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ABSTRACT

The Synthetic Minority Over-sampling Technique (SMOTE) is one of the most
widely used methods for addressing class imbalance and generating synthetic data.
Despite its popularity, little attention has been paid to its privacy implications;
yet, it is used in the wild in many privacy-sensitive applications. In this work,
we conduct the first systematic study of privacy leakage in SMOTE: We begin
by showing that prevailing evaluation practices, i.e., naive distinguishing and
distance-to-closest-record metrics, completely fail to detect any leakage and that
membership inference attacks (MIAs) can be instantiated with high accuracy. Then,
by exploiting SMOTE’s geometric properties, we build two novel attacks with
very limited assumptions: DistinSMOTE, which perfectly distinguishes real from
synthetic records in augmented datasets, and ReconSMOTE, which reconstructs
real minority records from synthetic datasets with perfect precision and recall
approaching one under realistic imbalance ratios. We also provide theoretical
guarantees for both attacks. Experiments on eight standard imbalanced datasets
confirm the practicality and effectiveness of these attacks. Overall, our work reveals
that SMOTE is inherently non-private and disproportionately exposes minority
records, highlighting the need to reconsider its use in privacy-sensitive applications.

1 INTRODUCTION

From rare disease diagnosis to fraud detection, machine learning tasks can be profoundly affected
by severe class imbalance, where instances of interest — the minority class — are much rarer than the
majority class (He & Garcial [2009). Models often underperform under these conditions, exhibiting
biases toward the majority and failing to capture the minority reliably (Chen et al., [2024). One
of the most influential and widely adopted approaches to address this is the Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al.,2002), which augments the imbalanced data by
upsampling or generating synthetic samples of the underrepresented class through linear interpolation
between minority records. Due to its simplicity and effectiveness, SMOTE continues to play a central
role in real-world applications. To put things in context, the SMOTE paper has been cited nearly
40k times, Microsoft Azure offers built-in SMOTE components (Microsoft, [2024;|2025)), and most
MLaaS services support it (Google Cloud, 2025; |AWS| |2025). Overall, SMOTE is primarily used
in two contexts: 1) as a data augmentation technique for machine learning classifiers, and 2) as a
synthetic data generation method to facilitate data sharing.

Data Augmentation. SMOTE was originally proposed as a pre-processing/upsampling technique to
augment the real dataset, thus improving classifier performance, especially F1 score and recall, when
trained on the augmented data. Practitioners rely on SMOTE in a wide range of medical applications,
including cancer diagnosis (Fotouhi et al.l 2019)), heart-related diseases (Muntasir Nishat et al., |2022;
El-Sofany et al. 2024), diabetes prediction (Ramezankhani et al.| 2016} |Alghamdi et al., [2017)),
genetic risk prediction (Kosolwattana et al.| 2023)), etc. Beyond medicine, SMOTE is widely applied
in finance, particularly for credit-card fraud detection (Zhao & Bail 2022; [Khalid et al.,|2024)) and
predicting customer churn (Peng et al., 2023} |Ouf et al., [2024).

Synthetic Data. SMOTE has also gained traction as a method for generating synthetic tabular data.
Often used as a benchmark for more advanced models like GANs and VAE, SMOTE has been shown
to perform on par with, or even better than, generative approaches (Manousakas & Aydore, 2023}
Kindji et al. 2024). Moreover, it is being used as a reference point for diffusion-based models
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Figure 1: D1$t1nS.MOTE and ReconSMOTE attacks VS. (jces. MIAs are applied to SMOTE for the first time.
augmented/synthetic data generated by SMOTE. DistinSMOTE and ReconSMOTE are our novel attacks.

published at top-tier machine learning conferences (Kotelnikov et al., [2023; Zhang et al., [2024; Pang
et al., 2024; Mueller et al.| |2025). SMOTE remains one of the most widely applied algorithms for
medical synthetic data (Kaabachi et al.,[2025), and beyond machine learning research, it has also
been recognized as a promising technique for improving access to census data by public sector
entities (ONS, [2019;|ADR Wales| 2025).

Roadmap. Although not originally designed with privacy in mind, SMOTE is extensively used in
sensitive public-facing applications that process personal data. However, its privacy risks have often
been overlooked or significantly underestimated. In this paper, we fill this gap by studying whether,
why, and how much privacy leakage occurs from using SMOTE either as a data augmentation method
or as a standalone synthetic data generator.

We begin by showing that SMOTE appears to have no privacy leakage when evaluating it through
the current practice of training a classifier to distinguish real from synthetic records in augmentation
settings or that of measuring the distance from synthetic to real records (more precisely, the distance
to closest record, or DCR (Zhao et al., 2021)). We refer to the former as naive distinguishing and
the latter as naive metrics. We also instantiate—to our knowledge, for the first time—a Membership
Inference Attack (MIA) (Shokri et al., 2017} [Stadler et al., 2022) against SMOTE, showing that
attackers can accurately infer whether a target record was part of the real training data.

Next, we propose two novel near-perfect privacy attacks with minimal and realistic assumptions: a
Distinguishing (DistinSMOTE) and a Reconstruction attack (ReconSMOTE). Both only assume access
to a single augmented or synthetic dataset and knowledge that SMOTE generated it (see Figure[T). By
exploiting SMOTE’s geometric properties, DistinSMOTE distinguishes real from synthetic records in
augmentation settings, while the more ambitious ReconSMOTE reconstructs real minority records from
synthetic data. We also provide a theoretical analysis for both attacks, showing they run at worst in
O(n%d + n(kr)?), where n, d, and k denote, respectively, the number of input records, features, and
SMOTE neighbors, and 7 represents the data imbalance ratio. While quadratic in n, the complexity
remains practical (especially with optimized search), with both attacks running within minutes on all
datasets we experiment with.

