Under review as a conference paper at ICLR 2026

ADAGC: IMPROVING TRAINING STABILITY FOR
LARGE LANGUAGE MODEL PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Loss spikes remain a persistent obstacle in large-scale language model pretrain-
ing. Empirically, such spikes can be triggered by a mixture of factors, includ-
ing data outliers, hardware or transient computational faults, numerical precision
issues, and hyperparameter settings. Regardless of the underlying cause, these
spikes manifest as unstable optimizer updates, as abnormal gradients contami-
nate both first- and second-moment states. In this paper, we do not attempt to
identify the precise root causes. Instead, we adopt a gradient-centric remedy and
propose AdaGC, an adaptive, per-tensor gradient clipping scheme that prevents
such contamination by bounding gradient norms relative to a tensor-wise EMA of
their historical (clipped) values. AdaGC is optimizer-agnostic, requires negligible
memory, and reduces communication costs compared to GlobalGC, particularly
under hybrid parallel distributed training. We prove that Adam with AdaGC pre-
serves the standard non-convex convergence rate. On Llama-2 7B, Mixtral 8x1B,
and ERNIE 10B-A1.4B models, AdaGC robustly eliminates training instabilities,
reducing the spike score to zero for all models, and improves downstream accu-
racy compared to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. Fur-
thermore, AdaGC composes well with Muon and Lion optimizers, consistently
yielding higher average accuracy and zero spike scores.

1 INTRODUCTION

[— mwW + iC (Ir=:) © [— mw 4+ (RMSNorm FP32) © —— AdamW +
3.8 \ jamW + C i) 3.8 5.5 W+ (RMSNorm BF16) tam +
59
55 35 50
32 432 45| 440
\ z <
30l 1 £3.0 4.0 §
L} s 23,0
PR T2 Fas e
2s \'\ | 25| 3.0 20|
M’*‘-ﬂ-ﬂm\.w,m 2.2 2.5 p—
22 1
2. 2. 2. 2.
g1y g1y ers cis
H 2 s ‘ s
1o &1 1 E1o
}‘ \] =l L G 18 M i
Wl NN ‘ LA J Lot \m“ m\‘ ‘H
o 0 5000 10000]5000 ZODDO 25000 30000 35000 o 0 10000 20000 30000 40000 50000 6000 o ZOUD 4000 6000 8000]DOO o 252500 253000 253500 254000 254500 255000
rrrrrr Tan o i sien
(a) Mixtral (b) ERNIE (c) ERNIE (d) ERNIE

Figure 1: Reproduced cases of loss spikes and mitigation via resuming. Loss spikes are triggered
by (a) increasing (35 or (b) reducing € in AdamW, (c¢) using lower-precision RMSNorm, even under
global gradient clipping, and (d) are resolved by resuming due to stochasticity in FlashAttention
backward passes.

The rapid scaling of large language models (LLM) has introduced new challenges in pretraining
stability, often manifesting as abrupt loss spikes or transient divergences across a wide range of
model architectures and data scales (Chowdhery et al., [2023; |[Touvron et al., 2023; [Liu et al.| [2024;
Team et al .| [2025; Baidu-ERNIE-Team, 2025)). Despite extensive empirical studies, the fundamental
causes of these instabilities remain elusive. Recent research, alongside our own analyses, indicates
that loss spikes can arise from a variety of sources, including: (i) data quality issues (Chowdhery
et al., 2023); (ii) hardware or transient computational faults (Sul 2025); (iii) variations in numer-
ical precision (for example, FP32 typically offers greater robustness than BF16, whereas FP8 can
sometimes enhance stability by suppressing outlier values via implicit quantization (Han} 2024} |Liu
et al., 2024)); and (iv) the selection of optimizer and layer normalization hyperparameters, such as

Under review as a conference paper at ICLR 2026

the € parameter in RMSNorm or AdamW, and 5 in AdamW (Ma et al., [2021} |Cattaneo & Shigida,
2025}, Bai et al., [2025). For instance, we observe that increasing (3> or decreasing € in AdamW can
trigger loss spikes, whereas increasing the precision of RMSNorm from BF16 to FP32 significantly
improves stability. Figure[I] presents several representative cases we have reproduced.

Although the upstream causes of instability are diverse and often subtle, these events consistently
converge at the optimizer level, manifesting as abnormal gradients. Such outlier gradients are in-
corporated into the optimizer’s first- and second-moment estimates, thereby corrupting parameter
updates and propagating instability through subsequent training. Notably, we find that even resum-
ing interrupted training (while keeping the random seed and data unchanged) can mitigate a loss
spike, merely due to the stochastic nature of d@, dK, and dV in FlashAttention (Daol [2023)) (see
Figure . This observation further suggests that, in certain model states, even minute numerical
differences can trigger a loss spike, with gradient outliers playing a critical role in both the initiation
and propagation of instabilities during optimizer state updates.

While the slight stochasticity introduced by FlashAttention can sometimes circumvent a loss spike,
repeatedly interrupting and resuming training imposes substantial computational overhead. Given
that these instabilities stem from diverse upstream causes but ultimately converge at the optimizer
level, our work does not attempt to identify the precise root causes. Instead, we adopt a gradient-
centric perspective: irrespective of the initial trigger, loss spikes consistently arise when outlier
gradients contaminate the optimizer states. Therefore, by preventing such gradients from entering
the first- and second-moment accumulators, we provide a unified and effective strategy to mitigate
training instability.

A standard mitigation strategy is global gradient clipping (GlobalGC), which bounds the global /5
norm of the aggregated gradient. However, this approach is fundamentally mismatched to modern
large-scale pretraining in two key respects: (1) Temporal mismatch: The optimal global clipping
threshold typically decreases over the course of training; a fixed threshold risks under-clipping in
later phases. (2) Spatial mismatch: Gradient statistics and rare spikes vary asynchronously across
different parameter tensors, making a single global threshold insufficient—protecting one tensor
may under-serve or over-constrain others.

To address these challenges, we introduce Adaptive Gradient Clipping based on Local Gradient
Norm (AdaGC): a simple, per-tensor clipping rule that leverages an EMA of each tensor’s historical
gradient norm as a reference. Each tensor’s gradient is clipped relative to its own EMA, preventing
transient outliers from contaminating the first- and second-moment accumulators and, ultimately,
the parameter updates. A brief warm-up period applies global clipping and initializes the EMA to
avoid early overestimation. AdaGC is optimizer-agnostic and can be seamlessly integrated with
AdamW, Lion, and Muon. Our main contributions are as follows:

* A unified, gradient-centric perspective: We clarify how loss spikes universally propagate
via abnormal gradients polluting optimizer states, irrespective of their origin, motivating
intervention at the gradient level prior to moving-average accumulation.

* An adaptive, per-tensor clipping rule: By tracking each tensor’s gradient norm statistics
with an EMA, AdaGC provides both temporal adaptivity and spatial specificity, suppress-
ing outliers while minimally disturbing typical learning dynamics.

* System efficiency and theoretical guarantees: We analyze computational and commu-
nication overhead, showing that AdaGC reduces communication relative to GlobalGC un-
der hybrid parallel distributed training, and we prove that Adam+AdaGC maintains an
O(1/+/T) convergence rate under standard non-convex conditions.

¢ Empirical validation at scale: On Llama-2 7B, Mixtral 8 x 1B, and ERNIE 10B-A1.4B
models, AdaGC robustly eliminates training instabilities and improves accuracy compared
to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. The method is similarly
effective with AdamW, Lion, and Muon optimizers.

2 RELATED WORK

Stability in large-scale pretraining: Dozens of approaches address instability during large-model
pretraining, including: architectural advances (Pre-LN Xiong et al| (2020), RMSNorm (Zhang &
Sennrich, 2019)), careful initialization (Nguyen & Salazar, 2019;Takase et al., 2023} |Nishida et al.,

Under review as a conference paper at ICLR 2026

Table 1: Comparison of major gradient/update clipping methods for training stability in pretraining.
Here, 0, denotes the model parameters, g; the gradients, A, the optimizer update, v; the second
momentum, 7); the learning rate, A,ps the absolute threshould, and \,.; the relative threshold.

Method | Algorithm Gradient Update Granularity Threshold Type
GlobalGC (Pascanu et al.|[2013) ‘ min{1.0,)\absm} v X Global Fixed constant
ClipByValue ‘ clamp(—Aabs, Aabs) v X Element Fixed constant
AGC (Brock et al.|2021) ‘ min{1.0, \yes ‘}th } X v Unit Weight {5 norm
Clippy (Tang et al.|{2023) ‘ min{1.0, min %)} X v Tensor Weight /o, norm
SPAM (Huang et al.|[2025) ‘ sign(ge) - vV Arervt v X Element Local (vector) variance
LAMB (You et al.|[2019) \ oﬁ“;"“‘” X v Tensor Weight £5 norm
At—1,i
AdaGC (ours) mfn{l 0 Arer g d v X Tensor EMA of gradient norm
Vi = Bye—14 + (L= B)llgeill

2024]), auxiliary loss terms (Max-z loss (Yang et al.,|2023))). Recent work OLMo et al.| (2024) also
explores combining multiple stabilization strategies. These measures improve average stability but
do not directly prevent abnormal gradients from corrupting optimizer states.

