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LPATR-Net: Learnable Piecewise Affine
Transformation Regression Assisted Data-Driven
Dehazing Framework

Yuelong Li*, Fei Chen, Zhenwei Liu

Abstract—Nowadays, data-driven learning based deep neural
network (DNN) is the most dominant SOTA image dehazing
framework. Here, learning to perfectly simulate the underlying
mapping rules (from hazy to clear) told by massive paired
training data is its core driving force. However, under genuine
scenarios, it is extremely hard to guarantee the 100% qualifi-
cation of all collected ground truth (GT) haze-free data. That’s
because natural weather is hardly controlled, and many weathers
are actually in a chaotic status existing between foggy and fog-
free. Thus, unlike most supervised learning issues, the image
dehazing society is born with the torture of part of faulty ground
truth no-haze samples. Therefore, totally trusting training data
and solely pursuing more fitting powerful data-driven model
may not be a wise solution. To cope with this thorny challenge,
in this paper, instead of faithfully pursuing for fitting capacity
promotion, we on the contrary choose to intentionally cut down
the fitting flexibility to achieve higher-level robustness. That is
the LPATR-Net, a novel dehazing framework specially armed
with fitting power suppression mechanism to resist intrinsic
annoying faulty GT. This solution does not involve any extra
manually labeling. Specifically, the LPATR-Net architecture is
created completely around elaborately designed fitting-restrained
learnable piecewise affine transformation regression. Since such
low-order linear regression structure genetically can only fit for
majority of data, the interference of minority of unqualified
GT samples is expected to be effectively suppressed. Through
further coupled with a highly customized multi-concerns high-
accuracy dehazing fitting companion component, All-Mattering,
proposed LPATR-Net elegantly achieves the seamless integration
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of traditional majority determining fixed-form regression and
modern all freedom data-driven deep learning. Extensive exper-
iments have been conducted on five commonly utilized public
datasets to verify its effectiveness. In addition, the wide-range
transplantability of the proposed core regression structure has
also been experimentally confirmed. Source code is available at
https://github.com/FeiChen829/LPATR-Net

Index Terms—Dehazing, faulty GT, fitting freedom decreasing,
merging regression and DNN, affine transformation regression.

I. INTRODUCTION

AZE is a common natural weather phenomenon, which

may be occasionally romantic but definitely all the
time dangerous. It is well-known that haze may seriously
degrade human eyes’ visibility, which is the exclusively
dominant sensing organ of mankind. Every year, plenty of
traffic accidents occur due to this weather curse. On the other
hand, haze is also a typical trouble to most vision-based
automatic understanding researches, such as remote sensing,
object detection, and motion tracking. Thus, image dehazing
is a vital content enhancing research topic both for human
sensing and intelligent machine understanding.

Due to its significance, image dehazing related researches
began quite early and have been going on for a long
time. At the beginning, since dehazing is a well-defined
low-level image quality promotion mission, a great many
of generic image enhancing techniques were transplanted
into this topic, such as Histogram Equalization [1], [2],
Homomorphic Filtering [3], [4], Gamma Correction [5], [6],
[7], and Laplacian Filtering [8]. Besides general enhancing
techniques, digging into the underlying mechanism of haze’s
composition and then accordingly looking for dehazing
solution is also a popular feasible route. The approaches
based on the dark channel prior [9], linear color attenuation
prior [10], statistical color ellipsoid prior [11], and depth-edge
aware prior [12], all belong to this category.

When the era of deep learning comes, this breakthrough
data-driven modeling technique also fundamentally shakes the
whole dehazing society. Owing to record-breaking accommod-
able parameter amount and various trainable deep architecture,
DNNs could easily achieve accurate free-form function
approximation, and hence have the potential capacity to accu-
rately simulate any form of complex data mapping. Thus, once
sufficient reliable training samples are collected, it is widely
believed that deep learning is always a credible modeling tool
deserved to be fully trusted. In the past few years, a large num-
ber of successful deep learning centered dehazing approaches
have been worked out and achieved SOTA performance [14],

1941-0042 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tiangong University. Downloaded on January 26,2026 at 03:03:36 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-1355-7943
https://orcid.org/0009-0008-6959-3912
https://orcid.org/0009-0000-5623-3530
https://orcid.org/0000-0003-2685-4437

