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Abstract

This paper revisits recent code similarity evalu-001
ation metrics, particularly focusing on the ap-002
plication of Abstract Syntax Tree (AST) editing003
distance in diverse programming languages. In004
particular, we explore the usefulness of these005
metrics and compare them to traditional se-006
quence similarity metrics. Our experiments007
showcase the effectiveness of AST editing dis-008
tance in capturing intricate code structures, re-009
vealing a high correlation with established met-010
rics. Furthermore, we explore the strengths011
and weaknesses of AST editing distance and012
prompt-based GPT similarity scores in com-013
parison to BLEU score, execution match, and014
Jaccard Similarity. We propose, optimize, and015
publish an adaptable metric that demonstrates016
effectiveness across all tested languages, repre-017
senting an enhanced version of Tree Similarity018
of Edit Distance (TSED).019

1 Introduction and Related Work020

In the fields of natural language processing and soft-021

ware engineering, code generation tasks are gaining022

more and more attention. Assessing the quality of023

generated code is now critically important, but we024

still lack evaluation methods other than traditional025

statistical sequence evaluation methods. Widely026

used semantic evaluation metrics like BLEU score027

and Jaccard similarity rely on statistical character-028

istics, overlooking the intricate grammatical struc-029

tures and logical relationships inherent in complex030

programming languages.031

However, recent developments in the NLP field032

paved the way for novel evaluation metrics which033

we explore in this study. For one, the staggering034

number of powerful large language models (LLMs)035

such as GPT-3.5/4 (Achiam et al., 2023) revolution-036

ized the NLP landscape and led to noteworthy ad-037

vancements in the realm of code review and evalua-038

tion (Wang et al., 2023; Tang et al., 2024). Another039

recent study introduced the novel TSED metric and040

used it to evaluate text-to-SQL tasks (Song et al., 041

2023). For this study, we take advantage of these 042

developments to (1) prompt the GPT-4 model to 043

generate similarity scores for code, and (2) expand 044

on the TSED metric. 045

We utilize these two different metrics (GPT and 046

TSED) to evaluate the structural similarity of differ- 047

ent programming languages and how they relate to 048

execution matches. Furthermore, we address how 049

these metrics are correlated to semantic similarity 050

metrics like the BLEU score. Finally, we investi- 051

gate some limitations of these metrics by delving 052

into the impact of TSED’s penalty weight of tree 053

operations on evaluation accuracy and exploring 054

the stability of outputs from the GPT LLMs. 055

As a result, we have these 3 contributions from 056

this research: (a) we propose and publish a new tool 057

for 48 programming languages1, (b) we discuss 2 058

recent evaluation metrics and 2 traditional metrics 059

and compare them via correlation coefficient, recall 060

to execution match, (c) we discuss the unstable 061

nature of GPT similarity scoring and the ways to 062

optimize TSED. 063

2 Approaches 064

2.1 TSED on Programming Languages 065

Applying the TSED evaluation method, initially 066

designed for SQL analysis, we have undergone 067

modifications to extend its applicability to various 068

programming languages. The fundamental TSED 069

approach, illustrated in Figure 1, encompasses AST 070

parsing, AST Editing Distance Calculation, and 071

normalization, closely resembling the methodology 072

outlined in the original paper. However, we have 073

made modifications to both the AST parsing and 074

normalization. 075

Code Parsing: Parsing in the domain of pro- 076

gramming languages involves parsing raw code 077

1https://anonymous.4open.science/r/TSEDwP-
7208/README.md
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Figure 1: Pipeline of TSED Code Evaluation Metric

