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ABSTRACT

The Synthetic Minority Over-sampling Technique (SMOTE) is one of the most
widely used methods for addressing class imbalance and generating synthetic data.
Despite its popularity, little attention has been paid to its privacy implications;
yet, it is used in the wild in many privacy-sensitive applications. In this work,
we conduct the first systematic study of privacy leakage in SMOTE: we begin
by showing that prevailing evaluation practices, i.e., naive distinguishing and
distance-to-closest-record metrics, completely fail to detect any leakage and that
membership inference attacks (MIAs) can be instantiated with high accuracy. Then,
by exploiting SMOTE’s geometric properties, we build two novel attacks with
very limited assumptions: DistinSMOTE, which perfectly distinguishes real from
synthetic records in augmented datasets, and ReconSMOTE, which reconstructs
real minority records from synthetic datasets with perfect precision and recall
approaching one under realistic imbalance ratios. We also provide theoretical
guarantees for both attacks. Experiments on eight standard imbalanced datasets
confirm the practicality and effectiveness of these attacks. Overall, our work reveals
that SMOTE is inherently non-private and disproportionately exposes minority
records, highlighting the need to reconsider its use in privacy-sensitive applications
and as a baseline for assessing the privacy of modern generative models.

1 INTRODUCTION

From rare disease diagnosis to fraud detection, machine learning tasks can be profoundly affected
by severe class imbalance, where instances of interest – the minority class – are much rarer than the
majority class (He & Garcia, 2009). Models often underperform under these conditions, exhibiting
biases toward the majority and failing to capture the minority reliably (Chen et al., 2024a). One
of the most influential and widely adopted approaches to address this is the Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002), which augments the imbalanced data by
upsampling or generating synthetic samples of the underrepresented class through linear interpolation
between minority records. Due to its simplicity and effectiveness, SMOTE continues to play a central
role in real-world applications. To put things in context, the SMOTE paper has been cited nearly
40k times, Microsoft Azure offers built-in SMOTE components (Microsoft, 2024; 2025), and most
MLaaS services support it (Google Cloud, 2025; AWS, 2025). Overall, SMOTE is primarily used
in two contexts: 1) as a data augmentation technique for machine learning classifiers, and 2) as a
synthetic data generation method to facilitate data sharing.

Data Augmentation. SMOTE was originally proposed as a pre-processing/upsampling technique to
augment the real dataset, thus improving classifier performance, especially F1 score and recall, when
trained on the augmented data. Practitioners rely on SMOTE in a wide range of medical applications,
including cancer diagnosis (Fotouhi et al., 2019), heart-related diseases (Muntasir Nishat et al., 2022;
El-Sofany et al., 2024), diabetes prediction (Ramezankhani et al., 2016; Alghamdi et al., 2017),
genetic risk prediction (Kosolwattana et al., 2023), etc. Beyond medicine, SMOTE is widely applied
in finance, particularly for credit-card fraud detection (Zhao & Bai, 2022; Khalid et al., 2024) and
predicting customer churn (Peng et al., 2023; Ouf et al., 2024).

Synthetic Data. SMOTE has also gained traction as a method for generating synthetic tabular data.
Often used as a baseline for more advanced models like GANs and VAE, SMOTE has been shown
to perform on par with, or even better than, generative approaches (Manousakas & Aydöre, 2023;

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: DistinSMOTE and ReconSMOTE attacks vs.
augmented/synthetic data generated by SMOTE.

Augmented Data

Naive MIA DistinSMOTE

0.01 ± 0.01 0.68 ± 0.07 1.00 ± 0.00

Synthetic Data

Naive MIA ReconSMOTE

0.16 ± 0.10 0.93 ± 0.02 1.00 ± 0.00

Table 1: Performance of privacy attacks vs. SMOTE.
Naive refers to the current privacy evaluation prac-
tices. MIAs are applied to SMOTE for the first time.
DistinSMOTE and ReconSMOTE are our novel attacks.

Kindji et al., 2024). Moreover, its extensive use as a baseline has led to modern diffusion-based
models (not explicitly designed with privacy in mind) to be characterized as privacy-preserving
simply because they outperform SMOTE, a pattern repeatedly observed in top-tier machine learning
publications (Kotelnikov et al., 2023; Zhang et al., 2024; Pang et al., 2024; Mueller et al., 2025).
SMOTE is also applied for medical synthetic data (Kaabachi et al., 2025), and beyond machine
learning research, it has been recognized as a promising technique for improving access to census
data by public sector entities (ONS, 2019; ADR Wales, 2025).

Roadmap. Although not originally designed with privacy in mind, SMOTE is extensively used in
sensitive public-facing applications that process personal data. However, its privacy risks have often
been overlooked or significantly underestimated. In this paper, we fill this gap by studying whether,
why, and how much privacy leakage occurs from using SMOTE either as a data augmentation method
or as a standalone synthetic data generator.

We begin by showing that SMOTE appears to have no privacy leakage when evaluating it through
the current practice of training a classifier to distinguish real from synthetic records in augmentation
settings or that of measuring the distance from synthetic to real records (more precisely, the distance
to closest record, or DCR (Zhao et al., 2021)). We refer to the former as naive distinguishing and
the latter as naive metrics. We also instantiate—to our knowledge, for the first time—a Membership
Inference Attack (MIA) (Shokri et al., 2017; Stadler et al., 2022) against SMOTE, showing that
attackers can accurately infer whether a target record was part of the real training data.

Next, we propose two novel near-perfect privacy attacks with minimal and realistic assumptions: a
Distinguishing (DistinSMOTE) and a Reconstruction attack (ReconSMOTE). Both only assume access
to a single augmented or synthetic dataset and knowledge that SMOTE generated it (see Figure 1). By
exploiting SMOTE’s geometric properties, DistinSMOTE distinguishes real from synthetic records in
augmentation settings, while the more ambitious ReconSMOTE reconstructs real minority records from
synthetic data. We also provide a theoretical analysis for both attacks, showing they run at worst in
O(n2d+ n(kr)2), where n, d, and k denote, respectively, the number of input records, features, and
SMOTE neighbors, and r represents the data imbalance ratio. While quadratic in n, the complexity
remains practical (especially with optimized search), with both attacks running within minutes on all
datasets we experiment with.

DistinSMOTE achieves perfect precision and recall, while ReconSMOTE reaches perfect precision –
which is more critical in privacy attacks (Carlini et al., 2022) – with recall increasing exponentially
(with rate ≈ r/k), reaching 1 under realistic parameter values (k = 5, r ≥ 20).

Our experiments, summarized in Table 1, on eight standard imbalanced datasets demonstrate that:

• Naive distinguish (0.01 precision)/metrics (0.16 accuracy) completely underestimate risks.
• State-of-the-art MIAs achieve 0.68 AUC on augmented and 0.93 on synthetic data for 100

vulnerable targets, although being time-consuming. Also, sensitivity of targets increases when
classifiers are trained on augmented vs. real data, yielding a 17% rise in MIA AUC.

