
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAGC: IMPROVING TRAINING STABILITY FOR
LARGE LANGUAGE MODEL PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Loss spikes remain a persistent obstacle in large-scale language model pretrain-
ing. Empirically, such spikes can be triggered by a mixture of factors, includ-
ing data outliers, hardware or transient computational faults, numerical precision
issues, and hyperparameter settings. Regardless of the underlying cause, these
spikes manifest as unstable optimizer updates, as abnormal gradients contami-
nate both first- and second-moment states. In this paper, we do not attempt to
identify the precise root causes. Instead, we adopt a gradient-centric remedy and
propose AdaGC, an adaptive, per-tensor gradient clipping scheme that prevents
such contamination by bounding gradient norms relative to a tensor-wise EMA of
their historical (clipped) values. AdaGC is optimizer-agnostic, requires negligible
memory, and reduces communication costs compared to GlobalGC, particularly
under hybrid parallel distributed training. We prove that Adam with AdaGC pre-
serves the standard non-convex convergence rate. On Llama-2 7B, Mixtral 8×1B,
and ERNIE 10B-A1.4B models, AdaGC robustly eliminates training instabilities,
reducing the spike score to zero for all models, and improves downstream accu-
racy compared to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. Fur-
thermore, AdaGC composes well with Muon and Lion optimizers, consistently
yielding higher average accuracy and zero spike scores.

1 INTRODUCTION

2.2

2.5

2.8

3.0

3.2

3.5

3.8

4.0

Tr
ai

n
Lo

ss

AdamW + GlobalGC (lr=3e-4, beta2=0.95)
AdamW + GlobalGC (lr=3e-4, beta2=0.999)

0 5000 10000 15000 20000 25000 30000 35000
Train Step

0.0

0.5

1.0

1.5

2.0

Gl
ob

al
 G

ra
d

No
rm

(a) Mixtral

2.2

2.5

2.8

3.0

3.2

3.5

3.8

4.0

Tr
ai

n
Lo

ss

AdamW + GlobalGC (eps=1e-8)
AdamW + GlobalGC (eps=1e-15)
AdamW + AdaGC (eps=1e-15)

0 10000 20000 30000 40000 50000 60000
Train Step

0.0

0.5

1.0

1.5

2.0

Gl
ob

al
 G

ra
d

No
rm

(b) ERNIE

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

n
Lo

ss

AdamW + GlobalGC (RMSNorm FP32)
AdamW + GlobalGC (RMSNorm BF16)

0 2000 4000 6000 8000 10000
Train Step

0.0

0.5

1.0

1.5

2.0

Gl
ob

al
 G

ra
d

No
rm

(c) ERNIE

1.0

2.0

3.0

4.0

5.0

6.0

Tr
ai

n
Lo

ss

253120 253200
1.40

1.50

1.60

AdamW + GlobalGC (Loss spike, training interrupted)
AdamW + GlobalGC (Resume from step 253100)

252500 253000 253500 254000 254500 255000
Train Step

0.0

0.5

1.0

1.5

2.0

Gl
ob

al
 G

ra
d

No
rm

(d) ERNIE

Figure 1: Reproduced cases of loss spikes and mitigation via resuming. Loss spikes are triggered
by (a) increasing β2 or (b) reducing ϵ in AdamW, (c) using lower-precision RMSNorm, even under
global gradient clipping, and (d) are resolved by resuming due to stochasticity in FlashAttention
backward passes.

The rapid scaling of large language models (LLM) has introduced new challenges in pretraining
stability, often manifesting as abrupt loss spikes or transient divergences across a wide range of
model architectures and data scales (Chowdhery et al., 2023; Touvron et al., 2023; Liu et al., 2024;
Team et al., 2025; Baidu-ERNIE-Team, 2025). Despite extensive empirical studies, the fundamental
causes of these instabilities remain elusive. Recent research, alongside our own analyses, indicates
that loss spikes can arise from a variety of sources, including: (i) data quality issues (Chowdhery
et al., 2023); (ii) hardware or transient computational faults (Su, 2025); (iii) variations in numer-
ical precision (for example, FP32 typically offers greater robustness than BF16, whereas FP8 can
sometimes enhance stability by suppressing outlier values via implicit quantization (Han, 2024; Liu
et al., 2024)); and (iv) the selection of optimizer and layer normalization hyperparameters, such as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the ϵ parameter in RMSNorm or AdamW, and β2 in AdamW (Ma et al., 2021; Cattaneo & Shigida,
2025; Bai et al., 2025). For instance, we observe that increasing β2 or decreasing ϵ in AdamW can
trigger loss spikes, whereas increasing the precision of RMSNorm from BF16 to FP32 significantly
improves stability. Figure 1 presents several representative cases we have reproduced.

Although the upstream causes of instability are diverse and often subtle, these events consistently
converge at the optimizer level, manifesting as abnormal gradients. Such outlier gradients are in-
corporated into the optimizer’s first- and second-moment estimates, thereby corrupting parameter
updates and propagating instability through subsequent training. Notably, we find that even resum-
ing interrupted training (while keeping the random seed and data unchanged) can mitigate a loss
spike, merely due to the stochastic nature of dQ, dK, and dV in FlashAttention (Dao, 2023) (see
Figure 1d). This observation further suggests that, in certain model states, even minute numerical
differences can trigger a loss spike, with gradient outliers playing a critical role in both the initiation
and propagation of instabilities during optimizer state updates.

While the slight stochasticity introduced by FlashAttention can sometimes circumvent a loss spike,
repeatedly interrupting and resuming training imposes substantial computational overhead. Given
that these instabilities stem from diverse upstream causes but ultimately converge at the optimizer
level, our work does not attempt to identify the precise root causes. Instead, we adopt a gradient-
centric perspective: irrespective of the initial trigger, loss spikes consistently arise when outlier
gradients contaminate the optimizer states. Therefore, by preventing such gradients from entering
the first- and second-moment accumulators, we provide a unified and effective strategy to mitigate
training instability.

A standard mitigation strategy is global gradient clipping (GlobalGC), which bounds the global ℓ2
norm of the aggregated gradient. However, this approach is fundamentally mismatched to modern
large-scale pretraining in two key respects: (1) Temporal mismatch: The optimal global clipping
threshold typically decreases over the course of training; a fixed threshold risks under-clipping in
later phases. (2) Spatial mismatch: Gradient statistics and rare spikes vary asynchronously across
different parameter tensors, making a single global threshold insufficient—protecting one tensor
may under-serve or over-constrain others.

To address these challenges, we introduce Adaptive Gradient Clipping based on Local Gradient
Norm (AdaGC): a simple, per-tensor clipping rule that leverages an EMA of each tensor’s historical
gradient norm as a reference. Each tensor’s gradient is clipped relative to its own EMA, preventing
transient outliers from contaminating the first- and second-moment accumulators and, ultimately,
the parameter updates. A brief warm-up period applies global clipping and initializes the EMA to
avoid early overestimation. AdaGC is optimizer-agnostic and can be seamlessly integrated with
AdamW, Lion, and Muon. Our main contributions are as follows:

• A unified, gradient-centric perspective: We clarify how loss spikes universally propagate
via abnormal gradients polluting optimizer states, irrespective of their origin, motivating
intervention at the gradient level prior to moving-average accumulation.

• An adaptive, per-tensor clipping rule: By tracking each tensor’s gradient norm statistics
with an EMA, AdaGC provides both temporal adaptivity and spatial specificity, suppress-
ing outliers while minimally disturbing typical learning dynamics.

• System efficiency and theoretical guarantees: We analyze computational and commu-
nication overhead, showing that AdaGC reduces communication relative to GlobalGC un-
der hybrid parallel distributed training, and we prove that Adam+AdaGC maintains an
O(1/

√
T) convergence rate under standard non-convex conditions.

• Empirical validation at scale: On Llama-2 7B, Mixtral 8×1B, and ERNIE 10B-A1.4B
models, AdaGC robustly eliminates training instabilities and improves accuracy compared
to GlobalGC by +1.32%, +1.27%, and +2.48%, respectively. The method is similarly
effective with AdamW, Lion, and Muon optimizers.

2 RELATED WORK

Stability in large-scale pretraining: Dozens of approaches address instability during large-model
pretraining, including: architectural advances (Pre-LN Xiong et al. (2020), RMSNorm (Zhang &
Sennrich, 2019)), careful initialization (Nguyen & Salazar, 2019; Takase et al., 2023; Nishida et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of major gradient/update clipping methods for training stability in pretraining.
Here, θt denotes the model parameters, gt the gradients, ∆t the optimizer update, vt the second
momentum, ηt the learning rate, λabs the absolute threshould, and λrel the relative threshold.

Method Algorithm Gradient Update Granularity Threshold Type

GlobalGC (Pascanu et al., 2013) min{1.0, λabs
1

∥gt∥} ! % Global Fixed constant

ClipByValue clamp(−λabs, λabs) ! % Element Fixed constant

AGC (Brock et al., 2021) min{1.0, λrel
∥θt∥
∥gt∥} % ! Unit Weight ℓ2 norm

Clippy (Tang et al., 2023) min{1.0,min(λrel∥θt∥∞+λabs

ηt∗∥∆t∥∞
)} % ! Tensor Weight ℓ∞ norm

SPAM (Huang et al., 2025) sign(gt) ·
√
λrelvt ! % Element Local (vector) variance

LAMB (You et al., 2019) ϕ(∥θt∥)
∥∆t∥ % ! Tensor Weight ℓ2 norm

AdaGC (ours) min{1.0, λrel
γt−1,i

∥gt,i∥} ! % Tensor EMA of gradient norm
γt,i = βγt−1,i + (1− β)∥gt,i∥

2024), auxiliary loss terms (Max-z loss (Yang et al., 2023)). Recent work OLMo et al. (2024) also
explores combining multiple stabilization strategies. These measures improve average stability but
do not directly prevent abnormal gradients from corrupting optimizer states.

Gradient/Update Clipping: Gradient and update clipping achieve stability by limiting the mag-
nitude of gradients and parameter updates, preventing excessively large weight updates. Global
gradient clipping (Pascanu et al., 2013) is prevalent, with innovative approaches like AGC (Brock
et al., 2021) and Clippy (Tang et al., 2023), which use model weights to adjust the clipping threshold.
The SPAM (Huang et al., 2025) method stabilizes the model training process by introducing a mo-
mentum reset mechanism and an element-wise gradient clipping strategy based on second-moment
estimation. Alternatives like Adafactor (Shazeer & Stern, 2018), StableAdamW (Wortsman et al.,
2023), and LAMB (You et al., 2019) offer update clipping techniques better suited for stability
training of large-scale models. Nonetheless, a significant number of loss spikes still occur during
the training of large language models, even with the application of these methodologies. Due to our
gradient-centric perspective, we focus our discussion on clipping-based methods. These methods
fall into two categories: value-based approaches, which truncate individual gradient components
exceeding a predefined limit, and norm-based approaches, which rescale the entire gradient vector
only when its overall magnitude exceeds a threshold. AdaGC belongs to the norm-based category,
leveraging adaptive per-tensor norm thresholds to stabilize training. For a comparative summary,
see Table 1.