DistinSMOTE achieves perfect precision and recall, while ReconSMOTE reaches perfect precision —
which is more critical in privacy attacks (Carlini et al.|[2022) — with recall increasing exponentially
(with rate =~ r/k), reaching 1 under realistic parameter values (k = 5, r > 20).

Our experiments on eight standard imbalanced datasets, summarized in Table [T} demonstrate that:

¢ Naive distinguish (0.01 precision)/metrics (0.16 accuracy) completely underestimate risks.

 State-of-the-art MIAs achieve 0.68 AUC on augmented and 0.93 on synthetic data for 100
vulnerable targets, although being time-consuming. Also, sensitivity of targets increases when
classifiers are trained on augmented vs. real data, yielding a 17% rise in MIA AUC.

* DistinSMOTE perfectly detects the real records in an augmented dataset.

* ReconSMOTE achieves perfect precision when reconstructing real minority records from a single
synthetic dataset. While its average recall is 0.85, it reaches 1 for imbalance ratios of 20 or
higher, consistent with our theoretical analysis.

Implications. Our findings provide further evidence that privacy cannot be treated as an afterthought
when applying non-private techniques like SMOTE in sensitive settings. Its use not only risks
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exposing individual records but can also undermine trust in data-driven systems that rely on synthetic
data. Overall, our work has the following real-world implications for researchers/practitioners:

1. SMOTE is fundamentally non-private: its interpolation process makes privacy leakage inherent,
not a matter of flawed implementation.

2. Minority records are disproportionately at risk: the very samples SMOTE aims to amplify and
make more representative are also the most exposed.

3. Caution is critical: performance gains from oversampling must be weighed vs. privacy risks.

2 PRELIMINARIES

Notation. Let D,..,; = (X, y) be a training dataset, where X C R™*4 ig the feature matrix consisting
of n samples with d-dimensional feature vectors and y € {0, 1}" the corresponding binary labels.
The dataset consists of ny majority and 7, minority records, with imbalance ratio r = Z—? > 1. 1In
practice, ng > ni, which makes learning directly from the minority class challenging.

SMOTE (Chawla gt al.l 2002? addresses class im- Algorithm 1 SMOTE (Chawla ot al, 2002)
balance by generating synthetic minority samples;
see Algorithm |l} To create a synthetic record, a
raqdom minority r.ecor.d from Dol i.s selected, one Ensure: Augmented data Daug — Dieat U Doy,
of its k nearest minority nel.ghbors is chosen, and or Synthetic data Diyn

a new point is generated by interpolating along the | Filter minority X, i< { Xyeat[i][yrear[i]]=1}
line segment between them. Repeating this process 2 Compute ny = | X 0;|, 70 = |Dyeat| — n1
yields Dy, with ng — n; new samples, balancing 3 while |Dsyn| < no —ny do

the class distribution. The synthetic data can be 4  Randomly pick 2; € X},

used as a standalone synthetic dataset (D, or to Find k nearest neighbors of z;, N (z;)
form an augmented dataset Dy = Dyeqr U Dgyn, Randomly choose z; € N(x;)

5
6
e.g., to improve classification performance. 7 Sample u ~ U(0,1)

8 Generate Tsyn < x; + u(z; — ;)
9

0

Require: Real dataset D,.cq;
Require: Number of neighbors &

Add (zsyn, 1) to Dsyn
end while

Privacy Attacks. Membership Inference At-
tacks (MIAs) (Shokri et al., 2017} |Stadler et al., 1
2022)) and Reconstruction Attacks (Dinur & Nis{
sim|, 2003; |/Annamalai et al.| |20244a) are standard tools to empirically measure privacy leakage in
ML. In MIAs, the adversary aims to infer whether a target record (z7, yr) was part of the training
dataset D,..,;. The attack can be framed as a repeated binary classification game: the adversary is
given either a classifier (or a synthetic dataset) trained on D,..4;, or one trained on the neighboring
D!..; = Drear \ (z1,yr), and infers which dataset was used. To do so, the adversary typically
exploits differences in model behavior — such as prediction confidences on the target, or statistical
features extracted from synthetic data.

In a reconstruction attack, the adversary aims to recover any full real records (i.e., an untargeted
attack) from access to a released model or synthetic data. These attacks often assume access to
auxiliary information, such as public data, accurate statistics, or limited query access to D,.qq;.

We also consider distinguishing attacks, which are somewhat related to MIAs but focus on whether a
record comes from the population-level data distribution rather than from the specific dataset used to
train the model. In the context of SMOTE, we use these attacks to distinguish unlabelled records in
D g4 as either real (D,.cq;) or synthetic (Dgyy,), since Dycqr N Dy = 0.

3 RELATED WORK

As discussed in Section[I} SMOTE is widely used for data augmentation and synthetic data generation
across various domains. Despite its popularity, prior work has focused primarily on its utility, while
its privacy risks remain largely unexplored.

SMOTE has recently served as a baseline in several diffusion-based generative models (Kotelnikov
et al.l 2023} [Zhang et al., 2024; [Pang et al., [2024; Mueller et al.| [2025)), all published at top-tier
machine learning venues. These studies primarily rely on the Distance to Closest Record (DCR) (Zhao
et al., |2021) as a privacy proxy, consistently showing smaller distances for SMOTE and claiming
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this as evidence of weaker privacy. [Kotelnikov et al.|(2023)) additionally employ the “full black-box”
attack from (Chen et al., [2020), which still reduces to DCR as its core signal.