• DistinSMOTE perfectly detects the real records in an augmented dataset.
• ReconSMOTE achieves perfect precision when reconstructing real minority records from a single

synthetic dataset. While its average recall is 0.85, it reaches 1 for imbalance ratios of 20 or
higher, consistent with our theoretical analysis.
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Implications. Our findings provide further evidence that privacy cannot be treated as an afterthought
when applying non-private techniques like SMOTE in sensitive settings. Its use not only risks
exposing individual records but can also undermine trust in data-driven systems that rely on synthetic
data. Overall, our work has the following real-world implications for researchers/practitioners:

1. SMOTE is fundamentally non-private: its interpolation process makes privacy leakage inherent,
not a matter of flawed implementation.

2. Minority records are disproportionately at risk: the very samples SMOTE aims to amplify and
make more representative are also the most exposed.

3. SMOTE and DCR are unreliable: evaluating SMOTE with privacy metrics like DCR gives a
misleading assessment of its privacy and should not be used to validate other generative models.

4. Caution is critical: performance gains from oversampling must be weighed vs. privacy risks.

2 PRELIMINARIES

Notation. LetDreal = (X, y) be a training dataset, whereX ⊆ Rn×d is the feature matrix consisting
of n samples with d-dimensional feature vectors and y ∈ {0, 1}n the corresponding binary labels.
The dataset consists of n0 majority and n1 minority records, with imbalance ratio r = n0

n1
> 1. In

practice, n0 � n1, which makes learning directly from the minority class challenging.

Algorithm 1 SMOTE (Chawla et al., 2002)
Require: Real dataset Dreal

Require: Number of neighbors k
Ensure: Augmented data Daug = Dreal ∪Dsyn,

or Synthetic data Dsyn

1 Filter minority X1
real←{Xreal[i]|yreal[i]=1}

2 Compute n1 = |X1
real|, n0 = |Dreal| − n1

3 while |Dsyn| < n0 − n1 do
4 Randomly pick xi ∈ X1

real

5 Find k nearest neighbors of xi, N(xi)
6 Randomly choose xj ∈ N(xi)
7 Sample u ∼ U(0, 1)
8 Generate xsyn ← xi + u(xj − xi)
9 Add (xsyn, 1) to Dsyn

10 end while

SMOTE (Chawla et al., 2002) addresses class im-
balance by generating synthetic minority samples;
see Algorithm 1. To create a synthetic record, a
random minority record fromDreal is selected, one
of its k nearest minority neighbors is chosen, and
a new point is generated by interpolating along the
line segment between them. Repeating this process
yields Dsyn with n0−n1 new samples, balancing
the class distribution. The synthetic data can be
used as a standalone synthetic dataset (Dsyn) or to
form an augmented dataset Daug = Dreal ∪Dsyn,
e.g., to improve classification performance.

Privacy Attacks. Membership Inference At-
tacks (MIAs) (Shokri et al., 2017; Stadler et al.,
2022) and Reconstruction Attacks (Dinur & Nis-
sim, 2003; Annamalai et al., 2024a) are standard tools to empirically measure privacy leakage in
ML. In MIAs, the adversary aims to infer whether a target record (xT , yT ) was part of the training
dataset Dreal. The attack can be framed as a repeated binary classification game: the adversary is
given either a classifier (or a synthetic dataset) trained on Dreal, or one trained on the neighboring
D′real = Dreal \ (xT , yT ), and infers which dataset was used. To do so, the adversary typically
exploits differences in model behavior – such as prediction confidences on the target, or statistical
features extracted from synthetic data.

In a reconstruction attack, the adversary aims to recover any full real records (i.e., an untargeted
attack) from access to a released model or synthetic data. These attacks often assume access to
auxiliary information, such as public data, accurate statistics, or limited query access to Dreal.

We also consider distinguishing attacks, which are somewhat related to MIAs but focus on whether a
record comes from the population-level data distribution rather than from the specific dataset used to
train the model. In the context of SMOTE, we use these attacks to distinguish unlabelled records in
Daug as either real (Dreal) or synthetic (Dsyn), since Dreal ∩Dsyn = ∅.

3 RELATED WORK

As discussed in Section 1, SMOTE is widely used for data augmentation and synthetic data generation
across various domains. Despite its popularity, prior work has focused primarily on its utility, while
its privacy risks remain largely unexplored.
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SMOTE has recently served as a baseline in several diffusion-based generative models (Kotelnikov
et al., 2023; Zhang et al., 2024; Pang et al., 2024; Mueller et al., 2025), all published at top-tier
machine learning venues. A common pattern across these studies is the “SMOTE + DCR” workflow:
they rely on the Distance to Closest Record (DCR) (Zhao et al., 2021) as the primary privacy proxy,
consistently reporting smaller DCR values for SMOTE and interpreting this as evidence that the
newly proposed models are privacy-preserving. Kotelnikov et al. (2023) additionally employ the “full
black-box” attack from (Chen et al., 2020), which still reduces to DCR as its core signal.

More recently, this view has been challenged by Sidorenko & Tiwald (2025), who show that some
diffusion models (Kotelnikov et al., 2023; Mueller et al., 2025) actually achieve lower DCR values
than SMOTE, thereby leaking more information about the training data. However, DCR itself has
been shown to be an inadequate privacy metric – it consistently underestimates leakage (Houssiau
et al., 2022; Annamalai et al., 2024b; Ganev & De Cristofaro, 2025) and does not correlate with
leakage detected by MIAs (Yao et al., 2025). To the best of our knowledge, despite its prominent role
as a baseline, SMOTE has not yet been systematically evaluated with state-of-the-art MIAs or any
model-specific attacks. This leaves a critical gap in understanding SMOTE’s true privacy risks and
calls into question the validity of privacy claims across a recent line of generative-model research.

4 PRIVACY ATTACKS VS. SMOTE

In this section, we present our two novel privacy attacks that expose privacy leakage from SMOTE.

4.1 ADVERSARIAL MODEL

Assumptions. For both attacks, we assume an adversary with access to a single dataset generated by
SMOTE (Daug for DistinSMOTE and Dsyn for ReconSMOTE). The adversary knows that the original
SMOTE algorithm (Chawla et al., 2002) was applied (Algorithm 1) and is aware of its parameters,
specifically, the number of neighbors k and the real data imbalance ratio r (in practice, these can be
approximated from the released dataset). The adversary relies solely on the geometrical properties of
SMOTE to achieve its goals – either distinguishing or reconstruction. Unlike prior privacy attacks, no
further knowledge is required: e.g., the adversary does not need access to public/representative data,
repeated inference or generation, the model parameters, numerous shadow models or a meta-classifier
(as in MIAs (Stadler et al., 2022; Houssiau et al., 2022; Annamalai et al., 2024b)), or published
(accurate) aggregate statistics (as in reconstruction (Dinur & Nissim, 2003; Dick et al., 2023)).

Objectives. For DistinSMOTE, the adversary aims to distinguish the real minority records from
synthetic ones from observing Daug , whereas for ReconSMOTE, to reconstruct them from Dsyn. We
focus on minority records from underrepresented regions of the feature space because they often
correspond to the most vulnerable individuals. Such records carry the greatest privacy risks: they are
easier to single out, more likely to be re-identified, and any disclosure disproportionately affects the
individuals they represent (Kulynych et al., 2022; Stadler et al., 2022). Indeed, regulators, including
the UK Information Commissioner’s Office (ICO, 2022), have explicitly stressed the need to protect
minority and outlier records.