text into its associated AST. This parsing under-078

scores the complexity of interpreting various pro-079

gramming constructs and converting them into a080

structured grammar tree representation.081

We use tree-sitter2 as our AST parser which is082

based on GLR, a powerful parsing algorithm com-083

monly found in the literature (Latif et al., 2023;084

Tomita, 1991; Clem and Thomson, 2021).085

Tree Distance Computation: For calculating086

tree edit distance as ∆, we utilize the same function087

as outlined in the TSED paper, which is APTED088

algorithm (Pawlik and Augsten, 2015, 2016). Con-089

sidering G1 as predicted code’s AST and G2 are090

AST from ground-truth:091

∆(G1, G2) = min
ops

n∑
i=1

w(opi) (1)092

Here, ops is a sequence of edit operations trans-093

forming G1 into G2, with w(opi) as the cost for094

the ith operation.095

Normalization: Normalization of tree edit dis-096

tances accounts for the complexity of the code by097

considering the maximum number of nodes be-098

tween two trees, and we add a ramp function to099

avoid some extreme situations:100

TSED = max{1− δ

MaxNodes(G1, G2)
, 0} (2)101

This provides a metric for structural similarity102

comparison of programming code, enabling a nu-103

anced analysis beyond mere syntactic comparison.104

2.2 GPT Structure Similarity105

Between 2020 and 2023, OpenAI introduced the106

GPT-3/3.5 and GPT-4 models, showcasing remark-107

able reasoning capabilities and achieving state-of-108

the-art performance across numerous tasks (Brown109

et al., 2020). Our approach involves utilizing110

prompts to elicit the model’s output regarding the111

structural similarity between two code segments,112

resulting in a score on a scale from 0 to 1. A score113

of 1 indicates identical structures, while 0 signifies114

2https://tree-sitter.github.io/tree-sitter/

complete dissimilarity. Despite its effectiveness, 115

this metric operates as a black box, leaving us un- 116

aware of the specific calculations performed by 117

GPT or whether it consistently employs the same 118

metric. From various research papers, we’ve ob- 119

served that these LLMs tend to produce more un- 120

stable results with each iteration (Tian et al., 2023; 121

Liu et al., 2023). 122

3 Research Questions and Targets 123

RQ1: Can TSED be used in more programming 124

languages? We investigate the adaptability of AST 125

Edit Distance which is a generalized version of 126

TSED, exploring its effectiveness in languages like 127

Python and Java to assess its applicability for code 128

similarity analysis. 129

RQ2: How are TSED and GPT similarity cor- 130

related to semantic similarity and execution 131

match? We assess the correlation between these 132

different metrics to understand their respective con- 133

tributions in evaluating code similarity across mul- 134

tiple programming languages. 135

RQ3: What are the limits of these metrics? We 136

assess the stability of GPT-based similarity output 137

and analyze how parameters, particularly operation 138

weights (delete, insert, rename), influence TSED. 139

4 Experiments 140

4.1 General Setup 141

In this study, our primary objective is to apply the 142

theoretical framework to a diverse range of pro- 143

gramming languages. To achieve this, we aim to 144

identify executable datasets and evaluate them us- 145

ing predefined metrics. The experimental setup 146

comprises two key tasks: firstly, expanding the ap- 147

plication of TSED and GPT similarity to additional 148

programming languages, followed by exploring the 149

correlation between these metrics. Subsequently, 150

we seek to assess the stability of GPT scoring and 151

examine the impact of various parameters on the 152

TSED metric. This structured approach allows us 153

to comprehensively investigate the adaptability, cor- 154

relations, and stability of the chosen metrics across 155

a spectrum of programming languages. 156

4.2 Evaluation Metrics 157

• BLEU Score is calculated as the geometric mean 158

of the modified precision scores for various n- 159

gram lengths, providing a concise and standard- 160

ized similarity measurement between the gener- 161

ated and reference text (Papineni et al., 2002). 162
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• Jaccard Similarity is a measure of similarity163