3 MOTIVATION: FROM ROOT-CAUSE DIVERSITY TO A UNIFIED
GRADIENT-CENTRIC REMEDY

Through a series of experiments (see Figure 1 and Figure 2), we observe that loss spikes encountered
under diverse settings consistently coincide with abrupt fluctuations in the gradient norm. Compar-
ative analyses further reveal limitations of existing methods such as GlobalGC, AGC, and Clippy:
GlobalGC’s static global threshold cannot detect or suppress localized abnormal gradients, allowing
outliers to contaminate optimizer states and trigger instability. AGC and Clippy focus on controlling
parameter updates, leaving internal moments vulnerable to large gradient outliers.

As discussed in the Introduction (Section 1), loss spikes typically result from a combination of mul-
tiple factors. While the specific triggers may vary, these loss spikes share a common manifestation:
abnormally large gradients are incorporated into the optimizer’s moment estimates, leading to un-
stable updates. Based on these analyses, we propose a unified remedy: regardless of the root cause,
instability in large-scale training is best addressed via gradient-centric clipping. Specifically, only
localized and adaptive clipping, applied before gradients are integrated into the optimizer’s moment
estimates, can effectively constrain the influence of outlier gradients. We thus distill two key prin-
ciples for loss spike mitigation: (1) Locality: clip gradients for each parameter tensor individually,
avoiding the insensitivity of a global threshold; (2) Adaptivity: dynamically adjust each tensor’s
clipping threshold, e.g., using an EMA of its recent gradient norms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.0

3.2

3.4

3.6

3.8

4.0

G
lo

ba
lG

C

3.0

3.2

3.4

3.6

3.8

4.0

3.0

3.2

3.4

3.6

3.8

4.0

3.0

3.2

3.4

3.6

3.8

4.0

3.0

3.2

3.4

3.6

3.8

4.0

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

AG
C

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Cl
ip

py

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

1000 1200 1400 1600 1800 2000
Train Step

2.9

3.0

3.1

3.2

3.3

3.4

Ad
aG

C

1000 1200 1400 1600 1800 2000
Train Step

2.9

3.0

3.1

3.2

3.3

3.4

1000 1200 1400 1600 1800 2000
Train Step

2.9

3.0

3.1

3.2

3.3

3.4

1000 1200 1400 1600 1800 2000
Train Step

2.9

3.0

3.1

3.2

3.3

3.4

1000 1200 1400 1600 1800 2000
Train Step

2.9

3.0

3.1

3.2

3.3

3.4

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gr
ad

-n
or

m

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

fir
st

-m
om

en
t-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

up
da

te
-n

or
m

0.0

0.2

0.4

0.6

0.8

1.0

gr
ad

-n
or

m

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fir
st

-m
om

en
t-

no
rm

0

2

4

6

8

se
co

nd
-m

om
en

t-
no

rm

×10 4

0.25

0.30

0.35

0.40

0.45

0.50

0.55

up
da

te
-n

or
m

0

5

10

15

20

25

30

gr
ad

-n
or

m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fir
st

-m
om

en
t-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

se
co

nd
-m

om
en

t-
no

rm

0.2

0.3

0.4

0.5

0.6

0.7

up
da

te
-n

or
m

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gl
ob

al
-g

ra
d-

no
rm

0.015

0.020

0.025

0.030

0.035

0.040

0.045

gr
ad

-n
or

m

0.2

0.4

0.6

0.8

1.0

1.2

fir
st

-m
om

en
t-

no
rm

×10 2

0.2

0.4

0.6

0.8

1.0

1.2

1.4

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.20

0.25

0.30

0.35

0.40

0.45

up
da

te
-n

or
m

Figure 2: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the embedding of Llama-2 1.3B during warmup phase.
Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the
third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

4 METHODOLOGY: ADAGC

4.1 PRELIMINARIES

Notations. Let xt ∈ Rd denote a parameter vector where xj
t represents its j-th coordinate for

j ∈ [d]. We write ∇xf(x) for the gradient of any differentiable function f : Rd → R, and use u2

and u/v to denote element-wise square and division operations for vectors u, v ∈ Rd. The ℓ2-norm
and ℓ∞-norm are denoted by ∥·∥ and ∥·∥∞, respectively. For asymptotic comparisons, we write
f = O(g) if ∃c > 0 such that f(x) ≤ cg(x) for all x in the domain.

Gradient Clipping Fundamentals. Consider a stochastic optimization problem with parameters
θ ∈ Rd and loss function f(θ;Xt) evaluated on mini-batch Xt at step t. Standard gradient descent
updates follow:

θt = θt−1 − ηt∇θf(θt−1, Xt) (1)

To prevent unstable updates from gradient explosions, GlobalGC (Pascanu et al., 2013) modifies the
update rule as:

θt = θt−1 − ηtht∇θf(θt−1, Xt)

where ht := min
{

λabs

∥∇θf(θt−1;Xt)∥ , 1.0
} (2)

Here λabs is an absolute clipping threshold requiring careful tuning, and ηt is the learning rate. Our
work focuses on norm-based clipping (scaling entire gradients exceeding λabs) rather than value-
based clipping (element-wise truncation).

4.2 ADAPTIVE GRADIENT CLIPPING BASED ON LOCAL GRADIENT NORM

This section introduces a novel gradient clipping strategy termed AdaGC, which distinguishes itself
by not relying on a global gradient norm. Instead, AdaGC focuses on the local gradient norm of
each tensor and utilizes a dynamic adaptive mechanism for gradient clipping. The proposed method
employs an EMA mechanism to maintain smoothed estimates of historical gradient norms per tensor,
thus enhancing the accuracy of anomalous gradient detection and enabling independent clipping
adjustments tailored to each tensor’s specific conditions. EMA is widely used in deep learning, and
within AdaGC, it facilitates the balancing of historical and current gradient norms. The formulation

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is as follows:

gt,i ← ht,i · gt,i,where ht,i = min
{
λrel

γt−1,i

∥gt,i∥ , 1.0
}
,

γt,i = βγt−1,i + (1− β)∥gt,i∥.
(3)

Here, λrel is a predefined relative clipping threshold, gt,i represents the gradient of the i-th tensor at
time step t, and ht,i is a clipping function activated when ∥gt,i∥> λrel · γt−1,i, thereby scaling the
gradient norm to λrel ·γt−1,i. Additionally, β is the smoothing coefficient for EMA. We consistently
incorporate the clipped gradient norm into the historical observations rather than the pre-clipped
values.

Despite its simplicity, AdaGC adaptively adjusts based on the magnitude of each tensor’s gradient
norm. Whenever the gradient norm at a current timestep exceeds a predefined range of average
norms within a historical window, it effectively suppresses these outlier gradients.

However, during the initial stages of model training (e.g., the first 100 steps), the gradient norms
are typically large and fluctuate significantly, indicating a substantial decreasing trend. Direct ap-
plication of AdaGC during this period could lead to two issues: first, erroneously accumulating the
early large gradient norms into the historical values, resulting in compounded errors; second, com-
pared to GlobalGC, AdaGC might delay clipping, thus potentially slowing down the loss reduction.
To address these issues, we introduce a hyperparameter Tstart (default set to 100), representing a
warm-up period during which traditional GlobalGC is applied.

Additionally, AdaGC is optimizer-agnostic, can be seamlessly integrated with various optimizers,
such as AdamW (Loshchilov & Hutter, 2017), Lion (Chen et al., 2024), Muon (Jordan et al., 2024),
enhancing its practicality and flexibility. Algorithm 1 in Appendix B demonstrates its implementa-
tion with the AdamW optimizer.

4.3 MEMORY, COMPUTATION, AND COMMUNICATION

Memory. As a tensor-wise method, AdaGC maintains an EMA of gradient norms for each parameter
tensor, requiring storage of a single 32-bit float (4 bytes) per tensor. For ERNIE models, the total
additional memory overhead has complexity of O((9 + 3E) × L + 3), where L and E denote
the number of transformer layers and experts, respectively. Specifically, this includes four tensors
from the attention module per layer, 3 × (1 + E) tensors from the shared and router experts per
layer, and two RMSNorm tensors per layer; plus one tensor each for the embedding layer, the final
layer normalization, and the language modeling head. In practice, this added memory footprint is
negligible compared to the overall memory requirements of large-scale model training.

Computation. The computational cost of computing ℓ2 norms is the same for both AdaGC and
GlobalGC. The difference is that GlobalGC applies a uniform scaling to all gradients, while AdaGC
scales each gradient tensor independently.

Communication. In setups involving data parallelism (DP), tensor parallelism (TP), and pipeline
parallelism (PP), GlobalGC requires an all-reduce operation across all DP, TP, and PP groups to
aggregate the global norm. In contrast, AdaGC only needs an all-reduce within each TP group
to compute per-tensor local norms. This design substantially reduces communication overhead,
offering increasing benefits as model and cluster sizes grow.

4.4 CONVERGENCE ANALYSIS

Any operation that modifies gradients may potentially result in non-convergence. In this section,
rather than providing a theoretical guarantee that AdaGC eliminates loss spikes, we present the
convergence guarantee for Adam with AdaGC, stated as follows:

Theorem 4.1 Under mild assumptions, by selecting αt = O(1/
√
T), β2 = 1−O(1/T) and β1 <√

β2, when τ is randomly chosen from {1, 2, · · · , T} with equal probabilities, it holds that

E∥∇f(θτ)∥2= O
(

1√
T

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Zero-shot accuracy of AdaGC on
Llama-2 7B under different hyperparameters.

λrel

β 0.98 0.985 0.99 0.999

1.03 50.06 50.92 50.95 50.96
1.04 48.88 50.59 51.04 50.76
1.05 51.01 49.95 50.57 50.74

Table 3: Two-shot accuracy of AdaGC on
Llama-2 7B under different hyperparameters.

