
Explicit Regularisation, Sharpness and Calibration

Israel Mason-Williams∗† Fredrik Ekholm∗ Ferenc Huszár
Department of Computer Science and Technology

University of Cambridge
{ifm24,fwe21}@cantab.ac.uk h277@cam.ac.uk

Abstract

We probe the relation between flatness, generalisation and calibration in neural
networks, using explicit regularisation as a control variable. Our findings indicate
that the range of flatness metrics surveyed fail to positively correlate with variation
in generalisation or calibration. In fact, the correlation is often opposite to what
has been hypothesized or claimed in prior work, with calibrated models typically
existing at sharper minima compared to relative baselines, this relation exists across
model classes and dataset complexities.

1 Introduction

The learning process of neural networks around and up to the convergence point has been studied
from the perspective of the loss landscape [1; 2]. Some work posits that flatness in the loss landscape,
i.e the change of loss under perturbations of model parameters, is a predictor of generalisation [3; 4].
Others have pointed out that some metrics of flatness are not reparametrization invariant, meaning
that flat landscapes could be arbitrarily sharpened [5].

Loss landscape flatness is often studied in the context of generalisation, for example investigating the
impact of implicit regularisation, such as from stochastic gradient descent and residual connections [6].
But generalisation is only one way to measure the usefulness of the trained model. We further ask
whether flatness correlates with other desirable properties of the model. For example, Liu et al. [7]
claim that flatness correlates with the “transferability” of the learnt representation in self-supervised
learning. Another desirable property of the trained model is calibration; calibration is a measure of
the alignment between true and predicted class probabilities of the model, often used to highlight
overconfidence in model predictions [8]. To the best of our knowledge, the relationship between
flatness and calibration has not been studied directly, we extend our investigation in this direction. It
would be reasonable to expect more calibrated models to sit at flatter minima. This is because poorly
calibrated models typically fail by being overconfident, and in this case the variance of loss across
samples is higher than for calibrated models, suggesting a more complex loss landscape.

In particular, we seek to answer the following two questions.

1. If using an explicit regulariser improves generalisation, does it also lead to finding a flatter
minima (under any measures of flatness in the literature)?

2. Further, are well-calibrated models typically at flatter minima?

To this end, we train VGG-19 [9], ResNet-20 [10] and ViT [11] networks on the CIFAR [12]
image classification tasks, and use the explicit regularisers dropout [13], weight decay [14], data
augmentation and early stopping as control variables. There is no universal agreed-upon exact
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definition of model sharpness. Thus, we compute five different measures of sharpness from the
literature, namely weight norm, Fisher-Rao norm [15], relative flatness [16], SAM-sharpness [4] and
information geometric sharpness [17]. These are briefly introduced in section 2. Our measure of
calibration will be expected calibration error (ECE) [8]. We provide mathematical formulations of
these measures and more detail of our experimental setup in Appendix B. In the main body of this
paper we will focus on our analysis of the results from training the VGG-19 network. We provide
results for the other tasks and network architectures in Appendix C-E.

2 Sharpness Metrics

We detail five different sharpness measures from the literature: l2-norm, Fisher-Rao norm, SAM-
Sharpness, Relative Flatness and IGS. l2-norm and Fisher-Rao norm might be considered capacity
measures rather than sharpness measures, but have connections to loss landscape curvature [15] and
has been hypothesised to predict generalisation [18]. We will refer to all five as sharpness measures
for simplicity.

In previous work, nonreparametrisation-invariance have been raised as an issue of proposed sharpness
metrics [16; 17]. This refers to scenarios where a reparametrisation of the model, i.e. a modification
to the model weights without affecting the model function, ends up changing the sharpness. Scale-
invariance is a weaker type of reparametrisation-invariance, where the sharpness is only invariant to
scaling weights of the same layers by the same constant. In the measures we use, Relative Flatness
and Fisher Rao norm are scale-invariant, while IGS is fully reparametrisation-invariant.

In the following, θ is the vector of model parameters, L(θ) is the average loss over the dataset and
Li(θ) is the loss for the i-th sample.

l2-Norm The l2-Norm of the weights is a common explicit regulariser, but has also been touted
a predictor of generalisation under the theory that a lower norm network should model a smoother
function.

SAM-Sharpness We define SAM-sharpness as the difference LSAM (θ)−L(θ), where LSAM (θ) =
max||ϵ||2<ρ L(θ + ϵ) as the loss function introduced by Foret at al. [4].

Relative Flatness Petzka et al. [16] introduce Relative Flatness. They consider the decomposition
of general neural networks into a feature extractor and a single layer classification model, and
calculate sharpness only for this final classification layer. Relative Flatness is calculated using the
trace of the hessian for each pair of neurons in the last layer of a model, scaled by the inner product
of the weights of the pair of neurons.