between two sets and is calculated by dividing the164

size of the intersection of the sets by the size of165

their union, offering a quantitative assessment of166

the degree of overlap between the sets’ elements.167

• Execution Match Execution Match pertains to168

the consistency in execution outcomes between169

generated code and its corresponding ground170

truth, evaluating the equivalence in practical func-171

tionality. 1 in Execution match means they have172

the same execution results, and 0 means different.173

• GPT Similarity mentioned in the Section 2.2174

• TSED mentioned in the Section 2.1.175

4.3 Datasets176

Although the execution match metric is infre-177

quently employed in programming code-related178

datasets, its prominence has increased in recent179

years. Our comparative analysis involved assessing180

datasets from various papers, considering factors181

such as dataset sizes, programming languages, and182

executables. As highlighted in Table 1, the MBXP183

dataset encompasses 13 different languages, serv-184

ing as a function-level benchmark that effectively185

evaluates programming paragraphs. However, the186

MBXP dataset includes ground-truth solutions for187

only 7 languages, with C# omitted due to com-188

pilation issues. Additionally, we consider the189

CoderEval dataset to facilitate a comparison be-190

tween Python and Java code generation, leveraging191

its longer test samples, results are in the appendix.192

Table 1: Widely-used code generation benchmarks, se-
lected from GitHub

Benchmark Language Samples Executeable
CoNaLA(Yin et al., 2018) Python 500 No
Concode(Iyer et al., 2018) Java 2000 No
MBXP(Athiwaratkun et al., 2022) Multilingual 974 Yes
InterCode(Yang et al., 2023) Bash, SQL 200, 1034 Yes
CoderEval(Yu et al., 2024) Python, Java 230 Yes
RepoEval(Liao et al., 2023) Python 383 No

In the Bash-Shell scenarios, we reproduce results193

and conduct a comparative analysis using the In-194

terCode dataset. Notably, we identify the SPIDER195

dataset within InterCode and establish it as a base-196

line. SPIDER, previously evaluated in comparison197

to the TSED paper, is a substantial human-labeled198

dataset for the text-to-SQL task. This dataset en-199

compasses databases with intricate join solutions200

across diverse domains (Yu et al., 2018).201

5 Results 202

5.1 Similarity Results 203

Table 2: Evaluation Metrics comparison for 6 languages
on MBXP dataset, prediction generated by GPT-3.5-
Turbo model, ground truth from dataset

Languages TSED BLEU Jaccard Sim GPT-4 Execution
Java 0.3746 0.2041 0.2733 0.8143 0.6550
Python 0.1888 0.0843 0.2000 0.6751 0.6842
JavaScript 0.2037 0.0846 0.2037 0.6763 0.6811
Typescript 0.1360 0.0637 0.1397 0.5313 0.6642
Ruby 0.1727 0.0438 0.1810 0.7067 0.6428
Kotlin 0.3412 0.1847 0.3109 0.7073 0.5569

As we analyze the results presented in Table 2, 204

our experiment demonstrates the effective perfor- 205

mance of TSED and GPT similarity in evaluating 206

the MBXP dataset across all 6 programming lan- 207

guages. No instances of parsing or scoring genera- 208

tion failures were observed, confirming the robust- 209

ness of these metrics across languages. 210

RQ1: Can TSED be used in more programming
languages?

Answer: The exploration of TSED’s adaptability
beyond SQL shows promise, especially in lan-
guages like Java and Kotlin, indicating its poten-
tial for code analysis. TSED proves effective in
programming languages with functional parsers,
allowing for structural similarity calculation.

211

Python Java JavaScript

TypeScript Ruby Kotlin

Figure 2: MBXP dataset, Pearson Correlation Heatmap
between evaluation-metrics on GPT-3.5

Moreover, TSED shows a commendable corre- 212

lation ranging from 0.6 to 0.8 with BLEU score 213

and Jaccard similarity, as illustrated in Figure 2. 214

Additionally, TSED exhibits a strong correlation 215

with GPT similarity, especially in Java and Python 216

during the CoderEval test, as depicted in Figure 3, 217

underscoring its sensitivity to code structure. We 218

employ thresholding to establish a prediction-to- 219

execution match. If the metric value exceeds the 220
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Table 3: Execution Match F1 score & Accuracy for each thresholding metrics

Languages TSED GPT BLEU Jaccard
Threshold F1 Acc Threshold F1 Acc Threshold F1 Acc Threshold F1 Acc