λrel

β 0.98 0.985 0.99 0.999

1.03 52.31 52.68 53.13 53.42
1.04 52.68 53.01 53.47 52.85
1.05 52.68 52.67 51.96 53.51

Theorem 4.1 shows that even with local clipped gradient, Adam with AdaGC can converge at the
same rate as vanilla Adam (Kingma & Ba, 2014). Due to the limited space, the formal assumptions
and theorem statement with detailed proof can be found in Appendix A.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Models and Datasets. AdaGC is designed to enhance training stability during large language model
pretraining. We evaluate its effectiveness on both dense and MoE (Mixture-of-Experts) architec-
tures. For dense models, we use Llama-2 with 1.3B and 7B parameters. For MoE models, we
experiment with Mixtral 8×1B (Jiang et al., 2024) and ERNIE 10B-A1.4B (Baidu-ERNIE-Team,
2025), where Mixtral 8×1B is a scaled-down version of Mixtral 8×7B, and ERNIE 10B-A1.4B is
derived from ERNIE-4.5 21B-A3B. For pre-training, we use C4-en (Raffel et al., 2020), a clean
English text corpus extracted from Common Crawl.

Comparison Methods. We focus on clipping-based methods and compare gradient and update
clipping baselines, including GlobalGC (Pascanu et al., 2013), Gradient Value Clipping (ClipBy-
Value), AGC (Brock et al., 2021), and Clippy (Tang et al., 2023). We also evaluate recent methods,
including SPAM (Huang et al., 2025), Scaled Embed (Takase et al., 2023), and WeSaR (Nishida
et al., 2024). Results are in Appendix E.2 Table 11.

Training Details. Pre-training large-scale models is typically resource-intensive. Our primary focus
was to explore training instability rather than achieve ultimate accuracy. For ease of multiple experi-
ments, we conducted 9,000 training steps on 36 billion tokens for both Llama-2 1.3B and 7B, 36,000
steps on 36 billion tokens for the Mixtral 8x1B, and 21,000 steps on 350 billion tokens for ERNIE
10B-A1.4B. We further trained ERNIE 10B–A1.4B for 60,000 steps on 1 trillion tokens to addition-
ally validate the long-term stability of AdaGC. For additional details on the hyperparameters, please
refer to Table 8 of Appendix C.

Evaluation Metrics. To quantitatively assess training stability, we follow (OLMo et al., 2024;
Karpathy, 2024) and adopt the spike score as an objective metric. Specifically, the spike score is
defined as the percentage of values in a time series that deviate by at least ten standard deviations
from a rolling average of the preceding 1,000 values. This metric is primarily applied to training loss
to detect sudden instabilities. Additionally, we evaluate performance using the training loss and val-
idation perplexity (PPL) curves, as well as standard benchmark results, to provide a comprehensive
assessment of convergence efficiency and model quality.

Standard Benchmark. We conducted a comprehensive evaluation of the model’s zero-shot
and two-shot capabilities across seven well-established benchmarks: ARC (Yadav et al., 2019),
BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), and MMLU (Hendrycks et al.,
2020). Following standard practice (Zhang et al., 2025), we report accuracy norm for ARC-E,
ARC-C, HellaSwag, OBQA, and SciQ, as well as standard accuracy for all other tasks. For ERNIE
10B-A1.4B, which has been trained on 350B tokens, we evaluate its general abilities on a range of
benchmarks, including MMLU (Hendrycks et al., 2020), GSM8K (Cobbe et al., 2021), BBH (Suz-
gun et al., 2022), TruthfulQA (Lin et al., 2021), and HumanEval (Chen et al., 2021). These bench-
marks assess the model’s enhanced capabilities in performing diverse downstream tasks, such as
examination, reasoning, factuality, and coding.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2 CRITICAL HYPERPARAMETER SELECTION

We systematically evaluated two key hyperparameters in AdaGC: the EMA coefficient β and the
relative clipping threshold λrel. Specifically, we performed a grid search on the Llama-2 7B model
to optimize these two hyperparameters, using zero-shot and two-shot performance across multiple
tasks as evaluation metrics. As shown in Tables 2 and 3, the best performance was achieved when
λrel = 1.04 and β = 0.99. We therefore adopted this configuration as the default setting for
subsequent experiments and terminated further hyperparameter search. In addition, as observed
in Tables 2 and 3, AdaGC’s performance remains relatively stable across different hyperparameter
values, suggesting that the method is robust to hyperparameter variations.

5.3 MAIN EXPERIMENTAL RESULTS

0 2000 4000 6000 8000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
Lo

ss

8000 9000
2.30

2.35

AdamW + GlobalGC
AdamW + ClipByValue
AdamW + AGC
AdamW + Clippy
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

10.0

15.0

20.0

25.0

30.0

35.0

Va
lid

at
io

n
PP

L

8000 9000
10.0
10.5

AdamW + GlobalGC
AdamW + ClipByValue
AdamW + AGC
AdamW + Clippy
AdamW + AdaGC

(a) Llama-2 7B training dynamics.

0 5000 10000 15000 20000 25000 30000 35000
Train Step

2.2

2.5

2.8

3.0

3.2

3.5

3.8

4.0

Tr
ai

n
Lo

ss

34000 36000
2.30
2.35

AdamW + GlobalGC (lr=3e-4, beta2=0.999)
AdamW + GlobalGC (lr=3e-4, beta2=0.95)
AdamW + AdaGC (lr=3e-4, beta2=0.999)
AdamW + AdaGC (lr=3e-4, beta2=0.95)

5000 10000 15000 20000 25000 30000 35000
Train Step

43.0

44.0

45.0

46.0

47.0

48.0

49.0

50.0

Ze
ro

-S
ho

t A
ve

ra
ge

 A
cc

ur
ac

y

AdamW + GlobalGC (lr=3e-4, beta2=0.999)
AdamW + GlobalGC (lr=3e-4, beta2=0.95)
AdamW + AdaGC (lr=3e-4, beta2=0.999)
AdamW + AdaGC (lr=3e-4, beta2=0.95)

(b) Mixtral 8x1B training dynamics.

Figure 3: Large language model training analysis: Llama-2 7B and Mixtral 8x1B model comparison
shows AdaGC’s loss spike elimination and performance gains.

Training Stability. Our comprehensive evaluation shows AdaGC’s effectiveness in improving train-
ing stability across a range of model scales and architectures. As shown in Figure 3, we compare
the training dynamics of Llama-2 7B and Mixtral 8×1B models in terms of loss trajectories, valida-
tion perplexity, and zero-shot average accuracy. For the 7B models, baseline methods (GlobalGC,
ClipByValue, AGC, Clippy) consistently exhibit frequent loss spikes during training, while AdaGC
effectively eliminates these instability events. On Mixtral 8×1B, using the default β2 = 0.999 leads
to recurrent loss spikes, whereas decreasing β2 to 0.95 helps mitigate this issue, indicating the strong
impact of β2 on training stability. AdaGC, however, can eliminate loss spikes for both β2 = 0.999
and β2 = 0.95, further demonstrating its robustness. The zero-shot average accuracy curves also
reveal that AdaGC not only stabilizes training under β2 = 0.999, but also improves convergence
performance. For the ERNIE 10B-A1.4B, Figure 1b shows that stable convergence is achieved with
ϵ = 1e−15, which is particularly advantageous for large-scale models as it enables more parameters
to fully utilize the adaptive learning rate in AdamW. Furthermore, Figure 2 illustrates AdaGC’s clip-
ping process, which prevents abnormal gradients from entering optimizer states, further smoothing
parameter updates and reducing oscillations, thereby benefiting training stability.

Spike Score Analysis. Table 4 quantitatively summarizes the reduction in spike score achieved by
AdaGC and the baseline methods across various settings. For Llama-2 7B, the spike score is reduced
from 0.0333 with GlobalGC to 0 with AdaGC; for Mixtral 8×1B, it drops from 0.0144 to 0; and for
ERNIE 10B-A1.4B, from 0.01 to 0. These results consistently demonstrate that AdaGC effectively
and robustly eliminates loss spikes compared to existing clipping methods.

Table 4: Comparison of spike scores for various models under different clipping methods.

Model Llama-2 7B Mixtral 8x1B ERNIE 10B-A1.4B
Method GlobalGC ClipByValue AGC Clippy AdaGC GlobalGC AdaGC GlobalGC AdaGC

Total Steps 9K 9K 9K 9K 9K 36K 36K 21K 21K
Num Spikes 3 9 8 3 0 52 0 2 0
Spike Score (%) 0.0333 0.1000 0.0889 0.0333 0.0000 0.0144 0.0000 0.0100 0.0000

Results on Downstream Benchmarks. Downstream zero-shot and two-shot evaluation results on
the Llama-2 1.3B/7B and Mixtral 8×1B models (see Table 5 and Table 10) clearly demonstrate the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

practical benefits of stable training. Across all model scales, AdaGC consistently achieves state-of-
the-art performance or matches the best baselines. Specifically, on Llama-2 7B and Mixtral 8×1B,
AdaGC obtains superior zero-shot (51.01% / 49.01%) and two-shot (53.47% / 51.61%) average ac-
curacy, surpassing the GlobalGC baseline by +1.32% / +1.27% and +0.83% / +1.14%, respectively.
Furthermore, long-term training of ERNIE 10B-A1.4B on 350B tokens shows that AdaGC achieves
more stable convergence with ϵ = 1e − 15, resulting in a 2.48% improvement over GlobalGC on
the general abilities validation set. These findings establish a strong correlation between training
stability and final model quality, indicating that the stability enabled by AdaGC facilitates better
convergence and enhanced downstream performance.

Table 5: The Zero-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard
benchmarks.

Model Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.acc norm acc norm acc acc norm acc norm acc norm acc acc acc norm

Llama-2 1.3B

GlobalGC 43.18 25.68 57.19 46.62 30.20 69.97 52.64 22.97 68.40 46.32
ClipByValue 42.17 25.68 59.94 44.11 30.40 69.59 53.28 22.99 68.00 46.24
Clippy 41.71 24.66 56.51 45.43 30.00 69.21 54.85 22.90 67.50 45.86
AdaGC 42.09 25.51 58.01 47.29 30.40 69.70 52.33 22.98 68.70 46.33

Llama-2 7B

GlobalGC 49.49 27.56 56.30 56.06 33.60 74.59 55.33 23.12 71.20 49.69
ClipByValue 46.21 26.88 57.03 53.49 33.20 71.65 53.59 23.36 70.50 48.43
AGC 48.15 28.16 52.87 55.47 32.80 72.74 57.85 24.33 71.70 49.34
Clippy 47.69 27.73 57.46 53.34 32.40 72.74 54.38 25.36 73.40 49.39
AdaGC 49.58 28.92 57.28 57.94 32.80 74.32 58.09 23.62 76.60 51.01

Mixtral 8x1B GlobalGC 44.70 25.94 56.57 53.08 33.00 71.60 54.70 22.91 67.20 47.74
AdaGC 46.68 26.37 58.93 55.85 32.20 73.12 54.38 23.22 70.30 49.01

Table 6: Evaluation results of ERNIE 10B-A1.4B on multiple benchmarks after 21,000 (350B to-
kens) and 60,000 (1T tokens) training steps, comparing different optimization configurations.