IGS Information Geometric Sharpness (IGS) [17] was introduced to achieve full reparametrisation
invariance. In IGS, the average magnitude of gradients are calculated using the pseudo-norm induced
by the Fisher Information Matrix (FIM). The FIM is defined as

F (θ) = Ep(x,y;θ)[∇θL(fθ(x), y)∇θL(fθ(x), y)
⊤]

Where L(fθ(x), y) is the loss for input x and label y. We consider the model-FIM, where x is
distributed according to the dataset, and y is distributed according to the categorical probabilities
given by the model. Information Geometric Sharpness is then defined as:

IGS(θ) =
1

N

N∑
i=1

(
∂Li(θ)

∂θ

)
F (θ)†

(
∂Li(θ)

∂θ

)⊤

The IGS can be viewed as calculating the gradient norm in function space instead of in Euclidean
parameter space, and thus yielding a reparametrisation invariant metric.

Fisher-Rao Similar to IGS, the FIM can be used to calculate a weight norm where each parameter
of the network weights is scaled by its impact on the probability density function described by the
network: |θ|fr = θF (θ)θ⊤. This gives a scale invariant measure called Fisher-Rao norm [15].
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3 Results

Table 1: Results for VGG-19 on CIFAR-10. Lower numbers indicate lower loss/error, more calibrated,
or flatter.

Regularizer Train
loss

(×10−2)

Test
error(%)

ECE(%) Weight
norm

Fisher-
Rao

norm

Relative
Flatness

SAM-
sharpness
(×10−2)

log IGS

baseline 0.90.5 14.40.1 11.00.2 49.34.1 0.80.3 2.21.0 1.20.7 -1.90.5
+ temp scaling 1.80.8 7.50.6 0.70.2 3.81.7 1.30.6 -0.60.3

augmentation 7.02.4 11.10.7 6.60.6 51.51.6 2.30.6 12.11.5 6.64.3 0.90.3
+ temp scaling 8.61.8 2.70.5 1.80.3 13.20.6 4.62.3 0.80.2

dropout 0.80.2 13.90.2 11.00.2 39.10.3 0.80.1 1.20.2 2.82.8 -2.50.4
+ temp scaling 1.80.3 7.60.2 0.70.1 2.90.4 1.71.6 -0.90.2

weight decay 18.03.1 18.21.3 10.81.3 33.20.9 3.90.5 4.50.2 9.20.4 1.50.1
+ temp scaling 21.42.0 2.91.3 2.90.1 6.20.3 6.52.0 1.30.0

Table 2: Results for VGG-19 on CIFAR-100. Lower numbers indicate lower loss/error, more
calibrated, or flatter.

Regularizer Train
loss

(×10−2)

Test
Error

(%)

ECE (%) Weight norm Fisher-
Rao

norm

Relative
Flatness

SAM-
sharpness
(×10−2)

baseline 0.30.3 49.91.1 38.40.7 768.317.7 0.60.2 4.43.4 0.40.4
+ temp scaling 2.81.0 27.10.4 1.00.2 19.74.8 0.90.8

augmentation 36.05.5 39.50.7 20.00.8 693.611.7 5.40.3 78.48.9 6.52.2
+ temp scaling 45.76.7 6.11.5 4.50.4 71.79.1 8.02.3

dropout 1.10.7 47.40.6 36.20.6 700.29.8 1.10.1 6.90.7 1.20.3
+ temp scaling 3.60.5 24.90.5 1.20.1 17.00.5 1.40.6

weight decay 57.53.6 49.80.3 25.00.2 170.32.8 6.70.3 28.20.7 25.06.8
+ temp scaling 71.02.6 5.90.3 6.50.0 32.30.6 16.71.5

Augmentation and dropout improve generalisation. The control with the largest error reduction
is augmentation, error drops 23% from the baseline on CIFAR-10, and for CIFAR-100 it drops 21%.
We find that dropout results in a modest reduction, with error dropping 4% and 5% on the respective
datasets. Weight decay, overall has a negative effect on generalisation on CIFAR-10 (26% increase in
error). On CIFAR-100, this network is numerically near-identical from baseline.

Explicit regularisation does not lead to flatter minima. For augmentation and weight decay,
sharpness measures are larger than the baseline, indicating a sharper loss landscape. We find no
consistent correlation between sharpness measures and generalisation across controls and experiments.

We visualise the loss landscape using the tools released by Li et al. [6]. From Appendix Figure 4 it is
evident that the augmentation landscape is again more complex with a tighter minima. For weight
decay we see a shallow loss region compared to the baseline and dropout models for the train
and test, Figure 6, landscape. When task complexity is increased, corresponding to tighter decision
boundaries, both weight decay and augmentation relate to more complex landscapes (Figure 5).

Better calibrated models may exist at sharper loss landscape. Our results show that
augmentation improves generalisation and calibration the most with ECE 40% better on CIFAR-10
and 48% better on CIFAR-100 compared to the baseline.

We now add a tuned temperature parameter, T , to the baseline and controls, as is common in practice
in calibration experiments [19]. T is a single parameter scaling the predicted probabilities before
softmax to smooth prediction probabilities. Employing temperature scaling dramatically reduces ECE,
improving calibration. In practice, temperature is 1 < T <1.6 for the trained models. In particular, we
find that the reduction in ECE when using temperature scaling for dropout is similar to the baseline
model (reduction of 29-31% for baseline and dropout models in both datasets). In contrast, the
reduction in ECE for augmentation and weight decay is much larger, between 58-77%. While
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augmentation leads to the best generalisation and creates a calibrated model, weight decay, which
does not improve generalisation, also results in have a calibrated model.