More recently, this view has been challenged by |Sidorenko & Tiwald|(2025)), who show that some dif-
fusion models (Kotelnikov et al., 2023} Mueller et al., 2025) achieve lower DCR values than SMOTE,
thereby leaking more information about the training data. However, DCR itself has been shown to be
an inadequate privacy metric, which consistently underestimates privacy leakage (Houssiau et al.|
2022 |Annamalai et al.| 2024b; |Ganev & De Cristofaro, 2025} |Yao et al.l [2025)). To the best of our
knowledge, SMOTE has not yet been systematically evaluated with state-of-the-art MIAs or through
reconstruction attacks, leaving a critical gap in understanding its privacy risks.

4 PRIVACY ATTACKS VS. SMOTE
In this section, we present our two novel privacy attacks that expose privacy leakage from SMOTE.

4.1 ADVERSARIAL MODEL

Assumptions. For both attacks, we assume an adversary with access to a single dataset generated by
SMOTE (Dgy4 for DistinSMOTE and D,,,, for ReconSMOTE). The adversary knows that the original
SMOTE algorithm (Chawla et al., 2002) was applied (Algorithm 1)) and is aware of its parameters,
specifically, the number of neighbors k and the real data imbalance ratio r (in practice, these can be
approximated from the released dataset). The adversary relies solely on the geometrical properties of
SMOTE to achieve its goals — either distinguishing or reconstruction. Unlike prior privacy attacks, no
further knowledge is required: e.g., the adversary does not need access to public/representative data,
repeated inference or generation, the model parameters, numerous shadow models or a meta-classifier
(as in MIAs (Stadler et al., |2022; Houssiau et al., |2022; |Annamalai et al., |2024b))), or published
(accurate) aggregate statistics (as in reconstruction (Dinur & Nissim, [2003; Dick et al., [2023)).

Objectives. For DistinSMOTE, the adversary aims to distinguish the real minority records from
synthetic ones from observing D4, whereas for ReconSMOTE, to reconstruct them from Dy,,,. We
focus on minority records from underrepresented regions of the feature space because they often
correspond to the most vulnerable individuals. Such records carry the greatest privacy risks: they are
easier to single out, more likely to be re-identified, and any disclosure disproportionately affects the
individuals they represent (Kulynych et al.| 20225 Stadler et al.|[2022). Indeed, regulators, including
the UK Information Commissioner’s Office (ICO\ 2022), have explicitly stressed the need to protect
minority and outlier records.

We measure the attacks success using precision (the fraction of identified records that are truly real)
and recall (the fraction of successfully identified real records), two standard metrics that together give
a comprehensive view of performance. In privacy attacks, precision is especially critical, since even a
handful of correctly identified records with high confidence can constitute a serious breach (Carlini
et al.,[2022). While secondary, capturing a large fraction of minority records is also important.

Data Assumptions. Our theoretical analysis of DistinSMOTE and ReconSMOTE relies on the following
three realistic assumptions about the feature structure of the real minority records (X!, ;) and k:

1

Assumption 1 (Real-valued features). All features in X, ,

, are real-valued.

1

Assumption 2 (Global non-collinearity). No three distinct feature vectors in X,

; are collinear.

Assumption 3 (Minimum k). The number of neighbors, k > 3.

In other words, all features are continuous and no three points lie on the same line. These assumptions
are reasonable for (high-dimensional) continuous data and hold for all datasets in our experiments
(see Section [5)). Moreover, assuming k& > 3 is necessary to uniquely identify the intersection point of
the lines formed by vectors connecting neighboring points, and is a reasonable choice in practice.

4.2 DISTINGUISHING ATTACK

In Algorithm[2] we outline the DistinSMOTE attack, which distinguishes real minority records from
synthetic ones within an augmented dataset. The attack exploits the fact that, among any three
collinear points, the middle one must be synthetic, since real points are non-collinear and SMOTE
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generates points strictly between them. The algorithm begins by searching from the convex hull of
the minority records and iteratively explores neighbors inwards. When a collinear triplet is found, its
midpoint is pruned from the candidate set with real points, and its neighbors are added to the queue
for further inspection.

Complexity. The nearest-neighbor search is the Algorithm 2 DistinSMOTE
main cost. With brute-force search (O(nd) per
query), each of the n records requires finding kr
neighbors (O(nd)) and checking all neighbor
pairs (O((kr)?)), yielding a worst-case com-
plexity of O(n?d + n(kr)?). In practice, op-
timized methods (e.g., KD/ball trees) r.educe 3 Initialize queue queue < H(Xg,,) > convex hull
search to O(logn) for small d (d < 32 inour | yieanioc visited set V < 0 g

datasets). Also, since k and r are typically 5 while gueue # 0 do

(small) constants, the effective complexity is 6 for record z; € queue do

Require: Augmented data Dg.q
Require: Number of neighbors k, imbalance ratio r
Ensure: Detected real minority records C'*
1 Filter minority X 3, ¢ { Xaug[i]|Yaug [{]=1}
2 Initialize candidate set C'* + X;ug
1

much lower, and the algorithm completes inun- 7 ifz; ¢ Vand2; € C' then
der three minutes on all tested datasets. 8 Addz;toV

) 9 Find 2 - k - r nearest neighbors of x;, N(z;)
Accuracy Analysis. We now analyze the ex- for pairs of neighbors (z;, 2x) € N(z;) do
pected performance of DistinSMOTE. 1 if z;, z;, 21, are collinear then
Theorem 1 (DistinSMOTE perfect precision E {Se“tify mid‘}le pOiC'}} wgdg {“”itv x{/’ ok}

. emove &, from C-; L tO

& recall). Under Assumptions the label- s Add N(zn) N C™ 1o queue

ing rule proposed by the DistinSMOTE attack

. .. 15 end if
achieves perfect precision and recall.

