

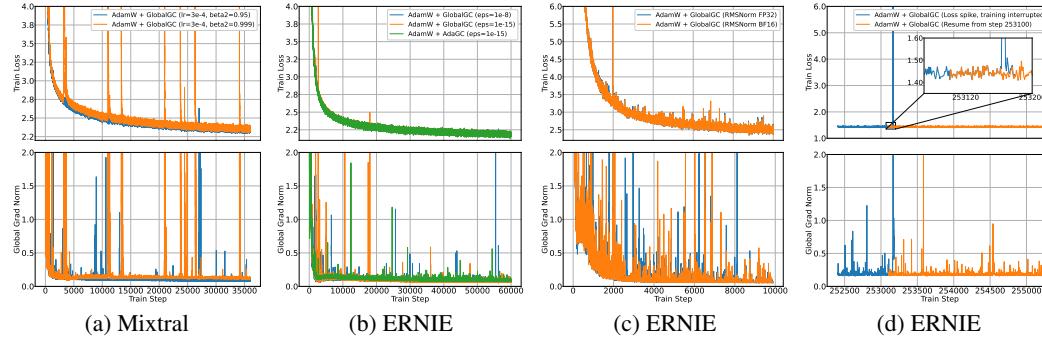
000 001 002 003 004 005 006 007 008 009 ADA GC: IMPROVING TRAINING STABILITY FOR 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LARGE LANGUAGE MODEL PRETRAINING

005
006
007
008
009
Anonymous authors
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Paper under double-blind review

ABSTRACT

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Loss spikes remain a persistent obstacle in large-scale language model pretraining. Empirically, such spikes can be triggered by a mixture of factors, including data outliers, hardware or transient computational faults, numerical precision issues, and hyperparameter settings. Regardless of the underlying cause, these spikes manifest as unstable optimizer updates, as abnormal gradients contaminate both first- and second-moment states. In this paper, we do not attempt to identify the precise root causes. Instead, we adopt a gradient-centric remedy and propose AdaGC, an adaptive, per-tensor gradient clipping scheme that prevents such contamination by bounding gradient norms relative to a tensor-wise EMA of their historical (clipped) values. AdaGC is optimizer-agnostic, requires negligible memory, and reduces communication costs compared to GlobalGC, particularly under hybrid parallel distributed training. We prove that Adam with AdaGC preserves the standard non-convex convergence rate. On Llama-2 7B, Mixtral 8x1B, and ERNIE 10B-A1.4B models, AdaGC robustly eliminates training instabilities, reducing the spike score to zero for all models, and improves downstream accuracy compared to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. Furthermore, AdaGC composes well with Muon and Lion optimizers, consistently yielding higher average accuracy and zero spike scores.

1 INTRODUCTION



000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: **Reproduced cases of loss spikes and mitigation via resuming.** Loss spikes are triggered by (a) increasing β_2 or (b) reducing ϵ in AdamW, (c) using lower-precision RMSNorm, **even under global gradient clipping**, and (d) are resolved by resuming due to stochasticity in FlashAttention backward passes.

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
The rapid scaling of large language models (LLM) has introduced new challenges in pretraining stability, often manifesting as abrupt loss spikes or transient divergences across a wide range of model architectures and data scales (Chowdhery et al., 2023; Touvron et al., 2023; Liu et al., 2024; Team et al., 2025; Baidu-ERNIE-Team, 2025). Despite extensive empirical studies, the fundamental causes of these instabilities remain elusive. Recent research, alongside our own analyses, indicates that loss spikes can arise from a variety of sources, including: (i) data quality issues (Chowdhery et al., 2023); (ii) hardware or transient computational faults (Su, 2025); (iii) variations in numerical precision (for example, FP32 typically offers greater robustness than BF16, whereas FP8 can sometimes enhance stability by suppressing outlier values via implicit quantization (Han, 2024; Liu et al., 2024)); and (iv) the selection of optimizer and layer normalization hyperparameters, such as

054 the ϵ parameter in RMSNorm or AdamW, and β_2 in AdamW (Ma et al., 2021; Cattaneo & Shigida, 055 2025; Bai et al., 2025). For instance, we observe that increasing β_2 or decreasing ϵ in AdamW can 056 trigger loss spikes, whereas increasing the precision of RMSNorm from BF16 to FP32 significantly 057 improves stability. Figure 1 presents several representative cases we have reproduced.

058 Although the upstream causes of instability are diverse and often subtle, these events consistently 059 converge at the optimizer level, manifesting as abnormal gradients. Such outlier gradients are in- 060 incorporated into the optimizer’s first- and second-moment estimates, thereby corrupting parameter 061 updates and propagating instability through subsequent training. Notably, we find that even resum- 062 ing interrupted training (while keeping the random seed and data unchanged) can mitigate a loss 063 spike, merely due to the stochastic nature of dQ , dK , and dV in FlashAttention (Dao, 2023) (see 064 Figure 1d). This observation further suggests that, in certain model states, even minute numerical 065 differences can trigger a loss spike, with gradient outliers playing a critical role in both the initiation 066 and propagation of instabilities during optimizer state updates.

067 While the slight stochasticity introduced by FlashAttention can sometimes circumvent a loss spike, 068 repeatedly interrupting and resuming training imposes substantial computational overhead. Given 069 that these instabilities stem from diverse upstream causes but ultimately converge at the optimizer 070 level, our work *does not attempt to identify the precise root causes*. Instead, we adopt a **gradient- 071 centric** perspective: irrespective of the initial trigger, loss spikes consistently arise when outlier 072 gradients contaminate the optimizer states. Therefore, by preventing such gradients from entering 073 the first- and second-moment accumulators, we provide a unified and effective strategy to mitigate 074 training instability.

075 A standard mitigation strategy is global gradient clipping (GlobalGC), which bounds the global ℓ_2 076 norm of the aggregated gradient. However, this approach is fundamentally mismatched to modern 077 large-scale pretraining in two key respects: (1) *Temporal mismatch*: The optimal global clipping 078 threshold typically decreases over the course of training; a fixed threshold risks under-clipping in 079 later phases. (2) *Spatial mismatch*: Gradient statistics and rare spikes vary asynchronously across 080 different parameter tensors, making a single global threshold insufficient—protecting one tensor 081 may under-serve or over-constrain others.

082 To address these challenges, we introduce *Adaptive Gradient Clipping based on Local Gradient 083 Norm* (AdaGC): a simple, per-tensor clipping rule that leverages an EMA of each tensor’s historical 084 gradient norm as a reference. Each tensor’s gradient is clipped relative to its own EMA, preventing 085 transient outliers from contaminating the first- and second-moment accumulators and, ultimately, 086 the parameter updates. A brief warm-up period applies global clipping and initializes the EMA to 087 avoid early overestimation. AdaGC is optimizer-agnostic and can be seamlessly integrated with 088 AdamW, Lion, and Muon. Our main contributions are as follows:

- 089 • **A unified, gradient-centric perspective:** We clarify how loss spikes universally propagate 090 via abnormal gradients polluting optimizer states, irrespective of their origin, motivating 091 intervention at the gradient level prior to moving-average accumulation.
- 092 • **An adaptive, per-tensor clipping rule:** By tracking each tensor’s gradient norm statistics 093 with an EMA, AdaGC provides both temporal adaptivity and spatial specificity, suppress- 094 ing outliers while minimally disturbing typical learning dynamics.
- 095 • **System efficiency and theoretical guarantees:** We analyze computational and commu- 096 nication overhead, showing that AdaGC reduces communication relative to GlobalGC under 097 hybrid parallel distributed training, and we prove that Adam+AdaGC maintains an 098 $O(1/\sqrt{T})$ convergence rate under standard non-convex conditions.
- 099 • **Empirical validation at scale:** On Llama-2 7B, Mixtral 8×1 B, and ERNIE 10B-A1.4B 100 models, AdaGC robustly eliminates training instabilities and improves accuracy compared 101 to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. The method is similarly 102 effective with AdamW, Lion, and Muon optimizers.

103 2 RELATED WORK

104 **Stability in large-scale pretraining:** Dozens of approaches address instability during large-model 105 pretraining, including: architectural advances (Pre-LN Xiong et al. (2020), RMSNorm (Zhang & 106 Sennrich, 2019)), careful initialization (Nguyen & Salazar, 2019; Takase et al., 2023; Nishida et al., 107

108
 109 Table 1: Comparison of major gradient/update clipping methods for training stability in pretraining.
 110 Here, θ_t denotes the model parameters, g_t the gradients, Δ_t the optimizer update, v_t the second
 111 momentum, η_t the learning rate, λ_{abs} the absolute threshold, and λ_{rel} the relative threshold.

Method	Algorithm	Gradient	Update	Granularity	Threshold Type
GlobalGC (Pascanu et al., 2013)	$\min\{1.0, \lambda_{abs} \frac{1}{\ g_t\ }\}$	✓	✗	Global	Fixed constant
ClipByValue	$clamp(-\lambda_{abs}, \lambda_{abs})$	✓	✗	Element	Fixed constant
AGC (Brock et al., 2021)	$\min\{1.0, \lambda_{rel} \frac{\ \theta_t\ }{\ g_t\ }\}$	✗	✓	Unit	Weight ℓ_2 norm
Clippy (Tang et al., 2023)	$\min\{1.0, \min\{\frac{\lambda_{rel} \ \theta_t\ _\infty + \lambda_{abs}}{\eta_t * \ \Delta_t\ _\infty}\}\}$	✗	✓	Tensor	Weight ℓ_∞ norm
SPAM (Huang et al., 2025)	$\text{sign}(g_t) \cdot \sqrt{\lambda_{rel} v_t}$	✓	✗	Element	Local (vector) variance
LAMB (You et al., 2019)	$\frac{\phi(\ \theta_t\)}{\ \Delta_t\ }$	✗	✓	Tensor	Weight ℓ_2 norm
AdaGC (ours)	$\min\{1.0, \lambda_{rel} \frac{\gamma_{t-1,i}}{\ g_{t,i}\ }\}$ $\gamma_{t,i} = \beta \gamma_{t-1,i} + (1 - \beta) \ g_{t,i}\ $	✓	✗	Tensor	EMA of gradient norm

2024), auxiliary loss terms (Max-z loss (Yang et al., 2023)). Recent work OLMo et al. (2024) also explores combining multiple stabilization strategies. These measures improve average stability but do not directly prevent abnormal gradients from corrupting optimizer states.

Gradient/Update Clipping: Gradient and update clipping achieve stability by limiting the magnitude of gradients and parameter updates, preventing excessively large weight updates. Global gradient clipping (Pascanu et al., 2013) is prevalent, with innovative approaches like AGC (Brock et al., 2021) and Clippy (Tang et al., 2023), which use model weights to adjust the clipping threshold. The SPAM (Huang et al., 2025) method stabilizes the model training process by introducing a momentum reset mechanism and an element-wise gradient clipping strategy based on second-moment estimation. Alternatives like Adafactor (Shazeer & Stern, 2018), StableAdamW (Wortsman et al., 2023), and LAMB (You et al., 2019) offer update clipping techniques better suited for stability training of large-scale models. Nonetheless, a significant number of loss spikes still occur during the training of large language models, even with the application of these methodologies. Due to our gradient-centric perspective, we focus our discussion on *clipping-based* methods. These methods fall into two categories: *value-based* approaches, which truncate individual gradient components exceeding a predefined limit, and *norm-based* approaches, which rescale the entire gradient vector only when its overall magnitude exceeds a threshold. AdaGC belongs to the norm-based category, leveraging adaptive per-tensor norm thresholds to stabilize training. For a comparative summary, see Table 1.

3 MOTIVATION: FROM ROOT-CAUSE DIVERSITY TO A UNIFIED GRADIENT-CENTRIC REMEDY

Through a series of experiments (see Figure 1 and Figure 2), we observe that loss spikes encountered under diverse settings consistently coincide with abrupt fluctuations in the gradient norm. Comparative analyses further reveal limitations of existing methods such as GlobalGC, AGC, and Clippy: GlobalGC’s static global threshold cannot detect or suppress localized abnormal gradients, allowing outliers to contaminate optimizer states and trigger instability. AGC and Clippy focus on controlling parameter updates, leaving internal moments vulnerable to large gradient outliers.

As discussed in the Introduction (Section 1), loss spikes typically result from a combination of multiple factors. While the specific triggers may vary, these loss spikes share a common manifestation: abnormally large gradients are incorporated into the optimizer’s moment estimates, leading to unstable updates. Based on these analyses, we propose a unified remedy: *regardless of the root cause, instability in large-scale training is best addressed via gradient-centric clipping*. Specifically, only localized and adaptive clipping, applied *before* gradients are integrated into the optimizer’s moment estimates, can effectively constrain the influence of outlier gradients. We thus distill two key principles for loss spike mitigation: (1) *Locality*: clip gradients for each parameter tensor individually, avoiding the insensitivity of a global threshold; (2) *Adaptivity*: dynamically adjust each tensor’s clipping threshold, e.g., using an EMA of its recent gradient norms.