Python 0.23 0.5650 0.6057 0.83 0.6403 0.6735 0.07 0.5719 0.6150 0.19 0.5907 0.6253
Java 0.10 0.5108 0.6499 0.56 0.5693 0.6396 0.03 0.5184 0.5755 0.16 0.5612 0.6018
JavaScript 0.12 0.5494 0.6002 0.69 0.5924 0.6205 0.02 0.4964 0.5267 0.12 0.5245 0.5885
Typescript 0.07 0.5367 0.5822 0.51 0.5521 0.5708 0.01 0.4987 0.5553 0.08 0.5284 0.5708
Ruby 0.13 0.5045 0.5306 0.54 0.6051 0.6811 0.01 0.4375 0.4490 0.12 0.5142 0.5612
Kotlin 0.28 0.6834 0.6823 0.8 0.6681 0.6721 0.1 0.6441 0.6457 0.22 0.6387 0.6533

threshold T , we assign the prediction as 1; other-221

wise, it is set to 0. The optimal threshold values222

are determined through enumeration to achieve the223

best match results. Based on their F1/Accuracy224

match to the Execution match, both TSED and225

GPT similarity exhibit higher accuracy compared226

to semantic metrics in Table 3. Notably, GPT simi-227

larity demonstrates a slightly superior F1 score and228

TSED gives good results on accuracy.229

Java

Python

ChatGPT CodeGen PanGu

Figure 3: CoderEval Pearson Correlation Heatmap be-
tween evaluation-metrics/models/languages

RQ2: How are TSED and GPT similarity corre-
lated to semantic similarity and execution match?

Answer: Our evaluation of TSED metrics, GPT-
based similarity, and other semantic evaluation
metrics revealed consistently high Pearson cor-
relations between TSED, GPT Score, BLEU
Score, and Jaccard Similarity. TSED exhibited no-
table accuracy in matching with Execution-Match,
while GPT score demonstrated the highest F1
score, highlighting their respective strengths in
capturing structural and semantic nuances in code
across various programming languages.

230

5.2 Stability of GPT Scoring231

To understand how unstable GPT scoring is, we232

execute the GPT-4 Similarity scoring five times on233

identical prediction sets, we establish the initial234

result as a baseline to assess differences through235

statistical indicators such as Mean Squared Error236

(MSE) or Mean Absolute Error (MAE) in compari-237

son to the first scoring. Table 4 demonstrates that238

GPT scoring exhibits limited stability in the context239

of code similarity evaluation.

Table 4: Unstable nature of GPT-4 scoring output

Metrics 1st 2nd 3rd 4th
Mean Squared Error 0.0581 0.0583 0.0527 0.0628
Mean Absolute Error 0.1902 0.1940 0.1825 0.1996 240

5.3 Parameter optimization of TSED 241

We can configure the penalty weight of 3 operations 242

in tree distance computing: Delete, Insert, and 243

Rename. Figure 4 which is from a test for the 244

MBXP/Java dataset shows is ‘Insert’ has a sweet 245

spot of 0.8. ’Delete’ and ’Rename’ operations just 246

keep them in 1.0 penalty weight as the best choice. 247

But we need to keep in mind it can be different in 248

other programming languages.
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Figure 4: Change each of penalty weight influence cor-
relation to GPT structure similarity score

249RQ3: What are the limits of these metrics?

Answer: Penalty weight parameters play influen-
tial roles in the TSED metric. Besides, GPT-based
similarity metrics offer higher performance at the
cost of more money, leading to a bit of unstable
output. This underscores the need to carefully
balance performance and stability considerations
in code similarity assessment across various pro-
gramming languages.

250

6 Conclusion 251

In this paper, we applied TSED to more program- 252

ming languages, compared GPT similarity and 253

TSED to semantic metrics, and checked represen- 254

tation to execution match. Then we discuss limi- 255

tations about the stability of GPT scoring and the 256

penalty parameters of TSED. 257
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Limitations258

While our study provides valuable insights into259

code similarity assessment using TSED and GPT-260

based metrics, it is essential to acknowledge certain261

limitations. Firstly, the generalizability of our find-262

ings may be influenced by the specific datasets and263

programming languages employed in our analysis.264

Additionally, the stability of GPT-based similarity265

metrics, as highlighted in our results, poses a limita-266

tion in terms of consistent and reliable code assess-267

ments. Furthermore, variations in the interpretation268

and definition of similarity metrics across differ-269

ent studies may introduce inherent biases. Lastly,270

the effectiveness of TSED metrics may be con-271

tingent upon the quality of the employed parsers272

and the fine-tuning of penalty parameters. These273

limitations underscore the need for caution when274

extrapolating our results to diverse contexts and em-275

phasize the necessity for further research to address276

these challenges.277

Ethics Statement278
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A Additional Experiment Details 387