16 end for

Proof. By SMOTE construction, each synthetic 7 end if

point lies strictly on the line segment between '8 end for

two real points (s, = x; +u(z; —;)). Under ;3 f‘gglxlhlclﬁ

the global non-collinearity assumption, no three

real points are collinear, so any line in Dy, containing at least three points consists of exactly two

. 1 . . . . 1
real endpoints z;, z; € X,..,, and one or more synthetic interior points Ty, , Tm,, -+ € X5,

DistinSMOTE follows this labeling rule: for such lines, it marks interior points as synthetic and
endpoints as real, while any real point not on such a line (i.e., not used in interpolation) is also labeled
real. This ensures all synthetic points are eliminated and all real points are preserved. This leads to
perfect precision and recall (“real” is the positive class). O

4.3 RECONSTRUCTION ATTACK

Algorithm [3] presents the ReconSMOTE attack, which operates solely on synthetic data. The attack
relies on two main intuitions: 1) synthetic records lie along line segments connecting real minority
points, so these lines can be detected by finding three or more collinear samples, and 2) such
lines intersect exactly at the original real points. The algorithm begins by iteratively defining lines,
searching each point and two of its neighbors for collinear triplets, and then extending them with
additional collinear neighbors. For each line, the mean of its points is stored as a midpoint, providing
a compact representation of the line’s location. Next, the algorithm examines pairs of midpoints to
identify intersection points of the corresponding lines, which serve as candidate real records. Finally,
we retain only intersections supported by at least three distinct lines, filtering out spurious candidates.

Complexity. The worst-case time complexity is very similar to DistinSMOTE, i.e., O(n2d + n(kr)?).
While there are two additional factors, namely, O(nkr) for checking neighbors after identifying a
collinear triplet and O(n?) for finding line intersections, these are dominated by existing terms and
can be ignored. The practical complexity is much lower, and the attack runs in at most three minutes
on all datasets.

Accuracy. Next, we analyze ReconSMOTE’s expected performance.

Theorem 2 (ReconSMOTE perfect precision). Under Assumptions[IH3| the records reconstructed by
ReconSMOTE are guaranteed to be real, i.e., the attack achieves perfect precision.

Proof. By SMOTE construction, each synthetic point lies on a segment strictly between two real

endpoints. Thus, every detected line in X iyn corresponds uniquely to a pair of real records.
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Under the globgl non-collinearity assumption, Algorithm 3 ReconSMOTE
the only point lying on three or more such lines - -
is the shared real endpoint. Since ReconSMOTE Requ}ref Synthetic data Dsyn )
retains only intersections supported by at least Require: Number of neighbors k. imbalance ratio r

C. . Ensure: Reconstructed real minority records R
three distinct lines (as &k > 3), every recon-

R R 1 Filter minority X2, ,,<{ Xsyn[i||ysyn[i]=1
structed point must be a true real point. Hence, . Y Xogn =4 i) []lysynli]=1}
L 2 Initialize reconstructed set R* < () and

precision is 1. (|

line support map S + 0
3 Initialize set of lines £ + ), midpoints M + ()
4 Initialize visited set V < ()

5 for record x; € X Slyn do

6 ifx; ¢ V then
7
8
9

Theorem 3 (ReconSMOTE expected recall (ap-
proximate)). Let A = % Under As-
sumptions and using Poisson approxima-
tion (treating the number of synthetic points
per segment as Poisson), the expected recall of
ReconSMOTE satisfies:

Addz;toV
Find 2 - k - r nearest neighbors of z;, N (x;)
for pairs of neighbors (z;,zx) € N(x;) do

E[Recall] > (1) 10 if z;, x;, z) are collinear then
- 11 Form initial line (z;, z;, zx); Add 2, x5 to V
P A2 _ 12 for neighbor x,, € N(z;) \ {zi,2;,xr} do
max?{ 0 k(l € (1 tA+S )) 2 13 if x,, collinear with line (x;, x;, 1) then
’ k—9 ’ 14 Add z,, to line (z;,z;,xk); Add z, to V
15 end if
Proof. At each generation step, SMOTE first se- 16 end for
lects a minority record z; uniformly from the ny 17 Add line to £ . ,
available, and then one of its k nearest neighbors '8 Compute mean of line points and add to M
. . 19 end if
x; uniformly. Thus, each of the n,k possible
J 20  end for

m.inority-nei.ghbor1(directed) segments is chosen = .4 if

with probability - at every step. 2 end for

Let C;; denote the number of synthetic points 23 for pairs of midpoints (m,,m,) € M do
generated on segment (z;,x;). Since each of 24 Compute intersection point 2* of lines
the ng — n1 synthetic points is assigned inde- corresponding to my, and myq

pendently to a segment with probability -1, we 25 Add 2" to R' and record support line
! indices {p, ¢} in S(z*)

26 end for

tractability, we approximate this by Poisson(\) 27 Filter points in R! with |S(z*)| > 3

with mean \ = % This is standard when 28 return R!

ng — ny is large and ﬁ is small, which holds
in practice.

have Cy; ~ Binom(ng — n1, ;1). For analytic

A segment is reconstructed if C;; > 3. The probability of this is peqge = Pr{Poisson(\) > 3} =
1—e? (1 + A+ %) . Now consider a fixed record z;, and let S; denote the number of reconstructed

segments incident to it. Therefore, E[S;] = k Dedge- Moreover, by Assumption once S; > 3, the
point z; is uniquely identifiable, since three non-collinear reconstructed segments suffice to triangulate
its location. To lower bound Pr{S; > 3}, observe that E[S;] = E[S;I{S; < 2}|+E[S;I{S; > 3}] <
2 Pr{S; < 2} + k Pr{S; > 3} (since S; < k). As Pr{S; < 2} =1 — Pr{S; > 3}, this yields

E[Si] <2+ (k —2) Pr{S; > 3}, hence Pr{S; > 3} > B2 _ Fpease=2 . 4,

This is the probability that x; is identifiable. Since recall is the fraction of minority records that are
identifiable, its expectation equals the average of these probabilities over all n; records. Because
each x; is treated symmetrically in SMOTE and we look at directed segments, the average equals the
bound derived above. Hence we obtain the stated lower bound on the expected recall.