Steps (tokens) Method AdamW eps MMLU GSM8K BBH TruthfulQA HumanEval Avg.

21k (350B)
GlobalGC 1e-8 47.75 28.35 28.80 22.02 19.51 28.09
GlobalGC 1e-15 39.11 21.46 29.35 23.39 15.24 25.71
AdaGC 1e-15 42.07 25.32 27.89 24.92 20.73 28.19

60k (1T)
GlobalGC 1e-8 48.61 39.88 30.84 30.73 22.56 34.52
GlobalGC 1e-15 48.48 40.79 30.59 28.29 23.78 34.38
AdaGC 1e-15 48.70 36.01 31.38 35.02 22.56 34.73

5.4 OPTIMIZER COMPATIBILITY: MUON AND LION

AdaGC is an optimizer-agnostic gradient clipping method that can be seamlessly integrated not only
with AdamW, but also with other optimizers. To verify the generality of AdaGC, we conducted ex-
periments on both LLM and VLM tasks by combining Llama-2 1.3B and CLIP ViT-Base models
with the Muon and Lion optimizers, respectively, and compared them against GlobalGC. Although
no loss spikes were observed under either experimental setting, AdaGC consistently demonstrated
strong compatibility and generalization. In downstream zero-shot average accuracy, AdaGC outper-
formed GlobalGC by 0.14% (47.18% vs. 47.04%) with Muon and by 0.16% (40.81% vs. 40.65%)
with Lion. These results further confirm that AdaGC can be effectively applied across different
optimizers, providing stable training and improved downstream performance.

0 2000 4000 6000 8000
Train Step

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Tr
ai

n
Lo

ss

8000 9000
2.43
2.44
2.45

Muon + GlobalGC
Muon + AdaGC

(a) Training dynamics.

3000 4000 5000 6000 7000 8000 9000
Train Step

44.0

44.5

45.0

45.5

46.0

46.5

47.0

47.5

Ze
ro

-S
ho

t A
ve

ra
ge

 A
cc

ur
ac

y

Muon + GlobalGC
Muon + AdaGC

(b) Average accuracy.

Figure 4: AdaGC with Muon on Llama-2 1.3B.

0 5000 10000 15000 20000
Train Step

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tr
ai

n
Lo

ss

15000 20000
2.00
2.25
2.50

Lion + GlobalGC
Lion + AdaGC

(a) Training dynamics.

2000 6000 10000 14000 18000
Step

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Ze
ro

-s
ho

t T
op

-1
 A

cc
ur

ac
y

18000 20000
39.2
40.0
40.8

Lion + GlobalGC
Lion + AdaGC

(b) Average accuracy.

Figure 5: AdaGC with Lion on CLIP ViT-Base.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.5 END-TO-END TRAINING WALL-CLOCK

Table 7 compares the GPU hours required for training various models using different distributed
parallelism strategies. Compared to GlobalGC, AdaGC reduces end-to-end GPU hours by 0.27% on
Llama-2 1.3B, 4.48% on Llama-2 7B, 1.24% on Mixtral 8x1B, and 1.53% on ERNIE 10B-A1.4B,
thanks to reduced communication overhead. This highlights AdaGC’s additional communication
and efficiency benefits in large-scale distributed training.

Table 7: GPU hours under the same configuration. DPS denotes distributed parallel strategies.

Model Llama-2 1.3B Llama-2 7B Mixtral 8x1B ERNIE 10B-A1.4B

DPS DP=256, TP=1, PP=1 DP=32, TP=2, PP=1 DP=256, TP=1, PP=1, EP=1 DP=64, TP=1, PP=4, EP=8

Steps 9K 9K 36K 21K

GlobalGC 513.0 1468.2 2060.8 22922
AdaGC 511.6 1402.4 2035.2 22572

5.6 ABLATION STUDY

We conduct systematic ablation studies across three critical dimensions of AdaGC: (1) EMA gra-
dient norm initialization strategies, (2) GlobalGC warm-up steps, (3) adaptivity efficacy, and (4)
locality granularity.

0 5000 10000 15000 20000 25000 30000
Train Step

3.0

3.2

3.4

3.6

3.8

4.0

Tr
ai

n
Lo

ss

25000 30000
2.97
3.00
3.03

GlobalGC
AdaGC constant initialization 1.0
AdaGC constant initialization 0.5
AdaGC thresholded initialization
AdaGC norm initialization w/o GlobalGC
AdaGC norm initialization (default)

(a) γt,i initialization.

0 4000 8000 12000 16000 20000
Train Step

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8
Tr

ai
n

Lo
ss

16000 18000 20000
3.025

3.050

AdamW + AdaGC (Tstart = 0)
AdamW + AdaGC (Tstart = 50)
AdamW + AdaGC (Tstart = 100)
AdamW + AdaGC (Tstart = 150)
AdamW + AdaGC (Tstart = 200)
AdamW + AdaGC (Tstart = 500)
AdamW + AdaGC (Tstart = 1000)
AdamW + AdaGC (Tstart = 2000)

(b) Tstart warm-up.

0 5000 10000 15000 20000 25000 30000
Train Step

3.0

3.2

3.4

3.6

3.8

4.0

Tr
ai

n
Lo

ss

25000 30000
2.97
3.00
3.03

AdamW + GlobalGC
AdamW + TensorWiseGC
AdamW + Global AdaGC
AdamW + AdaGC

(c) Adaptivity, locality.

Figure 6: Training dynamics of ablation studies on AdaGC,
showing (a) the influence of different EMA initialization strate-
gies; (b) the impact of the GlobalGC warm-up steps Tstart; and
(c) the effects of adaptivity and locality granularity on gradient
clipping efficacy and final loss.

EMA Initialization Strategy.
The initialization of EMA
gradient norms requires careful
design due to large initial gra-
dient fluctuations during early
training phases (first 100 steps).
We evaluate five initialization
variants: The default AdaGC
strategy employs GlobalGC
during warm-up while tracking
minimum per-parameter norms
(γt,i = min(∥gt,i∥, γt−1,i)).
Comparative approaches in-
clude: (1) norm initialization
without GlobalGC warm-up (directly using γt,i = min(∥gt,i∥, γt−1,i) from step 0), (2) constant
initialization (γ0,i ∈ {0.5, 1.0}), and (3) thresholded initialization (γt,i = min(∥gt,i∥, 0.1)).
Figure 6a demonstrates that while all variants eliminate loss spikes, convergence quality varies
within 0.36%. The default strategy achieves optimal final loss (2.9708 vs 2.9725 for next-best),
showing that GlobalGC-guided warm-up better preserves parameter update consistency than direct
initialization. This establishes the importance of phased initialization for gradient norm adaptation.

Warm-up Steps Tstart. To further investigate whether the choice of GlobalGC warm-up steps
Tstart has a significant impact and to provide practical guidance for practitioners, we addition-
ally evaluate Tstart = {0, 50, 100, 150, 200, 500, 1000, 2000}. The results in Figure 6b show that
Tstart = 100 consistently achieves the best performance. According to the EMA initialization for-
mula γt,i = min(∥gt,i∥, γt−1,i), an excessively large Tstart accumulates lower γt,i values due to
early training dynamics, which may lead to over-clipping and suppressed convergence in later train-
ing. Conversely, an overly small Tstart accumulates larger γt,i values, which may delay clipping
and hinder timely suppression of abnormal gradients. In contrast, Tstart = 100 introduces negli-
gible additional overhead for large-scale training while providing consistently stable performance
improvements.

Adaptivity Efficacy and Locality Granularity. We conduct three sets of ablation experiments
to evaluate the adaptivity and locality of AdaGC. The baseline uses GlobalGC (no adaptivity, no
locality) with a fixed threshold of 1.0. In comparison, we examine (1) adaptive global gradient norm
clipping (Global AdaGC, adaptive but non-local), which employs a single adaptive threshold for
the entire model, (2) tensor-wise gradient norm clipping (TensorWiseGC, local but non-adaptive),

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

which allocated each tensor’s fixed clipping threshold proportionally to its parameter count relative
to the entire model, and (3) tensor-wise adaptation (AdaGC, adaptive and local), which adjusts
thresholds independently for each tensor. As shown in Figure 6c, Global AdaGC reduces but does
not completely eliminate spike events (1 event vs. 0 for tensor-wise) and yields a 0.25% higher final
loss (2.9639 vs. 2.9712). Although TensorWiseGC also mitigates loss spikes, it noticeably slows
down convergence and requires careful per-tensor threshold tuning to perform well. These results
demonstrate that tensor-wise adaptive clipping provides both greater spike suppression and lower
loss than other approaches.

6 CONCLUSION

The factors triggering loss spikes in large-scale pretraining are diverse and remain an open research
problem, with no unified solution to date. Unlike prior work that seeks to identify root causes, we
focus on a gradient-centric remedy and introduce AdaGC, an adaptive per-tensor gradient clipping
method that prevents abnormal gradients from contaminating optimizer states. This approach en-
sures smoother updates and effectively eliminates loss spikes. Extensive experiments demonstrate
that AdaGC delivers robust and stable training across both dense and MoE models, from 1.3B to 10B
parameters, consistently reducing spike scores to zero and improving benchmark performance. Our
results highlight AdaGC as a simple and effective solution for stable large-scale model pretraining.

7 STATEMENT ON THE USE OF LLMS

In preparing this manuscript, LLMs (mostly GPT-4.1/5) is utilized for linguistic refinement, includ-
ing the detection and correction of grammar errors or spelling mistakes, and sentence rephrasing to
improve clarity, coherence and readability. LLMs were also referenced when structuring the paper
contents, and review missing details, but not involved in the formulation of ideas, the execution of
experiments, or the generation of experimental results in this article.

REFERENCES

Zhiwei Bai, Zhangchen Zhou, Jiajie Zhao, Xiaolong Li, Zhiyu Li, Feiyu Xiong, Hongkang Yang,
Yaoyu Zhang, and Zhi-Qin John Xu. Adaptive preconditioners trigger loss spikes in adam. arXiv
preprint arXiv:2506.04805, 2025.

Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021.

Matias D. Cattaneo and Boris Shigida. Tuning Adam(W): Default β2

may be too large. Working paper, Princeton University, 2025. URL
https://github.com/mdcattaneo/mdcattaneo.github.io/
blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/
Cattaneo-Shigida_2025_TuningAdam.pdf.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in Neural Information Processing Systems, 36, 2024.