We measure the attacks success using precision (the fraction of identified records that are truly real)
and recall (the fraction of successfully identified real records), two standard metrics that together give
a comprehensive view of performance. In privacy attacks, precision is especially critical, since even a
handful of correctly identified records with high confidence can constitute a serious breach (Carlini
et al., 2022). While secondary, capturing a large fraction of minority records is also important.

Data Assumptions. Our theoretical analysis of DistinSMOTE and ReconSMOTE relies on the following
three realistic assumptions about the feature structure of the real minority records (X1

real) and k:

Assumption 1 (Real-valued features). All features in X1
real are real-valued.

Assumption 2 (Global non-collinearity). No three distinct feature vectors in X1
real are collinear.

Assumption 3 (Minimum k). The number of neighbors, k ≥ 3.

In other words, all features are continuous and no three points lie on the same line. These assumptions
align naturally with (high-dimensional) continuous data, are non-restrictive in practice, and, crucially,
are satisfied by all datasets in our main experiments (see Section 5). Moreover, assuming k ≥ 3
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is necessary to uniquely identify the intersection point of the lines formed by vectors connecting
neighboring points, and is a standard, practical choice in typical SMOTE configurations (default is 5).

4.2 DISTINGUISHING ATTACK

In Algorithm 2, we outline the DistinSMOTE attack, which distinguishes real minority records from
synthetic ones within an augmented dataset. The attack exploits the fact that, among any three
collinear points, the middle one must be synthetic, since real points are non-collinear and SMOTE
generates points strictly between them. The algorithm begins by searching from the convex hull of
the minority records and iteratively explores neighbors inwards. When a collinear triplet is found, its
midpoint is pruned from the candidate set with real points, and its neighbors are added to the queue
for further inspection.

Complexity. The nearest-neighbor search is the main cost. With brute-force search (O(nd) per
query), each of the n records requires finding kr neighbors (O(nd)) and checking all neighbor pairs
(O((kr)2)), yielding a worst-case complexity of O(n2d+ n(kr)2). In practice, optimized methods
(e.g., KD/ball trees) reduce search to O(log n) for small d (d ≤ 32 in our main datasets). Also, since
k and r are typically (small) constants, the effective complexity is much lower, and the algorithm
completes in under three minutes on all main datasets.

Accuracy Analysis. We analyze DistinSMOTE, with the theorem below formalizing the theoretical
correctness of its labeling rule, achieving perfect precision and recall.
Theorem 1 (DistinSMOTE perfect precision &
recall). Under Assumptions 1–2, the labeling
rule in the DistinSMOTE attack achieves perfect
precision and recall (with probability 1).

Sketch Proof. By SMOTE construction, each syn-
thetic point lies strictly on the line segment be-
tween two real points (xsyn = xi + u(xj − xi)).
Under the global non-collinearity assumption,
no three real points are collinear, so any line
in Daug containing at least three points con-
sists of exactly two real endpoints xi, xj ∈
X1
real and one or more synthetic interior points

xm1
, xm2

, · · · ∈ X1
syn.

DistinSMOTE follows this labeling rule: it finds
lines via local search (lines 9-11 of Algorithm 2)
and marks interior points as synthetic and end-
points as real (lines 12-13), while any real point
not on such a line (i.e., not used in interpolation)
is also labeled real. The local search guarantees
all points are visited efficiently, and the labeling
rule ensures all synthetic points are removed and
all real points preserved. This leads to perfect
precision and recall (with probability 1, except
for negligible numerical precision effects that do
not occur in practice). �

Algorithm 2 DistinSMOTE

Require: Augmented data Daug

Require: Number of neighbors k, imbalance ratio r
Ensure: Detected real minority records C1

1 Filter minority X1
aug←{Xaug[i]|yaug[i]=1}

2 Initialize candidate set C1 ← X1
aug

3 Initialize queue queue← H(X1
aug) . convex hull

4 Initialize visited set V ← ∅
5 while queue 6= ∅ do
6 for record xi ∈ queue do
7 if xi /∈ V and xi ∈ C1 then
8 Add xi to V
9 Find 2 · k · r nearest neighbors of xi, N(xi)

10 for pairs of neighbors (xj , xk) ∈ N(xi) do
11 if xi, xj , xk are collinear then
12 Identify middle point xm ∈ {xi, xj , xk}
13 Remove xm from C1; Add xm to V
14 Add N(xm) ∩ C1 to queue
15 end if
16 end for
17 end if
18 end for
19 end while
20 return C1

4.3 RECONSTRUCTION ATTACK

Algorithm 3 presents the ReconSMOTE attack, which operates solely on synthetic data. The attack
relies on two main intuitions: 1) synthetic records lie along line segments connecting real minority
points, so these lines can be detected by finding three or more collinear samples, and 2) such
lines intersect exactly at the original real points. The algorithm begins by iteratively defining lines,
searching each point and two of its neighbors for collinear triplets, and then extending them with
additional collinear neighbors. For each line, the mean of its points is stored as a midpoint, providing
a compact representation of the line’s location. Next, the algorithm examines pairs of midpoints to
identify intersection points of the corresponding lines, which serve as candidate real records. Finally,
we retain only intersections supported by at least three distinct lines, filtering out spurious candidates.
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Complexity. The worst-case time complexity is very similar to DistinSMOTE, i.e.,O(n2d+n(kr)2).
While there are two additional factors, namely, O(nkr) for checking neighbors after identifying a
collinear triplet and O(n2) for finding line intersections, these are dominated by existing terms and
can be ignored. The practical complexity is much lower, and the attack runs in at most three minutes
on all main datasets.

Accuracy Analysis. Next, we analyze ReconSMOTE; the following theorems give theoretical guaran-
tees for its reconstruction rule, achieving perfect precision and a lower bound on expected recall.
Theorem 2 (ReconSMOTE perfect precision). Under Assumptions 1–3, the records reconstructed by
ReconSMOTE are guaranteed to be real, i.e., the attack achieves perfect precision (with probability 1).
Sketch Proof. By SMOTE construction, each synthetic point lies on a segment strictly between two
real endpoints. Accordingly, every detected line in X1

syn (obtained from collinear sets identified by
the local search in lines 8-17 of Algorithm 3) corresponds uniquely to a pair of real records. The
local search correctly groups all synthetic points from that pair into a single collinear set without
introducing spurious collinearities.

Under the global non-collinearity assumption, the only point lying on three or more such lines is
their shared real endpoint. ReconSMOTE exploits this by intersecting detected lines (lines 23-25) and
retaining only points supported by at least three distinct lines (line 27). Since synthetic points lie on
exactly one SMOTE line, whereas real endpoints lie on three or more, any retained intersection must
be a true real point. Hence, every reconstructed record is real, so precision is 1 (with probability 1). �

For clarity and tractability, the next theorem uses
a simplified formulation with directed edges and
a Poisson approximation, giving a conservative
bound (the approximate bound) that ignores over-
lapping neighbor relations in the SMOTE graph.
Theorem 3 (ReconSMOTE expected recall (ap-
proximate)). Let λ = n0−n1

n1k
. Under As-

sumptions 1–3 and using Poisson approxima-
tion (treating the number of synthetic points
per segment as Poisson), the expected recall of
ReconSMOTE satisfies:

E[Recall] ≥ (1)

max

0,
k
(

1− e−λ
(

1 + λ+ λ2

2

))
− 2

k − 2

 .