LI et al.: LPATR-Net: LPATR ASSISTED DATA-DRIVEN DEHAZING FRAMEWORK

Reliable Ground Truth

3

Unreliable GT

Reliability Suspicious GT

Fig. 1. A number of so called “ground truth (GT) no-haze images” in one
of the most famous dehazing benchmark SOTS-outdoor of RESIDE [13].
Here, the left column demonstrates relatively clear GT image as reference,
the middle column shows partially suspicious GT which may contain certain
haze, and the right column illustrates highly unreliable GT, where evidently
hazy parts could be easily observed. It should be emphasized that all above
images come from “ground truth no-haze subsets” defined in the RESIDE
dataset.

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25].
However, nothing is perfect. It should be emphasized that just
as all other classical data-driven techniques, the performance
of DNNss is directly restricted by the quality of training data as
well. Furthermore, due to the inherent complicacy of natural
weather conditions, it is almost an inescapable curse to image
dehazing society.

It is well-known that haze is a natural meteorological
condition that is out of human control. Furthermore, unlike
rain, it is almost impossible to always exactly discriminate
hazy and clear weather, because the qualitative visibility
is a relatively subjective concept to which different people
may have different understandings. Therefore, practically, it is
extremely hard to always guarantee only pure haze-free images
are collected when constructing the ground truth clear training
dataset. In fact, we could easily locate a number of suspicious
ground truth samples that contain certain extent of haze, even
in most famous dehazing benchmark datasets, as shown in
Fig. 1. Here, it could be observed that compared with the
Ist column from left, images of the 2nd column may contain
certain light haze. Thus we assert their reliability as haze-free
ground truth data may be suspicious. While, samples of the 3rd
column are hazy even more, and thus they are more unreliable.

Based on above principal analysis and sample demonstra-
tion, it could be concluded that the unreliability of at least
a minority of ground truth (GT) no-haze training data is
an inevitable precondition of the practical image dehazing
mission.! In other words, dehazing is an inherent partially
faulty GT research topic. Thus, within this society, it is unwise
to always assume all training data are perfect.

Focusing on this challenge, in this paper, we choose to
fully respect this intrinsic deficiency of dehazing GT data, and
endeavour to work out a specialized counter-strategy to depress
their negative affects. Following current SOTA, this work will
be conducted under deep neural network framework.

"Though this deficiency seemingly could be relieved to certain extent
through enrolling further intensive expert labeling, such delicate high-standard
calibration must be time- and labor- consuming. Furthermore, appealing to
human labor is definitely the last choice we want to in the era of artificial
intelligence. Thus, under the practical image dehazing scenario, we did not
presuppose further human intervention as a plausible solution.
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Fig. 2. A toy example illustration of the tolerance of affine transformation
(left) and high flexibility free-form (right) regression to an unreliable outlier.
Here, it could be observed that an isolated unreliable point may evidently
alter the topology of the fitting hypersurface of free-form regression, while
the influence to the majority voting affine transformation regression is nearly
ignorable.

Within deep learning society, since structure-bulky DNNs
theoretically have the potential to approximate arbitrary-form
hypersurface, SOTA approaches get used to pursue higher-
level fitting capability to each involved data to further boost
model accuracy. But considering the immutable existence of
faulty GT under dehazing context, this classical solution route
may be questionable. A 2D toy example is shown in Fig. 2.
From this figure, it could be observed that though it seems the
flexible free-from regression could achieve higher accuracy
global fitting, it is also more easily ruined by isolated unreli-
able data. That’s because structurally it has sufficient flexibility
to pay exact attention to each individual point. While, on
the contrary, subject to the intrinsic restriction of low-order
fixed-form fitting hypersurface, affine transformation regres-
sion could only focus on the majority of training data, and
hence it is less effected by few unreliable outliers. Therefore,
moderately restraining excessive modeling flexibility should
be preferable for the practical GT-impure dehazing mission.

Inspired by above observation and analysis, in this paper,
we propose a general robust image dehazing network frame-
work, LPATR-Net, which could effectively suppresses the
interference of intrinsic faulty GT through enrolling fixed-form
affine transformation regression. The core underlying idea of
LPATR-Net is that opposite to traditional flexibility promotion
strategy, we intentionally decrease the freedom of training data
fitting to counteract the traps of minority unreliable ground
truth data. As to the specific implementation structure, since
the low-level image dehazing task is microscopic-various, we
introduce all-round elaborate piecewise linear affine transfor-
mation regression with all parameters automatically learnable,
so as to achieve the subtle balance between representation
accuracy and outlier tolerance.

