection. Data has always been a crucial foundation, and robots are
no exception. Teleoperation serves as a significant source for collecting robot data [5, 7, 8, 9, 10,
11, 12]. Some works achieve teleoperation through wearable devices [13, 14, 15, 16, 17], and
vision-based teleoperation systems offer a low-cost and easily developed alternative [18, 19, 20, 21].
For instance, [21] utilizes neural networks for markerless vision-based teleoperation of dexterous
robotic hands from depth images. [18] set up a vision-based teleoperation system to control the
Allegro Hand, accomplishing various contact-rich manipulation tasks in the real world. Recently,
[19] introduced AnyTeleop, a unified teleoperation system designed to accommodate various arms,
hands, realities, and camera setups within a singular framework. In this paper, we introduce a
joint learning paradigm to assist teleoperation by sharing control between the human operator and a
learning-based agent, improving the efficiency of data collection using teleoperation.

Interactive robot learning. Collecting fine-grained human demonstration data for robotic manip-
ulation is an effective but labor-intensive and time-consuming way to enable robots to complete a
wide range of tasks [22, 23]. Previous work uses shared autonomy to assist people with disability
in performing tasks by arbitrating human inputs and robot actions [24]. Many of the shared auton-
omy algorithms aim to estimate human intents from a set of pre-defined goals [4, 25, 26, 27], using
clothoid curves to parametrize the state and control [28] or by mapping low-dimension control input
to high-dimension robot actions [24, 29]. In this work, we introduce a system that integrates the
agent’s learning process with data collection, facilitating both data collection and robot learning.

B Preliminary

To get a learned agent in Sec. 2.1, enabling human-agent joint learning, we follow the Denoising
Diffusion Probabilistic Model (DDPM) [30] training paradigm. Here we first briefly introduce the
DDPM algorithm. The forward process of the Diffusion Model can be regarded as adding Gaussian
noise to the data x9 according to a variance schedule 31.x by

T = JopTr—1 + V1 — oge, 3)

where € ~ N(0,I),a, = 1 — ;. DDPM models the output generation as a denoising process
(Stochastic Langevin Dynamics). A line of works [31, 32, 6, 33] use diffusion model to generate
the action for agents: given 2% sampled from Gaussian noise N (0, I), it utilizes a parameterized
diffusion process to model how =¥ is denoised in order to get noise-free action 2° by

K
po(a°) = / p() T] o) dat*%, @)
k=1

where pg (¥~ |zF) = N(ug(z*, k), X(z*, k)) is usually referred as reverse process. [34] shows
that pg(2'~!|2*) becomes tractable when conditioned on z and Eq. 4 can be reformulated as min-
imizing the error in the noise prediction. [30] simplify the training loss function as

L:= ]Ek,wg,ENN(O,I) I:He - ee(xk(w07 6)7 k)”g] ) (5)

where step k is sampled uniformly as k& € [1, K], €y is the noise prediction model. During the
inference phase, we can generate xo by recursively sample z ~ A (0, I):

Tr—1 = po(Tk, k) + opz. 6)



Similar to [6, 35], with the collected trajectory {(s;, a;)}’_,, we aim to train an agent to imitate the
trajectory, accomplishing a specific task 7. Therefore, we utilize DDPM to capture the conditional
distribution of p(a|s) and the training loss in Eq. 5 shall be modified as

L= ]Ek,(si,ai),eNN(O,I) [HG - Ee(ai + €, 84, k)”%] : (7

C Detailed Algorithm Explanation.

We outline the overall process in Algo. 1. The assistive agent is trained in three steps as follows:

Step 1. Initially, we collect a dataset for pre-training agent f under full manual control by human
operators, i.e., with the control ratio v = 0.

Step 2. Given the initial dataset, we train a relatively low performance assistive agent to aid in further
data collection. The training process has been formulated in Eq. 7 and Eq. 1, where a neural network
€g is trained to predict noise € out of the noisy action a*.