Gradient/Update Clipping: Gradient and update clipping achieve stability by limiting the mag-
nitude of gradients and parameter updates, preventing excessively large weight updates. Global
gradient clipping (Pascanu et al., 2013)) is prevalent, with innovative approaches like AGC (Brock
et al.,|2021) and Clippy (Tang et al.,|2023)), which use model weights to adjust the clipping threshold.
The SPAM (Huang et al., 2025) method stabilizes the model training process by introducing a mo-
mentum reset mechanism and an element-wise gradient clipping strategy based on second-moment
estimation. Alternatives like Adafactor (Shazeer & Stern, [2018)), StableAdamW (Wortsman et al.,
2023), and LAMB (You et al., [2019) offer update clipping techniques better suited for stability
training of large-scale models. Nonetheless, a significant number of loss spikes still occur during
the training of large language models, even with the application of these methodologies. Due to our
gradient-centric perspective, we focus our discussion on clipping-based methods. These methods
fall into two categories: value-based approaches, which truncate individual gradient components
exceeding a predefined limit, and norm-based approaches, which rescale the entire gradient vector
only when its overall magnitude exceeds a threshold. AdaGC belongs to the norm-based category,
leveraging adaptive per-tensor norm thresholds to stabilize training. For a comparative summary,
see Table[1l

3 MOTIVATION: FROM ROOT-CAUSE DIVERSITY TO A UNIFIED
GRADIENT-CENTRIC REMEDY

Through a series of experiments (see Figure[T|and Figure[2), we observe that loss spikes encountered
under diverse settings consistently coincide with abrupt fluctuations in the gradient norm. Compar-
ative analyses further reveal limitations of existing methods such as GlobalGC, AGC, and Clippy:
GlobalGC'’s static global threshold cannot detect or suppress localized abnormal gradients, allowing
outliers to contaminate optimizer states and trigger instability. AGC and Clippy focus on controlling
parameter updates, leaving internal moments vulnerable to large gradient outliers.

As discussed in the Introduction (Section [I), loss spikes typically result from a combination of mul-
tiple factors. While the specific triggers may vary, these loss spikes share a common manifestation:
abnormally large gradients are incorporated into the optimizer’s moment estimates, leading to un-
stable updates. Based on these analyses, we propose a unified remedy: regardless of the root cause,
instability in large-scale training is best addressed via gradient-centric clipping. Specifically, only
localized and adaptive clipping, applied before gradients are integrated into the optimizer’s moment
estimates, can effectively constrain the influence of outlier gradients. We thus distill two key prin-
ciples for loss spike mitigation: (/) Locality: clip gradients for each parameter tensor individually,
avoiding the insensitivity of a global threshold; (2) Adaptivity: dynamically adjust each tensor’s
clipping threshold, e.g., using an EMA of its recent gradient norms.

Under review as a conference paper at ICLR 2026

GlobalGC
" update-norm

global-grad-norm
second-moment-norm

AGC

grad-nerm
second-moment-norm
pdate-norm

Clippy
grad-norm

second-moment-norm

x10°% 10

{;

5 \,\\ 0wE s
o A
“ IR
"\,,,w S-S W
'wm 0wl g, .

i,

AdaGC

e

Train Step Train Step Train Step Train Step Train Step

Figure 2: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the embedding of Llama-2 1.3B during warmup phase.
Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the
third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

4 METHODOLOGY: ADAGC

4.1 PRELIMINARIES

Notations. Let z; € R denote a parameter vector where z represents its j-th coordinate for

j € [d]. We write V f(z) for the gradient of any differentiable function f : R? — R, and use u?
and u/v to denote element-wise square and division operations for vectors u,v € R?. The £-norm
and {,-norm are denoted by ||| and ||-||, respectively. For asymptotic comparisons, we write
f=0(g)if 3¢ > 0 such that f(z) < cg(x) for all z in the domain.

Gradient Clipping Fundamentals. Consider a stochastic optimization problem with parameters
6 € R and loss function f(6; X;) evaluated on mini-batch X at step ¢. Standard gradient descent
updates follow:

Or =01 — Vo f(0i—1,Xy) (D

To prevent unstable updates from gradient explosions, GlobalGC (Pascanu et al., 2013)) modifies the
update rule as:

0y =01 — nthtvef(etflu Xt)

h hy := mi Aabs 2
where h; := mm{”Wf(etil;xt)wl.o}

Here)\, is an absolute clipping threshold requiring careful tuning, and 7 is the learning rate. Our
work focuses on norm-based clipping (scaling entire gradients exceeding A,ps) rather than value-
based clipping (element-wise truncation).

4.2 ADAPTIVE GRADIENT CLIPPING BASED ON LOCAL GRADIENT NORM

This section introduces a novel gradient clipping strategy termed AdaGC, which distinguishes itself
by not relying on a global gradient norm. Instead, AdaGC focuses on the local gradient norm of
each tensor and utilizes a dynamic adaptive mechanism for gradient clipping. The proposed method
employs an EMA mechanism to maintain smoothed estimates of historical gradient norms per tensor,
thus enhancing the accuracy of anomalous gradient detection and enabling independent clipping
adjustments tailored to each tensor’s specific conditions. EMA is widely used in deep learning, and
within AdaGC, it facilitates the balancing of historical and current gradient norms. The formulation

Under review as a conference paper at ICLR 2026

is as follows:

: Jt—1,i
Gt,i < hei - gei, where hy ; = min {/\ml TorT 1.0} :

3)

Vi = Bye-1,i + (1= B)llge.q

Here, A, is a predefined relative clipping threshold, g, ; represents the gradient of the ¢-th tensor at
time step ¢, and h,; is a clipping function activated when ||g; ;||> Arer - Yi—1,, thereby scaling the
gradient norm to A,¢; - y:—1,;. Additionally, /3 is the smoothing coefficient for EMA. We consistently
incorporate the clipped gradient norm into the historical observations rather than the pre-clipped
values.

Despite its simplicity, AdaGC adaptively adjusts based on the magnitude of each tensor’s gradient
norm. Whenever the gradient norm at a current timestep exceeds a predefined range of average
norms within a historical window, it effectively suppresses these outlier gradients.

However, during the initial stages of model training (e.g., the first 100 steps), the gradient norms
are typically large and fluctuate significantly, indicating a substantial decreasing trend. Direct ap-
plication of AdaGC during this period could lead to two issues: first, erroneously accumulating the
early large gradient norms into the historical values, resulting in compounded errors; second, com-
pared to GlobalGC, AdaGC might delay clipping, thus potentially slowing down the loss reduction.
To address these issues, we introduce a hyperparameter 7.+ (default set to 100), representing a
warm-up period during which traditional GlobalGC is applied.

Additionally, AdaGC is optimizer-agnostic, can be seamlessly integrated with various optimizers,
such as AdamW (Loshchilov & Hutter,|[2017), Lion (Chen et al.,[2024), Muon (Jordan et al.,[2024),
enhancing its practicality and flexibility. Algorithm[I]in Appendix [B]demonstrates its implementa-
tion with the AdamW optimizer.

4.3 MEMORY, COMPUTATION, AND COMMUNICATION

Memory. As a tensor-wise method, AdaGC maintains an EMA of gradient norms for each parameter
tensor, requiring storage of a single 32-bit float (4 bytes) per tensor. For ERNIE models, the total
additional memory overhead has complexity of O((9 + 3E) x L + 3), where L and E denote
the number of transformer layers and experts, respectively. Specifically, this includes four tensors
from the attention module per layer, 3 x (1 4+ E) tensors from the shared and router experts per
layer, and two RMSNorm tensors per layer; plus one tensor each for the embedding layer, the final
layer normalization, and the language modeling head. In practice, this added memory footprint is
negligible compared to the overall memory requirements of large-scale model training.

Computation. The computational cost of computing ¢, norms is the same for both AdaGC and
GlobalGC. The difference is that GlobalGC applies a uniform scaling to all gradients, while AdaGC
scales each gradient tensor independently.

Communication. In setups involving data parallelism (DP), tensor parallelism (TP), and pipeline
parallelism (PP), GlobalGC requires an all-reduce operation across all DP, TP, and PP groups to
aggregate the global norm. In contrast, AdaGC only needs an all-reduce within each TP group
to compute per-tensor local norms. This design substantially reduces communication overhead,
offering increasing benefits as model and cluster sizes grow.

4.4 CONVERGENCE ANALYSIS

Any operation that modifies gradients may potentially result in non-convergence. In this section,
rather than providing a theoretical guarantee that AdaGC eliminates loss spikes, we present the
convergence guarantee for Adam with AdaGC, stated as follows:

Theorem 4.1 Under mild assumptions, by selecting o, = O(1/\/T), Bo =1 — O(1/T) and p, <
V/Ba, when T is randomly chosen from {1,2, - - - | T} with equal probabilities, it holds that

BV 1617= 0 ().