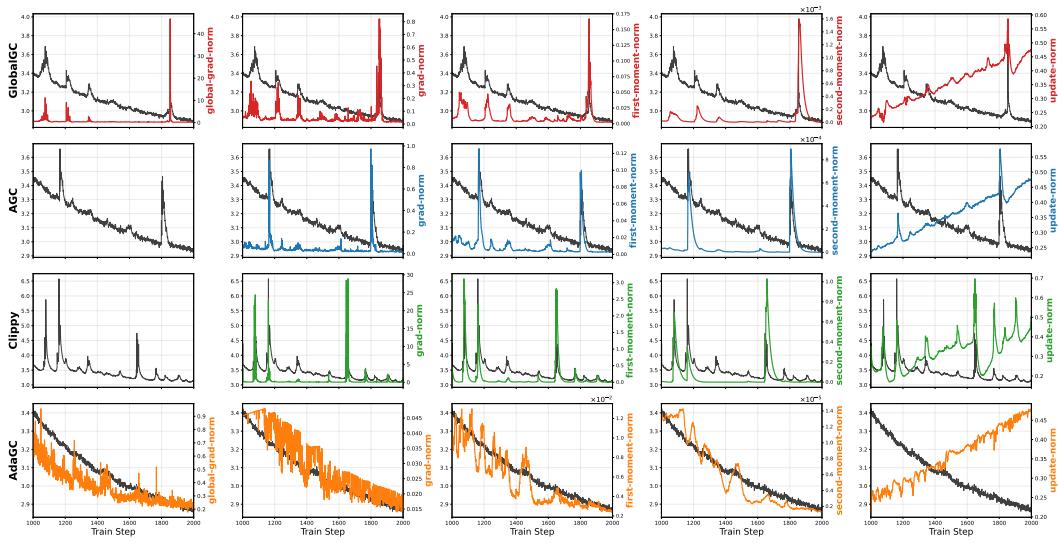


Figure 2: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the embedding of Llama-2 1.3B during warmup phase. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

4 METHODOLOGY: ADAGC

4.1 PRELIMINARIES

Notations. Let $x_t \in \mathbb{R}^d$ denote a parameter vector where x_t^j represents its j -th coordinate for $j \in [d]$. We write $\nabla_x f(x)$ for the gradient of any differentiable function $f : \mathbb{R}^d \rightarrow \mathbb{R}$, and use u^2 and u/v to denote element-wise square and division operations for vectors $u, v \in \mathbb{R}^d$. The ℓ_2 -norm and ℓ_∞ -norm are denoted by $\|\cdot\|$ and $\|\cdot\|_\infty$, respectively. For asymptotic comparisons, we write $f = \mathcal{O}(g)$ if $\exists c > 0$ such that $f(x) \leq cg(x)$ for all x in the domain.

Gradient Clipping Fundamentals. Consider a stochastic optimization problem with parameters $\theta \in \mathbb{R}^d$ and loss function $f(\theta; X_t)$ evaluated on mini-batch X_t at step t . Standard gradient descent updates follow:

$$\theta_t = \theta_{t-1} - \eta_t \nabla_\theta f(\theta_{t-1}, X_t) \quad (1)$$

To prevent unstable updates from gradient explosions, GlobalGC (Pascanu et al., 2013) modifies the update rule as:

$$\theta_t = \theta_{t-1} - \eta_t h_t \nabla_\theta f(\theta_{t-1}, X_t) \quad (2)$$

$$\text{where } h_t := \min \left\{ \frac{\lambda_{abs}}{\|\nabla_\theta f(\theta_{t-1}; X_t)\|}, 1.0 \right\}$$

Here λ_{abs} is an absolute clipping threshold requiring careful tuning, and η_t is the learning rate. Our work focuses on *norm-based* clipping (scaling entire gradients exceeding λ_{abs}) rather than *value-based* clipping (element-wise truncation).

4.2 ADAPTIVE GRADIENT CLIPPING BASED ON LOCAL GRADIENT NORM

This section introduces a novel gradient clipping strategy termed AdaGC, which distinguishes itself by not relying on a global gradient norm. Instead, AdaGC focuses on the local gradient norm of each tensor and utilizes a dynamic adaptive mechanism for gradient clipping. The proposed method employs an EMA mechanism to maintain smoothed estimates of historical gradient norms per tensor, thus enhancing the accuracy of anomalous gradient detection and enabling independent clipping adjustments tailored to each tensor’s specific conditions. EMA is widely used in deep learning, and within AdaGC, it facilitates the balancing of historical and current gradient norms. The formulation

216 is as follows:

$$218 \quad \mathbf{g}_{t,i} \leftarrow h_{t,i} \cdot \mathbf{g}_{t,i}, \text{ where } h_{t,i} = \min \left\{ \lambda_{rel} \frac{\gamma_{t-1,i}}{\|\mathbf{g}_{t,i}\|}, 1.0 \right\}, \quad (3)$$

$$219 \quad \gamma_{t,i} = \beta \gamma_{t-1,i} + (1 - \beta) \|\mathbf{g}_{t,i}\|.$$

221 Here, λ_{rel} is a predefined relative clipping threshold, $\mathbf{g}_{t,i}$ represents the gradient of the i -th tensor at
 222 time step t , and $h_{t,i}$ is a clipping function activated when $\|\mathbf{g}_{t,i}\| > \lambda_{rel} \cdot \gamma_{t-1,i}$, thereby scaling the
 223 gradient norm to $\lambda_{rel} \cdot \gamma_{t-1,i}$. Additionally, β is the smoothing coefficient for EMA. *We consistently*
 224 *incorporate the clipped gradient norm into the historical observations rather than the pre-clipped*
 225 *values.*

226 Despite its simplicity, AdaGC adaptively adjusts based on the magnitude of each tensor’s gradient
 227 norm. Whenever the gradient norm at a current timestep exceeds a predefined range of average
 228 norms within a historical window, it effectively suppresses these outlier gradients.

229 However, during the initial stages of model training (e.g., the first 100 steps), the gradient norms
 230 are typically large and fluctuate significantly, indicating a substantial decreasing trend. Direct ap-
 231 plication of AdaGC during this period could lead to two issues: first, erroneously accumulating the
 232 early large gradient norms into the historical values, resulting in compounded errors; second, com-
 233 pared to GlobalGC, AdaGC might delay clipping, thus potentially slowing down the loss reduction.
 234 To address these issues, we introduce a hyperparameter T_{start} (default set to 100), representing a
 235 warm-up period during which traditional GlobalGC is applied.

236 Additionally, AdaGC is optimizer-agnostic, can be seamlessly integrated with various optimizers,
 237 such as AdamW (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), Muon (Jordan et al., 2024),
 238 enhancing its practicality and flexibility. Algorithm 1 in Appendix B demonstrates its implemen-
 239 tation with the AdamW optimizer.

241 4.3 MEMORY, COMPUTATION, AND COMMUNICATION

243 **Memory.** As a tensor-wise method, AdaGC maintains an EMA of gradient norms for each parameter
 244 tensor, requiring storage of a single 32-bit float (4 bytes) per tensor. For ERNIE models, the total
 245 additional memory overhead has complexity of $\mathcal{O}((9 + 3E) \times L + 3)$, where L and E denote
 246 the number of transformer layers and experts, respectively. Specifically, this includes four tensors
 247 from the attention module per layer, $3 \times (1 + E)$ tensors from the shared and router experts per
 248 layer, and two RMSNorm tensors per layer; plus one tensor each for the embedding layer, the final
 249 layer normalization, and the language modeling head. In practice, this added memory footprint is
 250 negligible compared to the overall memory requirements of large-scale model training.

251 **Computation.** The computational cost of computing ℓ_2 norms is the same for both AdaGC and
 252 GlobalGC. The difference is that GlobalGC applies a uniform scaling to all gradients, while AdaGC
 253 scales each gradient tensor independently.

254 **Communication.** In setups involving data parallelism (DP), tensor parallelism (TP), and pipeline
 255 parallelism (PP), GlobalGC requires an all-reduce operation across all DP, TP, and PP groups to
 256 aggregate the global norm. In contrast, AdaGC only needs an all-reduce within each TP group
 257 to compute per-tensor local norms. This design substantially reduces communication overhead,
 258 offering increasing benefits as model and cluster sizes grow.

260 4.4 CONVERGENCE ANALYSIS

262 Any operation that modifies gradients may potentially result in non-convergence. In this section,
 263 rather than providing a theoretical guarantee that AdaGC eliminates loss spikes, we present the
 264 convergence guarantee for Adam with AdaGC, stated as follows:

266 **Theorem 4.1** *Under mild assumptions, by selecting $\alpha_t = \mathcal{O}(1/\sqrt{T})$, $\beta_2 = 1 - \mathcal{O}(1/T)$ and $\beta_1 <$
 267 $\sqrt{\beta_2}$, when τ is randomly chosen from $\{1, 2, \dots, T\}$ with equal probabilities, it holds that*

$$269 \quad \mathbb{E} \|\nabla f(\theta_\tau)\|^2 = \mathcal{O} \left(\frac{1}{\sqrt{T}} \right).$$

270
271 Table 2: Zero-shot accuracy of AdaGC on
Llama-2 7B under different hyperparameters.

λ_{rel}	β	0.98	0.985	0.99	0.999
1.03		50.06	50.92	50.95	50.96
1.04		48.88	50.59	51.04	50.76
1.05		51.01	49.95	50.57	50.74

272
273 Table 3: Two-shot accuracy of AdaGC on
274 Llama-2 7B under different hyperparameters.

λ_{rel}	β	0.98	0.985	0.99	0.999
1.03		52.31	52.68	53.13	53.42
1.04		52.68	53.01	53.47	52.85
1.05		52.68	52.67	51.96	53.51

275 Theorem 4.1 shows that even with local clipped gradient, Adam with AdaGC can converge at the
276 same rate as vanilla Adam (Kingma & Ba, 2014). Due to the limited space, the formal assumptions
277 and theorem statement with detailed proof can be found in Appendix A.

281 5 EXPERIMENTS

282 5.1 EXPERIMENTAL SETUP

283 **Models and Datasets.** AdaGC is designed to enhance training stability during large language model
284 pretraining. We evaluate its effectiveness on both dense and MoE (Mixture-of-Experts) architec-
285 tures. For dense models, we use Llama-2 with 1.3B and 7B parameters. For MoE models, we
286 experiment with Mixtral 8×1B (Jiang et al., 2024) and ERNIE 10B-A1.4B (Baidu-ERNIE-Team,
287 2025), where Mixtral 8×1B is a scaled-down version of Mixtral 8×7B, and ERNIE 10B-A1.4B is
288 derived from ERNIE-4.5 21B-A3B. For pre-training, we use C4-en (Raffel et al., 2020), a clean
289 English text corpus extracted from Common Crawl.

290 **Comparison Methods.** We focus on *clipping-based* methods and compare gradient and update
291 clipping baselines, including GlobalGC (Pascanu et al., 2013), Gradient Value Clipping (ClipBy-
292 Value), AGC (Brock et al., 2021), and Clippy (Tang et al., 2023). We also evaluate recent methods,
293 including SPAM (Huang et al., 2025), Scaled Embed (Takase et al., 2023), and WeSaR (Nishida
294 et al., 2024). Results are in Appendix E.2 Table 11.

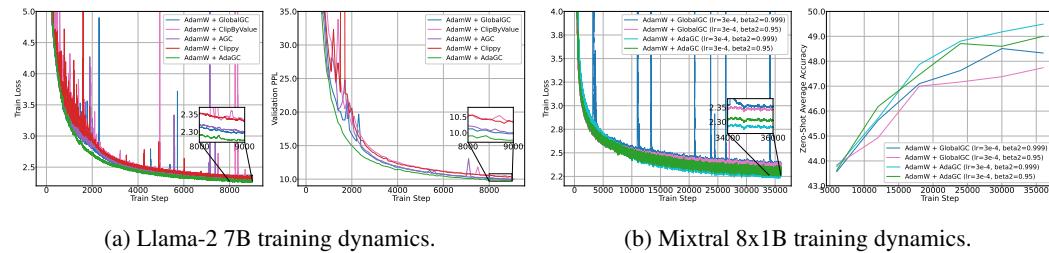
295 **Training Details.** Pre-training large-scale models is typically resource-intensive. Our primary focus
296 was to explore training instability rather than achieve ultimate accuracy. For ease of multiple experi-
297 ments, we conducted 9,000 training steps on 36 billion tokens for both Llama-2 1.3B and 7B, 36,000
298 steps on 36 billion tokens for the Mixtral 8x1B, and 21,000 steps on 350 billion tokens for ERNIE
299 10B-A1.4B. **We further trained ERNIE 10B-A1.4B for 60,000 steps on 1 trillion tokens to addition-
300 ally validate the long-term stability of AdaGC.** For additional details on the hyperparameters, please
301 refer to Table 8 of Appendix C.

302 **Evaluation Metrics.** To quantitatively assess training stability, we follow (OLMo et al., 2024;
303 Karpathy, 2024) and adopt the *spike score* as an objective metric. Specifically, the spike score is
304 defined as the percentage of values in a time series that deviate by at least ten standard deviations
305 from a rolling average of the preceding 1,000 values. This metric is primarily applied to training loss
306 to detect sudden instabilities. Additionally, we evaluate performance using the training loss and val-
307 idation perplexity (PPL) curves, as well as standard benchmark results, to provide a comprehensive
308 assessment of convergence efficiency and model quality.