Sketch Proof. At each generation step, SMOTE
first selects a minority record xi uniformly from
the n1 available, and then one of its k nearest
neighbors xj uniformly. Thus, each of the n1k
possible minority-neighbor (directed) segments
is chosen with probability 1

n1k
at every step.

Let Cij denote the number of synthetic points
generated on segment (xi, xj). Since each of
the n0−n1 synthetic points is assigned indepen-
dently to a segment with probability 1

n1k
, the

vector of all Cij follows a multinomial distribu-
tion with

∑
ij Cij = n0−n1, and each Cij is

marginally distributed as Binom(n0−n1, 1
n1k

).
For analytic tractability, we approximate this
by Poisson(λ) with mean λ = n0−n1

n1k
. This is

standard when n0−n1 is large and 1
n1k

is small,
which holds in practice.

Algorithm 3 ReconSMOTE

Require: Synthetic data Dsyn

Require: Number of neighbors k, imbalance ratio r
Ensure: Reconstructed real minority records R1

1 Filter minority X1
syn←{Xsyn[i]|ysyn[i]=1}

2 Initialize reconstructed set R1 ← ∅ and
line support map S ← ∅

3 Initialize set of lines L ← ∅, midpointsM← ∅
4 Initialize visited set V ← ∅
5 for record xi ∈ X1

syn do
6 if xi /∈ V then
7 Add xi to V
8 Find 2 · k · r nearest neighbors of xi, N(xi)
9 for pairs of neighbors (xj , xk) ∈ N(xi) do

10 if xi, xj , xk are collinear then
11 Form initial line (xi, xj , xk); Add xj , xk to V
12 for neighbor xn ∈ N(xi) \ {xi, xj , xk} do
13 if xn collinear with line (xi, xj , xk) then
14 Add xn to line (xi, xj , xk); Add xn to V
15 end if
16 end for
17 Add line to L
18 Compute mean of line points and add toM
19 end if
20 end for
21 end if
22 end for
23 for pairs of midpoints (mp,mq) ∈M do
24 Compute intersection point x∗ of lines

corresponding to mp and mq

25 Add x∗ to R1 and record support line
indices {p, q} in S(x∗)

26 end for
27 Filter points in R1 with |S(x∗)| ≥ 3
28 return R1

A segment is reconstructed if Cij ≥ 3. The probability of this is pedge = Pr{Poisson(λ) ≥ 3} =

1−e−λ
(

1 + λ+ λ2

2

)
. Now consider a fixed record xi, and let Si denote the number of reconstructed

6
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segments incident to it. Therefore, E[Si] = k pedge. Moreover, by Assumption 3, once Si ≥ 3, the
point xi is uniquely identifiable, since three non-collinear reconstructed segments suffice to triangulate
its location. To lower bound Pr{Si ≥ 3}, observe that E[Si] = E[SiI{Si ≤ 2}]+E[SiI{Si ≥ 3}] ≤
2 Pr{Si ≤ 2} + k Pr{Si ≥ 3} (since Si ≤ k). As Pr{Si ≤ 2} = 1 − Pr{Si ≥ 3}, this yields
E[Si] ≤ 2 + (k − 2) Pr{Si ≥ 3}, hence Pr{Si ≥ 3} ≥ E[Si]−2

k−2 =
k pedge−2
k−2 := Aid.

This is the probability that xi is identifiable. Since recall is the fraction of minority records that are
identifiable, its expectation equals the average of these probabilities over all n1 records. Because
each xi is treated symmetrically in SMOTE and we look at directed segments, the average equals the
bound derived above. Hence we obtain the stated lower bound on the expected recall. �

Remarks. By rearranging Equation 1, we get 1 − E[Recall] ≤ k
k−2 e

−λ(1 + λ + λ2

2 ), which in
turn means E[Recall]→ 1 as λ→∞, with a convergence rate exponential in λ(= n0−n1

n1k
= r−1

k ).

In Appendix A, we provide a more detailed analysis and derive a tighter bound without the simplifi-
cations of Theorem 3; we call it the exact bound. Finally, in Appendix B, we visualize the differences
between the bounds under various conditions.

5 EXPERIMENTAL EVALUATION

We now evaluate the effectiveness of our novel attacks, along with additional methods geared to assess
privacy leakage in SMOTE, both as a data augmentation and synthetic data generation technique.
Specifically, we consider: 1) current practices such as naive distinguish (via a classifier) and privacy
metrics (i.e., DCR from synthetic to real records (Zhao et al., 2021)), 2) state-of-the-art Membership
Inference Attacks (MIAs) (Shokri et al., 2017; Carlini et al., 2022), which to the best of our knowledge
have not yet been applied against SMOTE, and 3) the DistinSMOTE and ReconSMOTE attacks. Overall
results are summarized in Table 1.

Dataset Target r n d

ecoli imU 8.6 336 7
abalone 7 9.7 4,177 10
car eval 34 vgood 12 1,728 21
solar flare m0 M-0 19 1,389 32
car eval 4 vgood 26 1,728 21
yeast me2 ME2 28 1,484 8
mammography minority 42 11,183 6
abalone 19 19 130 4,177 10

Table 2: Main datasets overview, where r denotes
the imbalance ratio (n0/n1), n the number of
records, and d the number of features.

Datasets. We conduct our main experiments on
eight standard imbalanced datasets, each with a bi-
nary classification task, obtained from the imblearn
library (Lemaitre et al., 2017) (originally from the
UCI ML Repository) and used in prior work (Ding,
2011; Rosenblatt et al., 2025) These datasets vary
significantly in size (336 to 11,183 records), dimen-
sionality (6 to 32 features), imbalance ratios (8.6 to
130), and prediction task (target), as shown in Table 2.

Implementations. We use the standard im-
blearn (Lemaitre et al., 2017) implementation of
SMOTE and sklearn (Pedregosa et al., 2011) for
classifiers. Both DistinSMOTE and ReconSMOTE are
highly efficient, running in under three minutes on any dataset from Table 2 on an Apple M4 MacBook
with 24GB RAM. The naive methods are similarly fast, while the MIAs take up to 30 minutes per
dataset. We will release the source code for our attacks along with the final version of the paper.

5.1 AUGMENTED DATA

We compare the three approaches on augmented data, with results for all datasets shown in Table 3.

Naive Distinguish is a popular but arguably misguided approach for telling apart real and synthetic
records by training a classifier (Snoke et al., 2018; El Emam et al., 2022; Qian et al., 2023; DataCebo,
2025). Half of the real and half of the synthetic data are used to train a Random Forest classifier, with
testing performed on the remaining data. For each dataset, we run 5 independent SMOTE generations
and train 5 classifiers per run, reporting averaged results. The method severely underestimates privacy
risk (see the two leftmost columns in Table 3; precision and recall ≈ 0) as it is capable of capturing
only distributional differences, not record-level leakage.