Step 3. The trained agent assists in a second data collection round, aiming for higher efficiency and
success. We then refine the agent using data from both rounds to enhance its performance. This
cycle repeats until the agent achieves full autonomy and the required data volume is collected.

D Efficiency of Data Collection.

We conducted a user study to evaluate how our shared control system enhances data collection
efficiency. Ten participants collected data under two modes: shared control with the learned agent
(W/ Ours) and direct control by the operator alone (w/o Ours). They had three minutes per mode for
three dexterous hand tasks, aiming to collect as much data as possible. We measured Success Rate
(Percent), Horizon Length (Steps per Sample), and Collection Speed (Samples per Hour).

As shown in Tab. 3, our system improved success rate and collection speed while reducing horizon
length, indicating enhanced efficiency. To ensure fairness, participants were split into two groups
with reversed mode orders. Group 1 first collected data directly by themselves (w/o Ours) and then
collected data with an assistive agent (w/ Ours), while the Group 2 reversed the order, first (w/ Ours)
mode and then (w/o Ours) mode.

Pick-and-Place
Success  Horizon  Collection
Rate t  Length |  Speed 1

Tool-Use
Success  Horizon  Collection
Rate © Length | Speed 1

Door-Open
Success  Horizon  Collection
Rate T Length|  Speed 1

Groupl — w/ Ours 86.96 219.01 320 87.11 142.29 460 66.50 232.17 200
w/o Ours | 51.53 378.49 176 62.49 258.27 252 42.38 487.95 129
Group2  w/ Ours 94.06 214.16 324 80.29 134.16 424 55.55 275.71 172
w/o Ours | 45.42 471.48 120 53.45 317.21 176 34.47 511.03 124

Table 3: User studies on three dexterous hand tasks.

E Human-Machine Interface

Our approach has demonstrated success across a diverse set of Human Machine Interfaces(HMI),
including:

Sigma.7 Teleoperation Devices: Our system has successfully utilized Sigma devices to achieve
precise control for tasks involving limited DoF. These devices require intricate control and feedback
mechanisms, demonstrating our interface’s robustness and effectiveness in physical Ul scenarios.

RGB-D Cameras: Our system can accurately interpret spatial environments by leveraging depth
perception, making it highly effective for freehand teleoperation. This capability lays the foundation
for handling physical Uls with equal precision.

Virtual Reality (Meta Quest3): In VR environments, our interface provides an immersive and
intuitive experience that closely mimics real-world interactions. This shows its capability to han-
dle complex interfaces with precision and ease. As shown in Tab. 4, we repeated the dexterous
articulated-manipulation experiment with Leap Hand [36] in a VR environment and validated that



our paradigm is applicable across different HMIs. This demonstrates the versatility of our approach,
ensuring consistent operation across various human-machine interfaces.

Table 4: Articulated-Manipulation task success rate under increasing data with Quest3.

VR Articulated-Manipulation
Dexterous BC DPpP
10H | 0.04 0.10
10H + 10H | 0.15 0.25
10H +20H | 0.26 0.26
10H + 30H | 0.40 0.30
10H +10S | 0.34 0.28
10H +20S | 0.30 0.35
10H +30S | 0.44 0.63

F Ablation study

We implement the shared control agent with different methods like the diffusion model and BC. BC
adapts a classical way for blending policy to achieve shared control [4]. We use it in the ablation
study to blend BC policy with pure human action to achieve shared control in Fig.6. Compared to the
classical way which explicitly averages human action a” and agent action a” to get the shared action
a®, we instead use the diffusion model, which is a popular implicit model, to blend two actions. It
models the process as the forward and reverse process. The forward/diffuse process is about adding
Gaussian noise to human action a”, and the reverse process uses a neural network f(-|-) to denoise
a” to get the shared action a*.