Here, in order to preliminarily verify our core assumption,
and meanwhile test the effectiveness of proposed learnable
piecewise linear structure, we establish a structurally straight-
forward primary network, Naive LPATR.> It is con-
stituted only of an isolated affine transformation regres-
sion component (namely the proposed core component,
Learnable Piecewise Affine Transformation Regression,
LPATR) accompanied by minimal auxiliary layers, so
that all earnings can be directly attributed to proposed
regression structure. We implemented the Naive LPATR?

on two well-known dehazing landmarks SOTS-outdoor [13]

2The specific architecture of Naive LPATR is demonstrated in Section I of
the attached Supplementary.

3Specific experimental configurations are provided in the experiment sec-
tion.
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TABLE 1

THE DEHAZING PERFORMANCE OF NAIVE LPATR
UNDER NO-REFERENCE CRITERION

Dataset SOTS-outdoor [13]
deepIQA(T)  BRISQUE(T)

18.9359 0.5040
21.3931 0.5160

Haze4K [20]
deepIQA(1)

22.3500
18.8691

Criterion

Ground Truth
Naive LPATR

NIQE({)

2.9588
2.9009

NIQE({)

4.0352
3.9692

BRISQUE(1)

0.4980
0.5082

and Haze4K [20], which of course unavoidably contain partial
faulty GT data. It could be observed from Table I* that
according to several no-reference criteria,” the overall quality
of the dehazed acquired through Naive LPATR is even better
than that of corresponding ground truth. This is an objective
evidence that proposed learnable affine regression structure
could effectively overcome the disturbance of faulty GT and
achieve higher genuine accuracy, rather than just simply
learning to blindly approximate all GT. Thus, based on this
structure, we could imagine better performance than what raw
GT could tell us.

Meanwhile, it should also be emphasized that in order
to achieve overall high-quality robust dehazing, only a sole
faulty GT resisting component is clearly not enough. High-
accuracy overall fitting is also an essential precondition for
fine-grained (ultra-high dimensional data oriented) dehazing
mission, while it is hardly achievable through fitting restrained
affine regression. Therefore, proposed LPATR-Net is actu-
ally a two-component based hybrid dehazing framework.
Specifically, one is the LFFT (Learnable Fitting Flexibil-
ity Tightening component), a novel substructure constructed
mainly around the proposed LPATR, responsible for faulty
GT resisting; the other is All-Mattering, a Multi-Concerns
Toward High-Accuracy Dehazing Fitting component, devoting
to visual-level precise overall data fitting, which is specially
customized to compensate for what LPATR is not good at.
Through elaborately created overview architecture, LPATR-
Net effectively achieves the organic merging of fixed-form
low-order regression centered faulty GT resistance and high-
accuracy data-driven free-form dehazing deep learning.

The main contributions of this paper could be summarized
as follows,

e Formally cope with the habitually-overlooked but inher-
ently existing imperfect GT data issue under practical
image dehazing scenario.

e Propose to intentionally decrease DNN model’s fitting
freedom to counteract the interruption of defective ground
truth dehazing data.

e Work out a novel hybird dehazing framework which
organically merges traditional fixed-form regression intu-
ition into modern big data motivated high-accuracy fitting
DNN system.

e Create a generic faulty GT resisting component LFFT,
which could be directly transplanted into other deep
dehazing fitting architectures to promote general perfor-
mance.

e Evidently upgrade dehazing robustness without incurring
any extra manual labeling burden.

“Refer to the Supplementary (Figure 1) for corresponding visual qualitative
illustration.

3Since there is no genuine GT corresponding to these faulty GT in the
dataset, the commonly adopted referenced criteria could not be used here.
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The following content of this paper is organized as follows:
Section II introduces related work within dehazing society; the
detailed methodology of proposed LPATR-Net is discussed in
Section III; systematically conducted verification experiments
are presented in Section IV; Section V summarizes our work.