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot accuracy of AdaGC on Table 3: Two-shot accuracy of AdaGC on

Llama-2 7B under different hyperparameters. Llama-2 7B under different hyperparameters.
Aot A 098 098 099 0.999 Arer B 098 0985 099 0.999
1.03 50.06 5092 50.95 50.96 1.03 5231 52.68 53.13 53.42
1.04 48.88 50.59 51.04 50.76 1.04 52.68 53.01 5347 52.85
1.05 51.01 4995 50.57 50.74 1.05 52.68 52.67 5196 53.51

Theorem shows that even with local clipped gradient, Adam with AdaGC can converge at the
same rate as vanilla Adam (Kingma & Bal 2014)). Due to the limited space, the formal assumptions
and theorem statement with detailed proof can be found in Appendix

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. AdaGC is designed to enhance training stability during large language model
pretraining. We evaluate its effectiveness on both dense and MoE (Mixture-of-Experts) architec-
tures. For dense models, we use Llama-2 with 1.3B and 7B parameters. For MoE models, we
experiment with Mixtral 8 x 1B (Jiang et al., |2024) and ERNIE 10B-A1.4B (Baidu-ERNIE-Team,
2025), where Mixtral 8 x 1B is a scaled-down version of Mixtral 8 x7B, and ERNIE 10B-A1.4B is
derived from ERNIE-4.5 21B-A3B. For pre-training, we use C4-en (Raffel et al., [2020), a clean
English text corpus extracted from Common Crawl.

Comparison Methods. We focus on clipping-based methods and compare gradient and update
clipping baselines, including GlobalGC (Pascanu et al., 2013)), Gradient Value Clipping (ClipBy-
Value), AGC (Brock et al.| 2021)), and Clippy (Tang et al.| [2023). We also evaluate recent methods,
including SPAM (Huang et al.l 2025), Scaled Embed (Takase et al., [2023), and WeSaR (Nishida
et al| [2024). Results are in Appendix [E.2) Table[I1}

Training Details. Pre-training large-scale models is typically resource-intensive. Our primary focus
was to explore training instability rather than achieve ultimate accuracy. For ease of multiple experi-
ments, we conducted 9,000 training steps on 36 billion tokens for both Llama-2 1.3B and 7B, 36,000
steps on 36 billion tokens for the Mixtral 8x1B, and 21,000 steps on 350 billion tokens for ERNIE
10B-A1.4B. We further trained ERNIE 10B—A1.4B for 60,000 steps on 1 trillion tokens to addition-
ally validate the long-term stability of AdaGC. For additional details on the hyperparameters, please
refer to Table [§]of Appendix

Evaluation Metrics. To quantitatively assess training stability, we follow (OLMo et al [2024;
Karpathyl 2024)) and adopt the spike score as an objective metric. Specifically, the spike score is
defined as the percentage of values in a time series that deviate by at least ten standard deviations
from a rolling average of the preceding 1,000 values. This metric is primarily applied to training loss
to detect sudden instabilities. Additionally, we evaluate performance using the training loss and val-
idation perplexity (PPL) curves, as well as standard benchmark results, to provide a comprehensive
assessment of convergence efficiency and model quality.

Standard Benchmark. We conducted a comprehensive evaluation of the model’s zero-shot
and two-shot capabilities across seven well-established benchmarks: ARC (Yadav et al.l 2019),
BoolQ (Clark et al., |2019), HellaSwag (Zellers et al.l 2019), OBQA (Mihaylov et al., |2018)),
PIQA (Bisk et al. [2020), WinoGrande (Sakaguchi et all [2021)), and MMLU (Hendrycks et al.,
2020). Following standard practice (Zhang et al.| |2025), we report accuracy norm for ARC-E,
ARC-C, HellaSwag, OBQA, and SciQ, as well as standard accuracy for all other tasks. For ERNIE
10B-A1.4B, which has been trained on 350B tokens, we evaluate its general abilities on a range of
benchmarks, including MMLU (Hendrycks et al., [2020), GSM8K (Cobbe et al.,|2021), BBH (Suz-
gun et al.| [2022), Truthful QA (Lin et al.2021)), and HumanEval (Chen et al., [2021). These bench-
marks assess the model’s enhanced capabilities in performing diverse downstream tasks, such as
examination, reasoning, factuality, and coding.

Under review as a conference paper at ICLR 2026

5.2 CRITICAL HYPERPARAMETER SELECTION

We systematically evaluated two key hyperparameters in AdaGC: the EMA coefficient 8 and the
relative clipping threshold \,..;. Specifically, we performed a grid search on the Llama-2 7B model
to optimize these two hyperparameters, using zero-shot and two-shot performance across multiple
tasks as evaluation metrics. As shown in Tables [2]and [3] the best performance was achieved when
Arel = 1.04 and 8 = 0.99. We therefore adopted this configuration as the default setting for
subsequent experiments and terminated further hyperparameter search. In addition, as observed
in Tables 2] and [3] AdaGC’s performance remains relatively stable across different hyperparameter
values, suggesting that the method is robust to hyperparameter variations.

5.3 MAIN EXPERIMENTAL RESULTS

T 2000 7000 5000 8000 g 05000 10000 15000 20000 25000 30000 35000 00 10000 15000 20000 25000 30000 35000
Train Step Train Step Train Step

(a) Llama-2 7B training dynamics. (b) Mixtral 8x1B training dynamics.

Figure 3: Large language model training analysis: Llama-2 7B and Mixtral 8x1B model comparison
shows AdaGC’s loss spike elimination and performance gains.

Training Stability. Our comprehensive evaluation shows AdaGC'’s effectiveness in improving train-
ing stability across a range of model scales and architectures. As shown in Figure [3| we compare
the training dynamics of Llama-2 7B and Mixtral 8 x 1B models in terms of loss trajectories, valida-
tion perplexity, and zero-shot average accuracy. For the 7B models, baseline methods (GlobalGC,
ClipByValue, AGC, Clippy) consistently exhibit frequent loss spikes during training, while AdaGC
effectively eliminates these instability events. On Mixtral 8 x 1B, using the default 52 = 0.999 leads
to recurrent loss spikes, whereas decreasing 32 to 0.95 helps mitigate this issue, indicating the strong
impact of 32 on training stability. AdaGC, however, can eliminate loss spikes for both Sz = 0.999
and B> = 0.95, further demonstrating its robustness. The zero-shot average accuracy curves also
reveal that AdaGC not only stabilizes training under S = 0.999, but also improves convergence
performance. For the ERNIE 10B-A1.4B, Figure [Ib|shows that stable convergence is achieved with
€ = le—15, which is particularly advantageous for large-scale models as it enables more parameters
to fully utilize the adaptive learning rate in AdamW. Furthermore, Figure2]illustrates AdaGC’s clip-
ping process, which prevents abnormal gradients from entering optimizer states, further smoothing
parameter updates and reducing oscillations, thereby benefiting training stability.

Spike Score Analysis. Table ff] quantitatively summarizes the reduction in spike score achieved by
AdaGC and the baseline methods across various settings. For Llama-2 7B, the spike score is reduced
from 0.0333 with GlobalGC to 0 with AdaGC; for Mixtral 8 x 1B, it drops from 0.0144 to 0; and for
ERNIE 10B-A1.4B, from 0.01 to 0. These results consistently demonstrate that AdaGC effectively
and robustly eliminates loss spikes compared to existing clipping methods.

Table 4: Comparison of spike scores for various models under different clipping methods.

Model | Llama-2 7B | Mixtral 8x1B | ERNIE 10B-A1.4B
Method | GlobalGC ClipByValue AGC Clippy AdaGC | GlobalGC AdaGC | GlobalGC AdaGC
Total Steps 9K 9K 9K 9K 9K 36K 36K 21K 21K
Num Spikes 3 9 8 3 0 52 0 2 0
Spike Score (%) 0.0333 0.1000 0.0889 0.0333 0.0000 0.0144 0.0000 0.0100 0.0000

Results on Downstream Benchmarks. Downstream zero-shot and two-shot evaluation results on
the Llama-2 1.3B/7B and Mixtral 8 x 1B models (see Table[5]and Table[I0) clearly demonstrate the

Under review as a conference paper at ICLR 2026

practical benefits of stable training. Across all model scales, AdaGC consistently achieves state-of-
the-art performance or matches the best baselines. Specifically, on Llama-2 7B and Mixtral 8 x 1B,
AdaGC obtains superior zero-shot (51.01% / 49.01%) and two-shot (53.47% / 51.61%) average ac-
curacy, surpassing the GlobalGC baseline by +1.32% / +1.27% and +0.83% / +1.14%, respectively.
Furthermore, long-term training of ERNIE 10B-A1.4B on 350B tokens shows that AdaGC achieves
more stable convergence with € = le — 15, resulting in a 2.48% improvement over GlobalGC on
the general abilities validation set. These findings establish a strong correlation between training
stability and final model quality, indicating that the stability enabled by AdaGC facilitates better
convergence and enhanced downstream performance.