10

https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf
https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf
https://github.com/mdcattaneo/mdcattaneo.github.io/blob/ca84a9d43db12951e75190ae76fbdaabc77133f0/papers/Cattaneo-Shigida_2025_TuningAdam.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Daniel Han. Gemma bug fixes - approx gelu, layernorms, sqrt(hd), Mar 2024. URL https:
//github.com/huggingface/transformers/pull/29402. GitHub Pull Request
#29402, huggingface/transformers.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
aware adam with momentum reset for stable llm training. arXiv preprint arXiv:2501.06842, 2025.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Andrej Karpathy. Cool! for the spike i’d try e.g. ‘-sl 7 -sg 7’ to keep instability in check earlier in the
training. (will skip update if loss/gradnorm > 7 sigma outlier is detected). X (formerly Twitter),
July 2024. https://x.com/karpathy/status/1812917107379872145.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling
language-image pre-training via masking. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 23390–23400, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11

https://github.com/huggingface/transformers/pull/29402
https://github.com/huggingface/transformers/pull/29402
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://x.com/karpathy/status/1812917107379872145

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chao Ma, Lei Wu, and Weinan E. A qualitative study of the dynamic behavior for adaptive gradient
algorithms, 2021. URL https://arxiv.org/abs/2009.06125.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Kosuke Nishida, Kyosuke Nishida, and Kuniko Saito. Initialization of large language models via
reparameterization to mitigate loss spikes. arXiv preprint arXiv:2410.05052, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. arXiv preprint
arXiv:2501.00656, 2024.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pp. 1310–1318. Pmlr, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
clip-filtered 400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Jianlin Su. Why is the default norm for gradient clipping 1?, Jan 2025. URL https://spaces.
ac.cn/archives/10657.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Sho Takase, Shun Kiyono, Sosuke Kobayashi, and Jun Suzuki. Spike no more: Stabilizing the
pre-training of large language models. arXiv preprint arXiv:2312.16903, 2023.

Jiaxi Tang, Yoel Drori, Daryl Chang, Maheswaran Sathiamoorthy, Justin Gilmer, Li Wei, Xinyang
Yi, Lichan Hong, and Ed H Chi. Improving training stability for multitask ranking models in
recommender systems. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4882–4893, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

12

https://arxiv.org/abs/2009.06125
https://spaces.ac.cn/archives/10657
https://spaces.ac.cn/archives/10657

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271–10298, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection
of justification sentences for multi-hop question answering. arXiv preprint arXiv:1911.07176,
2019.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Yifan Zhang, Yifeng Liu, Huizhuo Yuan, Zhen Qin, Yang Yuan, Quanquan Gu, and Andrew Chi-
Chih Yao. Tensor product attention is all you need. arXiv preprint arXiv:2501.06425, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A CONVERGENCE PROOF

In this section, we provide the necessary assumptions and lemmas for the proofs of Theorem 4.1.

Notations The k-th component of a vector vt is denoted as vt,k. Other than that, all computations
that involve vectors shall be understood in the component-wise way. We say a vector vt ≥ 0 if
every component of vt is non-negative, and vt ≥ wt if vt,k ≥ wt,k for all k = 1, 2, . . . , d. The ℓ1
norm of a vector vt is defined as ∥vt∥1=

∑d
k=1|vt,k|. The ℓ2 norm is defined as ∥vt∥2= ⟨vt, vt⟩ =∑d

k=1|vt,k|2. Given a positive vector η̂t, it will be helpful to define the following weighted norm:
∥vt∥2ηt

= ⟨vt, η̂tvt⟩ =
∑d

k=1 η̂t,k|vt,k|2.

Assumption A.1 The function f is lower bounded by f with L-Lipschitz gradient.

Assumption A.2 The gradient estimator g is unbiased with bounded norm, e.g,

E[g|xt] = ∇f(xt), ∥gt∥≤ G.

Assumption A.3 The coefficient of clipping ht,i is lower bounded by some h0 > 0.

Assumption A.4 ∥gt −∇f(xt)∥≤ p∥∇f(xt)∥ holds for some p < 1 and for all t.

Remark A.5 Assumption A.1 and Assumption A.2 are widely used in the proof of optimization al-
gorithm with adaptive learning rates (Reddi et al., 2018). Assumption A.3 is because the gradient
norm changes slowly when training the neural network, and the last assumption holds when the
batch size is large enough.

Lemma A.6 Let ζ := β2
1/β2. We have the following estimate

m2
t ≤

1

(1− ζ)(1− β2)
vt, ∀t. (4)

Proof: By the iteration formula mt = β1mt−1 + (1− β1)ĝt and m0 = 0, we have

m =

t∑
i=1

βt−i
1 (1− β1)ĝi.

Similarly, by vt = β2vt−1 + (1− β2)ĝ
2
t and v0 = 0, we have

vt =

t∑
i=1

βt−i
2 (1− β2)ĝ

2
i

It follows by arithmetic inequality that

m2
t =

 t∑
i=1

(1− β1)β
t−i
1√

(1− β2)β
t−i
2

√
(1− β2)β

t−i
2 ĝi

2

≤

(
t∑

i=1

(1− β1)
2β

2(t−i)
1

(1− β2)β
t−i
2

)(
t∑

i=1

(1− β2)β
t−i
2 ĝ2i

)
=

(
t∑

i=1

(1− β1)
2β

2(t−i)
1

(1− β2)β
t−i
2

)
vt.

Further, we have
t∑

i=1

(1− β1)
2β

2(t−i)
1

(1− β2)β
t−i
2

≤ 1

1− β2

t∑
i=1

(
β2
1

β2

)t−i

=
1

1− β2

t−1∑
k=0

ζk ≤ 1

(1− ζ)(1− β2)
.

The proof is completed. □

Lemma A.7 The following estimate holds
T∑

t=1

∥∆t∥2≤
α2G2

ϵ

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof: By using the definition of mt, it holds ∥mt∥2≤ G2.

Then, ∥∆t∥2= ∥ αtmt√
vt+ϵ∥

2≤ G2

ϵ α2
t by using the definition of ∆t.

Therefore,
∑T

t=1∥∆t∥2≤ G2

ϵ

∑T
t=1

α2

T = G2α2

ϵ .

□

Lemma A.8 With the Assumption A.3 and A.4, it holds that

E ⟨∇f (θt) , η̂tĝt⟩ ≥ h0E ∥∇f (θt)∥2η̂t
.

Proof: According to Assumption A.4, it holds that

⟨∇if (θt) , gt,i⟩ = −
1

2

(
∥∇if (θt)− gt,i∥2 − ∥∇if (θt)∥2 − ∥gt,i∥2

)
≥ (1− p2) ∥∇if (θt)∥2 ≥ 0.

Thus, it holds that

E [⟨∇f(xt), η̂tĝt⟩] = E

[∑
i

⟨∇if(θt), ht,iη̂t,igt,i⟩

]

≥ h0E

[∑
i

⟨∇if(xt), ht,iη̂t,igt,i⟩

]
= h0E ⟨∇f(θt), η̂tgt⟩ = h0E∥∇f(θt)∥2η̂t

.

□

Let ∆t := θt+1− θt = −αtmt/(
√
vt + ϵ). Let v̂t = β2vt−1 + (1− β2)δ

2
t , where δ2t = Et

[
ĝ2t
]

and
let η̂t = αt/

√
v̂t + ϵ.

Lemma A.9 Let Mt = E
[
⟨∇f(θt),∆t⟩+ L∥∆t∥2

]
. Let αt = α/

√
T and β2 = 1 − β/T . Then,

for T ≥ 1 we have

T∑
t=1

Mt ≤
C2

1−
√
ζ
+

LG2α2

(1−
√
ζ)ϵ
− (1− β1)h0

2

T∑
t=1

E∥∇f(θt)∥2η̂t
, (5)

where C2 = 5
2(1−β1)h0

(
(1− β1)

2 4αβG4

ϵ3 + β2
1αβ

(
G4

β2ϵ3
+ (1+ϵ)G2

(1−ζ)ϵβ2
+ G4

β2

))
.

Proof: To split Mt, firstly we introduce the following two equalities. Using the definitions of vt
and v̂t, we obtain

(1− β1)αtĝt√
vt + ϵ

=
(1− β1)αtĝt√

v̂t + ϵ
+ (1− β1)αtĝt

(
1

√
vt + ϵ

− 1√
v̂t + ϵ

)
= (1− β1) η̂tĝt + (1− β1)αtĝt

(1− β2)
(
σ2
t − ĝ2t

)(√
vt + ϵ

) (√
v̂t + ϵ

) (√
vt +

√
v̂t
)

= (1− β1) η̂tĝt + (1− β1) η̂tĝt
(1− β2)

(
σ2
t − ĝ2t

)(√
vt + ϵ

) (√
vt +

√
v̂t
)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

In addition, we can obtain:

β1αtmt−1

(
1√

β2vt−1 +
√
β2ϵ
− 1
√
vt + ϵ

)

= β1αtmt−1
(1− β2) ĝ

2
t(√

vt + ϵ
) (√

β2vt−1 +
√
β2ϵ
) (√

vt +
√
β2vt−1

) + β1αtmt−1

(
1−
√
β2

)
ϵ(√

vt + ϵ
) (√

β2vt−1 +
√
β2ϵ
)

= β1αtmt−1
(1− β2) ĝ

2
t(√

v̂t + ϵ
) (√

β2vt−1 +
√
β2ϵ
) (√

vt +
√
β2vt−1

)
+ β1αtmt−1

(1− β2) ĝ
2
t(√

β2vt−1 +
√
β2ϵ
) (√

vt +
√
β2vt−1

) (1√
v̂t + ϵ

− 1
√
vt + ϵ

)
+ β1αtmt−1

(
1−
√
β2

)
ϵ(√

v̂t + ϵ
) (√

β2vt−1 +
√
β2ϵ
) + β1αtmt−1

(
1−
√
β2

)
ϵ√

β2vt−1 +
√
β2ϵ

(
1√

v̂t + ϵ
− 1
√
vt + ϵ

)
= β1mt−1η̂t

(1− β2) ĝ
2
t(√

β2vt−1 +
√
β2ϵ
) (√

vt +
√
β2vt−1

)
+ β1η̂tmt−1

(1− β2)
2ĝ2t (σ

2
t − ĝ2t)

(
√
vt + ϵ)(

√
vt +

√
v̂t)(

√
β2vt−1 +

√
β2ϵ)(

√
vt +

√
β2vt−1)

+ β1η̂tmt−1
(1−

√
β2)ϵ√

β2vt−1 +
√
β2ϵ

+ β1η̂tmt−1
(1−

√
β2)(1− β2)ϵ(σ

2
t − ĝ2t)

(
√
vt + ϵ)(

√
vt +

√
v̂t)(

√
β2vt−1 +

√
β2ϵ)

.