II. RELATED WORK

Image dehazing is a long-standing research topic of content
enhancing field, within image processing and computer vision
society. In the past few decades, related researches developed
fast and a large number of talent image dehazing approaches
have been worked out. Generally, they could be mainly divided
into three categories, namely, the extensions of general image
enhancing techniques, the approaches motivated by physical
haze composition model, and the rising series centered around
powerful data-driven DNNSs. In this section, we will give a
brief introduction to each of them.

A. Extensions of General Image Enhancing

In essence, visual dehazing belongs to the broad category of
low-level image enhancing, and hence transplanting the idea
of general enhancing techniques is the most straightforward
solution to realize haze removal. Such approaches used to be
quite popular. Histogram Equalization [1], [2] suppresses the
hazy effects by redistributing the overall intensity. Through
separating the illumination and reflectance components in the
frequency domain, Homomorphic Filtering [3], [4] improves
the quality of hazy images. Bilateral Filter [26], [27] realizes
hazy image enhancing based on estimating the clear pixel
value in view of both spatial and intensity similarities. The
intrinsic connection between gamma correction and the tra-
ditional atmospheric scattering model is highlighted in [5],
where a key parameter in the dehazing process is sought
by fitting a one-dimensional function. Fan et al. proposed a
dehazing method based on the Retinex algorithm [28], where
both the HSV color and RGB spatial details are improved.

B. Physical Haze Composition Model Based Dehazing

Haze is a common meteorological condition, and hence
it is always meaningful to explore its underling physical
composition mechanism. Accordingly, hand crafted physical
haze constitution model also becomes a critical foundation
for many effective dehazing approaches. DCP [9] proposes to
combine the low-intensity color channels with the atmospheric
scattering model to restore high-quality haze-free images. CAP
[10] believes the combination between depth map and the
atmospheric scattering model is helpful to remove haze from a
single image. Berman et al. introduced a non-local prior based
dehazing method [29]. DCPDN [30] effectively integrates the
atmospheric scattering model into a deep learning network. In
[31], a random forest is used with various prior features as the
input to estimate the transmission map. A polarization-based
low-illumination enhancement model is constructed to remove
haze and improve image brightness [32].

C. Data-Driven DNN Centered Dehazing

In recent years, the DNN centered data-driven learning
based dehazing techniques attract great attention and signif-
icantly promote the SOTA level. Thus, currently, this is the
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Fig. 3. The overview of proposed LPATR-Net, which is mainly composed of two modules: the learnable fitting flexibility tightening component (Top), and
the multi-concerns toward high-accuracy dehazing fitting component, All-Mattering (Bottom). Here, the former is mainly in charge of depressing model’s
flexibility to resist the disturbance of inherent faulty GT data, while the latter compensatively focuses on high-accuracy data-driven visual dehazing fitting to
boost the entire model’s overall fitting capacity. In addition, as to the detailed structure of the mentioned MS-FAP (Multi-Scale Feature Acquisition Pyramid)
block, which locates in the middle of the top component part, please refers to Fig. 4.

most popular research series, as to general image dehazing.
GridDehazeNet [33] introduces a novel attention-based multi-
scale estimation method. FFANet [34] designs an innovative
feature attention module that integrates both channel atten-
tion and pixel attention mechanisms. Zheng et al. proposed
a multi-guided bilateral learning based ultra-high-definition
image dehazing method [35]. DeHamer [36] fully integrates
both CNN and Transformer for image dehazing. Song et al.
imported the Swin Transformer into image dehazing task [15].
Qiu et al. worked out the Transformer-based multi-branch
dehazing network MB-TaylorFormer [16]. DCMPNet [14]
enrolls depth estimation for dehazing through a dual-task inter-
action mechanism. DEA-Net [37] includes a detail-enhanced
attention block composed of detail-enhanced convolutions and
content-guided attention. Besides the networks specifically
designed for dehazing task, a number of general data-driven
image restoration models are also able to be utilized to remove
haze, such as FocalNet [38], FSNet [39], and DSANet [40].

D. Works Directly Against Faulty GT

According to our literature investigation, though in the past
few decades a great many of effective dehazing approaches
have been worked out, those intentionally focusing on and
committing to the proper handling of flawed ground truth
samples are relatively rare. But as we expounded in Section I,
this intrinsic challenge indeed deserves attention. Thus, in this
paper, we choose to formally face this issue and endeavour to
work out plausible robust coping solution under the prerequi-
site of not incurring extra human labeling burden.