Remarks. By rearranging Equation we get 1 — E[Recall] < f5e M1+ A+ %), which in

=)
turn means E[Recall] — 1 as A — oo, with a convergence rate exponential in A(= =1 = =)

For brevity and clarity, Theoremis derived under the Poisson approximation with C;; counted only
in one direction. We refer to this as the approximate bound. In Appendix [A] we provide a more
detailed analysis and derive a tighter bound without these simplifications; we call it the exact bound.
Finally, in Appendix [Bf we visualize the differences between the bounds under various conditions.
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5 EXPERIMENTAL EVALUATION

We now evaluate the effectiveness of our novel attacks, along with additional methods geared to assess
privacy leakage in SMOTE, both as a data augmentation and synthetic data generation technique.
Specifically, we consider: 1) current practices such as naive distinguish (via a classifier) and privacy
metrics (i.e., DCR from synthetic to real records (Zhao et al.||2021)), 2) state-of-the-art Membership
Inference Attacks (MIAs) (Shokri et al.,|2017; [Carlini et al.,|2022), which to the best of our knowledge
have not yet been applied against SMOTE, and 3) the DistinSMOTE and ReconSMOTE attacks. Overall
results are summarized in Table[Il

Datasets. We conduct experiments on eight standard

imbalanced datasets, each with a binary classification Dataset Target " n_d
task, obtained from the imblearn library (Lemaitre] — ecoli imU 86 336 7
et al1[2017) (originally from the UCI ML Repository) ~ 2balone 7 9.7 4177 10
and used in prior work (Ding} |2011} Rosenblatt et al.| Ca{’eVELM 0 K/%%Od }3 };gg g;
2025) These datasets vary quite significantly in size zgra::’va?rzm v ] ’

. . . _eval good 26 1,728 21
(336 tool 1,183 recorgis), dimensionality (6 to 3'2 fea- yeast_me2 ME2 28 1484 8
tures), imbalance ratios (8.6 to 130), and prediction  mammography minority 42 11,183 6
task (target), as shown in Table[2] abalone_19 19 130 4,177 10

Implementations. We use the imblearn (Lemaitre| Table 2: Datasets overview, where r denotes the
et al] 2017) implementation of SMOTE and imbalance ratio (no/n1), n the number of records,
sklearn (Pedregosa et al,2011)) for machine learning and d the number of features.

classifiers. Both DistinSMOTE and ReconSMOTE are

highly efficient, running in under three minutes on any dataset on an Apple M4 MacBook with 24GB
RAM. The naive methods are similarly fast, while the MIAs require up to 30 minutes per dataset. We
will release the source code for our attacks along the final version of the paper.

5.1 AUGMENTED DATA

We compare the three approaches on augmented data, with results for all datasets shown in Table [3]

Naive Distinguish is a popular but arguably misguided approach for telling apart real and synthetic
records by training a classifier (Snoke et al.,|2018; [El Emam et al.l 2022} |Q1an et al.| [2023; DataCebol
20235)). Half of the real and half of the synthetic data are used to train a Random Forest classifier, with
testing performed on the remaining data. For each dataset, we run 5 independent SMOTE generations
and train 5 classifiers per run, reporting averaged results. The method severely underestimates privacy
risk (see the two leftmost columns in Table 3} precision and recall ~ 0) as it is capable of capturing
only distributional differences, not record-level leakage.

Membership Inference. Next, we evaluate MIAs (Shokri et al., 2017; |Carlini et al.l [2022) using
the repeated classification game from Section[2] For a given target record, we train 200 classifiers (a
multi-layer perceptron with two hidden layers) on augmented datasets generated via SMOTE: half
of the training datasets include the target record, and half exclude it. We then use the classifiers’
predictions on the target to simulate an adversary’s confidence in distinguishing membership, and
calculate AUC. Following prior work (Ye et al.,[2024; |Guépin et al.,|2024), we train target-specific
attacks in a leave-one-out setting, which provides a more accurate estimate of privacy leakage. This
procedure is repeated for 100 randomly selected targets (or all minority records), and we report the
average. Overall, this requires training roughly 20k SMOTE models and classifiers per dataset.

Looking at Table [3| (fourth column), the average AUC is 0.68, with half of the datasets exceeding 0.7,
which indicates substantial privacy leakage. The lowest scores appear in datasets with the smallest
imbalance (ecoli and abalone), where the proportion of synthetic data is relatively low. Mammography
also shows a low score, likely because its large number of records reduces the influence of any single
individual. These results are therefore not entirely surprising.