Table 5: The Zero-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard
benchmarks.

ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ

Model ‘ Method Avg.
acc_norm acc_norm acc accnorm acc_norm - acc_norm - acc acc acc_norm

GlobalGC 43.18 25.68 57.19 46.62 30.20 69.97 52.64 2297 68.40 46.32

Llama-2 1.3B ClipByValue 42.17 25.68 59.94 44.11 30.40 69.59 5328 2299 68.00 46.24
ama-z 1. Clippy 41.71 24.66 56.51 45.43 30.00 69.21 54.85 2290 67.50 45.86
AdaGC 42.09 2551 58.01 47.29 30.40 69.70 5233 2298 68.70 46.33

GlobalGC 49.49 27.56 56.30 56.06 33.60 74.59 5533 2312 71.20 49.69

ClipByValue 46.21 26.88 57.03 53.49 33.20 71.65 5359 23.36 70.50 48.43

Llama-27B | AGC 48.15 28.16 52.87 55.47 32.80 72.74 57.85 2433 71.70 49.34
Clippy 47.69 27.73 57.46 53.34 32.40 72.74 5438 2536 73.40 49.39

AdaGC 49.58 28.92 57.28 57.94 32.80 74.32 58.09 23.62 76.60 51.01

Mixtral 8x1B GlobalGC 44.70 25.94 56.57 53.08 33.00 71.60 5470 2291 67.20 47.74
AdaGC 46.68 26.37 58.93 55.85 32.20 73.12 5438 23.22 70.30 49.01

Table 6: Evaluation results of ERNIE 10B-A1.4B on multiple benchmarks after 21,000 (350B to-
kens) and 60,000 (1T tokens) training steps, comparing different optimization configurations.

Steps (tokens) | Method | AdamW eps | MMLU GSM8K BBH TruthfulQA HumanEval | Avg.

GlobalGC le-8 47.75 28.35 28.80 22.02 19.51 28.09
21k (350B) GlobalGC le-15 39.11 21.46 29.35 23.39 15.24 25.71
AdaGC le-15 42.07 2532 27.89 24.92 20.73 28.19
GlobalGC le-8 48.61 39.88 30.84 30.73 22.56 34.52
60k (1T) GlobalGC le-15 48.48 40.79 30.59 28.29 23.78 34.38
AdaGC le-15 48.70 36.01 31.38 35.02 22.56 34.73

5.4 OPTIMIZER COMPATIBILITY: MUON AND LION

AdaGC is an optimizer-agnostic gradient clipping method that can be seamlessly integrated not only
with AdamW, but also with other optimizers. To verify the generality of AdaGC, we conducted ex-
periments on both LLM and VLM tasks by combining Llama-2 1.3B and CLIP ViT-Base models
with the Muon and Lion optimizers, respectively, and compared them against GlobalGC. Although
no loss spikes were observed under either experimental setting, AdaGC consistently demonstrated
strong compatibility and generalization. In downstream zero-shot average accuracy, AdaGC outper-
formed GlobalGC by 0.14% (47.18% vs. 47.04%) with Muon and by 0.16% (40.81% vs. 40.65%)
with Lion. These results further confirm that AdaGC can be effectively applied across different
optimizers, providing stable training and improved downstream performance.

~— Muon + GlobalGC, —— Huon + GlobalGC i — Lion + GlobalGC
Muon + AdaGC Muon + AdaGC

232 245 Jag ' 250
£30 244 Zas3) 14 L 225
2.43) H " 2.00
25 8059000 Zas 3 Tl 1sgo—ad00
N H ™
2 . aa3| 25
20

g 2000 40006000 8000 000 4000 5000 6000 7000 8000 9000 g 5000 10000 15000 2000 000 6000 10000 14000 18000
Train Step Train Step Train Step Step

(a) Training dynamics. (b) Average accuracy. (a) Training dynamics. (b) Average accuracy.

Figure 4: AdaGC with Muon on Llama-2 1.3B. Figure 5: AdaGC with Lion on CLIP ViT-Base.

Under review as a conference paper at ICLR 2026

5.5 END-TO-END TRAINING WALL-CLOCK

Table [7] compares the GPU hours required for training various models using different distributed
parallelism strategies. Compared to GlobalGC, AdaGC reduces end-to-end GPU hours by 0.27% on
Llama-2 1.3B, 4.48% on Llama-2 7B, 1.24% on Mixtral 8x1B, and 1.53% on ERNIE 10B-A1.4B,
thanks to reduced communication overhead. This highlights AdaGC’s additional communication
and efficiency benefits in large-scale distributed training.

Table 7: GPU hours under the same configuration. DPS denotes distributed parallel strategies.

Model ‘ Llama-2 1.3B Llama-2 7B Mixtral 8x1B ERNIE 10B-A1.4B
DPS ‘ DP=256, TP=1, PP=1 DP=32, TP=2, PP=1 DP=256, TP=1, PP=1, EP=1 DP=64, TP=1, PP=4, EP=8
Steps | 9K 9K 36K 21K

GlobalGC 513.0 1468.2 2060.8 22922

AdaGC 511.6 1402.4 2035.2 22572

5.6 ABLATION STUDY

We conduct systematic ablation studies across three critical dimensions of AdaGC: (1) EMA gra-
dient norm initialization strategies, (2) GlobalGC warm-up steps, (3) adaptivity efficacy, and (4)
locality granularity.

EMA Initialization Strategy.
The initialization of EMA
gradient norms requires careful
design due to large initial gra-
dient fluctuations during early
training phases (first 100 steps).
We evaluate five initialization . o .
variants: The default AdaGC (a) 7yt,: initialization. (b) Tstart warm-up. (c) Adaptivity, locality.

strategy employs GlobalGC

duri . hile tracki Figure 6: Training dynamics of ablation studies on AdaGC,

uring warm-up whre tracking showing (a) the influence of different EMA initialization strate-
minimum per.—parameter norms gies; (b) the impact of the GlobalGC warm-up steps T¢q¢; and
(i = min(flgeqll, ve—1,)). (c) the effects of adaptivity and locality granularity on gradient

Comparative approaches in- "7 .
clude: (1) norm initialization clipping efficacy and final loss.

without GlobalGC warm-up (directly using v, ; = min(||g¢ |, v:—1,;) from step 0), (2) constant
initialization (yo,; € {0.5,1.0}), and (3) thresholded initialization (y;; = min(||g:,|/,0.1)).
Figure [6a] demonstrates that while all variants eliminate loss spikes, convergence quality varies
within 0.36%. The default strategy achieves optimal final loss (2.9708 vs 2.9725 for next-best),
showing that GlobalGC-guided warm-up better preserves parameter update consistency than direct
initialization. This establishes the importance of phased initialization for gradient norm adaptation.

Warm-up Steps 7;,.+. To further investigate whether the choice of GlobalGC warm-up steps
Tsiqrt has a significant impact and to provide practical guidance for practitioners, we addition-
ally evaluate Tszqr+ = {0, 50,100, 150, 200, 500, 1000, 2000}. The results in Figure [6b| show that
Tsiart = 100 consistently achieves the best performance. According to the EMA initialization for-
mula v ; = min(||ge:||,y:—1,:), an excessively large Ts;q,¢ accumulates lower 7, ; values due to
early training dynamics, which may lead to over-clipping and suppressed convergence in later train-
ing. Conversely, an overly small T4+ accumulates larger ~y; ; values, which may delay clipping
and hinder timely suppression of abnormal gradients. In contrast, T, = 100 introduces negli-
gible additional overhead for large-scale training while providing consistently stable performance
improvements.

Adaptivity Efficacy and Locality Granularity. We conduct three sets of ablation experiments
to evaluate the adaptivity and locality of AdaGC. The baseline uses GlobalGC (no adaptivity, no
locality) with a fixed threshold of 1.0. In comparison, we examine (1) adaptive global gradient norm
clipping (Global AdaGC, adaptive but non-local), which employs a single adaptive threshold for
the entire model, (2) tensor-wise gradient norm clipping (TensorWiseGC, local but non-adaptive),

Under review as a conference paper at ICLR 2026

which allocated each tensor’s fixed clipping threshold proportionally to its parameter count relative
to the entire model, and (3) tensor-wise adaptation (AdaGC, adaptive and local), which adjusts
thresholds independently for each tensor. As shown in Figure Global AdaGC reduces but does
not completely eliminate spike events (1 event vs. O for tensor-wise) and yields a 0.25% higher final
loss (2.9639 vs. 2.9712). Although TensorWiseGC also mitigates loss spikes, it noticeably slows
down convergence and requires careful per-tensor threshold tuning to perform well. These results
demonstrate that tensor-wise adaptive clipping provides both greater spike suppression and lower
loss than other approaches.