In Appendix C.2 we show reliability plots for VGG-19, with and without temperature scaling. The
figures confirm our findings that using augmentation and weight decay enable much better
calibration, compared to using dropout or no explicit regularizer. They also again portray the
overconfidence the of the networks across controls pre-calibration.

In summary, our baseline models without explicit regularisation cannot be tuned well with
temperature-scaling. But we find using data augmentation or weight decay both improves the
calibration of the model immediately after training and further enables temperature-scaling to be used
to near-perfectly calibrate the model on the validation set. Suggesting that these regularisers are able
to navigate to tighter decision boundaries that are more receptive to temperature scaling.

Calibration is negatively correlated with a sharpness One reasonable hypothesis is that a more
confident model (one that is likely to predict higher probability) would show a flatter loss landscape
than a less confident model. In the extreme case, a highly confident image classification model will
always predict 100% on some class while predicting 0% in all others, with the class getting 100%
depending on the input image. This means that a perturbation the input can cause the model to
quickly change from 0% to 100% in some class, causing a large change of loss on that sample. As
both input and model weights affect intermediate activations, a perturbation of model weights might
reasonably also cause a sharp shift in output probabilities, leading to a large change in loss. Small
weight perturbations causing large changes to the loss means the loss landscape is sharp.

In the other extreme case, a totally under-confident model will always predict a probability of 1
C for

every class, with C being the number of classes. Hence its output does not depend on the input at all,
meaning the output probably depends less on intermediate activations from earlier layers, and small
weight perturbations should affect the loss less.

The above reasoning suggests that under-confident models should show a flatter landscape than
overconfident models. In our experiments, we found that the less calibrated models tend to fail by
being overconfident, and thus, we would expect the more calibrated models to be less confident
in general and thus flatter. In particular, when performing temperature scaling with T > 1, the
predicted probabilities will be closer to uniform and less dependent on the pre-softmax logits, hence
the landscape is expected to be flatter.

Our results show that temperature scaling with T > 1 does in fact often decrease the sharpness for
the SAM-sharpness and Fisher-Rao measures. Surprisingly however, relative flatness consistently
shows a sharper landscape after temperature scaling.

Looking at the effect of the regularisers, we see that adding augmentation or weight decay give
significantly reduced ECE after temperature scaling, 2.7% and 2.9% respectively compared to 7.5%
and 7.6% for the baseline and dropout models. These two regularises are also the ones that show
the sharpest loss landscapes across all sharpness metrics. This results in an overall negative trend
between calibration and sharpness, refuting the hypothesis.

Overall, we report two trends here. The first is a trend that well-calibrated models sit at sharper
minima. The second is that temperature-scaling makes this correlation stronger for initially less
calibrated models. This finding goes against the above presented hypothesis.

4 Discussion

We have seen that neither augmentation nor weight decay lead to a flatter minima, and instead
lead to sharper minima. We posit two possible explanations for these unexpected results.

Correlation with training loss. Both data augmentation and weight decay lead to notably
higher training set loss than the baseline (8× and 20× increase respectively), while for dropout, the
training loss is similar to the baseline. The same two regularisers also consistently give a sharper
landscape. Given this, we suspect there is a connection between ending up at sharper minima and
ending up at minima that have higher training loss. In , we visualise this relationship by plotting train
loss against IGS, SAM-sharpness and Relative Flatness. Both SAM-sharpness and IGS increase with

4



gradient norm. Therefore, one intuitive argument for this relationship is that the smaller the loss is,
the closer to a local minima the model is, and at a minima the gradient goes to zero.

Altered loss function makes sharpness comparison meaningless. Both augmentation and
weight decay alter the loss function that is being optimised, while for dropout the loss function
stays the same. It could be that when the loss function is explicitly altered, it becomes meaningless
to compare sharpness values on the original train dataset. In these cases, it is not certain that the
model converges towards a minimum in the original train loss, which means that a different loss
landscape geometry should be expected. We could also say that the explicit regularisers might
bring the model into a different part of the loss landscape with different sharpness characteristics,
like weight decay pushing the model towards a region of the landscape with lower weight norm.
As the previously established correlation between generalisation and sharpness has not focused on
regularisation, the correlation might only hold when comparing models from the restricted sub-region
of the loss landscape that non-regularised models tend to converge to.

Calibration and sharpness. Our findings show that sharper regions of the landscape, where tighter
decision boundaries exist, can be useful for calibration. A possible explanation is that weight
decay and augmentation reduce simplicity bias, especially for CIFAR-100, causing the increased
sharpness of the loss landscape. We hypothesise that this could emerge due to more complex
and entangled boundaries in calibrated models, which are less resilient to perturbation potentially
explaining the relation between impacts on calibration.