A.1 Parser Comparison 388

The ANTLR3 (ANother Tool for Language Recog- 389

nition) tool, serving as a distinct AST parser com- 390

pared to tree-sitter, demonstrated notable differ- 391

ences. Following our evaluation using identical 392

settings for TSED metrics, as Figure 5 shows, it 393

became evident that the correlation with other met- 394

rics was inferior to the original solutions. This 395

experiment underscores the crucial role of parser 396

performance in the computation procedure, high- 397

lighting the significance of selecting an appropriate 398

parser for accurate and reliable code similarity as- 399

sessments. 400

ChatGPT CodeGen PanGu-Coder

Figure 5: CoderEval Java Pearson Correlation Heatmap
between evaluation-metrics/models/languages on TSED
with ANTLR parser

A.2 Other results 401

Due to space constraints, a subset of experimental 402

data is provided in the appendix. A comprehensive 403

evaluation of CoderEval and InterCoder is detailed 404

in Table 5, while specific original sample data from 405

the MBXP dataset is presented in Table 6. 406

CoderEval, designed for class-level code genera- 407

tion tasks, proves to be a challenging test. Utilizing 408

Pass@10 data as a test sample, TSED demonstrates 409

a robust correlation with semantic indicators in 410

both Java and Python languages. Additionally, a 411

noteworthy correlation is observed between TSED 412

and GPT Similarity. 413

In the case of InterCoder, we confirm that TSED 414

calculations extend to Bash scripts. Also, the cor- 415

relation in Figure 6 between TSED to semantic 416

metrics is acceptable, the GPT score doesn’t have 417

a good correlation to others. We also replicate the 418

performance of the SPIDER dataset, noting differ- 419

ences from the original paper but not to a significant 420

extent. 421

Despite the notably low semantic similarity be- 422

tween the MBXP built-in samples and the ground 423

3https://www.antlr.org/
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truth, a relatively high execution match is observed.424

We acknowledge this disparity and plan to address425

it through optimization in future research endeav-426

ors.427

Table 5: 4 Evaluation Metrics compared to Ground
Truth on CoderEval(Java&Python) / InterCode(Bash) /
SPIDER(SQL)

Languages Model TSED BLEU Jaccard Sim GPT-4 Execution
Java ChatGPT 0.4971 0.3655 0.3384 0.7392 0.3539

CodeGen 0.3616 0.2871 0.2506 0.6603 0.1391
PanGu 0.5029 0.3722 0.3849 0.6778 0.2543

Python ChatGPT 0.2840 0.1285 0.1763 0.5883 0.2104
CodeGen 0.2703 0.1778 0.1821 0.5604 0.0948
PanGu 0.2829 0.0868 0.1567 0.5086 0.1183

Shell
GPT-4 0.5853 0.2816 0.3567 0.8511 0.4851
starchat 0.4065 0.1594 0.2081 0.6740 0.2374
vicuna 0.4755 0.1621 0.2295 0.7164 0.2451

SQL
ChatGPT-3.5 0.6824 0.3304 0.3710 0.9461 0.6482
nsql-6B 0.8022 0.4493 0.4356 0.9265 0.5483
RESDSQL 0.7422 0.2084 0.1868 0.9629 0.7756

Table 6: 4 Evaluation Metrics compare to Ground Truth
on 7 languages MBXP Dataset Samples

Languages TSED BLEU Jaccard Sim GPT-4 Execution
Java 0.2218 0.1046 0.1960 0.4248 0.853
Python 0.1550 0.0255 0.1222 0.3396 0.822
JavaScript 0.1870 0.0573 0.1685 0.4005 0.786
Typescript 0.1186 0.0288 0.1260 0.4247 0.872
Ruby 0.2073 0.0235 0.1796 0.4830 0.589
Kotlin 0.1720 0.0336 0.1877 0.3976 0.637

Bash

SQL

GPT-4 nsql RESDSQL+PICARD

GPT-4 StarChat Vicuna

Figure 6: InterCode/SPIDER Pearson Correlation
Heatmap between evaluation-metrics/models/languages
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