BC agent is trained using a specific sequence of data collection and fine-tuning steps to optimize
performance across different levels of shared control. Initially, we collect data sets of 10, 10, and 20
episodes under various task conditions. These initial datasets are used to train a preliminary agent.
Following this initial training phase, we employ the trained agent to assist in further data collection
under three different control ratios represented by «y values of 0.25, 0.5, and 0.75. The data collected
with the assistance of the agent under these  settings are then used to fine-tune the agent.

As shown in Fig.6, experiments demonstrated that the success rate of an assistive agent based on BC
is lower than that of an agent based on diffusion models, indicating a reduced capacity for assistance.
In certain instances, the action even becomes worse at particular control ratios.
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Figure 6: Ablation on different dexterous agents trained with different compositions of data.

G Data Analysis

We use t-SNE to visualize the distribution of trajectory actions on different dexterous tasks, as
shown in Fig. 7. Specifically, we have reduced the trajectory of actions to three dimensions using
t-SNE, for both data collected by human operators with and without our system. To ensure a fair
comparison, we uniformly sampled the same number of actions across both scenarios. We find that
the distribution of the same task tends to cluster in the same space, whether with or without an
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assistive agent. This indirectly demonstrates that our system can enhance data collection speed and
efficiency without compromising data quality.

t-SNE on trajectory actions of the ‘Pick-and-Place' task t-SNE on trajectory actions of the ‘Door-Open’ task t-SNE on trajectory actions of the ‘Dexterous-Tool-Use' task

(a) Pick-and-Place (b) Articulated-Manipulation (c) Tool-Use
Figure 7: t-SNE visualization of distributions of trajectory actions (w/ and w/o assistive agent).

H Real World Experiment and User Feedback.

To better evaluate our system, we further conduct real-world experiments. Three tasks are adopted:
Pick-and-Place, Articulated-Manipulation, and Push-cube in Fig. 8. Following the same rules as
Sec. D, four human volunteers are invited to participate in the user study to collect data under two
modes: one where control is shared between the human operator and the learned agent (w/ Ours),
and the other where control is directly by the human operator alone (w/o Ours). Our proposed
system achieves significant improvements in success rate and collection speed by sharing control
between human operators and learned agents, as demonstrated in Tab. 5. Additionally, data gathered
under our proposed joint learning shared control mode yield performance on the three tasks that
are comparable to those pure human datasets using BC and DP, further substantiated by the results
presented in Tab. 6.
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Figure 8: Real world setting. 1. Pick-and-Place: u

s
it onto the black induction cooker. 2. Articulated-Manipulation: use the gripper to open the drawer.
3. Push-cube: use the gripper to push the cube across the black line.

‘ Success Rate 1 ‘ Horizon Length | ‘ Collection Speed Pick-and-Place Articulated-Manipulation Push-cube
o o7 57 51 40M  20H+20S | 30H  10H+20S | 201 10H +10S
W/ Owrs | - | - | BC | 13/20  14/20 |18/20  19/20 15/20  15/20
w/o Ours | 0.70 | 21.54 | 121 DP | 11/20  12/20 | 16/20 12/20 15/20  13/20

Table 5: Real world parallel gripper Pick- Table 6: Real world parallel gripper experiments of
and-Place task user study. data quality.

We have developed a questionnaire comprising shown in Tab. 7 to capture various dimensions of
user experience and ergonomics, and we invited 10 volunteers to rate our system based on their
feedback.
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Satisfaction: o = 0.769

1. It is fun to use.

2. It works the way I want it to work.
3. It is wonderful.

4. It helps me be more effective.

5. It is flexible.

User-Friendly: oo = 0.852

6. It is simple to use.

7. It is effortless.

8. I can use it without written instructions.

9. I do not notice any inconsistencies as I use it.

Table 7: Subjective Measures

This questionnaire assesses ease of use and overall satisfaction. The reliability of our questionnaire is
supported by strong Cronbach’s alpha values: a = 0.769 for the satisfaction section and o« = 0.852
for the user-friendly section, indicating internal consistency.
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