6 CONCLUSION

The factors triggering loss spikes in large-scale pretraining are diverse and remain an open research
problem, with no unified solution to date. Unlike prior work that seeks to identify root causes, we
focus on a gradient-centric remedy and introduce AdaGC, an adaptive per-tensor gradient clipping
method that prevents abnormal gradients from contaminating optimizer states. This approach en-
sures smoother updates and effectively eliminates loss spikes. Extensive experiments demonstrate
that AdaGC delivers robust and stable training across both dense and MoE models, from 1.3B to 10B
parameters, consistently reducing spike scores to zero and improving benchmark performance. Our
results highlight AdaGC as a simple and effective solution for stable large-scale model pretraining.

7 STATEMENT ON THE USE OF LLMS

In preparing this manuscript, LLMs (mostly GPT-4.1/5) is utilized for linguistic refinement, includ-
ing the detection and correction of grammar errors or spelling mistakes, and sentence rephrasing to
improve clarity, coherence and readability. LLMs were also referenced when structuring the paper
contents, and review missing details, but not involved in the formulation of ideas, the execution of
experiments, or the generation of experimental results in this article.

REFERENCES

Zhiwei Bai, Zhangchen Zhou, Jiajie Zhao, Xiaolong Li, Zhiyu Li, Feiyu Xiong, Hongkang Yang,
Yaoyu Zhang, and Zhi-Qin John Xu. Adaptive preconditioners trigger loss spikes in adam. arXiv
preprint arXiv:2506.04805, 2025.

Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059-1071. PMLR, 2021.

Matias D. Cattaneo and Boris Shigida. Tuning Adam(W): Default (o
may be too large. Working paper, Princeton University, 2025. URL
https://github.com/mdcattaneo/mdcattaneo.github.io/
blob/caB84a9d43dbl12951e75190ae76fbdaabc77133f0/papers/
Cattaneo—-Shigida_2025_TuningAdam.pdf.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,

Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in Neural Information Processing Systems, 36, 2024.

10

https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf
https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf
https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1-113, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Daniel Han. Gemma bug fixes - approx gelu, layernorms, sqrt(hd), Mar 2024. URL https:
//github.com/huggingface/transformers/pull/29402, GitHub Pull Request
#29402, huggingface/transformers.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
aware adam with momentum reset for stable llm training. arXiv preprint arXiv:2501.06842, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/\

Andrej Karpathy. Cool! for the spike i’d try e.g. ‘-s1 7 -sg 7’ to keep instability in check earlier in the
training. (will skip update if loss/gradnorm > 7 sigma outlier is detected). X (formerly Twitter),
July 2024. https://x.com/karpathy/status/1812917107379872145,

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
language-image pre-training via masking. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 23390-23400, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11

https://github.com/huggingface/transformers/pull/29402
https://github.com/huggingface/transformers/pull/29402
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://x.com/karpathy/status/1812917107379872145

Under review as a conference paper at ICLR 2026

Chao Ma, Lei Wu, and Weinan E. A qualitative study of the dynamic behavior for adaptive gradient
algorithms, 2021. URL https://arxiv.org/abs/2009.06125.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito. Initialization of large language models via
reparameterization to mitigate loss spikes. arXiv preprint arXiv:2410.05052, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310-1318. Pmlr, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211-252, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114,2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596—4604. PMLR, 2018.

Jianlin Su. Why is the default norm for gradient clipping 1?, Jan 2025. URL https://spaces.
ac.cn/archives/10657.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing the
pre-training of large language models. arXiv preprint arXiv:2312.16903, 2023.

Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang
Yi, Lichan Hong, and Ed H Chi. Improving training stability for multitask ranking models in
recommender systems. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4882-4893, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

12

https://arxiv.org/abs/2009.06125
https://spaces.ac.cn/archives/10657
https://spaces.ac.cn/archives/10657

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271-10298, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524-10533. PMLR, 2020.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection
of justification sentences for multi-hop question answering. arXiv preprint arXiv:1911.07176,
2019.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-
Chih Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

13

Under review as a conference paper at ICLR 2026

A CONVERGENCE PROOF
In this section, we provide the necessary assumptions and lemmas for the proofs of Theorem 4.1}

Notations The k-th component of a vector v, is denoted as v; ;. Other than that, all computations
that involve vectors shall be understood in the component-wise way. We say a vector v; > 0 if
every component of v; is non-negative, and v; > wy if vy, > wyp forallk = 1,2,...,d. The ¢;

norm of a vector v, is defined as ||v||1= ZZ:1|UU€‘~ The /5 norm is defined as ||v¢]|?>= (v¢, v¢) =
22:1 |vg k|, Given a positive vector 7, it will be helpful to define the following weighted norm:

. d .
HUt”?;t: (ve, Neve) = Zk:1 77t,k|vt,k|2-

Assumption A.1 The function f is lower bounded by f with L-Lipschitz gradient.

Assumption A.2 The gradient estimator g is unbiased with bounded norm, e.g,
Elglz:] = V f(z4), llg:l|< G.

Assumption A.3 The coefficient of clipping h; ; is lower bounded by some ho > 0.
Assumption A4 ||g: — V f(x:)||< pl|V f(2)| holds for some p < 1 and for all t.

Remark A.5 Assumption [A.1| and Assumption|A.2) are widely used in the proof of optimization al-
gorithm with adaptive learning rates (Reddi et al.,[2018). Assumption[A.3]is because the gradient
norm changes slowly when training the neural network, and the last assumption holds when the
batch size is large enough.

Lemma A.6 Let (:= (32 /35. We have the following estimate
1

(1=01=p2)

Proof: By the iteration formula m; = 5177% 1+ (1 — B1)g: and mg = 0, we have
m= Z BT (1= B1)g

Similarly, by v; = Bav;_1 + (1 — £2)9? and v = 0, we have

vfsz% (1—62)3

It follows by arithmetic inequality that

t
Z 1_61 (1_62)t1A

14/(1— 32)
(1 . B) BZ(t 1) t . B t (1 . ﬁ1)252(t7i)
<<Zz_:1 (1_/6)(Z 1_52 z>_<; (1_52)15_7‘, Vg

Further, we have

vy, V. “4)

2
my <

2

(1— B2 Ly <B%>t_i_ LN 1
; e ST ma\s) "TRZS ST o0
The proof is completed. U

Lemma A.7 The following estimate holds

T
Sjare C
t=1

14

Under review as a conference paper at ICLR 2026

Proof: By using the definition of my, it holds ||m;||>< G2.

Then, ||A¢|%>= || N |I2< %204? by using the definition of A,.

Therefore, 3.1 || A< %2 S %2 — Ga®

€

(l
Lemma A.8 With the Assumption[A.3]and it holds that
E(Vf (6:),idn) = hoE |V f ()5, -
Proof: According to Assumption[A:4] it holds that
_ 1 2 2 2
(Vi 00) 913> = =5 (196 00) = guall® = 196)17 — llgeil*)
> (1=p?) |Vaf (6)]°
Thus, it holds that
E[(Vf (@), mge)] =E lz (Vif(0r), ht,iﬁt,igt,i>]
> hoE Z (Vif(ze), ht,iﬁt,iﬂt,i)]
E(Vf(8:),71t9:) = hoElIV f(6:)]7,-
O

Let At = 9t+1 — 9,5 = —atmt/(\/@—l— 6). Let @t = ﬁgvt_l + (1 — ,82)(5,52, where 5? = Et [g?] and
let 7’A]t = Oét/\/ﬁt + €.

Lemma A9 Let M; = E[(Vf(0;),Ar) + LI A|?]. Let ow = a/VT and o = 1 — B/T. Then,
forT > 1 we have

) C LG2a2)
S M, < 1—2\ﬁ+(1—\(/l€)e (1 61 OZEHVf 0,12, 5)
t=1

a)G 4
where Cz = 2(1*%1)’10 <(1 —h)24 i +ﬁ1aﬁ (5263 + ((11+C;€52 + %)) '

Proof: To split M, firstly we introduce the following two equalities. Using the definitions of v
and 7;, we obtain

(1 —B1) ey _ (1= B1) ougy (1= 1) i (1 1 >

Ve te Vi +e Voite Vo te
1 oo _ b (1_52)(‘715_%)
= (1= B1)Mge + (1 = Br) tgt(\ﬁ—i—e) (Vor +) (Vo - v/o2)
1 .o _ L (1_52)(%_%)
= (1—=p1)Mege + (1 51)77tgt(\/7+6) NN

15

Under review as a conference paper at ICLR 2026

In addition, we can obtain:

3 1 1
QTN — —
C VBrvis + VBae Vot e

= Bragmyi—1 (1= 5o) 3¢ + Bragmy (1 — \/E) ‘
(\/77t+ 6) (\/ Bavi_1 + \/EG) (\/U»tJF Vi [32%—1) (\/”th + 6) (Bavs—1 + 526)
(1 - Ba) g7

e e (VBavet & v/Bae) (s & /Bavnt)

+ Broymi_y (1—52)% (1 1)