Membership Inference. Next, we evaluate MIAs (Shokri et al., 2017; Carlini et al., 2022) using
the repeated classification game from Section 2. For a given target record, we train 200 classifiers (a
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Dataset r Naive distinguish MIA DistinSMOTE
Daug Dreal Daug Daug

(Precision) (Recall) (AUC) (AUC) (Precision) (Recall)

ecoli 8.6 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.04 0.50 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
abalone 9.7 0.03 ± 0.03 0.00 ± 0.01 0.57 ± 0.03 0.58 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
car eval 34 12 0.01 ± 0.02 0.01 ± 0.01 0.60 ± 0.03 0.73 ± 0.08 1.00 ± 0.00 1.00 ± 0.00
solar flare m0 19 0.01 ± 0.03 0.00 ± 0.01 0.79 ± 0.03 0.97 ± 0.03 1.00 ± 0.00 1.00 ± 0.00
car eval 4 26 0.00 ± 0.00 0.00 ± 0.00 0.59 ± 0.03 0.75 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
yeast me2 28 0.00 ± 0.00 0.00 ± 0.00 0.51 ± 0.04 0.57 ± 0.09 1.00 ± 0.00 1.00 ± 0.00
mammography 42 0.01 ± 0.02 0.00 ± 0.00 0.54 ± 0.03 0.56 ± 0.04 1.00 ± 0.01 1.00 ± 0.00
abalone 19 130 0.00 ± 0.00 0.00 ± 0.00 0.58 ± 0.05 0.80 ± 0.12 0.99 ± 0.02 1.00 ± 0.00

average 0.01 ± 0.01 0.00 ± 0.00 0.58 ± 0.03 0.68 ± 0.07 1.00 ± 0.00 1.00 ± 0.00

Table 3: Privacy attacks vs. augmented data.

Dataset r Naive metrics MIA ReconSMOTE
(Accuracy) (AUC) (Precision) (Recall)

ecoli 8.6 0.19 ± 0.15 0.93 ± 0.05 1.00 ± 0.00 0.43 ± 0.02
abalone 9.7 0.21 ± 0.17 0.65 ± 0.07 1.00 ± 0.00 0.62 ± 0.01
car eval 34 12 0.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.00 0.83 ± 0.03
solar flare m0 19 0.03 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.02
car eval 4 26 0.01 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
yeast me2 28 0.20 ± 0.12 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
mammography 42 0.25 ± 0.15 0.91 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
abalone 19 130 0.37 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

average 0.16 ± 0.10 0.93 ± 0.02 1.00 ± 0.00 0.85 ± 0.01

Table 4: Privacy attacks vs. synthetic data.
multi-layer perceptron with two hidden layers) on augmented datasets generated via SMOTE: half
of the training datasets include the target record, and half exclude it. We then use the classifiers’
predictions on the target to simulate an adversary’s confidence in distinguishing membership, and
calculate AUC. Following prior work (Ye et al., 2024; Guépin et al., 2024), we train target-specific
attacks in a leave-one-out setting, which provides a more accurate estimate of privacy leakage. This
procedure is repeated for 100 randomly selected targets (or all minority records), and we report the
average. Overall, this requires training roughly 20k SMOTE models and classifiers per dataset.

Looking at Table 3 (fourth column), the average AUC is 0.68, with half of the datasets exceeding 0.7,
which indicates substantial privacy leakage. The lowest scores appear in datasets with the smallest
imbalance (ecoli and abalone), where the proportion of synthetic data is relatively low. Mammography
also shows a low score, likely because its large number of records reduces the influence of any single
individual. These results are therefore not entirely surprising.

We also conduct an additional MIA experiment, training classifiers solely on the real data, to test the
intuition that SMOTE enhances the sensitivity of minority records in the augmented data, as they
directly contribute to generating synthetic samples. As expected, targets become more vulnerable
when augmentation is applied – average AUC increases by 17% (comparing the third and fourth
columns in Table 3). Larger imbalance further amplifies this effect. While similar intuitions have
been noted previously (Rosenblatt et al., 2025), they were not supported by empirical evidence.

DistinSMOTE. Finally, we run DistinSMOTE on 25 SMOTE generations and report average preci-
sion/recall (two rightmost columns in Table 3). As expected from our analysis, we achieve perfect
results across all datasets and imbalance levels. This shows that merely knowing SMOTE was used
for augmentation is enough for an adversary to perfectly identify real records with minimal effort.

5.2 SYNTHETIC DATA

Next, we evaluate all attacks on synthetic data; see Table 4.

Naive Metrics. A widely used approach for evaluating privacy in synthetic data is the Distance to
Closest Record (DCR) (Zhao et al., 2021), which measures the average distance between synthetic and
real records. DCR has been commonly applied to SMOTE and modern diffusion models (Kotelnikov
et al., 2023; Zhang et al., 2024; Pang et al., 2024; Mueller et al., 2025), but its interpretation is
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limited – an average distance alone provides little insight into privacy risks. To address this, we use a
linkability attack (Giomi et al., 2022), which builds on DCR and reports the accuracy with which an
adversary could link two partial feature sets of a real record using synthetic data. For each dataset,
we train 5 SMOTE models and evaluate linkability 5 times with varying feature subsets.

The results are unstable (see the leftmost column in Table 4): scores differ from zero only for low-
dimensional settings (d ≤ 10), while higher-dimensional datasets yield large variances that render
DCR unreliable. This is expected, as DCR treats all features equally and is known to be an inadequate
privacy measure (Annamalai et al., 2024b; Ganev & De Cristofaro, 2025; Yao et al., 2025).

MIA. We evaluate MIAs on synthetic data using the repeated classification game (similar to Sec-
tion 5.1). We rely on the GroundHog attack (Stadler et al., 2022), one of the most popular MIAs
for synthetic tabular data. GroundHog extracts statistical features from generated datasets – such
as column-wise minimum, mean, median, maximum, and pairwise correlations – and uses them to
train a meta-classifier, which is then applied to unlabeled real and synthetic feature sets. To generate
training features, we train 400 SMOTE models for in/out training features and another 200 SMOTE
models for in/out testing features. Repeating this for 100 targets yields about 60k models per dataset.
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Figure 2: ReconSMOTE recall and
lower bounds (per dataset).
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Figure 3: ReconSMOTE perfor-
mance w/ varying r (all datasets).

As shown in Table 4 (second column), this results in substantial pri-
vacy leakage: AUC exceeds 0.9 in all but one dataset. The exception
is abalone, which has the second-lowest imbalance ratio and the
second-largest number of records, potentially leading to lower sensi-
tivity. When imbalance increases (abalone 19), the MIA AUC rises
to 1. Overall, these results demonstrate that SMOTE-generated data
is highly susceptible to MIAs, even beyond trivial cases where data
domain characteristics mainly drive leakage (Ganev et al., 2025a;b).

ReconSMOTE. Next, we apply ReconSMOTE on 25 SMOTE genera-
tions per dataset, reporting average precision/recall (last two columns
in Table 4). The attack achieves perfect precision on all datasets,
which, as motivated in Section 4, is the most critical metric for re-
construction. Recall is also very high (see Figure 2), with an average
of 0.85. It increases quickly with class imbalance, reaching 1 when
r ≥ 20. The recall values (per dataset) are in line with the expected
approximate/exact bounds predicted by Theorem 3 and 4.

To further validate the expected bounds at finer granularity, we vary
the imbalance ratio {5, 10, 20, 25, 50, 75, 100} across all datasets
and plot the average performance in Figure 3. As expected, recall
increases exponentially with r (for fixed k), reaching 1 around im-
balance 20. Overall, these findings highlight the risks of relying
on SMOTE for synthetic data generation: in realistic settings, an
adversary can reconstruct all real records with perfect confidence.