Nascent understandings of landscape geometry In summary, we find the following answers to
our research questions:

1. While the use of explicit regularisers can improve generalisation, it does not result in a flatter
landscape; more often than not, the landscape is sharper.

2. The intuitive hypothesis of calibrated models having a flatter loss landscape is not true in
general. In fact, calibrated models often exist at sharper minima, increasing in sharpness as
dataset complexity increases across the explored architectures.

5 Conclusions

In this work, we have compared the effects of different regularisers on loss landscape sharpness and
calibration. In contradiction to some claims in the literature, our results provide empirical evidence
that better-generalising models (via explicit regularisers) tend to have sharper loss landscapes, or
there is no trend at all. We provided two explanations for why this could be: a potential correlation
between train loss and sharpness, and an argument centered around regularisation changing the loss
function. Our results either suggest that sharpness is not a good predictor of generalisation across
different regularisation methods, or that current sharpness measures are not sufficient descriptors of
sharpness.

Furthermore, we have shown that better calibrated models often have sharper landscapes. Indeed,
temperature scaling can lead to increased and slightly decreased in some architectures showing
that being too sharp is also an issues for calibration. Consequently we posit that to achieve a well-
calibrated and accurate model, it may be necessary to navigate to sharper regions of the landscape
where tighter decision boundaries exist. We also discovered that weight decay seems to enable
temperature-scaling to be an effective mode of calibration, even if it does not improve generalisation
directly.

Overall, this work highlights a need for further investigation, both empirical and theoretical, on
the interplay between loss landscape geometry, calibration, and how different forms of explicit
regularisation lead to better generalisation.
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A Related Work

Previous work [18; 16; 17], have shown the negative sharpness-generalisation correlation empirically
by varying parameters of the model (such as number of layers) and training process (such as learning
rate and batch size). However, to our knowledge this correlation has not been extensively studied
with explicit regularisation as a control variable, even though it is a common way of improving
generalisation.

The disparity in the literature regarding the notion of flatness [2] and sharpness [5] in loss landscapes
and their relative merits leads to uncertainty when reasoning their impacts. Huang et al. [20] explored
a line of enquiry regarding the decision boundaries of flat and sharp minima. They observe that flatter
minima have wider decision boundaries, and, therefore, are more resilient to weight perturbation. As
a result, they posit that the complexity of the decision boundary of the data, the distribution itself,
rather than flatness is more important when considering generalisation. Kaddour et al. [3] extend
this line of enquiry and show that when considering the flatness of a loss landscape, datasets matter,
architectures matter, and flat-minima optimizers offer asymmetric payoffs.

Many studies posit a correlation between generalisation and measures of sharpness of the loss
landscape [e.g. 18; 21]. Mini-batch SGD’s generalisation qualities have been aligned with the notion
that its implicit regularisation favours convergence towards flatter minima [22; 23]. Motivated by
this, various measures of sharpness have been proposed. They have also been explored to explicitly
include sharpness measures in the optimization process, guiding convergence towards minima that
generalise better [4; 24; 16; 17].

For some sharpness measures, it is possible to alter the weights of an already trained network
such that it models the exact same function while the sharpness measure changes. In such cases,
the measure is not reparametrisation invariant. Reparametrisation invariance can be said to be a
desirable feature of a sharpness measure, as the generalising ability of a network does not change
with reparameterization. In fact, some argue that a measure that is not reparametrisation invariant
can not be a suitable sharpness measure, as networks can be constructed wherein the correspondence
with generalisation is contradicted. Alternative views are that such reparametrisation is a pathological
case of networks that don’t arise in practice, and thus non-invariant measures may also be useful. In
fact, in some cases non-invariant measures have shown comparable correlation to generalisation as
invariant measures [16].

A weaker form of reparametrisation invariance is scale invariance: a measure which is not dependent
on linear re-scalings of the network weights. This offers a middle ground between reparametrisation
invariance and strict reparametrisation invariance.

Another line of work has shown that neural networks tend to be overconfident [8]. In other words,
they are often poorly calibrated and predictions are correct less frequently than high confidences
would suggest. Studies into calibration suggest that some explicit regularisers such as augmenta-
tion [25] and weight decay can improve calibration, however, increasing model capacity through
implicit regularisers such as increased depth and width can harm calibration [8]. Although, other
experiments have determined that architectural features between model classes can greatly improve
calibration [19].

B Experimental Details

B.1 Expected Calibration Error

Naeini et al. [26] propose a metric for how calibrated a classifier is: expected calibration error (ECE).
This metric consists of taking a weighted average of the difference between accuracy (Equation 1)
and confidence (Equation 2) across equally spaced bins B, as per Equation 3.