We also conduct an additional MIA experiment, training classifiers solely on the real data, to test the
intuition that SMOTE enhances the sensitivity of minority records in the augmented data, as they
directly contribute to generating synthetic samples. As expected, targets become more vulnerable
when augmentation is applied — average AUC increases by 17% (comparing the third and fourth
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Dataset I Naive distinguish MIA DistinSMOTE
Da'u,g D'peal Daug Da'u.g
(Precision) (Recall) (AUC) (AUC)  (Precision) (Recall)
ecoli 8.6 | 0.00 £0.00 0.00+£0.00 0.5040.04 0.50£0.05 1.00+£0.00 1.00 =% 0.00
abalone 9.710.03+0.03 0.00£0.01 057+£0.03 0.584+0.04 1.0040.00 1.00 = 0.00
car_eval_34 12 1 0.01 £0.02 0.01 £0.01 0.60 £0.03 0.73 £0.08 1.00 4+ 0.00 1.00 £ 0.00
solar_flare_m0 191 0.01 £0.03 0.00£0.01 0.79£0.03 0.97+0.03 1.00+0.00 1.00 +£ 0.00
car_eval 4 26 | 0.00 = 0.00 0.00 £0.00 0.59 £0.03 0.75+£0.10 1.00 & 0.00 1.00 £ 0.00
yeast_me2 28 1 0.00 £0.00 0.00£0.00 0.5140.04 0.57+0.09 1.00=+0.00 1.00+£ 0.00
mammography 42 | 0.01 £0.02 0.00 £0.00 0.54 +0.03 0.56 +0.04 1.00 £0.01 1.00 &£ 0.00
abalone_19 130 | 0.00 £0.00 0.00 £0.00 0.58 £0.05 0.80£0.12 0.99 £0.02 1.00 % 0.00

average | 0.01 £0.01 0.00+0.00 0.5840.03 0.68+0.07 1.00+0.00 1.00 % 0.00

Table 3: Privacy attacks vs. augmented data.

Dataset r | Naive metrics MIA ReconSMOTE
(Accuracy) (AUC) (Precision) (Recall)

ecoli 8.6 | 0.194+0.15 0.934+0.05 1.00+0.00 0.43 £0.02

abalone 9.7 | 021 +£0.17 0.65+0.07 1.00+£0.00 0.62 £ 0.01

car_eval_34 12 | 0.00+£0.00 0.97£0.01 1.00+0.00 0.83+0.03
solar_flarecm0 19 | 0.03+0.06 1.00£0.00 1.00+0.00 0.95+ 0.02
car_eval_4 26 | 0.01+0.04 1.00+0.00 1.00=+0.00 1.00-+£ 0.00
yeast_me2 28 | 020+0.12 099 £0.01 1.00+0.00 1.00=+£ 0.00
mammography 42 | 0.25+0.15 091 +0.04 1.00+£0.00 1.00=£ 0.00
abalone_19 130 | 037 +0.14 1.00£0.00 1.00=+0.00 1.00 =+ 0.00

average | 0.16+0.10 0.93+£0.02 1.00+0.00 0.85+0.01

Table 4: Privacy attacks vs. synthetic data.

columns in Table[3)). Larger imbalance further amplifies this effect. While similar intuitions have
been noted previously (Rosenblatt et al., [2025)), they were not supported by empirical evidence.

DistinSMOTE. Finally, we run DistinSMOTE on 25 SMOTE generations and report average preci-
sion/recall (two rightmost columns in Table[3). As expected from our analysis, we achieve perfect
results across all datasets and imbalance levels. This shows that merely knowing SMOTE was used
for augmentation is enough for an adversary to perfectly identify real records with minimal effort.

5.2 SYNTHETIC DATA

Next, we evaluate all attacks on synthetic data; see Table[z_f}

Naive Metrics. A widely used approach for evaluating privacy in synthetic data is the Distance to
Closest Record (DCR) (Zhao et al., 202 1)), which measures the average distance between synthetic and
real records. DCR has been commonly applied to SMOTE and modern diffusion models (Kotelnikov
et al., [2023; Zhang et al., [2024; Pang et al., 2024 [Mueller et al., 2025}, but its interpretation is
limited — an average distance alone provides little insight into privacy risks. To address this, we use a
linkability attack (Giomi et al., 2022), which builds on DCR and reports the accuracy with which an
adversary could link two partial feature sets of a real record using synthetic data. For each dataset,
we train 5 SMOTE models and evaluate linkability 5 times with varying feature subsets.

The results are unstable (see the leftmost column in Table d)): scores differ from zero only for low-
dimensional settings (d < 10), while higher-dimensional datasets yield large variances that render
DCR unreliable. This is expected, as DCR treats all features equally and is known to be an inadequate
privacy measure (Annamalai et al.| 2024b; |Ganev & De Cristofaro}, 2025} |Yao et al.| [2025).

MIA. We evaluate MIAs on synthetic data using the repeated classification game (similar to Sec-
tion[5.1). We rely on the GroundHog attack (Stadler et al.l [2022), one of the most popular MIAs
for synthetic tabular data. GroundHog extracts statistical features from generated datasets — such
as column-wise minimum, mean, median, maximum, and pairwise correlations — and uses them to
train a meta-classifier, which is then applied to unlabeled real and synthetic feature sets. To generate
training features, we train 400 SMOTE models for in/out training features and another 200 SMOTE
models for in/out testing features. Repeating this for 100 targets yields about 60k models per dataset.
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As shown in Table [] (second column), this results in substantial pri- Lol coreels | yeestmez mammography
vacy leakage: AUC exceeds 0.9 in all but one dataset. The exception E T avatone 15

is abalone, which has the second-lowest imbalance ratio and the o8] &/ / seter
second-largest number of records, potentially leading to lower sensi- _ .