5.3 TAKE-AWAYS

We show that MIAs achieve high AUC across numerous targets vs. SMOTE: 0.68 against classifiers
trained on augmented data and 0.93 against synthetic data. Moreover, the sensitivity of minority
records increases by an average of 17% when classifiers are trained on augmented rather than original
training data. Finally, our attacks, DistinSMOTE and ReconSMOTE, are able to i) distinguish real
minority records from synthetic ones in augmented data, and ii) reconstruct real minority records
from synthetic data with minimal assumptions and near-perfect accuracy.

6 DistinSMOTE AND ReconSMOTE WITH RELAXED ASSUMPTIONS

In this section, we test the robustness of our attacks, DistinSMOTE and ReconSMOTE, on aug-
mented/synthetic data while relaxing our assumptions one at a time, e.g., using high-dimensional
data, mixed-type data, and k = 2; results are shown in Table 5, 6, and 7 in Appendix C. Additionally,
in Appendix C, we evaluate our attacks on perturbed SMOTE datasets (i.e., linear interpolation with
added random noise) and provide a heuristic for running the attacks without knowledge of k and r.

9
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High-Dimensional Data. First, we test how the attacks scale to two high-dimensional datasets – up
to 96,690 records and 50 features (see Table 5 and Appendix C for results and details about the higgs
and miniboone datasets, both with r = 25). Both DistinSMOTE and ReconSMOTE achieve perfect
precision and recall and, as analyzed in Section 4, scale well with n and d, taking no more than 8
minutes per dataset, which is highly practical.

Mixed-Type Data. Next, we show that our attacks also apply to mixed-type data, relaxing Assump-
tion 1; see Table 6 and Appendix C for details on the cardio and churn datasets, each containing an
equal mix of numerical/categorical features, and with r = 25. To generate data, we use SMOTE-
NC (Chawla et al., 2002) – introduced in the original SMOTE paper and designed for mixed data –
via the standard imblearn implementation (Lemaitre et al., 2017). For the attacks, we simply ignore
categorical features and operate on the continuous ones. As before, we obtain perfect precision and
very high recall on both datasets. This approach can also be applied to one-hot encoded data.

SMOTE with k = 2. Finally, we evaluate the attacks on the eight main datasets using SMOTE
with k = 2, relaxing Assumption 3 (see Table 7 in Appendix C). The performance of DistinSMOTE
remains unaffected, achieving perfect precision and recall, as expected. As for ReconSMOTE, average
recall drops to 0.52 (a 39% decrease compared to SMOTE with k = 5 in Table 4) because each
real record participates in fewer lines, making it harder to reach the support threshold; only records
that serve as neighbors to other records beyond their two closest neighbors can be successfully
reconstructed. Precision remains perfect as all reconstructed points are still accurate. Nevertheless,
reconstructing half the real minority records with perfect confidence is a serious privacy breach.

7 CONCLUSION

Our work highlights the fundamental privacy limitations of SMOTE (Chawla et al., 2002), one of the
most widely adopted techniques for improved learning on imbalanced data. The effectiveness of our
novel, near assumption-free attacks (DistinSMOTE and ReconSMOTE), demonstrates that real minority
records – precisely the ones SMOTE aims to better represent – are exposed to significant, previously
underestimated privacy risk. Importantly, this also shows that using SMOTE as a baseline with DCR
to evaluate privacy is unreliable and can provide a false sense of security. Nonetheless, SMOTE
remains an effective and easy-to-use technique in non-privacy-sensitive applications where utility is
the primary concern. We are confident our findings will be valuable to researchers and practitioners
deploying solutions that process or release sensitive data, motivate them to avoid SMOTE as a privacy
benchmark, and encourage them to adopt more robust privacy-preserving techniques.

Limitations and Future Work. Our attacks currently operate on continuous data and are primarily
tested on the original SMOTE implementation. While certain numerical instabilities/edge cases are
theoretically possible (e.g., a synthetic point appearing collinear with two unrelated real points),
their probability is effectively zero in high-dimensional datasets with high numerical precision,
and we did not observe any such case in our experiments. Additionally, our findings generalize to
many SMOTE variants – such as BorderlineSMOTE (Han et al., 2005), ADASYN (He et al., 2008),
SVMSMOTE (Nguyen et al., 2009), and cluster/hybrid-based methods (Douzas et al., 2018) – as
they all rely on line-segment interpolation to generate synthetic samples. In contrast, our attacks
are unlikely to be successful against variants like G-SMOTE (Douzas & Bacao, 2019) and GI-
SMOTE (Chen et al., 2024b), which generate synthetic points within regions rather than strictly along
lines. Nevertheless, these variants are not inherently privacy-preserving and are still likely to remain
vulnerable to MIAs. Extending our attacks and developing robust defenses for such methods is a
promising direction for future work.

Privacy-preserving variants of SMOTE have also been proposed under the framework of Differential
Privacy (Dwork et al., 2006; 2014), including DP-SMOTE (Lut, 2022), which adds noise when
estimating point distributions/nearest neighbors, and SMOTE-DP (Zhou et al., 2025), which combines
SMOTE with a DP generative model. However, SMOTE-DP largely ignores SMOTE’s increased
sensitivity of minority records (Lau & Passerat-Palmbach, 2021; Lut, 2022; Rosenblatt et al., 2025),
a gap we confirm empirically (see Section 5.1). As none of these approaches provides open-source
implementations, we leave evaluating their effectiveness to future work.
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Ethics Statement. Our work does not involve attacking live systems or private datasets. Our goal
is to demonstrate the importance of emphasizing privacy considerations and relying on established
notions of privacy when processing sensitive, imbalanced data in critical domains.

We have only used Large Language Models (LLMs) to aid or polish writing. We performed all
literature review, research ideation, and theoretical derivations.

Reproducibility Statement. We make considerable efforts to make our work reproducible. We
clearly state all assumptions throughout the paper, provide detailed references and step-by-step
explanations for accessing and preparing the datasets and privacy attacks used in our evaluation, and
include pseudocode for our new attacks. Last, we intend to share the code with the reviewers/ACs
during the discussion period and eventually publicly (once the paper is accepted).
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Dionysis Manousakas and Sergül Aydöre. On the Usefulness of Synthetic Tabular Data Generation. In ICML
DMLR, 2023.

Microsoft. SMOTE. https://learn.microsoft.com/en-us/azure/machine-learning/component-
reference/smote, 2024.

Microsoft. Example pipelines & datasets for Azure Machine Learning designer. https://learn.microsoft.
com/en-us/azure/machine-learning/samples-designer, 2025.

Markus Mueller, Kathrin Gruber, and Dennis Fok. Continuous Diffusion for Mixed-Type Tabular Data. In ICLR,
2025.

Mirza Muntasir Nishat, Fahim Faisal, Ishrak Jahan Ratul, Abdullah Al-Monsur, Abrar Mohammad Ar-Rafi,
Sarker Mohammad Nasrullah, et al. A Comprehensive Investigation of the Performances of Different Machine
Learning Classifiers with SMOTE-ENN Oversampling Technique and Hyperparameter Optimization for
Imbalanced Heart Failure Dataset. Sci. Program., 2022.