III. METHOD

As mentioned above, proposed LPATR-Net is specifically
designed for practical dehazing scenario involving unavoidable
faulty ground truth samples. Unlike traditional data-driven

flexibility keep-expanding solutions, it is a moderately weaker
fitting-flexibility oriented fault-resisting dehazing framework.
In this section, we will present its detailed network archi-
tecture, critical components (including theoretical foundation),
and specific learning objective.

A. Overall Architecture

As introduced in the beginning, the core motivation of
LPATR-Net is twofold: for one thing, it should be moderately
restrained in general fitting freedom to resist imperfect training
GT; while for another, the high-performance overall fitting
capability needs to be fully pursued to be competent in the
fine-grained ultra-high-dimensional visual dehazing mission.
However, clearly, above both sides are actually in conflict
with each other to certain extent. Thus, to guarantee their
mutually compatible for better co-prosperity, we design a
two components characterized hybird topology architecture,
highlighted by independent function modeling plus dense-
communication, as shown in Fig. 3. Specifically, the two core
functional components are respectively: the Learnable Fitting
Flexibility Tightening Component (Top), and All-Mattering,
the Multi-Concerns Toward High-Accuracy Dehazing Fitting
Component (Bottom). Here, the former is armed with special-
ized model flexibility restriction mechanism to suppress the
disturbance of faulty GT; the latter pursues for higher-level
multi-concerns general visual fitting capacity promotion (in
nature it is a component specially customized to compensate
for what the restrained fitting component not good at, so as
to achieve evident overall performance improvement). Their
specific introductions are as follows:

1) Learnable Fitting Flexibility Tightening Component:
The proposed Learnable Fitting Flexibility Tightening (LFFT)
is a data-driven parameter learnable component specifically
created to moderately restrain the overall model’s fitting
flexibility. As shown in the upper part of Fig. 3, it is a
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Fig. 4. The detailed structure of the critical Learnable Piecewise Affine
Transformation Regression (LPATR) component.

subarchitecture relatively independent of the below high-
accuracy dehazing fitting counterpart. But both components
are densely connected to realize sufficient communication and
co-prosperity.

Structurally, this LFFT component is mainly comprised by
four modules: General Enhancing (GE), Multi-Scale Feature
Acquisition Pyramid (MS-FAP), Learnable Piecewise Affine
Transformation Regression (LPATR), and Light Boosting of
Regression (LBR). Among them, LPATR is the core functional
composition devoted to fixed-form affine regression centered
fitting flexibility restriction (refer to Section III-B for detailed
introduction). While, the left three are essential auxiliaries.

General Enhancing is a multi-level hierarchical source input
enhancing module. It is worked out and deployed because
fixed-form regression is a relatively junior fitting model and
may easily be degraded by the fluctuation of input image’s
quality. While, attaching a front-placed content enhancing
companion could beneficially relieve this vulnerability. Struc-
turally, GE is a four scale levels comprehensive feature
enhancing system. This refined hierarchy effectively ensures
the full cover to all visual knowledge levels, which is critical
to all-round visual knowledge boosting. In more detail, the
enhancing process is specifically implemented through the
Basic Feature Enriching Unit (BFE Unit). It is a two small-size
convolution layers centered shallow net structure, as shown in
the top left of Fig. 3. Compared with single layer counterpart,
BFE Unit efficiently achieves wider receptive field.

Following GE, the feature pyramid exploration module
MS-FAP is introduced to physically construct a multi-level
knowledge combination complex, in order to guarantee the
even emphasis to each information level. As shown in the top
of Fig. 4, MS-FAP systematically integrates five knowledge

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

levels (down to minimum x32). Here all downsampled knowl-
edge are slightly strengthened by following 3 x 3 convolution.

Then, as shown in the top right corner of Fig. 3, the last
LBR module is mainly charge of the preliminary boosting of
acquired regression knowledge. It is a shallow two consecutive
convolution layers structure, which respectively corresponds to
the kernel size 3 x 3 and 1 x 1.

Finally, as demonstrated through the purple color route lines
(middle of Fig. 3), the acquired affine regression based dehaz-
ing knowledge are densely merged into the high-precision
fitting purpose All-Mattering component, under various scales
and stages. Specifically, this knowledge injection includes
three scale-levels, and involves both the encoding and decod-
ing stage. We encourage such diversified dense communication
to sufficiently fulfill affine regression’s flexibility restraining
role.