(V/Bavi—1 + VB2€) (o + /Bavi—1) Voite Juite
+ Brogmy_y (\/E) + Bragmy 1 (\/E) < ! - ! >
(Vi +€) (Bavi—1 + VPe) VB2vi—1 4+ V/Bae \Vir +€ \Jurte

= Bimy_17; (1_/82)975
(\/527% 1+\ﬁ€) (\/>+ v Bavi— 1)
(1_52) i (Ut gt)
(Vvr + €)(Vur + V1) (\/Bavi—1 + VB2e) (\/or + v/ Bavi—1)
(1 —VPB2)e + Bumey (1= VB2)(A = Bo)e(a} — G7) .
Bavi—1 + v/ Bace (Ve +) (or + Vi) (/Bavi—1 + V/Bae)

For simplicity, we denote

+ Bifyme—1

+ Bifime—1

(1—B2) (07 — 37)

A% = (1 - 51) ﬁt@t(

V5T) (VT)
m (1-p2)g gt
A= BN =) (v 7)
= (1_52) gt<Ut_gt)
A? = T —
Bu/fms—s (Vo + €) (Ve + Vor) (/ Bave—1 + V/B2€) (\/Ur + \/Pave—1)
4 = Pyt ﬁ(zvt I/f?) Bae

5 _ (1— VB (1 — Ba)e(o? — §2)
Af = pP1 T —1
e S (o + Vo) (VBavis + Ve

Then, we obtain

A Proy A,y = e Srogmi—y
t— t—1 = —
V201 VUt + € Bavi_1 + v/ Bae
(— B1)age 1 1
= + Brogmy— -
VUt € Pravmi Bovi—1 4+ /Bae Ut t €

—(1 = B1)iege — Vi Al + VA? + VA + AL + Vi AT

Thus, it holds that

_ Broy _ Broy
E(V7(00. A = 25 (7700, A + B (V100 8- 22 a)
Bray

= T V00, 800) T E(VS(0) = VF(Or-1). M)

FE(VF(0:), —(1 = Br)ide) +E(VF(0:), —/ T AL) + E(V f(0), /5 AZ)

+ E(Vf(0:), /1 A3 + E(V f(0), /1 ALY + E(V £(0,), /7 AD)
(6)

16

Under review as a conference paper at ICLR 2026

For the first term of equation [6] it holds that

Brag
T BV, Bem) + EVI(0) = VI (01-1), M)

Bra
< N (E(Vf(0r), Ar—1) + E[[Vf(0:) = V(Or1)[[| A1)

Braw 2
—— (E(Vf(01), As— LE||A¢—
< o (B(VS(00), Ae) + LA)
_ b
VB2
For the second term of equation|[6] it holds that
E(Vf(0:), —(1 = B1)iegr) < —(1— ﬂl)hoEHVf(at)”

For the rest of the terms, it holds that

M

B1) 5 2
E(V£(6:), —/MAL) 701E||Vf(9t)“%,,+m A]|
- ho(1 — 1) 5 2
E(Vf(0:), +/ 0 A7) < T]E”Vf(et)\\%t‘Fm (BN
- ho(1— B1) 5 2
E(V£(0:), +V/Mm A7) < 17E||Vf(9t)“%t+m | A7
- ho(1 = B1) 5 2
E(Vf(&t),+\/7%Af) 10 - E||Vf(9t)\\%t+m||f4?”
- ho(1 — 1) 5 2
E(Vf(0:), +v/0e A7) < T]E”Vf(et)\\%t‘Fm 42|
On the other hand, it holds that
2 _ 4aﬁG , aBGH 2 afG?
l4:]" < (= p0)? N4l < s g s 1420 < B = 5
4 ,afGt aBG?
A < 50 P < 2
O
Define N; = $2+LE||A¢[|2, where Cy = 71 T ((1 — ﬁ1)2740‘§3G4 + BiaB (5%; + 7((1%82;2 + %))
It holds that
<Y 4N ﬂ“Eva <SS VETN - 51h]EV92
_\/572% My 4 Ny - IV F0:)12, Z oE[V £ (6)I[5,

Thus, by summing t from 1 to 7', it holds that

Zm<ZZ¢“N U= Bdhog g ss,)2,

t=1 1=1
B1)h
Slﬂfz ——LJMW@Mt

Cy LG?a? (1= B1)ho d E 2
— ViO)|z, -
< T i - e Y vl

Lemma A.10 Ler T be randomly chosen from {1,2, - -, T} with equal probabilities p, = % We

have the following estimate:

E([V£ (6,)]2 < YO £ *6

Zwmw]-

17

Under review as a conference paper at ICLR 2026

Proof: Note that ||9;]|1= Bz|lvi—1 1+ (1 — B2) ||o¢||? and || || < G. It s straightforward to prove
|lve]|1< G?. Hence, we have ||0; + €|1 < G? + ed.

Utilizing this inequality, we have

1vs 6012 = L0 ey — v el Z [Vaf ()

Via+ds F
Vi f (0:) P= /|6 + ellra; IV S (6:) I13,

[0 + €ll1cy Z\/i
VG? +ed

< V@ +edal IV 00 15,< SV F 0 1,
Then, by using the definition of 6, we obtain
E[[IVf(6) ZE IV £ (0:) %] < ZHVf (00) |12]
Thus, the desired result is obtained. O

Theorem A.11 Let {0;} be a sequence generated by AdaGC for initial values 01 and mo = vy =
0. Assumptwns n to . hold. With the hyperparameters ap = a/xﬁ B2 = 1 — B/T and

¢ = B%/B2 < 1. Let T be randomly chosen from {1,2, - - -, T} with equal probabilities. We have
C
E[|VF(0.)]°< —=
IvH6,1<
2 2
where ~ C = vl (f() - f+ 2+ (fo)) and Cy =

5 2 4a,@G (1+¢)G? G*
2(1=p1)ho ((1 —B1) +ﬂlaﬂ(Bacs T (1=0)efs T E))
Proof: With the Lipschitz continuity condition of f, it holds that

B (62) < | 160 + (VF00. &)+ 5 1A | < B7(60) + 20

By summing ¢ from 1 to 7, it holds that

T T
02 LG2042 (1 — ﬁl)ho 2
Ef(0r+1) < f(61) + ;Mt <FO)+ T T ;Enwwtﬂlm
Thus, it holds that
VG2 ted_ [
E[IV£(0]°] < ;f E ZHW (0112]
VG? +ed Co LG?a?
< W (f(el) -]E[f(eTJrl)] + 1 — \/Z + (1 — \/Z)E)
VGZ ¥ ed Co LG?a?
=TT (f(el)_“ - (1—@6)

18

Under review as a conference paper at ICLR 2026

B PSEUDOCODE OF ADAMW WITH ADAGC

Algorithm T|presents the pseudocode of AdamW integrated with AdaGC. For clearer exposition, we
highlight different components according to their origins: indicates the procedures inher-
ited from the original GlobalGC algorithm, while blue is used to denote the new contributions and
modifications introduced by AdaGC. Specifically, the GlobalGC steps include the global gradient
clipping implemented via the scaling factor and the use of the clipped gradient in subsequent mo-
ments. The AdaGC components mainly comprise adaptive per-parameter clipping, the initialization
and update of the adaptive threshold 7, ;, and the warm-up strategy governed by T's; 4.

Algorithm 1: AdamW with AdaGC

1: given: {n:}1—1, \w, €, B1, B2, B € [0,1), s Tstart
2: initialize: 8y, mo < 0,v9 + 0, + 0
3: repeat
4 compute g: = Vo f+(0:—1, X¢)
5 if t < Tsiqrt then
6:
7
8 fori € |0] do
9: Ye,i = min {ye—14, | geill}, 0,0 = gl
10: end for
11: else
12: fori € |0| do
13: he.i = min {Al% 1.0}
t,i
14: i = heyi - Gei
15: Ye,i = Bye—1,i + (1 = B)lIgesll
16: end for
17: end if

188 my=pfimi_1+ (1—p1)

190 v = fovi—1 + (1 — f2)

200 my=m/(1-B1), b =wv/(1-p3)
210 0 =01 — N AwOi_1 — e/ (VOr + €)
22: until 8, not converge

C HYPER-PARAMETERS

C.1 MODEL HYPER-PARAMETERS

Table [§] summarizes the model hyper-parameters used for all experiments. For each model, we
report the core architecture settings (such as number of layers, hidden dimension, attention heads,
and feedforward dimension), MoE-related configurations, and main optimization hyper-parameters
(including learning rate, warmup, weight decay, and Adam parameters). Clipping thresholds A5,
Arel, and momentum g are also listed, in correspondence with the techniques discussed in the main
text. All experiments use a batch size and sequence length as shown, and we employ bfloat16
precision for most models except ERNIE, which uses float8. The symbol ‘-’ indicates settings not
applicable to a specific architecture.

C.2 CLIPPING HYPER-PARAMETERS

For other clipping methods, we primarily followed the recommended default settings from prior
work, and performed limited tuning only when necessary to ensure a fair comparison.