tivity. When imbalance increases (abalone_19), the MIA AUC rises g 0 abalone

to 1. Overall, these results demonstrate that SMOTE-generated data 0.4]F
is highly susceptible to MIAs, even beyond trivial cases where data

ecoli

domain characteristics mainly drive leakage (Ganev et al., 2025). 0.2 & Emprical (mean = 59
| Ower bound (approximate)

ReconSMOTE. Next, we apply ReconSMOTE on 25 SMOTE genera- 0.0 =0 100

tions per dataset, reporting average precision/recall (last two columns Imbalance ratio r (log)

in Table {). The attack achieves perfect precision on all datasets, Figure 2: ReconSMOTE recall and
which, as motivated in Section[d] is the most critical metric for re- lower bounds (per dataset).
construction. Recall is also very high (see Figure[2), with an average
of 0.85. It increases quickly with class imbalance, reaching 1 when
r > 20. The recall values (per dataset) are in line with the expected 08
approximate/exact bounds predicted by Theorem 3]and ]

1.0

To further validate the expected bounds at finer granularity, we vary o

the imbalance ratio {5, 10, 20,25, 50,75, 100} across all datasets 0.4
and plot the average performance in Figure [3| As expected, recall

Score

increases exponentially with r (for fixed k), reaching 1 around im- 02 —
balance 20. Overall, these findings highlight the risks of relying 00 — Recal
on SMOTE for synthetic data generation: in realistic settings, an S5 1020 50 100

. Imbalance ratio r (log)
adversary can reconstruct all real records with perfect confidence. i
Figure 3: ReconSMOTE perfor-

mance w/ varying r (all datasets).
5.3 TAKE-AWAYS

We show that MIAs achieve high AUC across numerous targets vs. SMOTE: 0.68 against classifiers
trained on augmented data and 0.93 against synthetic data. Moreover, the sensitivity of minority
records increases by an average of 17% when classifiers are trained on augmented rather than original
training data. Finally, our attacks, DistinSMOTE and ReconSMOTE, are able to i) distinguish real
minority records from synthetic ones in augmented data, and ii) reconstruct real minority records
from synthetic data with minimal assumptions and near-perfect accuracy.

6 CONCLUSION

Our work highlights the fundamental privacy limitations of SMOTE (Chawla et al., 2002), one of the
most widely adopted techniques for improved learning on imbalanced data. The effectiveness of our
novel, near assumption-free attacks (DistinSMOTE and ReconSMOTE), demonstrates that real minority
records — precisely the ones SMOTE aims to better represent — are exposed to significant privacy
risk. Nonetheless, SMOTE remains an effective and easy-to-use technique in non-privacy-sensitive
applications where utility is the primary concern. We are confident our findings will be valuable
to researchers and practitioners deploying solutions that process or release sensitive data, and will
motivate them to adopt more robust privacy-preserving techniques.

Limitations and Future Work. Our attacks currently operate on continuous data and are tested only
on the original SMOTE implementation. However, our findings generalize to many SMOTE variants
— such as BorderlineSMOTE (Han et al.,[2005), ADASYN (He et al.|[2008), SVMSMOTE (Nguyen
et al.,[2009), and cluster/hybrid-based methods, etc. — as they all rely on line-segment interpolation
to generate synthetic samples. Extending our attacks and defenses to these variants is a promising
direction for future work.

Privacy-preserving variants of SMOTE have also been proposed under the framework of Differential
Privacy (Dwork et al., 20065 2014), including DP-SMOTE (Lut, |2022), which adds noise when
estimating point distributions/nearest neighbors, and SMOTE-DP (Zhou et al.,2025), which combines
SMOTE with a DP generative model. However, SMOTE-DP largely ignores SMOTE’s increased
sensitivity of minority records (Lau & Passerat-Palmbachl 2021} [Lut, [2022; |[Rosenblatt et al.| 2025),
a gap we confirm empirically (see Section[5.1)). As none of these approaches provides open-source
implementations, we leave evaluating their effectiveness to future work.
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Ethics Statement. Our work does not involve attacking live systems or private datasets. Our goal
is to demonstrate the importance of emphasizing privacy considerations and relying on established
notions of privacy when processing sensitive, imbalanced data in critical domains.

We have only used Large Language Models (LLMs) to aid or polish writing. We performed all
literature review, research ideation, and theoretical derivations.

Reproducibility Statement. We make considerable efforts to make our work reproducible. We
clearly state all assumptions throughout the paper, provide detailed references and step-by-step
explanations for accessing and preparing the datasets and privacy attacks used in our evaluation, and
include pseudocode for our new attacks. Last, we intend to share the code with the reviewers/ACs
during the discussion period and eventually publicly (once the paper is accepted).
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A TIGHTER LOWER BOUND ON ReconSMOTE RECALL

In this section, we derive a tighter lower bound on the recall of ReconSMOTE by relaxing two of the
assumptions in Section[#.3] namely the Poisson approximation and the one-directional counting of
Cj;. Specifically, we use the exact Binomial distributions and count C};; in both directions to obtain
more accurate values.

Recall that at each step of the SMOTE algorithm, we choose an z; € X, uniformly at random
and then independently select one of its k nearest neighbors uniformly at random. To capture this
structure, we represent the minority data by a KNN graph G = (XL, E), where edges F represent
the neighboring relations among the minority samples. As before, we use N (z;) to denote the k
nearest points to z; from the minority set. For each z; € X}, ,, we add an edge E;_,; whenever
x; € N(z;). Each synthetic data generated by SMOTE is associated with exactly one edge. Let o
denote the probability that a nearest-neighbor relation is mutual; i.e., the probability thatif ; € N (z;)
then also x; € N (mJ) In this case, a synthetic point lies on F;_,; if it was generated along E;_, ;
or along I/;_,;. If a = 1, then all nearest-neighbor edges are mutual, and o = 0 corresponds to a

completely one-sided nearest-neighbor graph, for which we usually refer to those edges as exclusive.