For simplicity, we denote

A1
t = (1− β1)

√
η̂tĝt

(1− β2)
(
σ2
t − ĝ2t

)(√
vt + ϵ

) (√
vt +

√
v̂t
)

A2
t = β1mt−1

√
η̂t

(1− β2) ĝ
2
t(√

β2vt−1 +
√
β2ϵ
) (√

vt +
√
β2vt−1

)
A3

t = β1

√
η̂tmt−1

(1− β2)
2ĝ2t (σ

2
t − ĝ2t)

(
√
vt + ϵ)(

√
vt +

√
v̂t)(

√
β2vt−1 +

√
β2ϵ)(

√
vt +

√
β2vt−1)

A4
t = β1

√
η̂tmt−1

(1−
√
β2)ϵ√

β2vt−1 +
√
β2ϵ

A5
t = β1

√
η̂tmt−1

(1−
√
β2)(1− β2)ϵ(σ

2
t − ĝ2t)

(
√
vt + ϵ)(

√
vt +

√
v̂t)(

√
β2vt−1 +

√
β2ϵ)

Then, we obtain

∆t −
β1αt√
β2αt−1

∆t−1 = − αtmt√
vt + ϵ

+
β1αtmt−1√

β2vt−1 +
√
β2ϵ

= − (1− β1)αtĝt√
vt + ϵ

+ β1αtmt−1

(
1√

β2vt−1 +
√
β2ϵ
− 1
√
vt + ϵ

)
= −(1− β1)η̂tĝt −

√
η̂tA

1
t +

√
η̂tA

2
t +

√
η̂tA

3
t +

√
η̂tA

4
t +

√
η̂tA

5
t

Thus, it holds that

E ⟨∇f(θt),∆t⟩ =
β1αt√
β2αt−1

⟨∇f(θt),∆t−1⟩+ E
〈
∇f(θt),∆t −

β1αt√
β2αt−1

∆t−1

〉
=

β1αt√
β2αt−1

(E⟨∇f(θt),∆t−1⟩+ E⟨∇f(θt)−∇f(θt−1),∆t−1⟩)

+ E⟨∇f(θt),−(1− β1)η̂tĝt⟩+ E⟨∇f(θt),−
√

η̂tA
1
t ⟩+ E⟨∇f(θt),

√
η̂tA

2
t ⟩

+ E⟨∇f(θt),
√
η̂tA

3
t ⟩+ E⟨∇f(θt),

√
η̂tA

4
t ⟩+ E⟨∇f(θt),

√
η̂tA

5
t ⟩

(6)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For the first term of equation 6, it holds that
β1αt√
β2αt−1

(E⟨∇f(θt),∆t−1⟩+ E⟨∇f(θt)−∇f(θt−1),∆t−1⟩)

≤ β1αt√
β2αt−1

(E⟨∇f(θt),∆t−1⟩+ E∥∇f(θt)−∇f(θt−1)∥∥∆t−1∥)

≤ β1αt√
β2αt−1

(
E⟨∇f(θt),∆t−1⟩+ LE∥∆t−1∥2

)
=

β1αt√
β2αt−1

Mt−1

For the second term of equation 6, it holds that
E⟨∇f(θt),−(1− β1)η̂tĝt⟩ ≤ −(1− β1)h0E∥∇f(θt)∥2η̂t

.

For the rest of the terms, it holds that

E⟨∇f(θt),−
√
η̂tA

1
t ⟩ ≤

h0(1− β1)

10
E∥∇f(θt)∥2η̂t

+
5

2(1− β1)h0

∥∥A1
t

∥∥2
E⟨∇f(θt),+

√
η̂tA

2
t ⟩ ≤

h0(1− β1)

10
E∥∇f(θt)∥2η̂t

+
5

2(1− β1)h0

∥∥A2
t

∥∥2
E⟨∇f(θt),+

√
η̂tA

3
t ⟩ ≤

h0(1− β1)

10
E∥∇f(θt)∥2η̂t

+
5

2(1− β1)h0

∥∥A3
t

∥∥2
E⟨∇f(θt),+

√
η̂tA

4
t ⟩ ≤

h0(1− β1)

10
E∥∇f(θt)∥2η̂t

+
5

2(1− β1)h0

∥∥A4
t

∥∥2
E⟨∇f(θt),+

√
η̂tA

5
t ⟩ ≤

h0(1− β1)

10
E∥∇f(θt)∥2η̂t

+
5

2(1− β1)h0

∥∥A5
t

∥∥2
On the other hand, it holds that∥∥A1

t

∥∥2 ≤ (1− β1)
2 4αβG

4

Tϵ3
,
∥∥A2

t

∥∥2 ≤ β2
1

αβG4

Tβ2ϵ3
,
∥∥A3

t

∥∥2 ≤ β2
1

αβG2

(1− ζ)ϵTβ2
,

∥∥A4
t

∥∥2 ≤ β2
1

αβG4

Tβ2
,
∥∥A5

t

∥∥2 ≤ β2
1

αβG2

(1− ζ)β2T

□

Define Nt =
C2

T +LE∥∆t∥2, where C2 = 5
2(1−β1)h0

(
(1− β1)

2 4αβG4

ϵ3 + β2
1αβ

(
G4

β2ϵ3
+ (1+ϵ)G2

(1−ζ)ϵβ2
+ G4

β2

))
.

It holds that

Mt ≤
β1αt√
β2αt−1

Mt−1 +Nt −
1− β1

2
η̂tE∥∇f(θt)∥2η̂t

≤
t∑

i=1

√
ζ
t−i

Ni −
1− β1

2
h0E∥∇f(θt)∥2η̂t

Thus, by summing t from 1 to T , it holds that
T∑

t=1

Mt ≤
T∑

t=1

t∑
i=1

√
ζ
t−i

Ni −
(1− β1)h0

2
E∥∇f(θt)∥2η̂t

≤ 1

1−
√
ζ

T∑
t=1

Nt −
(1− β1)h0

2
E∥∇f(θt)∥2η̂t

≤ C2

1−
√
ζ
+

LG2α2

(1−
√
ζ)ϵ
− (1− β1)h0

2

T∑
t=1

E∥∇f(θt)∥2η̂t
.

Lemma A.10 Let τ be randomly chosen from {1, 2, · · · , T} with equal probabilities pτ = 1
T . We

have the following estimate:

E[∥∇f (θτ) ∥2] ≤
√
G2 + ϵd

α
√
T

E

[
T∑

t=1

∥∇f (θt) ∥2η̂t

]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof: Note that ∥v̂t∥1= β2∥vt−1∥1+(1− β2) ∥σt∥2 and ∥ĝt∥≤ G. It is straightforward to prove
∥vt∥1≤ G2. Hence, we have ∥v̂t + ϵ∥1≤ G2 + ϵd.

Utilizing this inequality, we have

∥∇f (θt) ∥2 =
∥∇f (θt) ∥2√
∥v̂t + ϵ∥1

√
∥v̂t + ϵ∥1 =

√
∥v̂t + ϵ∥1

d∑
k=1

|∇kf (θt) |2√∑d
l=1 v̂t,l + ϵ

≤
√
∥v̂t + ϵ∥1α−1

t

d∑
k=1

αt√
v̂t,k + ϵ

|∇kf (θt) |2=
√
∥v̂t + ϵ∥1α−1

t ∥∇f (θt) ∥2η̂t

≤
√
G2 + ϵdα−1

t ∥∇f (θt) ∥2η̂t
≤
√
G2 + ϵd

αT
∥∇f (θt) ∥2η̂t

.

Then, by using the definition of θτ , we obtain

E
[
∥∇f (θτ) ∥2

]
=

1

T

T∑
t=1

E
[
∥∇f (θt) ∥2

]
≤
√
G2 + ϵd

α
√
T

E

[
T∑

t=1

∥∇f (θt) ∥2η̂t

]
.

Thus, the desired result is obtained. □

Theorem A.11 Let {θt} be a sequence generated by AdaGC for initial values θ1 and m0 = v0 =

0. Assumptions A.1 to A.4 hold. With the hyperparameters αt = α/
√
T ,β2 = 1 − β/T and

ζ = β2
1/β2 < 1. Let τ be randomly chosen from {1, 2, · · · , T} with equal probabilities. We have

E∥∇f(θτ)∥2≤
C√
T

where C =
√
G2+ϵd
α

(
f(θ1)− f + C2

1−
√
ζ
+ LG2α2

(1−
√
ζ)ϵ

)
and C2 =

5
2(1−β1)h0

(
(1− β1)

2 4αβG4

ϵ3 + β2
1αβ

(
G4

β2ϵ3
+ (1+ϵ)G2

(1−ζ)ϵβ2
+ G4

β2

))
.

Proof: With the Lipschitz continuity condition of f , it holds that

Ef(θt+1) ≤ E
[
f(θt) + ⟨∇f(θt),∆t⟩+

L

2
∥∆t∥2

]
≤ Ef(θt) +Mt.

By summing t from 1 to T , it holds that

Ef(θT+1) ≤ f(θ1) +

T∑
t=1

Mt ≤ f(θ1) +
C2

1−
√
ζ
+

LG2α2

(1−
√
ζ)ϵ
− (1− β1)h0

2

T∑
t=1

E∥∇f(θt)∥2η̂t

Thus, it holds that

E
[
∥∇f(θτ∥2

]
≤
√
G2 + ϵd

α
√
T

E

[
T∑

t=1

∥∇f(θt)∥2η̂t

]

≤
√
G2 + ϵd

α
√
T

(
f(θ1)− E[f(θT+1)] +

C2

1−
√
ζ
+

LG2α2

(1−
√
ζ)ϵ

)
≤
√
G2 + ϵd

α
√
T

(
f(θ1)− f +

C2

1−
√
ζ
+

LG2α2

(1−
√
ζ)ϵ

)
□

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B PSEUDOCODE OF ADAMW WITH ADAGC

Algorithm 1 presents the pseudocode of AdamW integrated with AdaGC. For clearer exposition, we
highlight different components according to their origins: orange indicates the procedures inher-
ited from the original GlobalGC algorithm, while blue is used to denote the new contributions and
modifications introduced by AdaGC. Specifically, the GlobalGC steps include the global gradient
clipping implemented via the scaling factor and the use of the clipped gradient in subsequent mo-
ments. The AdaGC components mainly comprise adaptive per-parameter clipping, the initialization
and update of the adaptive threshold γt,i, and the warm-up strategy governed by Tstart.