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (1)

conf(Bm) =
1

|Bm|
∑
i∈Bm

q̂i (2)
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ECE =

M∑
m=1

|Bm|
n

∣∣acc(Bm)− conf(Bm)
∣∣ (3)

One approach shown to reduce ECE of a neural network, in turn improving calibration, is to
temperature-scale the output class logits before softmax [8]. Temperature-scaling involves multipying
the logits by the inverse of a learnt scalar T . Equation 4 shows this form of calibration, where zi
is the logit vector before scaling and qi is it after. A model without temperature scaling has fixed
T = 1.

qi =
exp (zi/T )∑
j exp (zi/T )

(4)

B.2 Experimental Setup

Datasets We use the CIFAR-10 and CIFAR-100 image classification datasets [12]. In both, there
are 50,000 training and 10,000 evaluation (image, class) pairs. For evaluation we use the first 5,000
for validation and the rest for test. We do not normalize the images using the (µ, σ) of Imagenet,
as is standard practice to obtain SoTA accuracies on CIFAR. We hypothesize that the difference
between results with different explicit regularisation will be more pronounced without the impact of
normalisation.

Systems and training We train the VGG-19 architecture [9] which contains approximately 144
million parameters for image classification. While our setup is modular in the architecture used, we
limit our experiments to this architecture due to computational budget.

We optimize cross-entropy loss on the train set, specifically using SGD with momentum=0.9, learning
rate=0.05 and batch size=256. We train for 50 and 75 epochs for CIFAR-10 and CIFAR-100
respectively, with early stopping on the validation set. Our baseline model is free from all explicit
regularisation. We train models with augmentation, dropout and weight decay separately added. We
set dropout to 0.5 for our dropout models, weight decay to 5e-4 for our weight decay models
and augment the input images with random horizontal flips + random crops for our augmentation
models. Our goal is not to replicate SoTA accuracies, but to report the isolated and controlled effect
of each of these explicit regularizers. Each of these regularisers are used in practice (despite use of
weight decay waning).

For each of these models, we further follow Guo et al. [8] by tuning a temperature parameter to scale
the logits. This is our intervention to explicitly calibrate the models. We use LBFGS optimization
with respect to the negative log likelihood loss (on the temperature–softmax scaled logits), with
learning rate=0.01, for 50 iterations. We call the temperature-scaled models for each regularizer
+temp. It should be noted that for the VGG-19 and ViT architectures it was too computationally
expensive to calculate IGS on CIFAR-100 and, therefore, it is not recorded for this dataset on these
architectures.

Metrics, measures and visualisations Our metric for generalisation is accuracy on the test set.
For calibration, we use ECE. For sharpness we report the metrics described in Section 2: l2-norm,
Fisher-Rao norm, Relative Flatness, SAM-sharpness and IGS. All sharpness measures are evaluated
on the train set. The Fisher-Rao norm is calculated using the direct formula for classification models
(see Section 2).

Relative Flatness is calculated by explicitly by computing the hessian for each pair of neurons in the
last layer. Due to the computational intensity of this operation, we compute the Relative Flatness
over a random subset of 7,500 training datapoints.

SAM-sharpness is approximated by randomly sampling 20 weight vectors of a distance ρ = 0.05
from the original model, and calculating the loss over the whole dataset.

Finally, for IGS we adapt the reference implementation of the power iteration approximation algorithm
(see Section 2). The code was modified to allow for the IGS to be calculated on any arbitrary model
and dataset in multiple batches. Due to our relatively large model size and dataset, we do the following
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to reduce the computational load. First we only estimate the 20 largest eigenvectors of the FIM, as
opposed to 100 in the original implementation. We calculate the IGS as the average over batches
of size 64. This means we are effectively calculating an m-sharpness [17] measure with m = 64.
We limit the calculation to 20 batches. And finally we only compute IGS on CIFAR-10, excluding
CIFAR-100 for this measure.

To visualise loss landscapes we adapted the implementation of Li et al. [6], which uses scale invariant
filter-wise normalized directions to plot the loss region.

For all models we report the mean of three runs with different random model seed, plus or minus one
standard deviation.

C Further VGG-19 Results

This section reports the results of the CIFAR datasets without early stopping, correlation plots for
train loss and sharpness metrics, reliability plots, loss landscape visualisations and generalisation
correlation plots.

Table 3: Results for VGG-19 on CIFAR-10 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Train
loss

(×10−2)

Test
error

(%)

ECE(%) Weight
norm

Fisher-
Rao

norm

Relative
Flatness

SAM-
sharpness
(×10−2)

Baseline 0.50.4 14.00.4 10.80.4 49.13.9 0.40.3 2.21.0 1.71.3
+ temp scaling 1.20.7 - 7.40.6 49.13.9 0.50.2 3.81.7 1.30.6

Augmentation 6.41.4 10.60.3 6.00.3 49.61.6 2.20.3 12.21.8 3.20.6
+ temp scaling 8.31.36 - 2.20.3 49.61.6 1.80.1 13.30.6 4.01.0
Dropout 0.60.2 13.40.2 10.50.1 38.31.0 0.60.0 1.20.2 0.90.5
+ temp scaling 1.50.3 - 7.10.3 38.31.0 0.60.1 2.80.4 0.70.3

Weight decay 11.21.4 16.20.0 8.90.4 34.40.8 2.70.1 4.50.2 13.53.0
+ temp scaling 15.81.2 - 2.40.6 34.40.8 2.40.1 6.10.3 9.61.4

Table 4: Results for VGG-19 on CIFAR-100 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Train
loss