309 **Standard Benchmark.** We conducted a comprehensive evaluation of the model’s zero-shot
310 and two-shot capabilities across seven well-established benchmarks: ARC (Yadav et al., 2019),
311 BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
312 PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), and MMLU (Hendrycks et al.,
313 2020). Following standard practice (Zhang et al., 2025), we report accuracy norm for ARC-E,
314 ARC-C, HellaSwag, OBQA, and SciQ, as well as standard accuracy for all other tasks. For ERNIE
315 10B-A1.4B, which has been trained on 350B tokens, we evaluate its general abilities on a range of
316 benchmarks, including MMLU (Hendrycks et al., 2020), GSM8K (Cobbe et al., 2021), BBH (Suz-
317 gun et al., 2022), TruthfulQA (Lin et al., 2021), and HumanEval (Chen et al., 2021). These bench-
318 marks assess the model’s enhanced capabilities in performing diverse downstream tasks, such as
319 examination, reasoning, factuality, and coding.

324 5.2 CRITICAL HYPERPARAMETER SELECTION
325

326 We systematically evaluated two key hyperparameters in AdaGC: the EMA coefficient β and the
327 relative clipping threshold λ_{rel} . Specifically, we performed a grid search on the Llama-2 7B model
328 to optimize these two hyperparameters, using zero-shot and two-shot performance across multiple
329 tasks as evaluation metrics. As shown in Tables 2 and 3, the best performance was achieved when
330 $\lambda_{rel} = 1.04$ and $\beta = 0.99$. We therefore adopted this configuration as the default setting for
331 subsequent experiments and terminated further hyperparameter search. In addition, as observed
332 in Tables 2 and 3, AdaGC’s performance remains relatively stable across different hyperparameter
333 values, suggesting that the method is robust to hyperparameter variations.

334 335 5.3 MAIN EXPERIMENTAL RESULTS
336

344 Figure 3: Large language model training analysis: Llama-2 7B and Mixtral 8x1B model comparison
345 shows AdaGC’s loss spike elimination and performance gains.
346

347 **Training Stability.** Our comprehensive evaluation shows AdaGC’s effectiveness in improving training
348 stability across a range of model scales and architectures. As shown in Figure 3, we compare the training dynamics of Llama-2 7B and Mixtral 8x1B models in terms of loss trajectories, validation perplexity, and zero-shot average accuracy. For the 7B models, baseline methods (GlobalGC, ClipByValue, AGC, Clippy) consistently exhibit frequent loss spikes during training, while AdaGC effectively eliminates these instability events. On Mixtral 8x1B, using the default $\beta_2 = 0.999$ leads to recurrent loss spikes, whereas decreasing β_2 to 0.95 helps mitigate this issue, indicating the strong impact of β_2 on training stability. AdaGC, however, can eliminate loss spikes for both $\beta_2 = 0.999$ and $\beta_2 = 0.95$, further demonstrating its robustness. The zero-shot average accuracy curves also reveal that AdaGC not only stabilizes training under $\beta_2 = 0.999$, but also improves convergence performance. For the ERNIE 10B-A1.4B, Figure 1b shows that stable convergence is achieved with $\epsilon = 1e-15$, which is particularly advantageous for large-scale models as it enables more parameters to fully utilize the adaptive learning rate in AdamW. Furthermore, Figure 2 illustrates AdaGC’s clipping process, which prevents abnormal gradients from entering optimizer states, further smoothing parameter updates and reducing oscillations, thereby benefiting training stability.

349 **Spike Score Analysis.** Table 4 quantitatively summarizes the reduction in spike score achieved by
350 AdaGC and the baseline methods across various settings. For Llama-2 7B, the spike score is reduced
351 from 0.0333 with GlobalGC to 0 with AdaGC; for Mixtral 8x1B, it drops from 0.0144 to 0; and for
352 ERNIE 10B-A1.4B, from 0.01 to 0. These results consistently demonstrate that AdaGC effectively
353 and robustly eliminates loss spikes compared to existing clipping methods.

360 Table 4: Comparison of spike scores for various models under different clipping methods.
361

Model	Llama-2 7B					Mixtral 8x1B		ERNIE 10B-A1.4B	
	Method	GlobalGC	ClipByValue	AGC	Clippy	AdaGC	Method	GlobalGC	AdaGC
Total Steps	9K	9K	9K	9K	9K	9K	36K	36K	21K
Num Spikes	3	9	8	3	0	0	52	0	2
Spike Score (%)	0.0333	0.1000	0.0889	0.0333	0.0000	0.0000	0.0144	0.0000	0.0100

373 **Results on Downstream Benchmarks.** Downstream zero-shot and two-shot evaluation results on
374 the Llama-2 1.3B/7B and Mixtral 8x1B models (see Table 5 and Table 10) clearly demonstrate the
375

practical benefits of stable training. Across all model scales, AdaGC consistently achieves state-of-the-art performance or matches the best baselines. Specifically, on Llama-2 7B and Mixtral 8x1B, AdaGC obtains superior zero-shot (51.01% / 49.01%) and two-shot (53.47% / 51.61%) average accuracy, surpassing the GlobalGC baseline by +1.32% / +1.27% and +0.83% / +1.14%, respectively. Furthermore, long-term training of ERNIE 10B-A1.4B on 350B tokens shows that AdaGC achieves more stable convergence with $\epsilon = 1e-15$, resulting in a 2.48% improvement over GlobalGC on the general abilities validation set. These findings establish a strong correlation between training stability and final model quality, indicating that the stability enabled by AdaGC facilitates better convergence and enhanced downstream performance.

Table 5: The Zero-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard benchmarks.

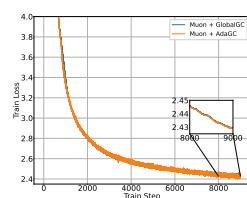
Model	Method	ARC-E acc_norm	ARC-C acc_norm	BoolQ acc	HellaSw. acc_norm	OBQA acc_norm	PIQA acc_norm	W.G. acc	MMLU acc	SciQ acc_norm	Avg.
Llama-2 1.3B	GlobalGC	43.18	25.68	57.19	46.62	30.20	69.97	52.64	22.97	68.40	46.32
	ClipByValue	42.17	25.68	59.94	44.11	30.40	69.59	53.28	22.99	68.00	46.24
	ClipPy	41.71	24.66	56.51	45.43	30.00	69.21	54.85	22.90	67.50	45.86
	AdaGC	42.09	25.51	58.01	47.29	30.40	69.70	52.33	22.98	68.70	46.33
Llama-2 7B	GlobalGC	49.49	27.56	56.30	56.06	33.60	74.59	55.33	23.12	71.20	49.69
	ClipByValue	46.21	26.88	57.03	53.49	33.20	71.65	53.59	23.36	70.50	48.43
	AGC	48.15	28.16	52.87	55.47	32.80	72.74	57.85	24.33	71.70	49.34
	ClipPy	47.69	27.73	57.46	53.34	32.40	72.74	54.38	25.36	73.40	49.39
Mixtral 8x1B	GlobalGC	44.70	25.94	56.57	53.08	33.00	71.60	54.70	22.91	67.20	47.74
	AdaGC	46.68	26.37	58.93	55.85	32.20	73.12	54.38	23.22	70.30	49.01

Table 6: Evaluation results of ERNIE 10B-A1.4B on multiple benchmarks after 21,000 (350B tokens) and 60,000 (1T tokens) training steps, comparing different optimization configurations.

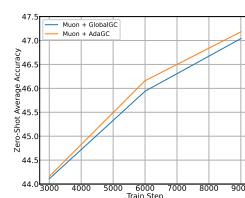
Steps (tokens)	Method	AdamW eps	MMLU	GSM8K	BBH	TruthfulQA	HumanEval	Avg.
21k (350B)	GlobalGC	1e-8	47.75	28.35	28.80	22.02	19.51	28.09
	GlobalGC	1e-15	39.11	21.46	29.35	23.39	15.24	25.71
	AdaGC	1e-15	42.07	25.32	27.89	24.92	20.73	28.19
60k (1T)	GlobalGC	1e-8	48.61	39.88	30.84	30.73	22.56	34.52
	GlobalGC	1e-15	48.48	40.79	30.59	28.29	23.78	34.38
	AdaGC	1e-15	48.70	36.01	31.38	35.02	22.56	34.73

5.4 OPTIMIZER COMPATIBILITY: MUON AND LION

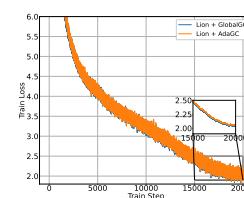
AdaGC is an optimizer-agnostic gradient clipping method that can be seamlessly integrated not only with AdamW, but also with other optimizers. To verify the generality of AdaGC, we conducted experiments on both LLM and VLM tasks by combining Llama-2 1.3B and CLIP ViT-Base models with the Muon and Lion optimizers, respectively, and compared them against GlobalGC. Although no loss spikes were observed under either experimental setting, AdaGC consistently demonstrated strong compatibility and generalization. In downstream zero-shot average accuracy, AdaGC outperformed GlobalGC by 0.14% (47.18% vs. 47.04%) with Muon and by 0.16% (40.81% vs. 40.65%) with Lion. These results further confirm that AdaGC can be effectively applied across different optimizers, providing stable training and improved downstream performance.



(a) Training dynamics.



(b) Average accuracy.



(a) Training dynamics.



(b) Average accuracy.

Figure 4: AdaGC with Muon on Llama-2 1.3B.

Figure 5: AdaGC with Lion on CLIP ViT-Base.

432 5.5 END-TO-END TRAINING WALL-CLOCK
433

434 Table 7 compares the GPU hours required for training various models using different distributed
435 parallelism strategies. Compared to GlobalGC, AdaGC reduces end-to-end GPU hours by 0.27% on
436 Llama-2 1.3B, 4.48% on Llama-2 7B, 1.24% on Mixtral 8x1B, and 1.53% on ERNIE 10B-A1.4B,
437 thanks to reduced communication overhead. This highlights AdaGC’s additional communication
438 and efficiency benefits in large-scale distributed training.

439
440 Table 7: GPU hours under the same configuration. DPS denotes distributed parallel strategies.
441

Model	Llama-2 1.3B	Llama-2 7B	Mixtral 8x1B	ERNIE 10B-A1.4B
DPS	DP=256, TP=1, PP=1	DP=32, TP=2, PP=1	DP=256, TP=1, PP=1, EP=1	DP=64, TP=1, PP=4, EP=8
Steps	9K	9K	36K	21K
GlobalGC	513.0	1468.2	2060.8	22922
AdaGC	511.6	1402.4	2035.2	22572

442

443 5.6 ABLATION STUDY
444

445 We conduct systematic ablation studies across three critical dimensions of AdaGC: (1) EMA
446 gradient norm initialization strategies, (2) **GlobalGC warm-up steps**, (3) adaptivity efficacy, and (4)
447 locality granularity.

448

449 **EMA Initialization Strategy.**
450

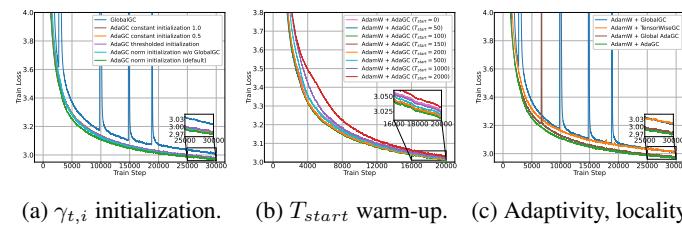
451 The initialization of EMA
452 gradient norms requires careful
453 design due to large initial
454 gradient fluctuations during early
455 training phases (first 100 steps).
456 We evaluate five initialization
457 variants: The default AdaGC
458 strategy employs GlobalGC
459 during warm-up while tracking
460 minimum per-parameter norms
461 ($\gamma_{t,i} = \min(\|\mathbf{g}_{t,i}\|, \gamma_{t-1,i})$).
462 Comparative approaches include:
463 (1) norm initialization
464 without GlobalGC warm-up (directly using
465 $\gamma_{t,i} = \min(\|\mathbf{g}_{t,i}\|, \gamma_{t-1,i})$ from step 0), (2) constant
466 initialization ($\gamma_{0,i} \in \{0.5, 1.0\}$), and (3) thresholded initialization
467 ($\gamma_{t,i} = \min(\|\mathbf{g}_{t,i}\|, 0.1)$).
468 Figure 6a demonstrates that while all variants eliminate loss spikes, convergence quality varies
469 within 0.36%. The default strategy achieves optimal final loss (2.9708 vs 2.9725 for next-best),
470 showing that GlobalGC-guided warm-up better preserves parameter update consistency than direct
471 initialization. This establishes the importance of phased initialization for gradient norm adaptation.