Recall that an edge is reconstructed if at least three synthetic records lie on its segment, and a real x;
is identifiable if there exist three reconstructed edges incident to ;. For generating each synthetic
point, we independently select an x; with probability 1/n, and then a neighbor z; € N(z;) with
probability 1/k. We denote the number of synthetic data points generated between z; and z; by C;;.
Let B;; := I{z; € N(z;) and «; € N(z;)} (mutuality indicator) with Pr{B;; = 1) = c. Then

: 1 : 2
Cij | B'L’j =0~ Blnom<no—n1, m), CZJ | Bij =1~ BlIlOIIl(?”Lo—’FLl7 m) .

Assumption 4 (Local non-degeneracy). For any z; € X ,, all edges {E;—,; : x; € N(z;)} have
pairwise distinct directions.

Under Assumption [4] the intersection of any three reconstructed edges incident to z; uniquely
identifies x;.
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Lemma 1 (Reconstructed edge probability). For any edge of G,
Pr{C;; > 3}=(1—c«) Pr{Binom(ng—ny, ﬁ) > 3}+a Pr{Binom(ng—n1, ﬁ) > 3} =Pedge ().

Proof. Condition on B;; and compute the average. If B;; = 0, then only one direction contributes to
the count; if B;; = 1, both directions do. O

Lemma 2 (Lower-bound on per-node identifiability). Fix z; € X}, and its k outgoing directed
edges {E;_,j : x; € N(x;)}. Then, we have

k Pedge(a) — 2
Pr{x; identifiable} > max{ 0, pdlimz)} =: L;q, )

and this lower bound is tight.

Proof. Declare an edge reconstructed if C;; > 3 and set E;<5; := I{C;; > 3}. Let S; = Z?zl B,

From Lemma each edge has marginal Pr{ £}, = 1} = pedge(a), s0 E[S;] = k pedge (). Then,
we have

E[S;] = E[S; I{S; < 2}] + E[S; I{S; > 3}]
< E[2I{S; < 2}| + B[k I{S; > 3}] (since S; < k a.s.)
=2 Pr{S; <2} + k Pr{S; > 3}.
Since Pr{S; <2} =1 — Pr{S; > 3}, we obtain
E[S;] < 24 (k—2) Pr{S; > 3},

hence
E[S;] —2 _ k pedge(a) — 2
k—2 k—2 '

Truncating at 0 accommodates the trivial case k pedge () < 2.

Moreover, the bound cannot be improved using only the edge-wise success probabilities. Consider

constructing (E}%5,)%_, so that S; = Z?Zl B}, takes values only in {2, k}. Choose the mixture
weights so that E[S;] = k pedge (). In this case, the inequality holds with equality, meaning that the
lower bound is tight. O

Theorem 4 (ReconSMOTE expected recall (exact)). We have

1
E[Recall] == ]E[n—#{xl € X}, x;identifiable}] > L;q, 3)
1

real *

where L;q is defined in Equation 2}

Proof. By Lemma we have Pr{z; identifiable} > L;; for every 4, so

1 &
E[Recall] = - ZPr{xi identifiable} > L;q4.
Li=1

B LOWER BOUNDS OF ReconSMOTE RECALL VISUALIZATIONS

To complement the theoretical results in Section [f.3] (approximate bound, A;4) and Appendix [A]
(exact bound, L;4), we visualize the bounds under different conditions.

We start by showing the ratio between the exact bound and the approximate bound as a function of
the imbalance ratio r in Figure[d] When o = 0 (Figure ffa), the approximate bound closely matches
the exact one for all k, especially for larger imbalance ratio. In contrast, even a small amount of
mutuality (v = 0.1; Figure ib) introduces a noticeable deviation of the lower bound.
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Figure 4: Exact/approximate bound ratios for two levels of mutuality.
n,=100, a=0.5 200 ny=100, a=0.5 o
1.0
175
0.8
08 150
06 125 0.6
3 ~ 100 3
0.4
75 0.4
0.2 — k=3 50
—— k=5 0.2
— k=10 25
0.0 — k=20
0 25 50 75 100 125 150 175 200 30 0.0
r (imbalance ratio) Kk
(a) Lower bound L;q vs. 7 (b) Heatmap of L;q over (r, k)
Figure 5: Comparison of two visualizations of the exact bound.
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Figure 6: Exact bound as a function of « for different imbalance ratios 7.

Next, in Figure[5] we focus on the exact bound L;4 under varying imbalance ratios r and neighborhood
sizes k (with n; = 100 and o = 0.5 fixed). Figure @ shows that L,y steadily increases as the
oversampling ratio r rises. For small k, even a moderate oversampling ratio results in significant
identifiability. However, for larger k, a higher oversampling ratio is required. The heatmap in
Figure[5b|clearly illustrates this interaction. In the upper-left area, where k is small and r is large, L;q
quickly approaches 1. This indicates almost perfect identifiability. In contrast, in the lower-right area,
where k is large and r is small, L;4 is close to zero. This suggests that the reconstructed edges are not
dense enough to reach high identifiability. Overall, these plots confirm the trade-off: identifiability
improves with oversampling, but its efficiency depends strongly on the neighborhood parameter k.

Finally, Figure[6| presents the exact bound L;4 as a function of « for several imbalance ratios r. The
curves illustrate the sensitivity of L;4 to the graph structure. For example, when » = 10, small
increases in « would lead to substantial changes in L4, highlighting how mutuality in the KNN
graph strongly influences privacy leakage.
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