(×10−2)

Test
error

(%)

ECE(%) Weight
norm

Fisher-
Rao

norm

Relative
Flatness

SAM-
sharpness
(×10−2)

Baseline 0.60.8 49.50.8 37.60.1 752.329.9 0.80.5 4.43.4 0.81.0
+ temp scaling 3.72.1 - 26.00.6 752.329.9 1.10.4 19.74.8 1.00.7

Augmentation 38.57.7 38.70.3 18.02.1 661.545.7 5.20.3 78.39.1 6.34.0
+ temp scaling 49.68.8 - 4.62.1 661.545.7 4.60.4 71.78.7 7.64.2

Dropout 1.41.2 47.10.3 35.50.3 681.317.7 1.10.3 6.90.7 1.10.4
+ temp scaling 4.21.4 - 24.00.6 681.317.7 1.30.2 17.00.4 1.30.8

Weight decay 55.13.5 49.50.2 23.61.3 181.78.8 6.30.2 28.20.7 24.59.2
+ temp scaling 70.32.8 - 5.10.9 181.78.8 6.30.1 32.30.7 20.77.5
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C.1 Correlation between Train Loss Sharpness
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Figure 1: Scatter plot of train loss vs IGS (left), SAM-sharpness (middle) and Relative Flatness
(right), for models on CIFAR-10 for early stopping (□).

C.2 Reliability Plots
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Figure 2: Reliability plots for CIFAR-10. Model with median test accuracy among seeds used.

The reliability plots for CIFAR-100, Figure 3, are in line with our results from the plots from CIFAR-
10 as seen in Figure 2, discussed in the main body of the report. The consistency suggests that
regardless of task complexity different regularisers elicit the same sensitivity to temperature scaling.
When considering the hypothesis we posit for augmentation and weight decay navigating to tighter
loss landscape regions these results align as they would be more receptive to landscape modifications
caused by scaling.

C.3 Train and Test Loss Landscapes

Here we see that the test loss landscape mimics that of the train loss landscape provided in Figures 4
and 5. We find that for both train and test the use of augmentation leads to a more complex loss
landscape compared to the baseline and dropout. Considering the gains in ECE witnessed for
these models, this could again be due to these explicit regularisers reducing the simplicity bias of the
neural network [27], therefore causing sharper points in the landscape to be reached. There is also an
increase in the complexity of the loss landscape in line with task complexity as we note in the main
body of this report.
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Figure 3: Reliability plots for CIFAR-100. Model with median test accuracy among seeds used.
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Figure 4: Train contour loss landscapes for CIFAR-10 using 20% of training dataset for early stopped
models.
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Figure 5: Train loss landscapes for CIFAR-100 using 20% of training dataset for the early stopped
models.
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Figure 6: Test loss landscapes for CIFAR-100, loss landscapes generated 100% of the test dataset for
the early stopped models.
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Figure 7: Test loss landscapes for CIFAR-100, loss landscapes generated 100% of the test dataset for
the early stopped models.

C.4 Generalisation Correlation
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Figure 8: Generalisation correlation on CIFAR-10 for sharpness metrics and ECE. Results here
include both early stopping (□) and non-early stopping (◦). Error bars indicate one standard deviation.

The generalisation correlation plots for the CIFAR datasets on the VGG-19 show no congruent
relationship between generalisation and flatness across the sharpness metrics explored. Addition-
ally, it appears that there is no particular requirement for flatness when considering models with
comparatively low test error.
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Figure 9: Generalisation Correlation with CIFAR-100. Results here include both early stopping (□)
and non-early stopping (◦).

D ResNet-20 Results

The ResNet architecture is trained using the same setup as before, with no modifications. Please refer
to Section B.2 for complete details.

The results collected on the ResNet architecture mostly mirror the results presented in the main body
of the paper. The only disparities are that the effect of Dropout on the calibration error is different as
it is reduced and, in line with the presented findings, the sharpness of the resulting model is increased.
Also, there is an instance with weight decay on CIFAR-10 where the calibration error is high, but the
landscape is also sharp; this provides more context as it shows that there are instances where sharpness
and low calibration can emerge together but that this occurs only on CIFAR-10 and irregularly for
the ResNet. This may suggest that the landscape can be too sharp, but with temperature scaling, the
sharpness is reduced slightly, and a better calibration is recorded. Once again, the controls’ impacts
on the calibration of the model and the sharpness are accentuated when looking at the increased task
complexity of CIFAR-100.
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D.1 CIFAR-10

Table 5: Results for ResNet on CIFAR-10 with early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error
(%)

ECE (%) Weight
norm

Fisher
rao norm

Relative
flatness

SAM
sharp-

ness
(×10−2)

log IGS

Baseline 17.370.45 13.530.40 155.245.79 0.010.00 1.240.55 0.000.00 -6.73−7.27

+ temp scaling - 10.040.35 155.245.79 0.170.01 24.314.69 0.010.00 -3.58−5.39

Augmentation 12.320.32 7.390.10 167.981.99 2.640.22 304.3028.59 0.862.56 1.34−1.52