472

473 **Warm-up Steps T_{start} .** To further investigate whether the choice of GlobalGC warm-up steps
474 T_{start} has a significant impact and to provide practical guidance for practitioners, we additionally evaluate
475 $T_{start} = \{0, 50, 100, 150, 200, 500, 1000, 2000\}$. The results in Figure 6b show that
476 $T_{start} = 100$ consistently achieves the best performance. According to the EMA initialization formula
477 $\gamma_{t,i} = \min(\|\mathbf{g}_{t,i}\|, \gamma_{t-1,i})$, an excessively large T_{start} accumulates lower $\gamma_{t,i}$ values due to
478 early training dynamics, which may lead to over-clipping and suppressed convergence in later training.
479 Conversely, an overly small T_{start} accumulates larger $\gamma_{t,i}$ values, which may delay clipping and hinder timely suppression of abnormal gradients. In contrast, $T_{start} = 100$ introduces negligible
480 additional overhead for large-scale training while providing consistently stable performance
481 improvements.

482

483 **Adaptivity Efficacy and Locality Granularity.** We conduct three sets of ablation experiments
484 to evaluate the adaptivity and locality of AdaGC. The baseline uses GlobalGC (**no adaptivity, no**
485 **locality**) with a fixed threshold of 1.0. In comparison, we examine (1) adaptive global gradient norm
486 clipping (Global AdaGC, **adaptive but non-local**), which employs a single adaptive threshold for
487 the entire model, (2) tensor-wise gradient norm clipping (TensorWiseGC, **local but non-adaptive**),



486 Figure 6: Training dynamics of ablation studies on AdaGC,
487 showing (a) the influence of different EMA initialization strategies;
488 (b) **the impact of the GlobalGC warm-up steps T_{start}** ; and
489 (c) the effects of adaptivity and locality granularity on gradient
490 clipping efficacy and final loss.

486 which allocated each tensor’s fixed clipping threshold proportionally to its parameter count relative
 487 to the entire model, and (3) tensor-wise adaptation (AdaGC, adaptive and local), which adjusts
 488 thresholds independently for each tensor. As shown in Figure 6c, Global AdaGC reduces but does
 489 not completely eliminate spike events (1 event vs. 0 for tensor-wise) and yields a 0.25% higher final
 490 loss (2.9639 vs. 2.9712). **Although TensorWiseGC also mitigates loss spikes, it noticeably slows**
 491 **down convergence and requires careful per-tensor threshold tuning to perform well.** These results
 492 demonstrate that tensor-wise adaptive clipping provides both greater spike suppression and lower
 493 loss than other approaches.

494

495 6 CONCLUSION

496

497 The factors triggering loss spikes in large-scale pretraining are diverse and remain an open research
 498 problem, with no unified solution to date. Unlike prior work that seeks to identify root causes, we
 499 focus on a gradient-centric remedy and introduce AdaGC, an adaptive per-tensor gradient clipping
 500 method that prevents abnormal gradients from contaminating optimizer states. This approach en-
 501 sures smoother updates and effectively eliminates loss spikes. Extensive experiments demonstrate
 502 that AdaGC delivers robust and stable training across both dense and MoE models, from 1.3B to 10B
 503 parameters, consistently reducing spike scores to zero and improving benchmark performance. Our
 504 results highlight AdaGC as a simple and effective solution for stable large-scale model pretraining.

505

506 7 STATEMENT ON THE USE OF LLMs

507

508 In preparing this manuscript, LLMs (mostly GPT-4.1/5) is utilized for linguistic refinement, includ-
 509 ing the detection and correction of grammar errors or spelling mistakes, and sentence rephrasing to
 510 improve clarity, coherence and readability. LLMs were also referenced when structuring the paper
 511 contents, and review missing details, but not involved in the formulation of ideas, the execution of
 512 experiments, or the generation of experimental results in this article.

513

514 REFERENCES

515

516 Zhiwei Bai, Zhangchen Zhou, Jiajie Zhao, Xiaolong Li, Zhiyu Li, Feiyu Xiong, Hongkang Yang,
 517 Yaoyu Zhang, and Zhi-Qin John Xu. Adaptive preconditioners trigger loss spikes in adam. *arXiv*
 518 preprint [arXiv:2506.04805](https://arxiv.org/abs/2506.04805), 2025.

519

520 Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

521

522 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
 523 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 524 volume 34, pp. 7432–7439, 2020.

525

526 Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
 527 image recognition without normalization. In *International Conference on Machine Learning*, pp.
 528 1059–1071. PMLR, 2021.

529

530 Matias D. Cattaneo and Boris Shigida. Tuning Adam(W): Default β_2
 531 may be too large. Working paper, Princeton University, 2025. URL
[https://github.com/mdcattaneo/mdcattaneo.github.io/
 blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/
 Cattaneo-Shigida_2025_TuningAdam.pdf](https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf).

532

533 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 534 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 535 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

536

537 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 538 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
 539 *Advances in Neural Information Processing Systems*, 36, 2024.

540 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 541 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
 542 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):
 543 1–113, 2023.

544 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 545 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint*
 546 *arXiv:1905.10044*, 2019.

548 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 549 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 550 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

551 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
 552 *preprint arXiv:2307.08691*, 2023.

554 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
 555 drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
 556 in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

557 Daniel Han. Gemma bug fixes - approx gelu, layernorms, sqrt(hd), Mar 2024. URL <https://github.com/huggingface/transformers/pull/29402>. GitHub Pull Request
 559 #29402, huggingface/transformers.

561 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 562 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 563 *arXiv:2009.03300*, 2020.

565 Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
 566 aware adam with momentum reset for stable lilm training. *arXiv preprint arXiv:2501.06842*, 2025.

567 Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
 568 ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
 569 Mixtral of experts. *arXiv preprint arXiv:2401.04088*, 2024.

571 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 572 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL <https://kellerjordan.github.io/posts/muon/>.

574 Andrey Karpathy. Cool! for the spike i'd try e.g. '-sl 7 -sg 7' to keep instability in check earlier in the
 575 training. (will skip update if loss/gradnorm > 7 sigma outlier is detected). X (formerly Twitter),
 576 July 2024. <https://x.com/karpathy/status/1812917107379872145>.

578 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 579 *arXiv:1412.6980*, 2014.

581 Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
 582 language-image pre-training via masking. In *Proceedings of the IEEE/CVF Conference on Com-
 583 puter Vision and Pattern Recognition*, pp. 23390–23400, 2023.

584 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 585 falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

587 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 588 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 589 *arXiv:2412.19437*, 2024.

590 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 591 *preprint arXiv:1608.03983*, 2016.

593 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 594 *arXiv:1711.05101*, 2017.

594 Chao Ma, Lei Wu, and Weinan E. A qualitative study of the dynamic behavior for adaptive gradient
 595 algorithms, 2021. URL <https://arxiv.org/abs/2009.06125>.

596

597 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 598 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 599 2018.

600 Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
 601 self-attention. *arXiv preprint arXiv:1910.05895*, 2019.

602

603 Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito. Initialization of large language models via
 604 reparameterization to mitigate loss spikes. *arXiv preprint arXiv:2410.05052*, 2024.

605 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
 606 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
 607 *arXiv:2501.00656*, 2024.

608

609 Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
 610 networks. In *International conference on machine learning*, pp. 1310–1318. Pmlr, 2013.

611

612 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 613 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 614 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

615

616 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 617 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 618 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.

619

620 Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
 621 *International Conference on Learning Representations*, 2018.

622

623 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 624 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 625 recognition challenge. *International journal of computer vision*, 115:211–252, 2015.

626

627 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 628 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

629

630 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 631 Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 632 clip-filtered 400 million image-text pairs. *arXiv preprint arXiv:2111.02114*, 2021.

633

634 Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
 635 In *International Conference on Machine Learning*, pp. 4596–4604. PMLR, 2018.

636

637 Jianlin Su. Why is the default norm for gradient clipping 1?, Jan 2025. URL <https://spaces.ac.cn/archives/10657>.

638

639 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 640 Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
 641 and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.

642

643 Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing the
 644 pre-training of large language models. *arXiv preprint arXiv:2312.16903*, 2023.

645

646 Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang
 647 Yi, Lichan Hong, and Ed H Chi. Improving training stability for multitask ranking models in
 648 recommender systems. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge
 649 Discovery and Data Mining*, pp. 4882–4893, 2023.

650

651 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 652 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv
 653 preprint arXiv:2507.20534*, 2025.

648 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 649 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 650 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

651
 652 Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
 653 Schmidt. Stable and low-precision training for large-scale vision-language models. *Advances
 654 in Neural Information Processing Systems*, 36:10271–10298, 2023.

655 Rubin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
 656 Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
 657 In *International Conference on Machine Learning*, pp. 10524–10533. PMLR, 2020.

658
 659 Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection
 660 of justification sentences for multi-hop question answering. *arXiv preprint arXiv:1911.07176*,
 661 2019.

662 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
 663 Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv preprint
 664 arXiv:2309.10305*, 2023.

665 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 666 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 667 learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019.

668
 669 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 670 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

671 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Infor-
 672 mation Processing Systems*, 32, 2019.

673
 674 Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-
 675 Chih Yao. Tensor product attention is all you need. *arXiv preprint arXiv:2501.06425*, 2025.

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A CONVERGENCE PROOF**
 703

704 In this section, we provide the necessary assumptions and lemmas for the proofs of Theorem 4.1.
 705

706 **Notations** The k -th component of a vector v_t is denoted as $v_{t,k}$. Other than that, all computations
 707 that involve vectors shall be understood in the component-wise way. We say a vector $v_t \geq 0$ if
 708 every component of v_t is non-negative, and $v_t \geq w_t$ if $v_{t,k} \geq w_{t,k}$ for all $k = 1, 2, \dots, d$. The ℓ_1
 709 norm of a vector v_t is defined as $\|v_t\|_1 = \sum_{k=1}^d |v_{t,k}|$. The ℓ_2 norm is defined as $\|v_t\|^2 = \langle v_t, v_t \rangle =$
 710 $\sum_{k=1}^d |v_{t,k}|^2$. Given a positive vector $\hat{\eta}_t$, it will be helpful to define the following weighted norm:
 711 $\|v_t\|_{\eta_t}^2 = \langle v_t, \hat{\eta}_t v_t \rangle = \sum_{k=1}^d \hat{\eta}_{t,k} |v_{t,k}|^2$.
 712

713 **Assumption A.1** The function f is lower bounded by \underline{f} with L -Lipschitz gradient.
 714

715 **Assumption A.2** The gradient estimator g is unbiased with bounded norm, e.g,
 716

$$\mathbb{E}[g|x_t] = \nabla f(x_t), \|g_t\| \leq G.$$

718 **Assumption A.3** The coefficient of clipping $h_{t,i}$ is lower bounded by some $h_0 > 0$.
 719

720 **Assumption A.4** $\|g_t - \nabla f(x_t)\| \leq p \|\nabla f(x_t)\|$ holds for some $p < 1$ and for all t .
 721

722 **Remark A.5** Assumption A.1 and Assumption A.2 are widely used in the proof of optimization al-
 723 gorithm with adaptive learning rates (Reddi et al., 2018). Assumption A.3 is because the gradient
 724 norm changes slowly when training the neural network, and the last assumption holds when the
 725 batch size is large enough.

726 **Lemma A.6** Let $\zeta := \beta_1^2 / \beta_2$. We have the following estimate
 727

$$m_t^2 \leq \frac{1}{(1 - \zeta)(1 - \beta_2)} v_t, \quad \forall t. \quad (4)$$

730 **Proof:** By the iteration formula $m_t = \beta_1 m_{t-1} + (1 - \beta_1) \hat{g}_t$ and $m_0 = 0$, we have
 731

$$m = \sum_{i=1}^t \beta_1^{t-i} (1 - \beta_1) \hat{g}_i.$$

734 Similarly, by $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \hat{g}_t^2$ and $v_0 = 0$, we have
 735

$$v_t = \sum_{i=1}^t \beta_2^{t-i} (1 - \beta_2) \hat{g}_i^2$$

739 It follows by arithmetic inequality that

$$\begin{aligned} m_t^2 &= \left(\sum_{i=1}^t \frac{(1 - \beta_1) \beta_1^{t-i}}{\sqrt{(1 - \beta_2) \beta_2^{t-i}}} \sqrt{(1 - \beta_2) \beta_2^{t-i}} \hat{g}_i \right)^2 \\ &\leq \left(\sum_{i=1}^t \frac{(1 - \beta_1)^2 \beta_1^{2(t-i)}}{(1 - \beta_2) \beta_2^{t-i}} \right) \left(\sum_{i=1}^t (1 - \beta_2) \beta_2^{t-i} \hat{g}_i^2 \right) = \left(\sum_{i=1}^t \frac{(1 - \beta_1)^2 \beta_1^{2(t-i)}}{(1 - \beta_2) \beta_2^{t-i}} \right) v_t. \end{aligned}$$

747 Further, we have

$$\sum_{i=1}^t \frac{(1 - \beta_1)^2 \beta_1^{2(t-i)}}{(1 - \beta_2) \beta_2^{t-i}} \leq \frac{1}{1 - \beta_2} \sum_{i=1}^t \left(\frac{\beta_1^2}{\beta_2} \right)^{t-i} = \frac{1}{1 - \beta_2} \sum_{k=0}^{t-1} \zeta^k \leq \frac{1}{(1 - \zeta)(1 - \beta_2)}.$$