Algorithm 1: AdamW with AdaGC
1: given: {ηt}Tt=1, λw, ϵ, β1, β2, β ∈ [0, 1), λabs, Tstart

2: initialize: θ0,m0 ← 0, v0 ← 0, t← 0

3: repeat
4: compute gt =∇θft(θt−1, Xt)

5: if t < Tstart then
6: ht = min

{
λabs
∥gt∥ , 1.0

}
7: ĝt = ht · gt

8: for i ∈ |θ| do
9: γt,i = min {γt−1,i, ∥ĝt,i∥} , γ0,i = ∥ĝ1,i∥

10: end for
11: else
12: for i ∈ |θ| do
13: ht,i = min

{
λrel

γt−1,i

∥gt,i∥
, 1.0

}
14: ĝt,i = ht,i · gt,i

15: γt,i = βγt−1,i + (1− β)∥ĝt,i∥
16: end for
17: end if
18: mt = β1mt−1 + (1− β1)ĝt

19: vt = β2vt−1 + (1− β2)ĝt
2

20: m̂t = mt/(1− βt
1), v̂t = vt/(1− βt

2)

21: θt = θt−1 − ηtλwθt−1 − ηtm̂t/(
√
v̂t + ϵ)

22: until θt not converge

C HYPER-PARAMETERS

C.1 MODEL HYPER-PARAMETERS

Table 8 summarizes the model hyper-parameters used for all experiments. For each model, we
report the core architecture settings (such as number of layers, hidden dimension, attention heads,
and feedforward dimension), MoE-related configurations, and main optimization hyper-parameters
(including learning rate, warmup, weight decay, and Adam parameters). Clipping thresholds λabs,
λrel, and momentum β are also listed, in correspondence with the techniques discussed in the main
text. All experiments use a batch size and sequence length as shown, and we employ bfloat16
precision for most models except ERNIE, which uses float8. The symbol ‘–’ indicates settings not
applicable to a specific architecture.

C.2 CLIPPING HYPER-PARAMETERS

For other clipping methods, we primarily followed the recommended default settings from prior
work, and performed limited tuning only when necessary to ensure a fair comparison.

Specifically:

• GlobalGC: We used the commonly adopted global clipping threshold λabs = 1.0 in large-
scale pretraining.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Hyper-parameters used in our LLMs experiments. λabs represents the absolute global clip-
ping threshold of GlobalGC. λrel and β represent the relative clipping threshold and the momentum
of our AdaGC, respectively. The symbol ‘–’ indicates that the parameter is not applicable.

Model LLaMA-1.3B LLaMA-7B ERNIE 10B-A1.4B Mixtral 8x1B

Precision bfloat16 bfloat16 float8 bfloat16
Num layers 24 32 25 24

Hidden dim size 2048 4096 2560 2048
FFN dim size 5461 11008 1024 5632

Num attention heads 32 32 20 32
Num key value heads 32 32 4 4

Attention bias % % % %
Num shared experts - - 1 0
Num router experts - - 48 8

Num experts per token - - 3 2
Sequence length 2048 2048 4096 2048

Batch size 2048 2048 4096 512
Iterations 9000 9000 21000 36000

Learning rate 3.0× 10−4 3.0× 10−4 3.0× 10−4 3.0× 10−4

LR decay cosine cosine wsd cosine
Warmup iterations 2000 2000 2000 500

Weight decay 0.1 0.1 0.1 0.1
Adam β1 0.90 0.90 0.90 0.90
Adam β2 0.95 0.95 0.95 0.999
λabs 1.0 1.0 1.0 1.0
λrel 1.04 1.04 1.04 1.04
β 0.99 0.99 0.99 0.99

• ClipByValue: Following the SPAM (Huang et al., 2025) setting, we set the clipping thresh-
old to λabs = 1e− 3.

• AGC: We performed small-range tuning over λrel ∈ {1e − 2, 1e − 3, 1e − 4} to find the
best setting.

• Clippy: We tuned over λabs ∈ {0.1, 0.3, 0.5} and λrel ∈ {1e− 2, 1e− 3, 1e− 4} to select
the optimal combination.

• SPAM: We adopted the default hyperparameters recommended for standard pretraining in
the original paper, which were reported to perform well across diverse settings. Specifi-
cally, we set the interval to ∆T = 500, the threshold to θ = 5000, and the warmup steps to
N = 150.

The final hyper-parameters used for other clipping methods are summarized in Table 9.

Table 9: Hyper-parameters for other clipping methods.

Method Hyperparameters

GlobalGC λabs = 1.0
ClipByValue λabs = 1e− 3

AGC λrel = 1e− 3
Clippy λrel = 1e− 3
SPAM ∆T = 500, θ = 5000, N = 150

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D EXPERIMENTAL DETAILS FOR CLIP

To further investigate the optimizer compatibility of AdaGC, we evaluated its effect on large-scale
vision-language model pre-training, focusing on the CLIP ViT-Base model (Radford et al., 2021)
with the Lion optimizer (Chen et al., 2024). The model comprises 151 million parameters and is
trained on the LAION-400M (Schuhmann et al., 2021) dataset. Training is conducted for 20,000
steps, covering 320M image-text pairs.

The key training hyper-parameters are as follows: a learning rate of 0.002, weight decay of 0.2, and
batch size of 32,768. We employ patch-dropout with a drop rate of 0.5 (Li et al., 2023), following re-
cent best practices (Wortsman et al., 2023). The learning rate is linearly warmed up for the first 5,000
steps (Goyal et al., 2017), and subsequently decayed according to a cosine schedule (Loshchilov &
Hutter, 2016).

Following pre-training, we report downstream zero-shot evaluation results on the ImageNet (Rus-
sakovsky et al., 2015) validation set. The results are shown in Figure 5 in the main text.

E MORE EVALUATION RESULTS

E.1 RESULTS ON DOWNSTREAM BENCHMARKS

The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on standard bench-
marks are presented in Table 10.

Table 10: The Two-Shot evaluation results of Llama-2 1.3B/7B and Mixtral 8x1B models on stan-
dard benchmarks. The best scores in each column are bolded. HellaSw. = HellaSwag, W.G. =
WinoGrande.

Model Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.acc norm acc norm acc acc norm acc norm acc norm acc acc acc norm

Llama-2 1.3B

GlobalGC 47.26 25.60 50.31 46.44 32.20 69.64 52.33 25.07 77.80 47.41
ClipByValue 47.10 25.77 56.54 43.97 30.00 68.88 52.96 26.09 77.20 47.61
Clippy 46.55 25.85 49.76 45.71 30.00 70.02 53.20 25.69 77.70 47.16
AdaGC 46.04 26.19 49.72 47.51 31.00 69.70 54.38 24.98 78.50 47.56

Llama-2 7B

GlobalGC 55.81 28.58 60.70 56.54 33.00 73.72 56.75 25.51 83.20 52.64
ClipByValue 51.94 26.88 57.55 53.36 32.40 72.31 54.14 26.63 81.60 50.75
AGC 52.95 28.67 56.15 55.69 35.40 73.07 56.43 26.88 82.80 52.00
Clippy 52.86 29.10 56.48 53.76 31.80 73.07 55.72 26.03 82.60 51.27
AdaGC 56.86 29.61 59.36 57.89 33.60 73.99 57.62 26.46 85.90 53.47

Mixtral 8x1B GlobalGC 50.34 27.39 58.81 52.96 34.20 71.16 54.06 25.37 79.90 50.47
AdaGC 53.83 28.42 58.69 55.66 33.80 73.07 54.14 25.12 81.80 51.61

E.2 RESULTS OF OTHER BASELINE METHODS

Table 11: The Zero-Shot evaluation results of Llama-2 1.3B/7B models on standard benchmarks.

Model Method ARC-E ARC-C BoolQ HellaSw. OBQA PIQA W.G. MMLU SciQ Avg.acc norm acc norm acc acc norm acc norm acc norm acc acc acc norm

Llama-2 1.3B

WeSaR-GlobalGC 43.56 25.17 59.94 45.08 30.00 70.29 52.96 22.90 65.80 46.19
SPAM 42.05 24.83 59.60 42.82 30.00 69.31 52.17 23.02 66.40 45.58
ScaledEmbed-GlobalGC 42.21 25.51 59.66 45.50 31.80 70.02 53.28 23.22 65.20 46.27
AdaGC 42.09 25.51 58.01 47.29 30.40 69.70 52.33 22.98 68.70 46.33

Llama-2 7B

WeSaR-GlobalGC 49.75 27.22 56.12 55.38 33.80 73.39 56.27 23.02 71.40 49.59
SPAM 48.53 25.77 60.34 51.89 32.60 72.03 54.54 22.95 71.00 48.85
ScaledEmbed-GlobalGC 48.57 26.71 60.89 54.32 32.60 72.25 55.33 23.66 70.50 49.42
AdaGC 49.58 28.92 57.28 57.94 32.80 74.32 58.09 23.62 76.60 51.01

In addition to the clipping-based baselines discussed in the main text, we also compare AdaGC with
several recent methods that aim to improve the stability and generalization of large language model
(LLM) training, including SPAM (Huang et al., 2025), Scaled Embed (Takase et al., 2023), and
WeSaR (Nishida et al., 2024). The detailed results under the zero-shot setting and spike score are
summarized in Table 11 and 12. The training dynamics are shown in Figures 8 and 9.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 12: Comparison of spike scores for various models under different methods.

Model Llama-2 1.3B Llama-2 7B
Method WeSaR-GlobalGC SPAM ScaledEmbed-GlobalGC AdaGC WeSaR-GlobalGC SPAM ScaledEmbed-GlobalGC AdaGC

Total Steps 9K 9K 9K 9k 9K 9K 9K 9K
Num Spikes 2 0 10 0 1 3 8 0
Spike Score (%) 0.0222 0.0000 0.1111 0.0000 0.0111 0.0333 0.0889 0.0000

Among these methods, SPAM is designed to stabilize training by adjusting the optimizer’s behavior,
while Scaled Embed and WeSaR focus on initialization or embedding scaling strategies to sup-
press loss spikes. Our experiments show that, although some of these methods can partly mitigate
instability or improve certain metrics, AdaGC generally achieves higher stability and better final
performance across model scales. Notably, while WeSaR is also effective at suppressing loss spikes,
its reliance on special parameter initialization limits its applicability to from-scratch training. In
contrast, AdaGC works reliably under both from-scratch and resumed training regimes, providing
stronger flexibility. Overall, these results demonstrate AdaGC’s superior robustness and generaliza-
tion compared to other non-clipping baselines.

F MORE VISUALIZATION RESULTS

F.1 TRAINING DYNAMICS

0 2000 4000 6000 8000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
Lo

ss

8000 9000
2.46
2.49
2.52

AdamW + GlobalGC
AdamW + ClipByValue
AdamW + Clippy
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

Gl
ob

al
 G

ra
d

No
rm

AdamW + GlobalGC
AdamW + ClipByValue
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

15.0

20.0

25.0

30.0

35.0

Va
lid

at
io

n
PP

L

8000 9000
11.6
12.0
12.4

AdamW + GlobalGC
AdamW + ClipByValue
AdamW + Clippy
AdamW + AdaGC

Figure 7: Llama-2 1.3B training dynamics of clipping methods.