Specifically:

* GlobalGC: We used the commonly adopted global clipping threshold A\,s = 1.0 in large-
scale pretraining.

19

Under review as a conference paper at ICLR 2026

Table 8: Hyper-parameters used in our LLMs experiments. \yp5 represents the absolute global clip-
ping threshold of GlobalGC. \,.; and j3 represent the relative clipping threshold and the momentum
of our AdaGC, respectively. The symbol ‘—’ indicates that the parameter is not applicable.

Model ‘ LLaMA-1.3B LLaMA-7B ERNIE 10B-A1.4B Mixtral 8x1B
Precision \ bfloat16 bfloat16 float8 bfloat16
Num layers \ 24 32 25 24
Hidden dim size ‘ 2048 4096 2560 2048
FFN dim size ‘ 5461 11008 1024 5632
Num attention heads | 32 32 20 32
Num key value heads | 32 32 4 4
Attention bias ‘ X X X X
Num shared experts | - - 1 0
Num router experts | - - 48 8
Num experts per token | - - 3 2
Sequence length \ 2048 2048 4096 2048
Batch size ‘ 2048 2048 4096 512
Iterations ‘ 9000 9000 21000 36000
Learning rate | 3.0x107* 3.0x107* 3.0 x 1074 3.0 x 1074
LR decay \ cosine cosine wsd cosine
Warmup iterations | 2000 2000 2000 500
Weight decay \ 0.1 0.1 0.1 0.1
Adam [‘ 0.90 0.90 0.90 0.90
Adam [0.95 0.95 0.95 0.999
Aabs 1.0 1.0 1.0 1.0
Arel ‘ 1.04 1.04 1.04 1.04
B ‘ 0.99 0.99 0.99 0.99

* ClipByValue: Following the SPAM (Huang et al.| 2025) setting, we set the clipping thresh-
oldto \gps = le — 3.

* AGC: We performed small-range tuning over A,..; € {le — 2,1le — 3,1e — 4} to find the
best setting.

* Clippy: We tuned over Agps € {0.1,0.3,0.5} and A.o; € {le —2,1e — 3, 1e — 4} to select
the optimal combination.

* SPAM: We adopted the default hyperparameters recommended for standard pretraining in
the original paper, which were reported to perform well across diverse settings. Specifi-
cally, we set the interval to AT = 500, the threshold to # = 5000, and the warmup steps to
N = 150.

The final hyper-parameters used for other clipping methods are summarized in Table 9]

Table 9: Hyper-parameters for other clipping methods.

Method \ Hyperparameters
GlobalGC Aabs = 1.0
ClipByValue Aaps = le — 3
AGC Arel = le —3
Clippy Aret = le—3

SPAM AT = 500, § = 5000, N = 150

20

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS FOR CLIP

To further investigate the optimizer compatibility of AdaGC, we evaluated its effect on large-scale
vision-language model pre-training, focusing on the CLIP ViT-Base model (Radford et al.| [2021])
with the Lion optimizer (Chen et al. 2024). The model comprises 151 million parameters and is
trained on the LAION-400M (Schuhmann et al., [2021) dataset. Training is conducted for 20,000
steps, covering 320M image-text pairs.

The key training hyper-parameters are as follows: a learning rate of 0.002, weight decay of 0.2, and
batch size of 32,768. We employ patch-dropout with a drop rate of 0.5 (L1 et al.; 2023)), following re-
cent best practices (Wortsman et al.,2023)). The learning rate is linearly warmed up for the first 5,000
steps (Goyal et al., 2017), and subsequently decayed according to a cosine schedule (Loshchilov &
Hutter, [2016).

Following pre-training, we report downstream zero-shot evaluation results on the ImageNet (Rus-
sakovsky et al|2015)) validation set. The results are shown in Figure E] in the main text.

E MORE EVALUATION RESULTS

E.1 RESULTS ON DOWNSTREAM BENCHMARKS

The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard bench-
marks are presented in Table[I0]

Table 10: The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on stan-
dard benchmarks. The best scores in each column are bolded. HellaSw. = HellaSwag, W.G. =
WinoGrande.

Model ‘ Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Ave,
acc_norm acc_norm acc acc_norm acc_norm acc_norm - acc acc acc_norm

GlobalGC 47.26 25.60 50.31 46.44 32.20 69.64 5233 25.07 77.80 47.41

Llama-2 1.3B ClipBy Value 47.10 25.77 56.54 43.97 30.00 68.88 5296 26.09 77.20 47.61

” Clippy 46.55 25.85 49.76 45.71 30.00 70.02 5320 25.69 77.70 47.16

AdaGC 46.04 26.19 49.72 47.51 31.00 69.70 54.38 2498 78.50 47.56

GlobalGC 55.81 28.58 60.70 56.54 33.00 73.72 56.75 2551 83.20 52.64

ClipByValue 51.94 26.88 57.55 53.36 32.40 72.31 54.14 26.63 81.60 50.75

Llama-2 7B | AGC 52.95 28.67 56.15 55.69 35.40 73.07 56.43 2688 82.80 52.00

Clippy 52.86 29.10 56.48 53.76 31.80 73.07 5572 26.03 82.60 51.27

AdaGC 56.86 29.61 59.36 57.89 33.60 73.99 57.62 26.46 85.90 53.47

Mixtral 8x1B

GlobalGC 50.34 27.39 58.81 52.96 34.20 71.16 54.06 2537 79.90 50.47
AdaGC 53.83 28.42 58.69 55.66 33.80 73.07 5414 2512 81.80 51.61

E.2 RESULTS OF OTHER BASELINE METHODS

Table 11: The Zero-Shot evaluation results of Llama-2 1.3B/7B models on standard benchmarks.

ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ

Model ‘ Method Avg.
acc_norm acc_norm acc acc_norm acc_norm acc_norm acc acc acc_norm

WeSaR-GlobalGC 43.56 25.17 59.94 45.08 30.00 70.29 5296 2290 65.80 46.19

Llama-2 1.3B SPAM 42.05 24.83 59.60 42.82 30.00 69.31 5217 23.02 66.40 45.58

~ ScaledEmbed-GlobalGC 42.21 25.51 59.66 45.50 31.80 70.02 53.28 23.22 65.20 46.27

AdaGC 42.09 25.51 58.01 47.29 30.40 69.70 5233 2298 68.70 46.33

WeSaR-GlobalGC 49.75 27.22 56.12 55.38 33.80 73.39 56.27 23.02 71.40 49.59

Llama-2 7B SPAM 48.53 25.77 60.34 51.89 32.60 72.03 54.54 2295 71.00 48.85

ScaledEmbed-GlobalGC 48.57 26.71 60.89 54.32 32.60 72.25 5533 23.66 70.50 49.42

AdaGC 49.58 28.92 57.28 57.94 32.80 74.32 58.09 23.62 76.60 51.01

In addition to the clipping-based baselines discussed in the main text, we also compare AdaGC with
several recent methods that aim to improve the stability and generalization of large language model
(LLM) training, including SPAM (Huang et al.l 2025)), Scaled Embed (Takase et al., [2023), and
WeSaR (Nishida et al.| [2024). The detailed results under the zero-shot setting and spike score are
summarized in Table[1T|and[I2] The training dynamics are shown in Figures[8|and 9]

21

Under review as a conference paper at ICLR 2026

Table 12: Comparison of spike scores for various models under different methods.

Model | Llama-2 1.3B | Llama-2 7B

Method ‘ WeSaR-GlobalGC SPAM ScaledEmbed-GlobalGC AdaGC ‘ WeSaR-GlobalGC SPAM ScaledEmbed-GlobalGC AdaGC
Total Steps 9K 9K 9K 9k 9K 9K 9K 9K
Num Spikes 2 0 10 0 1 3 8 0
Spike Score (%) 0.0222 0.0000 0.1111 0.0000 0.0111 0.0333 0.0889 0.0000

Among these methods, SPAM is designed to stabilize training by adjusting the optimizer’s behavior,
while Scaled Embed and WeSaR focus on initialization or embedding scaling strategies to sup-
press loss spikes. Our experiments show that, although some of these methods can partly mitigate
instability or improve certain metrics, AdaGC generally achieves higher stability and better final
performance across model scales. Notably, while WeSaR is also effective at suppressing loss spikes,
its reliance on special parameter initialization limits its applicability to from-scratch training. In
contrast, AdaGC works reliably under both from-scratch and resumed training regimes, providing
stronger flexibility. Overall, these results demonstrate AdaGC'’s superior robustness and generaliza-
tion compared to other non-clipping baselines.