751 The proof is completed. □
 752

753 **Lemma A.7** The following estimate holds
 754

$$\sum_{t=1}^T \|\Delta_t\|^2 \leq \frac{\alpha^2 G^2}{\epsilon}$$

756 **Proof:** By using the definition of m_t , it holds $\|m_t\|^2 \leq G^2$.
 757

758 Then, $\|\Delta_t\|^2 = \|\frac{\alpha_t m_t}{\sqrt{v_t} + \epsilon}\|^2 \leq \frac{G^2}{\epsilon} \alpha_t^2$ by using the definition of Δ_t .
 759

760 Therefore, $\sum_{t=1}^T \|\Delta_t\|^2 \leq \frac{G^2}{\epsilon} \sum_{t=1}^T \frac{\alpha_t^2}{T} = \frac{G^2 \alpha^2}{\epsilon}$.
 761

□

762
 763
 764 **Lemma A.8** *With the Assumption A.3 and A.4, it holds that*
 765

$$766 \mathbb{E} \langle \nabla f(\theta_t), \hat{\eta}_t \hat{g}_t \rangle \geq h_0 \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2. \\ 767$$

768
 769 **Proof:** According to Assumption A.4, it holds that
 770

$$771 \langle \nabla_i f(\theta_t), g_{t,i} \rangle = -\frac{1}{2} \left(\|\nabla_i f(\theta_t) - g_{t,i}\|^2 - \|\nabla_i f(\theta_t)\|^2 - \|g_{t,i}\|^2 \right) \\ 772 \geq (1-p^2) \|\nabla_i f(\theta_t)\|^2 \geq 0. \\ 773$$

774
 775 Thus, it holds that
 776

$$777 \mathbb{E} [\langle \nabla f(x_t), \hat{\eta}_t \hat{g}_t \rangle] = \mathbb{E} \left[\sum_i \langle \nabla_i f(\theta_t), h_{t,i} \hat{\eta}_{t,i} g_{t,i} \rangle \right] \\ 778 \geq h_0 \mathbb{E} \left[\sum_i \langle \nabla_i f(x_t), h_{t,i} \hat{\eta}_{t,i} g_{t,i} \rangle \right] \\ 779 = h_0 \mathbb{E} \langle \nabla f(\theta_t), \hat{\eta}_t g_t \rangle = h_0 \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2. \\ 780$$

□

781 Let $\Delta_t := \theta_{t+1} - \theta_t = -\alpha_t m_t / (\sqrt{v_t} + \epsilon)$. Let $\hat{v}_t = \beta_2 v_{t-1} + (1 - \beta_2) \delta_t^2$, where $\delta_t^2 = \mathbb{E}_t [\hat{g}_t^2]$ and
 782 let $\hat{\eta}_t = \alpha_t / \sqrt{\hat{v}_t + \epsilon}$.
 783

784
 785 **Lemma A.9** *Let $M_t = \mathbb{E} [\langle \nabla f(\theta_t), \Delta_t \rangle + L \|\Delta_t\|^2]$. Let $\alpha_t = \alpha / \sqrt{T}$ and $\beta_2 = 1 - \beta / T$. Then,
 786 for $T \geq 1$ we have*
 787

$$788 \sum_{t=1}^T M_t \leq \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2 \alpha^2}{(1 - \sqrt{\zeta})\epsilon} - \frac{(1 - \beta_1)h_0}{2} \sum_{t=1}^T \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2, \quad (5)$$

789 where $C_2 = \frac{5}{2(1-\beta_1)h_0} \left((1 - \beta_1)^2 \frac{4\alpha\beta G^4}{\epsilon^3} + \beta_1^2 \alpha \beta \left(\frac{G^4}{\beta_2 \epsilon^3} + \frac{(1+\epsilon)G^2}{(1-\zeta)\epsilon\beta_2} + \frac{G^4}{\beta_2} \right) \right)$.
 790

800
 801 **Proof:** To split M_t , firstly we introduce the following two equalities. Using the definitions of v_t
 802 and \hat{v}_t , we obtain
 803

$$804 \frac{(1 - \beta_1) \alpha_t \hat{g}_t}{\sqrt{v_t} + \epsilon} = \frac{(1 - \beta_1) \alpha_t \hat{g}_t}{\sqrt{\hat{v}_t} + \epsilon} + (1 - \beta_1) \alpha_t \hat{g}_t \left(\frac{1}{\sqrt{v_t} + \epsilon} - \frac{1}{\sqrt{\hat{v}_t} + \epsilon} \right) \\ 805 \\ 806 = (1 - \beta_1) \hat{\eta}_t \hat{g}_t + (1 - \beta_1) \alpha_t \hat{g}_t \frac{(1 - \beta_2) (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{\hat{v}_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t})} \\ 807 \\ 808 = (1 - \beta_1) \hat{\eta}_t \hat{g}_t + (1 - \beta_1) \hat{\eta}_t \hat{g}_t \frac{(1 - \beta_2) (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t})} \\ 809$$

810 In addition, we can obtain:

$$\begin{aligned}
& \beta_1 \alpha_t m_{t-1} \left(\frac{1}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} - \frac{1}{\sqrt{v_t} + \epsilon} \right) \\
&= \beta_1 \alpha_t m_{t-1} \frac{(1 - \beta_2) \hat{g}_t^2}{(\sqrt{v_t} + \epsilon) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} + \beta_1 \alpha_t m_{t-1} \frac{(1 - \sqrt{\beta_2}) \epsilon}{(\sqrt{v_t} + \epsilon) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon)} \\
&= \beta_1 \alpha_t m_{t-1} \frac{(1 - \beta_2) \hat{g}_t^2}{(\sqrt{\hat{v}_t} + \epsilon) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \\
&\quad + \beta_1 \alpha_t m_{t-1} \frac{(1 - \beta_2) \hat{g}_t^2}{(\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \left(\frac{1}{\sqrt{\hat{v}_t} + \epsilon} - \frac{1}{\sqrt{v_t} + \epsilon} \right) \\
&\quad + \beta_1 \alpha_t m_{t-1} \frac{(1 - \sqrt{\beta_2}) \epsilon}{(\sqrt{\hat{v}_t} + \epsilon) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon)} + \beta_1 \alpha_t m_{t-1} \frac{(1 - \sqrt{\beta_2}) \epsilon}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} \left(\frac{1}{\sqrt{\hat{v}_t} + \epsilon} - \frac{1}{\sqrt{v_t} + \epsilon} \right) \\
&= \beta_1 m_{t-1} \hat{\eta}_t \frac{(1 - \beta_2) \hat{g}_t^2}{(\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \\
&\quad + \beta_1 \hat{\eta}_t m_{t-1} \frac{(1 - \beta_2)^2 \hat{g}_t^2 (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t}) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \\
&\quad + \beta_1 \hat{\eta}_t m_{t-1} \frac{(1 - \sqrt{\beta_2}) \epsilon}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} + \beta_1 \hat{\eta}_t m_{t-1} \frac{(1 - \sqrt{\beta_2}) (1 - \beta_2) \epsilon (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t}) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon)}.
\end{aligned}$$

833 For simplicity, we denote

$$\begin{aligned}
A_t^1 &= (1 - \beta_1) \sqrt{\hat{\eta}_t} \hat{g}_t \frac{(1 - \beta_2) (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t})} \\
A_t^2 &= \beta_1 m_{t-1} \sqrt{\hat{\eta}_t} \frac{(1 - \beta_2) \hat{g}_t^2}{(\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \\
A_t^3 &= \beta_1 \sqrt{\hat{\eta}_t} m_{t-1} \frac{(1 - \beta_2)^2 \hat{g}_t^2 (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t}) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon) (\sqrt{v_t} + \sqrt{\beta_2 v_{t-1}})} \\
A_t^4 &= \beta_1 \sqrt{\hat{\eta}_t} m_{t-1} \frac{(1 - \sqrt{\beta_2}) \epsilon}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} \\
A_t^5 &= \beta_1 \sqrt{\hat{\eta}_t} m_{t-1} \frac{(1 - \sqrt{\beta_2}) (1 - \beta_2) \epsilon (\sigma_t^2 - \hat{g}_t^2)}{(\sqrt{v_t} + \epsilon) (\sqrt{v_t} + \sqrt{\hat{v}_t}) (\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon)}
\end{aligned}$$

847 Then, we obtain

$$\begin{aligned}
\Delta_t - \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} \Delta_{t-1} &= -\frac{\alpha_t m_t}{\sqrt{v_t} + \epsilon} + \frac{\beta_1 \alpha_t m_{t-1}}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} \\
&= -\frac{(1 - \beta_1) \alpha_t \hat{g}_t}{\sqrt{v_t} + \epsilon} + \beta_1 \alpha_t m_{t-1} \left(\frac{1}{\sqrt{\beta_2 v_{t-1}} + \sqrt{\beta_2} \epsilon} - \frac{1}{\sqrt{v_t} + \epsilon} \right) \\
&= -(1 - \beta_1) \hat{\eta}_t \hat{g}_t - \sqrt{\hat{\eta}_t} A_t^1 + \sqrt{\hat{\eta}_t} A_t^2 + \sqrt{\hat{\eta}_t} A_t^3 + \sqrt{\hat{\eta}_t} A_t^4 + \sqrt{\hat{\eta}_t} A_t^5
\end{aligned}$$

855 Thus, it holds that

$$\begin{aligned}
\mathbb{E} \langle \nabla f(\theta_t), \Delta_t \rangle &= \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} \langle \nabla f(\theta_t), \Delta_{t-1} \rangle + \mathbb{E} \left\langle \nabla f(\theta_t), \Delta_t - \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} \Delta_{t-1} \right\rangle \\
&= \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} (\mathbb{E} \langle \nabla f(\theta_t), \Delta_{t-1} \rangle + \mathbb{E} \langle \nabla f(\theta_t) - \nabla f(\theta_{t-1}), \Delta_{t-1} \rangle) \\
&\quad + \mathbb{E} \langle \nabla f(\theta_t), -(1 - \beta_1) \hat{\eta}_t \hat{g}_t \rangle + \mathbb{E} \langle \nabla f(\theta_t), -\sqrt{\hat{\eta}_t} A_t^1 \rangle + \mathbb{E} \langle \nabla f(\theta_t), \sqrt{\hat{\eta}_t} A_t^2 \rangle \\
&\quad + \mathbb{E} \langle \nabla f(\theta_t), \sqrt{\hat{\eta}_t} A_t^3 \rangle + \mathbb{E} \langle \nabla f(\theta_t), \sqrt{\hat{\eta}_t} A_t^4 \rangle + \mathbb{E} \langle \nabla f(\theta_t), \sqrt{\hat{\eta}_t} A_t^5 \rangle
\end{aligned} \tag{6}$$

864 For the first term of equation 6, it holds that

$$\begin{aligned}
 & \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} (\mathbb{E} \langle \nabla f(\theta_t), \Delta_{t-1} \rangle + \mathbb{E} \langle \nabla f(\theta_t) - \nabla f(\theta_{t-1}), \Delta_{t-1} \rangle) \\
 & \leq \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} (\mathbb{E} \langle \nabla f(\theta_t), \Delta_{t-1} \rangle + \mathbb{E} \|\nabla f(\theta_t) - \nabla f(\theta_{t-1})\| \|\Delta_{t-1}\|) \\
 & \leq \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} (\mathbb{E} \langle \nabla f(\theta_t), \Delta_{t-1} \rangle + L \mathbb{E} \|\Delta_{t-1}\|^2) \\
 & = \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} M_{t-1}
 \end{aligned}$$

875 For the second term of equation 6, it holds that

$$\mathbb{E} \langle \nabla f(\theta_t), -(1 - \beta_1) \hat{\eta}_t \hat{g}_t \rangle \leq -(1 - \beta_1) h_0 \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2.$$

876 For the rest of the terms, it holds that

$$\begin{aligned}
 \mathbb{E} \langle \nabla f(\theta_t), -\sqrt{\hat{\eta}_t} A_t^1 \rangle & \leq \frac{h_0(1 - \beta_1)}{10} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 + \frac{5}{2(1 - \beta_1)h_0} \|A_t^1\|^2 \\
 \mathbb{E} \langle \nabla f(\theta_t), +\sqrt{\hat{\eta}_t} A_t^2 \rangle & \leq \frac{h_0(1 - \beta_1)}{10} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 + \frac{5}{2(1 - \beta_1)h_0} \|A_t^2\|^2 \\
 \mathbb{E} \langle \nabla f(\theta_t), +\sqrt{\hat{\eta}_t} A_t^3 \rangle & \leq \frac{h_0(1 - \beta_1)}{10} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 + \frac{5}{2(1 - \beta_1)h_0} \|A_t^3\|^2 \\
 \mathbb{E} \langle \nabla f(\theta_t), +\sqrt{\hat{\eta}_t} A_t^4 \rangle & \leq \frac{h_0(1 - \beta_1)}{10} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 + \frac{5}{2(1 - \beta_1)h_0} \|A_t^4\|^2 \\
 \mathbb{E} \langle \nabla f(\theta_t), +\sqrt{\hat{\eta}_t} A_t^5 \rangle & \leq \frac{h_0(1 - \beta_1)}{10} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 + \frac{5}{2(1 - \beta_1)h_0} \|A_t^5\|^2
 \end{aligned}$$

890 On the other hand, it holds that

$$\begin{aligned}
 \|A_t^1\|^2 & \leq (1 - \beta_1)^2 \frac{4\alpha\beta G^4}{T\epsilon^3}, \|A_t^2\|^2 \leq \beta_1^2 \frac{\alpha\beta G^4}{T\beta_2\epsilon^3}, \|A_t^3\|^2 \leq \beta_1^2 \frac{\alpha\beta G^2}{(1 - \zeta)\epsilon T\beta_2}, \\
 \|A_t^4\|^2 & \leq \beta_1^2 \frac{\alpha\beta G^4}{T\beta_2}, \|A_t^5\|^2 \leq \beta_1^2 \frac{\alpha\beta G^2}{(1 - \zeta)\beta_2 T}
 \end{aligned}$$

□

897 Define $N_t = \frac{C_2}{T} + L \mathbb{E} \|\Delta_t\|^2$, where $C_2 = \frac{5}{2(1 - \beta_1)h_0} \left((1 - \beta_1)^2 \frac{4\alpha\beta G^4}{\epsilon^3} + \beta_1^2 \alpha\beta \left(\frac{G^4}{\beta_2\epsilon^3} + \frac{(1 + \epsilon)G^2}{(1 - \zeta)\epsilon\beta_2} + \frac{G^4}{\beta_2} \right) \right)$.