+ temp scaling - 3.430.05 167.981.99 1.900.11 231.9713.94 4.910.80 0.64−1.67

Dropout 39.361.84 9.390.57 83.620.95 7.580.32 267.734.62 1.770.59 1.52−1.83

+ temp scaling - 1.720.13 83.620.95 5.200.14 195.333.83 1.620.30 1.24−2.75

Weight decay 25.590.47 15.390.43 65.810.71 5.940.40 333.674.43 5.200.86 1.70−0.98

+ temp scaling - 7.420.50 65.810.71 3.540.20 234.902.63 3.461.63 1.02−1.85

Table 6: Results for ResNet on CIFAR-10 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error
(%)

ECE (%) Weight
norm

Fisher
rao norm

Relative
flatness

SAM
sharp-

ness
(×10−2)

log IGS

Baseline 17.260.49 13.320.49 152.737.16 0.010.00 1.640.98 0.000.00 -6.72−7.27

+ temp scaling - 9.710.53 152.737.16 0.210.03 22.283.51 0.010.00 -3.60−5.51

Augmentation 11.580.29 6.300.70 151.2415.29 2.420.17 312.1628.66 5.841.91 1.35−0.69

+ temp scaling - 2.440.55 151.2415.29 1.880.12 231.0313.30 2.610.92 0.66−1.73

Dropout 34.561.48 2.160.77 74.894.00 5.810.39 270.881.66 2.750.88 1.52−1.79

+ temp scaling - 4.950.17 74.894.00 4.660.19 214.113.22 2.540.84 1.31−2.08

Weight decay 19.530.76 10.460.55 66.600.20 2.810.25 346.845.67 4.161.62 1.70−1.14

+ temp scaling - 3.830.57 66.600.20 2.270.12 232.203.27 4.400.85 1.06−1.64

D.2 CIFAR-100

Table 7: Results for ResNet on CIFAR-100 for with early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error (%) ECE (%) Weight
norm

Fisher rao
norm

Relative
flatness

SAM
sharpness
(×10−2)

Baseline 49.900.21 35.920.16 1570.3446.33 0.250.02 122.6910.86 0.000.00
+ temp scaling - 24.000.13 1570.3446.33 0.980.04 1066.7794.27 0.070.02

Augmentation 40.570.12 17.230.24 1497.576.34 6.310.16 5330.8244.94 7.220.88
+ temp scaling - 3.900.24 1497.576.34 5.320.05 3568.2640.12 4.511.64

Dropout 73.842.41 6.511.73 656.016.27 10.620.83 1326.5934.86 2.892.47
+ temp scaling - 4.250.72 656.016.27 7.580.14 818.1766.65 1.660.57

Weight decay 56.831.19 24.790.41 463.532.87 8.180.70 3307.6397.74 2.720.91
+ temp scaling - 6.960.16 463.532.87 6.130.26 2223.9580.46 2.830.43
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Table 8: Results for ResNet on CIFAR-100 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error (%) ECE (%) Weight
norm

Fisher rao
norm

Relative
flatness

SAM
sharpness
(×10−2)

Baseline 49.690.16 35.270.30 1544.9161.75 0.330.06 871.98273.70 0.000.00
+ temp scaling - 23.030.60 1544.9161.75 1.210.20 761.9424.76 0.050.01

Augmentation 39.170.10 15.510.42 1468.3023.17 5.840.12 5593.0999.42 13.252.26
+ temp scaling - 2.510.48 1468.3023.17 5.300.07 3501.3437.05 5.361.81

Dropout 72.080.75 4.750.33 611.7436.89 9.800.41 1328.6545.74 2.001.05
+ temp scaling - 4.680.23 611.7436.89 7.490.13 872.0724.14 1.691.02

Weight decay 51.660.56 17.380.35 436.123.26 6.110.33 3659.9486.14 3.731.49
+ temp scaling - 1.590.30 436.123.26 5.870.06 2186.8292.02 1.950.20

E ViT Results

Pre-trained Vision Transformers, typically using Adam [28] or AdamW [29] optimisers, can perform
sufficiently on the CIFAR datasets [11]. However, transformers struggle to perform well when trained
on small datasets; it has been suggested that they struggle to incorporate locality in lower layers,
typically improved via pre-training [30]. As a result, complex training setups employ weight decay,
dropout and augmentation to improve accuracy on smaller datasets without pre-training. Provided
that we use each of these explicit regularises as controls, our results do not represent competitive
accuracy on the CIFAR datasets; we believe this is due to using SDG with a fixed learning rate and
omitting cumulative explicit regularisers. Albeit, to ensure the continuity of the experimental setup
and corresponding analysis, we only modified the training setup presented in Section B.2 to reduce
the learning rate to 0.01 and provided 85 epochs of training. Our results further our understanding
of expected calibration error and sharpness of loss landscapes by showing similar trends to the
other explored model classes. It is of note that while the relationship holds that the use of explicit
regularisers increases the sharpness of the landscape on the ViT architecture comparative to the
baseline model, for weight norm and SAM sharpness these affects are less pronounced than on the
previously presented architectures.