Hien M. Nguyen, Eric W. Cooper, and Katsuari Kamei. Borderline Over-sampling for Imbalanced Data
Classification. IJKESDP, 2009.

ONS. Synthetic Data for Public Good. https://datasciencecampus.ons.gov.uk/projects/synthetic-
data-for-public-good/, 2019.

12

https://cloud.google.com/vertex-ai/generative-ai/docs/prompt-gallery/samples/code_learn_about_dataset_transformations
https://cloud.google.com/vertex-ai/generative-ai/docs/prompt-gallery/samples/code_learn_about_dataset_transformations
https://ico.org.uk/media/about-the-ico/consultations/4021464/chapter-5-anonymisation-pets.pdf
https://ico.org.uk/media/about-the-ico/consultations/4021464/chapter-5-anonymisation-pets.pdf
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/smote
https://learn.microsoft.com/en-us/azure/machine-learning/component-reference/smote
https://learn.microsoft.com/en-us/azure/machine-learning/samples-designer
https://learn.microsoft.com/en-us/azure/machine-learning/samples-designer
https://datasciencecampus.ons.gov.uk/projects/synthetic-data-for-public-good/
https://datasciencecampus.ons.gov.uk/projects/synthetic-data-for-public-good/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shimaa Ouf, Kholoud T Mahmoud, and Manal A Abdel-Fattah. A Proposed Hybrid Framework to Improve the
Accuracy of Customer Churn Prediction in Telecom Industry. J. Big Data, 2024.

Wei Pang, Masoumeh Shafieinejad, Lucy Liu, Stephanie Hazlewood, and Xi He. ClavaDDPM: Multi-relational
Data Synthesis with Cluster-guided Diffusion Models. In NeurIPS, 2024.
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A TIGHTER LOWER BOUND ON ReconSMOTE RECALL

In this section, we derive a tighter lower bound on the recall of ReconSMOTE by relaxing two of the
assumptions in Section 4.3, namely the Poisson approximation and the one-directional counting of
Cij . Specifically, we use the exact Binomial distributions and count Cij in both directions to obtain
more accurate values.

Recall that at each step of the SMOTE algorithm, we choose an xi ∈ X1
real uniformly at random

and then independently select one of its k nearest neighbors uniformly at random. To capture this
structure, we represent the minority data by a KNN graph G = (X1

real, E), where edges E represent
the neighboring relations among the minority samples. As before, we use N(xi) to denote the k
nearest points to xi from the minority set. For each xi ∈ X1

real, we add an edge Ei→j whenever
xj ∈ N(xi). Each synthetic data generated by SMOTE is associated with exactly one edge. Let α
denote the probability that a nearest-neighbor relation is mutual; i.e., the probability that if xj ∈ N(xi)
then also xi ∈ N(xj). In this case, a synthetic point lies on Ei→j if it was generated along Ei→j
or along Ej→i. If α = 1, then all nearest-neighbor edges are mutual, and α = 0 corresponds to a
completely one-sided nearest-neighbor graph, for which we usually refer to those edges as exclusive.

Recall that an edge is reconstructed if at least three synthetic records lie on its segment, and a real
xi is identifiable if there exist three reconstructed edges incident to xi. We denote the number of
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synthetic data points generated between xi and xj by Cij . For generating each synthetic point,
SMOTE performs these selections independently, assigning every new sample to exactly one of
the n1k directed edges with equal probability 1/(n1k). This independence is not an additional
assumption – it follows directly from the random sampling mechanism of SMOTE. Consequently,
the vector of all Cij follows a multinomial distribution with

∑
ij Cij = n0−n1, and each component

Cij is marginally Binom(n0−n1, 1
n1k

).

Because some directed edges in the SMOTE KNN graph represent mutual neighbor relationships,
certain edges overlap. We address this by distinguishing between one-way and mutual edges. Let
Bij := I{xi ∈ N(xj) and xj ∈ N(xi)} (mutuality indicator) with Pr{Bij = 1) = α. Then

Cij
∣∣Bij = 0 ∼ Binom

(
n0−n1, 1

n1k

)
, Cij

∣∣Bij = 1 ∼ Binom
(
n0−n1, 2

n1k

)
.

Consider the following assumption regarding the structure of neighboring relations around each real
minority record.

Assumption 4 (Local non-degeneracy). For any xi ∈ X1
real, all edges {Ei→j : xj ∈ N(xi)} have

pairwise distinct directions.

In the analysis of this section, we use Assumption 4 in place of Assumption 2 (global non-collinearity),
as it is a weaker, localized condition sufficient for establishing the lower bound on reconstruction
recall. In particular, if Assumption 2 holds, then Assumption 4 automatically follows. Under
Assumption 4, the intersection of any three reconstructed edges incident to xi uniquely identifies xi.

Lemma 1 (Reconstructed edge probability). For any edge of G,

Pr{Cij ≥ 3}=(1−α) Pr{Binom(n0−n1, 1
n1k

) ≥ 3}+αPr{Binom(n0−n1, 2
n1k

) ≥ 3}=:pedge(α).

Sketch Proof. Condition on Bij and compute the average. If Bij = 0, then only one direction
contributes to the count; if Bij = 1, both directions do. �

Lemma 2 (Lower-bound on per-node identifiability). Fix xi ∈ X1
real and its k outgoing directed

edges {Ei→j : xj ∈ N(xi)}. Then, we have

Pr{xi identifiable} ≥ max

{
0,

k pedge(α)− 2

k − 2

}
=: Lid, (2)

and this lower bound is tight.

Sketch Proof. Declare an edge reconstructed if Cij ≥ 3 and set Erec
i→j := I{Cij ≥ 3}. Let

Si =
∑k
j=1E

rec
i→j . From Lemma 1, each edge has marginal Pr{Erec

i→j = 1} = pedge(α), so
E[Si] = k pedge(α). Then, we have

E[Si] = E
[
Si I{Si ≤ 2}

]
+ E
[
Si I{Si ≥ 3}

]
≤ E
[
2 I{Si ≤ 2}

]
+ E
[
k I{Si ≥ 3}

]
(since Si ≤ k a.s.)

= 2 Pr{Si ≤ 2}+ k Pr{Si ≥ 3}.

Since Pr{Si ≤ 2} = 1− Pr{Si ≥ 3}, we obtain

E[Si] ≤ 2 + (k − 2) Pr{Si ≥ 3},

hence

Pr{Si ≥ 3} ≥ E[Si]− 2

k − 2
=
k pedge(α)− 2

k − 2
.

Truncating at 0 accommodates the trivial case k pedge(α) ≤ 2.

Moreover, the bound cannot be improved using only the edge-wise success probabilities. Consider
constructing (Erec

i→j)
k
j=1 so that Si =

∑k
j=1E

rec
i→j takes values only in {2, k}. Choose the mixture

weights so that E[Si] = k pedge(α). In this case, the inequality holds with equality, meaning that the
lower bound is tight. �
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Figure 4: Exact/approximate bound ratios for two levels of mutuality.
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Figure 5: Comparison of two visualizations of the exact bound.
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Figure 6: Exact bound as a function of α for different imbalance ratios r.

Theorem 4 (ReconSMOTE expected recall (exact)). Under Assumptions 1, 3, and 4, we have

E[Recall] := E[
1

n1
#{xi ∈ X1

real : xi identifiable}] ≥ Lid, (3)

where Lid is defined in Equation 2.