898 It holds that

$$M_t \leq \frac{\beta_1 \alpha_t}{\sqrt{\beta_2} \alpha_{t-1}} M_{t-1} + N_t - \frac{1 - \beta_1}{2} \hat{\eta}_t \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \leq \sum_{i=1}^t \sqrt{\zeta^{t-i}} N_i - \frac{1 - \beta_1}{2} h_0 \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2$$

903 Thus, by summing t from 1 to T , it holds that

$$\begin{aligned}
 \sum_{t=1}^T M_t & \leq \sum_{t=1}^T \sum_{i=1}^t \sqrt{\zeta^{t-i}} N_i - \frac{(1 - \beta_1)h_0}{2} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \\
 & \leq \frac{1}{1 - \sqrt{\zeta}} \sum_{t=1}^T N_t - \frac{(1 - \beta_1)h_0}{2} \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \\
 & \leq \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2\alpha^2}{(1 - \sqrt{\zeta})\epsilon} - \frac{(1 - \beta_1)h_0}{2} \sum_{t=1}^T \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2.
 \end{aligned}$$

914 **Lemma A.10** Let τ be randomly chosen from $\{1, 2, \dots, T\}$ with equal probabilities $p_\tau = \frac{1}{T}$. We
915 have the following estimate:

$$\mathbb{E} [\|\nabla f(\theta_\tau)\|^2] \leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha\sqrt{T}} \mathbb{E} \left[\sum_{t=1}^T \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \right].$$

918 **Proof:** Note that $\|\hat{v}_t\|_1 = \beta_2 \|v_{t-1}\|_1 + (1 - \beta_2) \|\sigma_t\|^2$ and $\|\hat{g}_t\| \leq G$. It is straightforward to prove
 919 $\|v_t\|_1 \leq G^2$. Hence, we have $\|\hat{v}_t + \epsilon\|_1 \leq G^2 + \epsilon d$.
 920

921 Utilizing this inequality, we have

$$\begin{aligned} 922 \|\nabla f(\theta_t)\|^2 &= \frac{\|\nabla f(\theta_t)\|^2}{\sqrt{\|\hat{v}_t + \epsilon\|_1}} \sqrt{\|\hat{v}_t + \epsilon\|_1} = \sqrt{\|\hat{v}_t + \epsilon\|_1} \sum_{k=1}^d \frac{|\nabla_k f(\theta_t)|^2}{\sqrt{\sum_{l=1}^d \hat{v}_{t,l} + \epsilon}} \\ 923 &\leq \sqrt{\|\hat{v}_t + \epsilon\|_1} \alpha_t^{-1} \sum_{k=1}^d \frac{\alpha_t}{\sqrt{\hat{v}_{t,k} + \epsilon}} |\nabla_k f(\theta_t)|^2 = \sqrt{\|\hat{v}_t + \epsilon\|_1} \alpha_t^{-1} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \\ 924 &\leq \sqrt{G^2 + \epsilon d} \alpha_t^{-1} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha_T} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2. \\ 925 \end{aligned}$$

931 Then, by using the definition of θ_τ , we obtain

$$\begin{aligned} 932 \mathbb{E} [\|\nabla f(\theta_\tau)\|^2] &= \frac{1}{T} \sum_{t=1}^T \mathbb{E} [\|\nabla f(\theta_t)\|^2] \leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha \sqrt{T}} \mathbb{E} \left[\sum_{t=1}^T \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \right]. \\ 933 \end{aligned}$$

934 Thus, the desired result is obtained. \square
 935

937 **Theorem A.11** Let $\{\theta_t\}$ be a sequence generated by AdaGC for initial values θ_1 and $m_0 = v_0 = 0$. Assumptions A.1 to A.4 hold. With the hyperparameters $\alpha_t = \alpha/\sqrt{T}$, $\beta_2 = 1 - \beta/T$ and
 938 $\zeta = \beta_1^2/\beta_2 < 1$. Let τ be randomly chosen from $\{1, 2, \dots, T\}$ with equal probabilities. We have
 939

$$\begin{aligned} 940 \mathbb{E} \|\nabla f(\theta_\tau)\|^2 &\leq \frac{C}{\sqrt{T}} \\ 941 \text{where } C &= \frac{\sqrt{G^2 + \epsilon d}}{\alpha} \left(f(\theta_1) - \underline{f} + \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2 \alpha^2}{(1 - \sqrt{\zeta}) \epsilon} \right) \quad \text{and} \quad C_2 = \\ 942 &\frac{5}{2(1 - \beta_1) h_0} \left((1 - \beta_1)^2 \frac{4\alpha\beta G^4}{\epsilon^3} + \beta_1^2 \alpha \beta \left(\frac{G^4}{\beta_2 \epsilon^3} + \frac{(1 + \epsilon) G^2}{(1 - \zeta) \epsilon \beta_2} + \frac{G^4}{\beta_2} \right) \right). \\ 943 \end{aligned}$$

947 **Proof:** With the Lipschitz continuity condition of f , it holds that
 948

$$\begin{aligned} 949 \mathbb{E} f(\theta_{t+1}) &\leq \mathbb{E} \left[f(\theta_t) + \langle \nabla f(\theta_t), \Delta_t \rangle + \frac{L}{2} \|\Delta_t\|^2 \right] \leq \mathbb{E} f(\theta_t) + M_t. \\ 950 \end{aligned}$$

952 By summing t from 1 to T , it holds that
 953

$$\begin{aligned} 954 \mathbb{E} f(\theta_{T+1}) &\leq f(\theta_1) + \sum_{t=1}^T M_t \leq f(\theta_1) + \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2 \alpha^2}{(1 - \sqrt{\zeta}) \epsilon} - \frac{(1 - \beta_1) h_0}{2} \sum_{t=1}^T \mathbb{E} \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \\ 955 \end{aligned}$$

957 Thus, it holds that
 958

$$\begin{aligned} 959 \mathbb{E} [\|\nabla f(\theta_\tau)\|^2] &\leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha \sqrt{T}} \mathbb{E} \left[\sum_{t=1}^T \|\nabla f(\theta_t)\|_{\hat{\eta}_t}^2 \right] \\ 960 &\leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha \sqrt{T}} \left(f(\theta_1) - \mathbb{E}[f(\theta_{T+1})] + \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2 \alpha^2}{(1 - \sqrt{\zeta}) \epsilon} \right) \\ 961 &\leq \frac{\sqrt{G^2 + \epsilon d}}{\alpha \sqrt{T}} \left(f(\theta_1) - \underline{f} + \frac{C_2}{1 - \sqrt{\zeta}} + \frac{LG^2 \alpha^2}{(1 - \sqrt{\zeta}) \epsilon} \right) \\ 962 \end{aligned}$$

\square

963
 964
 965
 966
 967
 968
 969
 970
 971

972 B PSEUDOCODE OF ADAMW WITH ADAGC
973

974 Algorithm 1 presents the pseudocode of AdamW integrated with AdaGC. For clearer exposition, we
975 highlight different components according to their origins: **orange** indicates the procedures inher-
976 ited from the original GlobalGC algorithm, while **blue** is used to denote the new contributions and
977 modifications introduced by AdaGC. Specifically, the GlobalGC steps include the global gradient
978 clipping implemented via the scaling factor and the use of the clipped gradient in subsequent mo-
979 ments. The AdaGC components mainly comprise adaptive per-parameter clipping, the initialization
980 and update of the adaptive threshold $\gamma_{t,i}$, and the warm-up strategy governed by T_{start} .

981
982 **Algorithm 1:** AdamW with AdaGC

983 1: **given:** $\{\eta_t\}_{t=1}^T, \lambda_w, \epsilon, \beta_1, \beta_2, \beta \in [0, 1], \lambda_{abs}, T_{start}$
 984 2: **initialize:** $\theta_0, m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$
 985 3: **repeat**
 986 4: **compute** $\mathbf{g}_t = \nabla_{\theta} f_t(\theta_{t-1}, X_t)$
 987 5: **if** $t < T_{start}$ **then**
 988 6: $h_t = \min \left\{ \frac{\lambda_{abs}}{\|\mathbf{g}_t\|}, 1.0 \right\}$
 989 7: $\widehat{\mathbf{g}}_t = h_t \cdot \mathbf{g}_t$
 990 8: **for** $i \in |\theta|$ **do**
 991 9: $\gamma_{t,i} = \min \{\gamma_{t-1,i}, \|\widehat{\mathbf{g}}_{t,i}\|\}, \gamma_{0,i} = \|\widehat{\mathbf{g}}_{1,i}\|$
 992 10: **end for**
 993 11: **else**
 994 12: **for** $i \in |\theta|$ **do**
 995 13: $h_{t,i} = \min \left\{ \lambda_{rel} \frac{\gamma_{t-1,i}}{\|\mathbf{g}_{t,i}\|}, 1.0 \right\}$
 996 14: $\widehat{\mathbf{g}}_{t,i} = h_{t,i} \cdot \mathbf{g}_{t,i}$
 997 15: $\gamma_{t,i} = \beta \gamma_{t-1,i} + (1 - \beta) \|\widehat{\mathbf{g}}_{t,i}\|$
 998 16: **end for**
 999 17: **end if**
 1000 18: $\mathbf{m}_t = \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \widehat{\mathbf{g}}_t$
 1001 19: $\mathbf{v}_t = \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \widehat{\mathbf{g}}_t^2$
 1002 20: $\widehat{\mathbf{m}}_t = \mathbf{m}_t / (1 - \beta_1^t), \widehat{\mathbf{v}}_t = \mathbf{v}_t / (1 - \beta_2^t)$
 1003 21: $\theta_t = \theta_{t-1} - \eta_t \lambda_w \theta_{t-1} - \eta_t \widehat{\mathbf{m}}_t / (\sqrt{\widehat{\mathbf{v}}_t} + \epsilon)$
 22: **until** θ_t not converge

1005
1006 C HYPER-PARAMETERS
10071008 C.1 MODEL HYPER-PARAMETERS
1009

1010 Table 8 summarizes the model hyper-parameters used for all experiments. For each model, we
1011 report the core architecture settings (such as number of layers, hidden dimension, attention heads,
1012 and feedforward dimension), MoE-related configurations, and main optimization hyper-parameters
1013 (including learning rate, warmup, weight decay, and Adam parameters). Clipping thresholds λ_{abs} ,
1014 λ_{rel} , and momentum β are also listed, in correspondence with the techniques discussed in the main
1015 text. All experiments use a batch size and sequence length as shown, and we employ bfloat16
1016 precision for most models except ERNIE, which uses float8. The symbol ‘-’ indicates settings not
1017 applicable to a specific architecture.

1018
1019 C.2 CLIPPING HYPER-PARAMETERS

1020 For other clipping methods, we primarily followed the recommended default settings from prior
1021 work, and performed limited tuning only when necessary to ensure a fair comparison.

1022 Specifically:

1023
1024 • **GlobalGC:** We used the commonly adopted global clipping threshold $\lambda_{abs} = 1.0$ in large-
1025 scale pretraining.

1026 Table 8: Hyper-parameters used in our LLMs experiments. λ_{abs} represents the absolute global clip-
 1027 ping threshold of GlobalGC. λ_{rel} and β represent the relative clipping threshold and the momentum
 1028 of our AdaGC, respectively. The symbol ‘-’ indicates that the parameter is not applicable.