0 2000 4000 6000 8000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
Lo

ss

8000 90002.44
2.48
2.52

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
SPAM
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

Gl
ob

al
 G

ra
d

No
rm

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

15.0

20.0

25.0

30.0

35.0

Va
lid

at
io

n
PP

L

8000 9000
11.6
12.0
12.4

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
SPAM
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

Figure 8: Llama-2 1.3B training dynamics of other baseline methods.

F.2 OPTIMIZER STATE DYNAMICS

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
Lo

ss

8000 9000
2.30

2.35

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
SPAM
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

Gl
ob

al
 G

ra
d

No
rm

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

0 2000 4000 6000 8000
Train Step

10.0

15.0

20.0

25.0

30.0

35.0

Va
lid

at
io

n
PP

L

8000 9000
10.0
10.5

AdamW + GlobalGC
AdamW + WeSaR-GlobalGC
SPAM
AdamW + ScaledEmbed-GlobalGC
AdamW + AdaGC

Figure 9: Llama-2 7B training dynamics of other baseline methods.

2.5

3.0

3.5

4.0

4.5

5.0

G
lo

ba
lG

C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.2

0.4

0.6

0.8

gr
ad

-n
or

m

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

fir
st

-m
om

en
t-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

up
da

te
-n

or
m

0.0

0.2

0.4

0.6

0.8

1.0

gr
ad

-n
or

m

0.0

0.1

0.2

0.3

0.4

fir
st

-m
om

en
t-

no
rm

0.0

0.5

1.0

1.5

2.0

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

up
da

te
-n

or
m

0

5

10

15

20

25

30

gr
ad

-n
or

m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fir
st

-m
om

en
t-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

se
co

nd
-m

om
en

t-
no

rm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

up
da

te
-n

or
m

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

0

1

2

3

4

5

6

7

8

gr
ad

-n
or

m

×10 2

0

1

2

3

4

fir
st

-m
om

en
t-

no
rm

×10 2

0.0

0.5

1.0

1.5

2.0

2.5

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.0

0.1

0.2

0.3

0.4

0.5

up
da

te
-n

or
m

Figure 10: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the embedding of Llama-2 1.3B. Each row represents a
different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the
fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2.5

3.0

3.5

4.0

4.5

5.0
G

lo
ba

lG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.00

0.05

0.10

0.15

0.20

0.25

gr
ad

-n
or

m

0.5

1.0

1.5

2.0

2.5

fir
st

-m
om

en
t-

no
rm

×10 2

0

1

2

3

4

5

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

up
da

te
-n

or
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

gr
ad

-n
or

m

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fir
st

-m
om

en
t-

no
rm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.0

0.1

0.2

0.3

0.4

up
da

te
-n

or
m

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

gr
ad

-n
or

m

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

fir
st

-m
om

en
t-

no
rm

0.0

0.5

1.0

1.5

2.0

2.5

se
co

nd
-m

om
en

t-
no

rm

×10 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

up
da

te
-n

or
m

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050
gr

ad
-n

or
m

0.5

1.0

1.5

2.0

2.5

fir
st

-m
om

en
t-

no
rm

×10 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.00

0.05

0.10

0.15

0.20

0.25

0.30

up
da

te
-n

or
m

Figure 11: Visualization of the gradient norm, first-moment norm, second-
moment norm, update norm, loss, and global gradient norm for the
encoder layers 3 self attention query key value of Llama-2 1.3B. Each row
represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is
Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

2.5

3.0

3.5

4.0

4.5

5.0

G
lo

ba
lG

C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gr
ad

-n
or

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fir
st

-m
om

en
t-

no
rm

0.0

0.5

1.0

1.5

2.0

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.0

0.1

0.2

0.3

0.4

0.5

up
da

te
-n

or
m

0.0

0.2

0.4

0.6

0.8

1.0

gr
ad

-n
or

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

fir
st

-m
om

en
t-

no
rm

0

1

2

3

4

5

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.0

0.1

0.2

0.3

0.4

0.5
up

da
te

-n
or

m

0.0

0.5

1.0

1.5

2.0

gr
ad

-n
or

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

fir
st

-m
om

en
t-

no
rm

0.0

0.5

1.0

1.5

2.0

se
co

nd
-m

om
en

t-
no

rm

×10 2

0.0

0.1

0.2

0.3

0.4

0.5

up
da

te
-n

or
m

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

gr
ad

-n
or

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

fir
st

-m
om

en
t-

no
rm

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

se
co

nd
-m

om
en

t-
no

rm

×10 3

0.0

0.1

0.2

0.3

0.4

0.5

up
da

te
-n

or
m

Figure 12: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the LMHead of Llama-2 1.3B. Each row represents a
different clipping method: the first row is GlobalGC, the second is AGC, the third is Clippy, and the
fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2.5

3.0

3.5

4.0

4.5

5.0
G

lo
ba

lG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gr
ad

-n
or

m

×10 2

0.0

0.2

0.4

0.6

0.8

1.0

fir
st

-m
om

en
t-

no
rm

×10 2

0

1

2

3

4

5

6

7

8

se
co

nd
-m

om
en

t-
no

rm

×10 6

0

1

2

3

4

5

up
da

te
-n

or
m

×10 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gr
ad

-n
or

m

×10 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fir
st

-m
om

en
t-

no
rm

×10 2

0

1

2

3

4

se
co

nd
-m

om
en

t-
no

rm

×10 5

0

1

2

3

4

5

6

up
da

te
-n

or
m

×10 3

0

2

4

6

8

gr
ad

-n
or

m

×10 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fir
st

-m
om

en
t-

no
rm

×10 2

0

1

2

3

4

5

se
co

nd
-m

om
en

t-
no

rm

×10 5

0

1

2

3

4

5

up
da

te
-n

or
m

×10 3

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

gr
ad

-n
or

m

×10 2

0.0

0.2

0.4

0.6

0.8

1.0

fir
st

-m
om

en
t-

no
rm

×10 2

0

1

2

3

4

5

se
co

nd
-m

om
en

t-
no

rm

×10 6

0

1

2

3

4

5

up
da

te
-n

or
m

×10 3

Figure 13: Visualization of the gradient norm, first-moment norm, second-moment norm, update
norm, loss, and global gradient norm for the encoder final layernorm of Llama-2 1.3B.
Each row represents a different clipping method: the first row is GlobalGC, the second is AGC, the
third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

2.5

3.0

3.5

4.0

4.5

5.0

G
lo

ba
lG

C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.1

0.2

0.3

0.4

0.5

gr
ad

-n
or

m

0

1

2

3

4

5

6

fir
st

-m
om

en
t-

no
rm

×10 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

se
co

nd
-m

om
en

t-
no

rm

×10 4

0.0

0.1

0.2

0.3

0.4

up
da

te
-n

or
m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

gr
ad

-n
or

m

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fir
st

-m
om

en
t-

no
rm

0

1

2

3

4

se
co

nd
-m

om
en

t-
no

rm

×10 5

0.0

0.1

0.2

0.3

0.4

up
da

te
-n

or
m

0

2

4

6

8

10

12

gr
ad

-n
or

m

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fir
st

-m
om

en
t-

no
rm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

se
co

nd
-m

om
en

t-
no

rm

×10 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

up
da

te
-n

or
m

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

0

1

2

3

4

5

6

7

gr
ad

-n
or

m

×10 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

fir
st

-m
om

en
t-

no
rm

×10 2

0.0

0.5

1.0

1.5

2.0

se
co

nd
-m

om
en

t-
no

rm

×10 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

up
da

te
-n

or
m

Figure 14: Visualization of the gradient norm, first-moment norm, second-
moment norm, update norm, loss, and global gradient norm for the
encoder layers 0 self attention query key value of Llama-2 1.3B. Each row
represents a different clipping method: the first row is GlobalGC, the second is AGC, the third is
Clippy, and the fourth is our AdaGC. The black curve in each plot shows the loss trajectory.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2.5

3.0

3.5

4.0

4.5

5.0

G
lo

ba
lG

C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

AG
C

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

Cl
ip

py

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

Ad
aG

C

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Train Step

2.5

3.0

3.5

4.0

4.5

5.0

0

10

20

30

40

gl
ob

al
-g

ra
d-

no
rm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

gr
ad

-n
or

m

×10 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fir
st

-m
om

en
t-

no
rm

×10 4

0

1

2

3

4

5

se
co

nd
-m

om
en

t-
no

rm

×10 7

0.0

0.5

1.0

1.5

2.0

2.5

up
da

te
-n

or
m

×10 3

0

1

2

3

4

5

gr
ad

-n
or

m

×10 3

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

fir
st

-m
om

en
t-

no
rm

×10 3

0

2

4

6

8

se
co

nd
-m

om
en

t-
no

rm

×10 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

up
da

te
-n

or
m

×10 3

0

1

2

3

4

5

6

gr
ad

-n
or

m

×10 2

0

1

2

3

4

5

6

fir
st

-m
om

en
t-

no
rm

×10 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

se
co

nd
-m

om
en

t-
no

rm

×10 5

0

1

2

3

4

up
da

te
-n

or
m

×10 3

0

5

10

15

20

25

30

35

gl
ob

al
-g

ra
d-

no
rm

1.25

1.50

1.75

2.00

2.25

2.50

2.75

gr
ad

-n
or

m

×10 4

0.2

0.4

0.6

0.8

1.0

1.2

1.4

fir
st

-m
om

en
t-

no
rm

×10 4

0

1

2

3

4

5

6

se
co

nd
-m

om
en

t-
no

rm
×10 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

up
da

te
-n

or
m

×10 3

Figure 15: Visualization of the gradient norm, first-moment norm, second-moment norm, up-
date norm, loss, and global gradient norm for the encoder layers 23 input layernorm
of Llama-2 1.3B. Each row represents a different clipping method: the first row is GlobalGC, the
second is AGC, the third is Clippy, and the fourth is our AdaGC. The black curve in each plot shows
the loss trajectory.

26

	Introduction
	Related Work
	Motivation: From Root-Cause Diversity to a Unified Gradient-Centric Remedy
	Methodology: AdaGC
	Preliminaries
	Adaptive Gradient Clipping based on Local Gradient Norm
	Memory, Computation, and Communication
	Convergence Analysis

	Experiments
	Experimental Setup
	Critical Hyperparameter Selection
	Main Experimental Results
	Optimizer Compatibility: Muon and Lion
	End-to-End training Wall-clock
	Ablation Study

	Conclusion
	Statement on the Use of LLMs
	Convergence Proof
	Pseudocode of AdamW with AdaGC
	Hyper-Parameters
	Model Hyper-Parameters
	Clipping Hyper-Parameters

	Experimental Details for CLIP
	More Evaluation Results
	Results on Downstream Benchmarks
	Results of Other Baseline Methods

	More Visualization Results
	Training Dynamics
	Optimizer State Dynamics