Sketch Proof. By Lemma 2, we have Pr{xi identifiable} ≥ Lid for every i, so

E[Recall] =
1

n1

n1∑
i=1

Pr{xi identifiable} ≥ Lid.

�
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Dataset r n d DistinSMOTE ReconSMOTE
(Precision) (Recall) (Precision) (Recall)

higgs 25 47,976 28 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
miniboone 25 96,690 50 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 5: Privacy attacks vs. augmented/synthetic data with high-dimensional data.

Dataset r n d DistinSMOTE ReconSMOTE
(num, cat) (Precision) (Recall) (Precision) (Recall)

cardio 25 7,256 (5, 6) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.00
churn 25 8,269 (5, 5) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.01

Table 6: Privacy attacks vs. augmented/synthetic data with mixed-type data.

Dataset r DistinSMOTE ReconSMOTE
(Precision) (Recall) (Precision) (Recall)

ecoli 8.6 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.43 ± 0.06
abalone 9.7 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.42 ± 0.02
car eval 34 12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.61 ± 0.02
solar flare m0 19 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.02
car eval 4 26 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.60 ± 0.00
yeast me2 28 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.58 ± 0.02
mammography 42 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.61 ± 0.01
abalone 19 130 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.49 ± 0.01

average 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.52 ± 0.02

Table 7: Privacy attacks vs. augmented/synthetic data by SMOTE with k = 2.

B LOWER BOUNDS OF ReconSMOTE RECALL VISUALIZATIONS

To complement the theoretical results in Section 4.3 (approximate bound, Aid) and Appendix A
(exact bound, Lid), we visualize the bounds under different conditions.

We start by showing the ratio between the exact bound and the approximate bound as a function of
the imbalance ratio r in Figure 4. When α = 0 (Figure 4a), the approximate bound closely matches
the exact one for all k, especially for larger imbalance ratio. In contrast, even a small amount of
mutuality (α = 0.1; Figure 4b) introduces a noticeable deviation of the lower bound.

Next, in Figure 5, we focus on the exact boundLid under varying imbalance ratios r and neighborhood
sizes k (with n1 = 100 and α = 0.5 fixed). Figure 5a shows that Lid steadily increases as the
oversampling ratio r rises. For small k, even a moderate oversampling ratio results in significant
identifiability. However, for larger k, a higher oversampling ratio is required. The heatmap in
Figure 5b clearly illustrates this interaction. In the upper-left area, where k is small and r is large, Lid
quickly approaches 1. This indicates almost perfect identifiability. In contrast, in the lower-right area,
where k is large and r is small, Lid is close to zero. This suggests that the reconstructed edges are not
dense enough to reach high identifiability. Overall, these plots confirm the trade-off: identifiability
improves with oversampling, but its efficiency depends strongly on the neighborhood parameter k.

Finally, Figure 6 presents the exact bound Lid as a function of α for several imbalance ratios r. The
curves illustrate the sensitivity of Lid to the graph structure. For example, when r = 10, small
increases in α would lead to substantial changes in Lid, highlighting how mutuality in the KNN
graph strongly influences privacy leakage.

C DistinSMOTE AND ReconSMOTE WITH RELAXED ASSUMPTIONS

In this section, we present results for our attacks under relaxed assumptions – on high-dimensional
data (Table 5), mixed-type data (Table 6), SMOTE with k = 2 (Table 7), and perturbed data (Table 8
and 9). For the first two experiments, we use datasets different from the eight main datasets in Table 2.
Namely, we use higgs and miniboone from OpenML (Vanschoren et al., 2014) as high-dimensional
data, and cardio and churn from Kaggle as mixed-type data. These datasets are used in relevant prior
work (Kotelnikov et al., 2023). For all datasets, the minority class is undersampled so the imbalance
is 25. The results of the first three experiments are discussed in Section 6.
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DistinSMOTE SMOTE augmented data w/ noise per column (Prec./Rec.)
noise = 10−10 noise = 10−7 noise = 10−5 noise = 10−3

tol. = 10−10 0.96 1.00 0.86 1.00 0.04 1.00 0.04 1.00
tol. = 10−7 0.93 0.99 0.93 0.99 0.07 1.00 0.04 1.00
tol. = 10−5 0.38 0.80 0.38 0.79 0.07 0.93 0.04 0.91
tol. = 10−3 0.11 0.37 0.11 0.36 0.06 0.82 0.06 0.82

Table 8: DistinSMOTE vs. perturbed augmented data, on yeast me2.

ReconSMOTE SMOTE synthetic data w/ noise per column (Prec./Rec.)
noise = 10−10 noise = 10−7 noise = 10−5 noise = 10−3

tol. = 10−10 1.00 0.99 0.89 0.99 0.00 0.00 0.00 0.00
tol. = 10−7 1.00 0.99 0.93 1.00 0.00 0.00 0.00 0.00
tol. = 10−5 0.95 0.94 0.81 0.80 0.80 0.11 0.00 0.00
tol. = 10−3 0.56 0.54 0.49 0.45 0.08 0.07 0.00 0.00

Table 9: ReconSMOTE vs. perturbed synthetic data, on yeast me2.

Next, we discuss the results of the forth experiment – running our attacks on perturbed SMOTE data.

SMOTE with Perturbed Linear Interpolation. We test the robustness of our attacks on perturbed
data by adding column-wise noise in the range {10−10, 10−7, 10−5, 10−3}, ensuring that no synthetic
record lies exactly on the line between its generating real records (see Table 8 and 9). Similarly, we
use tolerance levels in the same range for detecting lines/intersections within our attacks. We use the
yeast me2 dataset from our main experiments (Table 2).

Perhaps surprisingly, both DistinSMOTE and ReconSMOTE remain highly effective when the added
noise is small (≤ 10−7), achieving near-perfect performance. This shows that our attacks can
generalize to SMOTE variants that use non-strictly linear interpolation. However, the performance
of both attacks drops sharply when larger noise is injected – though such noise levels would likely
degrade downstream utility as well. Across all noise settings, we observe a consistent trend: for each
noise level, both attacks achieve their best precision (the more important metric, as already discussed)
when the tolerance parameter matches the injected noise level.

Finally, we relax another assumption – running our attacks without prior knowledge of k and r.

SMOTE with Unknown k and r. We describe heuristics for running DistinSMOTE and ReconSMOTE
without knowing SMOTE’s parameters k and r. In practice, precise estimates are unnecessary: the
neighborhood search only needs to be wide enough to include the real records that generated a given
(synthetic) record. Overestimating k or r does not reduce precision/recall, it only increases runtime.
Thus, a simple strategy would be to skip parameter estimation altogether and simply use a large
neighborhood search (e.g., 10-25% of the dataset).

To estimate k or r more accurately, the adversary can reuse the same sub-procedures employed in the
attacks. For a given record, a large neighborhood search (e.g., 10-25% of the dataset) identifies all
neighbors on the same line. For augmented data, the adversary can locate an endpoint (a real record),
run a second search around it, and infer: i) the number of lines pointing to this record (an overestimate
of k), and ii) the number of records per line (a rough approximation of r/k). For synthetic data, the
adversary can instead detect three intersecting lines around the record, identify their intersection (a
real record), and proceed as above. Repeating this procedure and averaging yields stable estimates.
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