Model	LLaMA-1.3B	LLaMA-7B	ERNIE 10B-A1.4B	Mixtral 8x1B
Precision	bfloat16	bfloat16	float8	bfloat16
Num layers	24	32	25	24
Hidden dim size	2048	4096	2560	2048
FFN dim size	5461	11008	1024	5632
Num attention heads	32	32	20	32
Num key value heads	32	32	4	4
Attention bias	✗	✗	✗	✗
Num shared experts	-	-	1	0
Num router experts	-	-	48	8
Num experts per token	-	-	3	2
Sequence length	2048	2048	4096	2048
Batch size	2048	2048	4096	512
Iterations	9000	9000	21000	36000
Learning rate	3.0×10^{-4}	3.0×10^{-4}	3.0×10^{-4}	3.0×10^{-4}
LR decay	cosine	cosine	wsd	cosine
Warmup iterations	2000	2000	2000	500
Weight decay	0.1	0.1	0.1	0.1
Adam β_1	0.90	0.90	0.90	0.90
Adam β_2	0.95	0.95	0.95	0.999
λ_{abs}	1.0	1.0	1.0	1.0
λ_{rel}	1.04	1.04	1.04	1.04
β	0.99	0.99	0.99	0.99

- **ClipByValue**: Following the SPAM (Huang et al., 2025) setting, we set the clipping threshold to $\lambda_{abs} = 1e - 3$.
- **AGC**: We performed small-range tuning over $\lambda_{rel} \in \{1e - 2, 1e - 3, 1e - 4\}$ to find the best setting.
- **Clippy**: We tuned over $\lambda_{abs} \in \{0.1, 0.3, 0.5\}$ and $\lambda_{rel} \in \{1e - 2, 1e - 3, 1e - 4\}$ to select the optimal combination.
- **SPAM**: We adopted the default hyperparameters recommended for standard pretraining in the original paper, which were reported to perform well across diverse settings. Specifically, we set the interval to $\Delta T = 500$, the threshold to $\theta = 5000$, and the warmup steps to $N = 150$.

1069 The final hyper-parameters used for other clipping methods are summarized in Table 9.

1071 Table 9: Hyper-parameters for other clipping methods.

Method	Hyperparameters
GlobalGC	$\lambda_{abs} = 1.0$
ClipByValue	$\lambda_{abs} = 1e - 3$
AGC	$\lambda_{rel} = 1e - 3$
Clippy	$\lambda_{rel} = 1e - 3$
SPAM	$\Delta T = 500, \theta = 5000, N = 150$

1080 D EXPERIMENTAL DETAILS FOR CLIP

1081
 1082 To further investigate the optimizer compatibility of AdaGC, we evaluated its effect on large-scale
 1083 vision-language model pre-training, focusing on the CLIP ViT-Base model (Radford et al., 2021)
 1084 with the Lion optimizer (Chen et al., 2024). The model comprises 151 million parameters and is
 1085 trained on the LAION-400M (Schuhmann et al., 2021) dataset. Training is conducted for 20,000
 1086 steps, covering 320M image-text pairs.

1087 The key training hyper-parameters are as follows: a learning rate of 0.002, weight decay of 0.2, and
 1088 batch size of 32,768. We employ patch-dropout with a drop rate of 0.5 (Li et al., 2023), following re-
 1089 cent best practices (Wortsman et al., 2023). The learning rate is linearly warmed up for the first 5,000
 1090 steps (Goyal et al., 2017), and subsequently decayed according to a cosine schedule (Loshchilov &
 1091 Hutter, 2016).

1092 Following pre-training, we report downstream zero-shot evaluation results on the ImageNet (Rus-
 1093 sakovsky et al., 2015) validation set. The results are shown in Figure 5 in the main text.

1096 E MORE EVALUATION RESULTS

1098 E.1 RESULTS ON DOWNSTREAM BENCHMARKS

1100 The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard bench-
 1101 marks are presented in Table 10.

1103 Table 10: The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on stan-
 1104 dard benchmarks. The best scores in each column are **bolded**. HellaSw. = HellaSwag, W.G. =
 1105 WinoGrande.

Model	Method	ARC-E acc_norm	ARC-C acc_norm	BoolQ acc	HellaSw. acc_norm	OBQA acc_norm	PIQA acc_norm	W.G. acc	MMLU acc	SciQ acc_norm	Avg.
Llama-2 1.3B	GlobalGC	47.26	25.60	50.31	46.44	32.20	69.64	52.33	25.07	77.80	47.41
	ClipByValue	47.10	25.77	56.54	43.97	30.00	68.88	52.96	26.09	77.20	47.61
	Clippy	46.55	25.85	49.76	45.71	30.00	70.02	53.20	25.69	77.70	47.16
	AdaGC	46.04	26.19	49.72	47.51	31.00	69.70	54.38	24.98	78.50	47.56
Llama-2 7B	GlobalGC	55.81	28.58	60.70	56.54	33.00	73.72	56.75	25.51	83.20	52.64
	ClipByValue	51.94	26.88	57.55	53.36	32.40	72.31	54.14	26.63	81.60	50.75
	AGC	52.95	28.67	56.15	55.69	35.40	73.07	56.43	26.88	82.80	52.00
	Clippy	52.86	29.10	56.48	53.76	31.80	73.07	55.72	26.03	82.60	51.27
Mixtral 8x1B	AdaGC	56.86	29.61	59.36	57.89	33.60	73.99	57.62	26.46	85.90	53.47
	GlobalGC	50.34	27.39	58.81	52.96	34.20	71.16	54.06	25.37	79.90	50.47
	AdaGC	53.83	28.42	58.69	55.66	33.80	73.07	54.14	25.12	81.80	51.61

1118 E.2 RESULTS OF OTHER BASELINE METHODS

1120 Table 11: The Zero-Shot evaluation results of Llama-2 1.3B/7B models on standard benchmarks.

Model	Method	ARC-E acc_norm	ARC-C acc_norm	BoolQ acc	HellaSw. acc_norm	OBQA acc_norm	PIQA acc_norm	W.G. acc	MMLU acc	SciQ acc_norm	Avg.
Llama-2 1.3B	WeSaR-GlobalGC	43.56	25.17	59.94	45.08	30.00	70.29	52.96	22.90	65.80	46.19
	SPAM	42.05	24.83	59.60	42.82	30.00	69.31	52.17	23.02	66.40	45.58
	ScaledEmbed-GlobalGC	42.21	25.51	59.66	45.50	31.80	70.02	53.28	23.22	65.20	46.27
	AdaGC	42.09	25.51	58.01	47.29	30.40	69.70	52.33	22.98	68.70	46.33
Llama-2 7B	WeSaR-GlobalGC	49.75	27.22	56.12	55.38	33.80	73.39	56.27	23.02	71.40	49.59
	SPAM	48.53	25.77	60.34	51.89	32.60	72.03	54.54	22.95	71.00	48.85
	ScaledEmbed-GlobalGC	48.57	26.71	60.89	54.32	32.60	72.25	55.33	23.66	70.50	49.42
	AdaGC	49.58	28.92	57.28	57.94	32.80	74.32	58.09	23.62	76.60	51.01

1130 In addition to the clipping-based baselines discussed in the main text, we also compare AdaGC with
 1131 several recent methods that aim to improve the stability and generalization of large language model
 1132 (LLM) training, including SPAM (Huang et al., 2025), Scaled Embed (Takase et al., 2023), and
 1133 WeSaR (Nishida et al., 2024). The detailed results under the zero-shot setting and spike score are
 summarized in Table 11 and 12. The training dynamics are shown in Figures 8 and 9.

1134

Table 12: Comparison of spike scores for various models under different methods.

1135

Model	Llama-2 1.3B				Llama-2 7B			
	WeSaR-GlobalGC	SPAM	ScaledEmbed-GlobalGC	AdaGC	WeSaR-GlobalGC	SPAM	ScaledEmbed-GlobalGC	AdaGC
Total Steps	9K	9K	9K	9K	9K	9K	9K	9K
Num Spikes	2	0	10	0	1	3	8	0
Spike Score (%)	0.0222	0.0000	0.1111	0.0000	0.0111	0.0333	0.0889	0.0000

1140

1141

Among these methods, SPAM is designed to stabilize training by adjusting the optimizer’s behavior, while Scaled Embed and WeSaR focus on initialization or embedding scaling strategies to suppress loss spikes. Our experiments show that, although some of these methods can partly mitigate instability or improve certain metrics, AdaGC generally achieves higher stability and better final performance across model scales. Notably, while WeSaR is also effective at suppressing loss spikes, its reliance on special parameter initialization limits its applicability to from-scratch training. In contrast, AdaGC works reliably under both from-scratch and resumed training regimes, providing stronger flexibility. Overall, these results demonstrate AdaGC’s superior robustness and generalization compared to other non-clipping baselines.

1149

1150

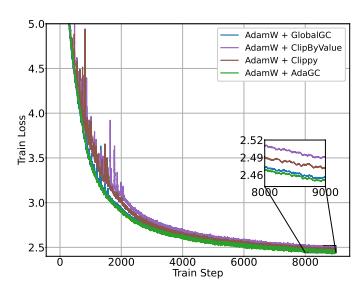
F MORE VISUALIZATION RESULTS

1151

F.1 TRAINING DYNAMICS

1152

1153



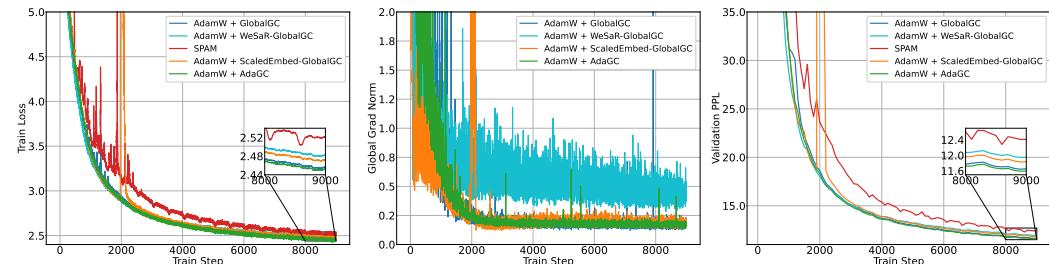
1164

1165

Figure 7: Llama-2 1.3B training dynamics of clipping methods.

1166

1167



1176

1177

Figure 8: Llama-2 1.3B training dynamics of other baseline methods.

1178

1179

F.2 OPTIMIZER STATE DYNAMICS

1180

1181

1182

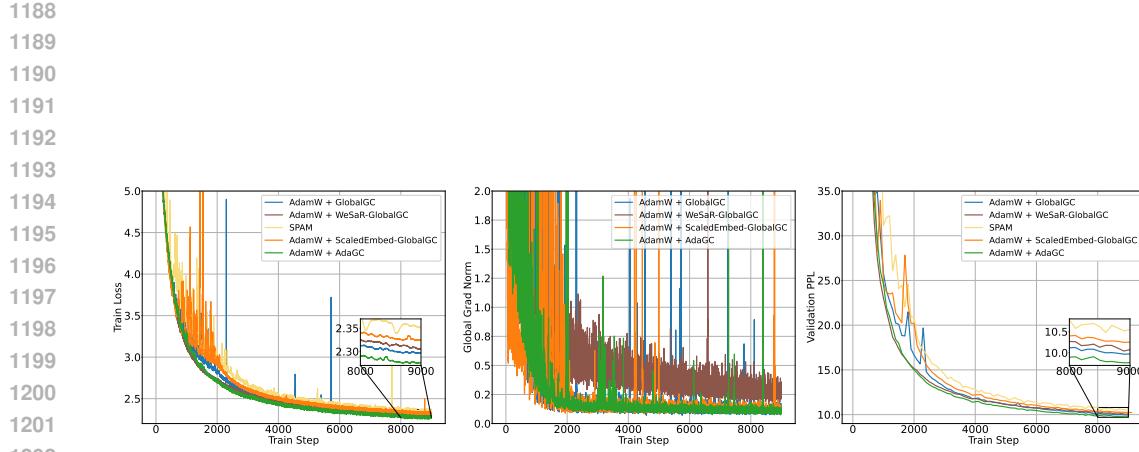
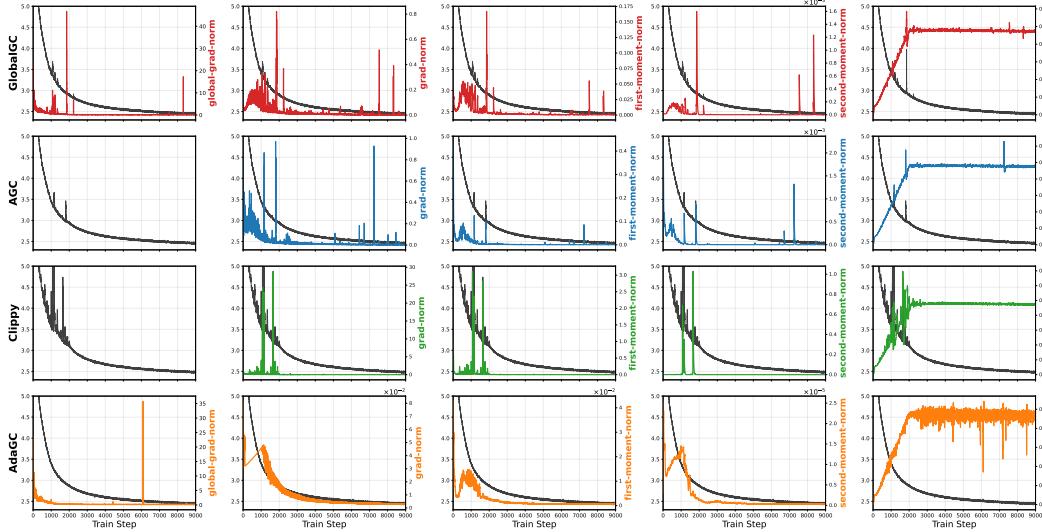
1183