E.1 CIFAR-10

Table 9: Results for ViT on CIFAR-10 with early stopping. Lower numbers indicate lower loss/error,
more calibrated, or flatter.

Regularizer Error
(%)

ECE Weight
norm

Fisher
rao norm

Relative
flatness

SAM
sharp-

ness
(×10−2)

log IGS

Baseline 43.580.47 36.260.52 34.341.01 0.010.00 1.440.02 0.000.00 -7.69−11.54

+ temp scaling - 29.730.51 34.341.01 0.170.00 30.061.54 0.000.00 -3.59−6.88

Augmentation 37.330.44 11.751.01 13.360.46 4.630.13 563.7928.09 9.894.71 1.07−1.44

+ temp scaling - 1.370.33 13.360.46 3.730.05 393.0320.62 4.686.23 1.00−2.55

Dropout 49.320.68 13.460.33 10.311.65 8.370.28 147.682.62 0.070.03 1.40−1.09

+ temp scaling - 2.220.57 10.311.65 5.180.10 101.690.77 0.030.01 1.24−1.69

Weight decay 45.470.79 32.390.87 42.681.12 2.020.45 392.4660.76 0.060.03 0.72−0.44

+ temp scaling - 21.640.89 42.681.12 1.900.13 346.9825.15 0.040.02 0.64−1.04

17



Table 10: Results for ViT on CIFAR-10 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error
(%)

ECE Weight
norm

Fisher
rao norm

Relative
flatness

SAM
sharp-

ness
(×10−2)

log IGS

Baseline 43.600.42 36.080.75 34.201.18 0.030.04 1.480.01 0.000.00 -7.70−11.45

+ temp scaling - 29.341.02 34.201.18 0.230.09 29.441.68 0.000.00 -3.62−6.65

Augmentation 36.860.40 11.311.24 12.840.75 4.870.12 568.9827.12 11.706.55 1.12−1.23

+ temp scaling - 1.350.39 12.840.75 3.830.10 389.9919.45 6.954.15 0.99−2.15

Dropout 49.040.46 12.950.54 10.111.80 8.500.25 149.391.36 0.080.03 1.44−0.95

+ temp scaling - 1.810.44 10.111.80 5.250.11 100.102.22 0.030.01 1.26−1.44

Weight decay 44.150.59 32.001.15 38.543.93 1.660.75 397.5861.67 0.030.02 0.790.19
+ temp scaling - 21.771.59 38.543.93 1.680.39 342.3224.70 0.070.06 0.62−1.14

E.2 CIFAR-100 Results

Table 11: Results for ViT on CIFAR-100 for with early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error (%) ECE (%) Weight
norm

Fisher rao
norm

Relative
flatness

SAM
sharpness
(×10−2)

Baseline 69.52±0.22 44.42±0.38 309.62±3.01 0.14±0.01 43.92±2.68 0.00±0.00

+ temp scaling 69.520.22 25.360.45 309.623.01 1.000.03 763.6835.39 0.000.00
Augmentation 64.62±0.42 36.41±0.51 603.70±4.31 2.38±0.11 8762.55±497.09 4.61±3.35

+ temp scaling 64.620.42 16.980.58 603.704.31 4.400.07 8818.26335.74 2.072.94
Dropout 73.48±0.12 7.21±0.51 213.88±0.44 9.09±0.21 3347.07±50.70 0.05±0.02

+ temp scaling 73.480.12 4.050.20 213.880.44 7.110.02 2023.8211.40 0.070.02
Weight decay 70.90±1.41 36.53±0.65 250.33±12.59 1.21±1.06 1353.63±1474.400.03±0.03

+ temp scaling 70.901.41 14.920.71 250.3312.59 4.281.31 2060.67900.54 0.040.03

Table 12: Results for ViT on CIFAR-100 without early stopping. Lower numbers indicate lower
loss/error, more calibrated, or flatter.

Regularizer Error (%) ECE (%) Weight
norm

Fisher rao
norm

Relative
flatness

SAM
sharpness
(×10−2)

Baseline 69.46±0.22 41.98±0.20 302.15±3.72 0.32±0.03 44.14±2.69 0.00±0.00

+ temp scaling 69.460.22 22.170.22 302.153.72 1.610.04 732.3937.02 0.010.00
Augmentation 64.68±0.47 35.98±0.34 596.31±12.92 2.48±0.10 8785.91±548.93 3.28±0.17

+ temp scaling 64.680.47 16.380.42 596.3112.92 4.570.17 8800.96341.38 4.542.40
Dropout 73.00±0.31 7.40±0.37 210.46±0.53 9.16±0.06 3340.97±50.33 0.03±0.01

+ temp scaling 73.000.31 4.210.18 210.460.53 7.120.03 2008.8932.04 0.040.01
Weight decay 69.29±0.44 37.19±0.88 256.23±8.13 0.43±0.06 1354.42±1475.190.00±0.00

+ temp scaling 69.290.44 16.100.94 256.238.13 2.890.21 2063.03888.47 0.020.00
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