F MORE VISUALIZATION RESULTS

F.1 TRAINING DYNAMICS

5.0y 2.0, 35.0
—— AdamW + GlobalGC —— AdamW + GlobalGC —— AdamW + GlobalGC
—— AdamW + ClipByValue 18 —— AdamW + ClipByValue —— AdamW + ClipByValue
—— AdamW + Clippy 8 —— AdamW + AdaGC —— AdamW + Clippy
4.5 —— AdamW + AdaGC 15 30.0| —— AdamW + AdaGC
E o
440 s1.2 &5.0
K| ® §
.E 2.52 & 1.0 2
£35 2.49 K 2
T4s E $20.0
: o
50 8080 90p0 os
15.0)
0.2]
2.5]
0 2000 7000 6000 8000 005 2000 2000 6000 8000 0 2000 2000 6000 8000
Train Step Train Step Train Step

Figure 7: Llama-2 1.3B training dynamics of clipping methods.

—— AdamW + GlobalGC

—— AdamW + WeSaR-GlobalGC

— SPAM

~—— AdamW + ScaledEmbed-GlobalGC
—— AdamW + AdaGC

—— AdamW + GlobalGC

—— AdamW + WeSaR-GlobalGC

—— AdamW + ScaledEmbed-GlobalGC
—— AdamW + AdaGC

—— AdamW + GlobalGC

—— AdamW + WeSaR-GlobalGC

— SPAM

~—— AdamW + ScaledEmbed-GlobalGC
—— AdamW + AdaGC

30.0]

=

N
N
It
o

Train Loss
w
n

o
@
N
o
o

Global Grad Norm
-
=)
Validation PPL

15.0,

0 2000 2000 6000 8000 0 2000 2000 6000 8000 0 2000 2000 6000 8000
Train Step Train Step Train Step

Figure 8: Llama-2 1.3B training dynamics of other baseline methods.

F.2 OPTIMIZER STATE DYNAMICS

22

Under review as a conference paper at ICLR 2026

5.0 2.0y T — e 35.1
—— AdamW + GlobalGC — AdamW + GlobalGC —— AdamW + GlobalGC
—— AdamW + WeSaR-GlobalGC 18 —— AdamW + WeSaR-GlobalGC —— AdamW + WeSaR-GlobalGC
45 spaM : —— AdamW + ScaledEmbed-GlobalGC spaM
: —— AdamW + ScaledEmbed-GlobalGC — AdamW + AdaGC 30.0 —— AdamW + ScaledEmbed-GlobalGC
—— AdamW + AdaGC 1.5 —— AdamW + AdaGC
E
4.0| 5 7
g 512 2250
K| H s
2 ot £200
£ 2.35] 220.
= Sos s 105
[c]
3.0 239 10.0
80! 5000 05 ! il 15.0 8080 | 9000
)
[T,
25 | ‘ 0.2 m‘ ! M"I\U’Mﬂ%w NN oo
- 10.0
0 2000 4000 6000 8000 0. 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Train Step Train Step Train Step

Figure 9: Llama-2 7B training dynamics of other baseline methods.

o1s0 £

s
o 2

grad-norm

oan €
g

oors E
E s

GlobalGC

o0s0 E

PCE
dads
daia

global-grad-norm

x10%

global-grad-norm

AT

50 L 20
Train Step Train Step Train Step Train Step Train Step

Figure 10: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the embedding of Llama-2 1.3B. Each row represents a
different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the
fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

23

Under review as a conference paper at ICLR 2026

GlobalGC

global-grad-norm

second-moment-norm

x10°%

x10-2

E

o €

d-norm

Lo ReS

ent-norm
m

o1t

0w B
5

3 “wE 030
ooso £ o

45 0f s s 45 05 48 a5 .
s . 2 20 £
O BE oo £, £ w0 B w0 020 &
] 23 003 8 158 €
s g I £ 20 01s @
Bos 5D s 000D 35 E s a5 £
2 - g w2 " "
50 ©E OB 10 Eow 0F H
° 0020 os oo

25 25 oms g E s g as
o 00 & o
1000 2000 3000 4G50 5000 6000 7000 8000 9000 1000 2000 3000 4G50 5000 6000 7000 8000 9000 1000 2000 3000 4600 5000 6000 7000 8000 9000 1Go0 2000 3000 4000 5000 6000 7000 8500 600 1Gh0 2000 3000 4000 5000 6000 7000 8500 600
Step Train Step Train Step Train Step Train Step

Figure 11: Visualization of the gradient norm, first-moment norm, second-
moment norm, update norm, loss, and global gradient norm for he
encoder_layers_3_self_attention_query_key_value of Llama-2 1.3B. Each row
represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is
Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

[

x10-%

o £
as 0sE as
E 04
055 w0 a0
wf o
5 s 35
] -
2@ 5y 20
w0 23 w0 23
A . x10
o
0 45 as
05 40 g a0
B s a5
25 w28
x10%
W
0 e s
5@ 30 wg a0 o

second-moment-norm

GlobalGC

fadm

update-norm

global-grad-norm

update-norm

° " grad-norm
second-moment-norm_

grad-norm

second-moment-norm
update-norm

N N N x107%
£ o8 " s
g it £
geo “ - £ P L8
g 03 v
2 < 058 o g 3
w0 o w® oz w0 LB
25 25 o as i 25 N

Train Step Train Step Train Step Train Step Train Step

Figure 12: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the LMHead of Llama-2 1.3B. Each row represents a
different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the
fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

24

Under review as a conference paper at ICLR 2026

GlobalGC

il
CICE
il

ir 'm
m

(K
(e

grad-norm

;

m

global-grad-norm
grad-norm

1000 2000 3000_400 5000 6000 7000 8000 1000 2000 3000 400 5000 6000 7000 8000 1000 2000 3000 4500 5000 600 7000 %00 000 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 400 5000 e300 7000 %00 000
Train Step Train Step Train Step Train Step Train Step

Figure 13: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the encoder_final_layernorm of Llama-2 1.3B.
Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the
third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

x10-2

global-grad-norm

JCEE
LLCE
s

GlobalGC

§5EEEREESE first-moment-norm

irst-moment-norm
d second-moment-norm S & 8 ¥ 3 & & 3
second-moment-norm

x102

te-norm

x102

m

sec

AdaGC
global-grad-norm
grad-norm

1000 2000 3000 4000 5000 6000 7000 8000 % 1000 2000 3000 4000 5000 6000 7000 8000 % 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 2000 3000 4000 5000 6500 7000 8000 % 1000 2000 3000 4000 5000 6000 7000 8000 %

Step Train Step Train Step Train Step

Figure 14: Visualization of the gradient norm, first-moment norm, second-
moment norm, update norm, loss, and global gradient norm for the
encoder_layers_0O_self_attention_query_key_value of Llama-2 1.3B. Each row
represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is
Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

25

Under review as a conference paper at ICLR 2026

5
Qo 25 . nsg “0
[05 B
] g
5. w5 e e
< = &
5 g
30 Rl - ST 10 @ 30
2
o) 125

update-norm

1000 2000 3000 4000 5000 6000 7000 8000 9000

1000 2000 3090 4000 5000 6000 7000 8000 9000
Train Step

1000 2000 3000 4000 5000 6000 7600 8000 5000

xa0- xa0-t x10 x10-0
35 o sg 25
" wE s o s sE -
o 5 08
I} £ 13 Z
8 % £ . e B
3 % 08 8
0. PR Y} SRS B o
S o ['
25 o 2 o 25 W s 08 as
x10- x10- x107 e
e o S wE s -
£ 1 8
3 .8 .ung
9 s 3o s E s 8 s :
30 30 2 s DwE 30- - 30-
25 25 . o 28 .8 s
P x10- x10- x102
. oE nE .
45 45 a5 = as. 2 s
5 g
e 2 5 sE
>0 o Eow g wf . 5
g g g g i
a2, s 5 s SE s - 8
5] g H 0k 3
w w s, E o g g
H e
25 25 25 = 25 2 s
. . o8 .
x10- x10-0 x102
gL. /\ M
Train Step

Pl
g
5
@
g
3
first-moment-norm
Second-moment-norm

1000 2000 3000 4000 5000 6000 7000 8000
Train Step

1000 2000 3000 4000 5000 6000 7000 8000 O

Train Step

Figure 15: Visualization of the gradient norm, first-moment norm, second-moment norm, up-
date norm, loss, and global gradient norm for the encoder_layers_23_input_layernorm
of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the
second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows

the loss trajectory.

	Introduction
	Related Work
	Motivation: From Root-Cause Diversity to a Unified Gradient-Centric Remedy
	Methodology: AdaGC
	Preliminaries
	Adaptive Gradient Clipping based on Local Gradient Norm
	Memory, Computation, and Communication
	Convergence Analysis

	Experiments
	Experimental Setup
	Critical Hyperparameter Selection
	Main Experimental Results
	Optimizer Compatibility: Muon and Lion
	End-to-End training Wall-clock
	Ablation Study

	Conclusion
	Statement on the Use of LLMs
	Convergence Proof
	Pseudocode of AdamW with AdaGC
	Hyper-Parameters
	Model Hyper-Parameters
	Clipping Hyper-Parameters

	Experimental Details for CLIP
	More Evaluation Results
	Results on Downstream Benchmarks
	Results of Other Baseline Methods

	More Visualization Results
	Training Dynamics
	Optimizer State Dynamics