1184

1185

1186

1187



1233 Figure 10: Visualization of the gradient norm, first-moment norm, second-moment norm, update
1234 norm, loss, and global gradient norm for the embedding of Llama-2 1.3B. Each row represents a
1235 different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the
1236 fourth is our AdaGC. The black curve in each plot shows the loss trajectory.
1237
1238
1239
1240
1241

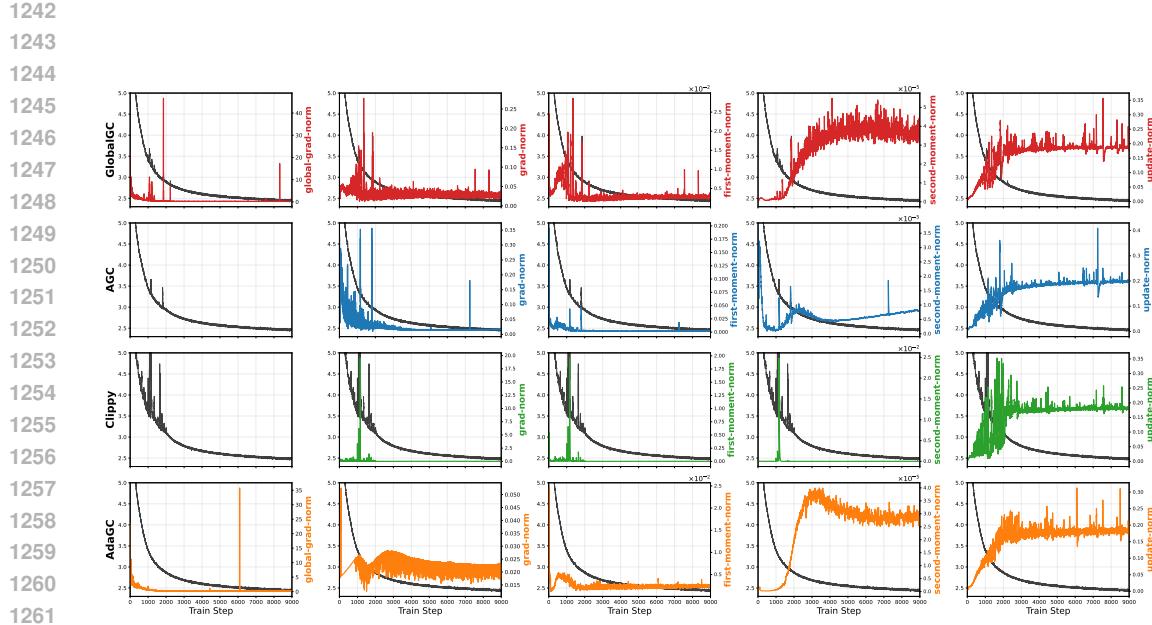
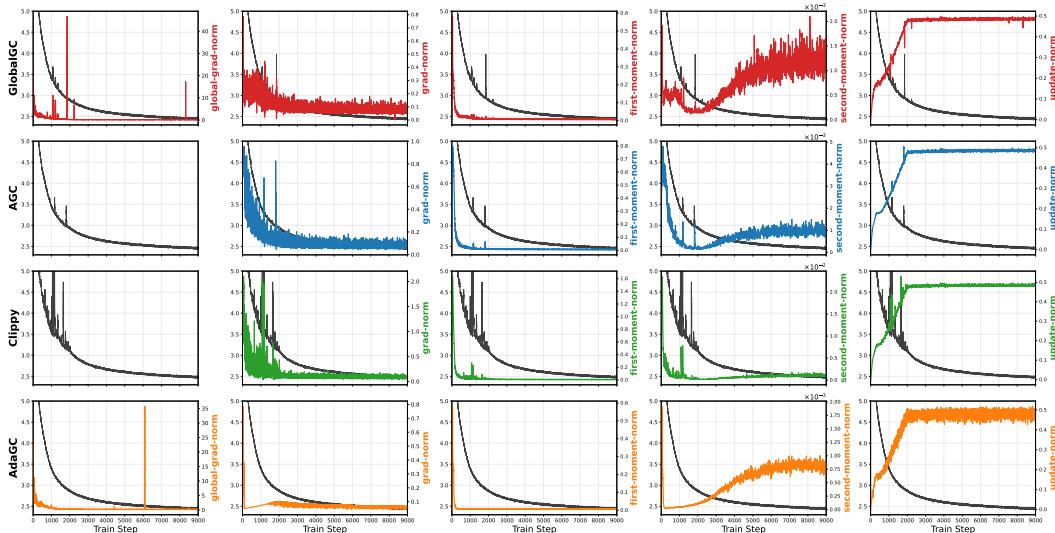


Figure 11: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the encoder_layers_3_self_attention_query_key_value of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.



1290
1291
1292
1293
1294
1295

Figure 12: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the LMHead of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

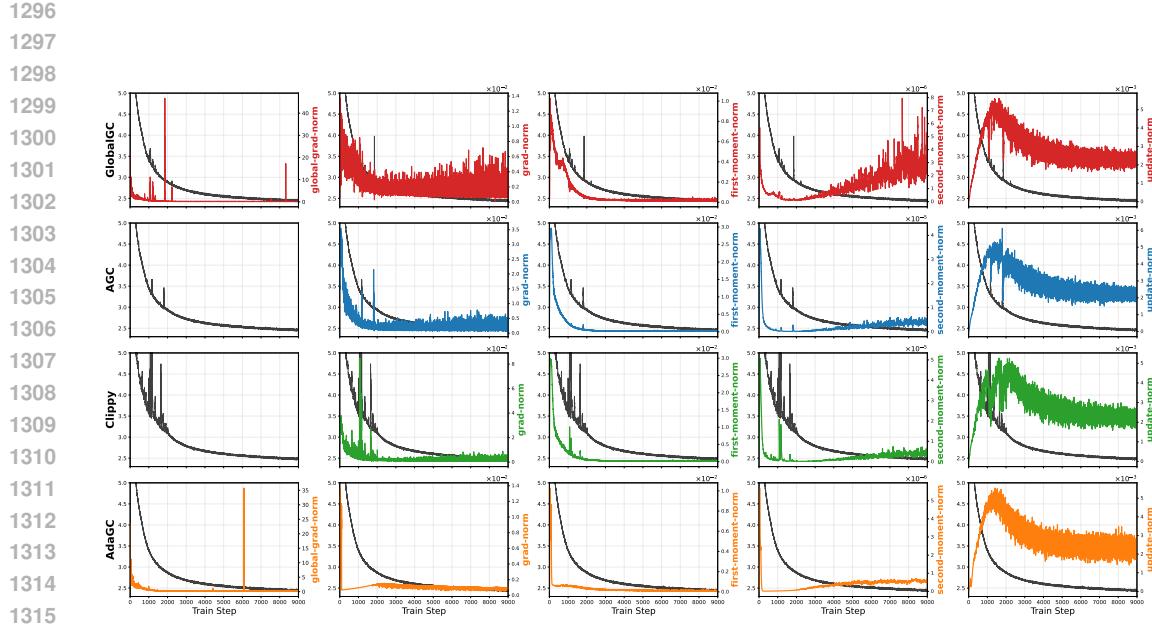


Figure 13: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the `encoder_final_layernorm` of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

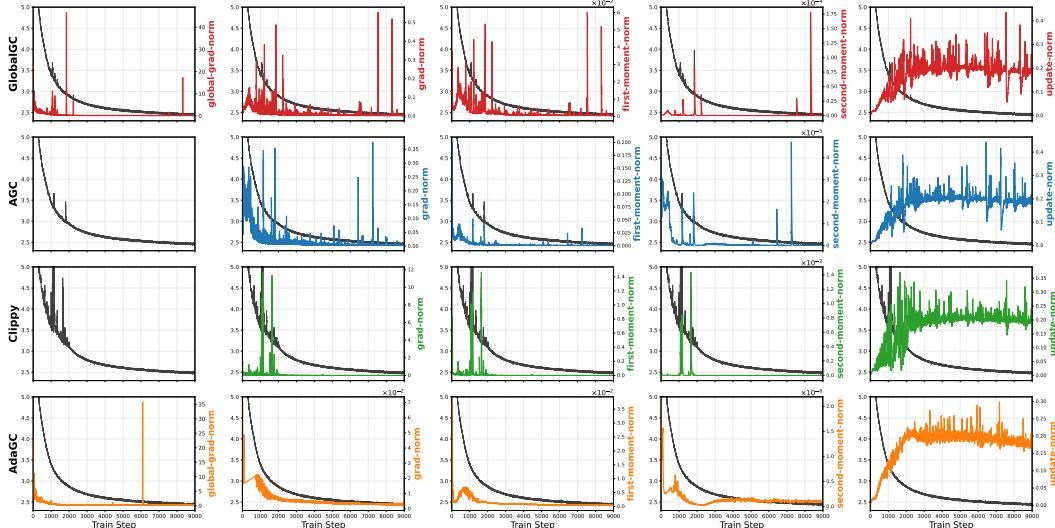


Figure 14: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the `encoder_layers_0_self_attention_query_key_value` of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

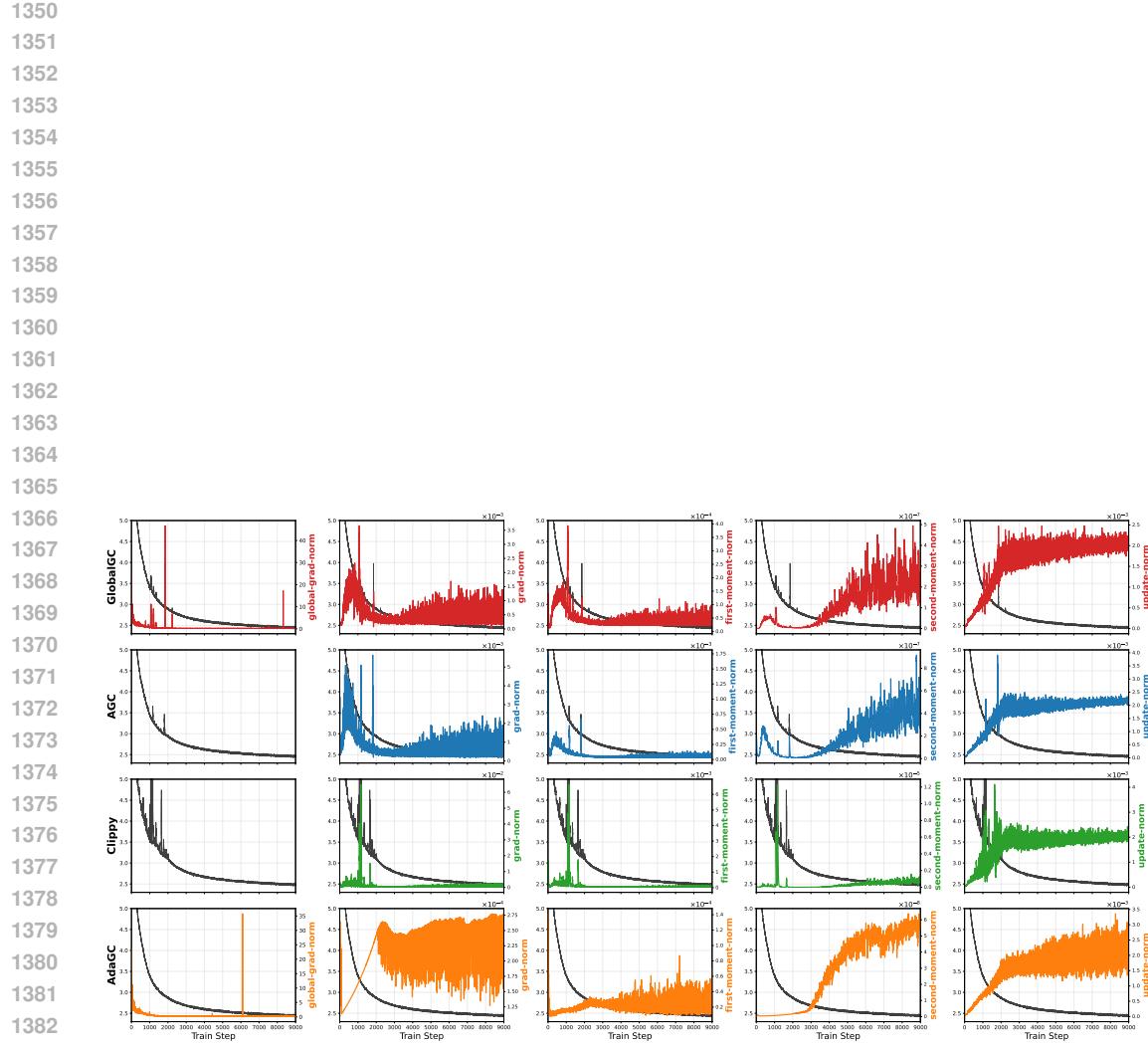


Figure 15: Visualization of the gradient norm, first-moment norm, second-moment norm, update norm, loss, and global gradient norm for the `encoder_layers_23.input_layernorm` of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.