2) All-Mattering, the Multi-Concerns Toward High-
Accuracy Dehazing Fitting Component: Image dehazing
is a pixel-level microscopic content restoration mission
facing complex high-dimensional image data, and hence
theoretically requires a powerful high-accuracy overall
dehazing data mapping modeling mechanism. What’s more,
as mentioned above, proposed LPATR will intentionally
downgrade the overall model’s fitting capacity. Therefore, a
more powerful dehazing fitting framework must be established
as a solid compensation and key functional partner of the
flexibility-restrained LPATR.

Towards this goal, we customize a multi-aspects all
mattering high-accuracy dehazing fitting subarchitecture, All-
Mattering, as shown in the lower part of Fig. 3. It is
well-known that modeling the mapping of sophisticated visual
data is tough, because besides plain ultra-high-dimensional
data matrix, a number of various multi-view quality evaluation
criteria must be simultaneously satisfied either. While it is
clearly extremely hard for the intrinsically fixed-form affine
regression component to accommodate these requirements.
Thus, as a competent companion compensator, proposed All-
Mattering is genetically designed with physical multi-concerns
to these diversified key quality evaluation aspects,® so as
to achieve the full-range high-precision fitting within the
complicated visual dehazing scenario. Compared with tradi-
tional single or few concerns approaches, this comprehensive
multi-aspect concerns framework cares much more quality
evaluation views, such as how the image knowledge levels are
covered (Knowledge-Hierarchy), besides space how the effects
are on frequency domain (Frequency-Domain), the robustness
to various mission difficulty levels: from tough to easy handled
candidates (Difficulty-Robustness), the full coverage capacity
to both global and local scope features (Feature-Scope), and so
forth. As to the specific implementation, all of above concerns
are intrinsically embedded into All-Mattering’s framework
through the ingenious integration of a series of elaborately
designed functional-substructures, i.e.,

i. Knowledge-Hierarchy: Constructing a multiple reso-
lution hierarchy system based overall analysis and
modeling global framework (for multi-level knowledge
restoration);

01t is named All-Mattering, because under this framework, it is believed
that all aspects of dehazing quality evaluation matter to the final effects, and
hence we pursue the simultaneous satisfaction to all of them.
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ii. Frequency-Domain: Equipped with specialized fre-
quency domain feature analysis and recovery module
(for the equal attention to both the spatial and frequency
domain);

iii. Difficulty-Robustness: Possessing parallelled shallow
and deep exploration pipelines (for effectively improv-
ing the robustness to diverse mission difficulty levels,
namely the full range cover from tough to easy candi-
dates);

iv. Feature-Scope: The co-inclusion of both local-info
focused convolution operator and global-info preferred
long-range Transformer block (for sufficiently covering
various-scope features).

Corresponding detailed introductions are as follows:

i. Though image dehazing is a low-level microscopic content
restoration mission, clearly, the simultaneous maintenance of
higher-level semantics and knowledge is also critical to a fully
competent approach. Therefore, as shown in the lower half
of Fig. 3, we establish an overall scale shrinking and then
expanding multi-scale framework to achieve multiple resolu-
tion knowledge analysis and dehazing restoration. Under this
fundamental framework, several critical components (convolu-
tion, ResBlock, and Transformer) are deliberately deployed to
systematically realize the coinstantaneous concern to multiple
various quality evaluation aspects. Here, various conv-kernel
size (3 x 3 and 1 x 1) is enrolled to match and assist the
resolution changes. In addition, skip connections are densely
arranged to avoid high-resolution info loss and facilitate data
propagation.

ii. The theoretical foundation sound frequency domain anal-
ysis is a critical view to evaluate and understand visual image.
Compared with pixel-level spatial domain, it provides massive
global-range visual characteristics parsing. Thus besides intu-
itive spatial domain, a qualified dehazing image should also
be excellent in counterpart frequency domain, namely

(D

According to this motivation, we intentionally deploy a series
(six in all) of frequency domain specialized info extraction
and restoration blocks, ResBlock. Inspired by the works of
Cui et al. [39], this block explicitly extracts and processes
various frequency subbands to achieve more delicate frequency
feature rectification.

iii. It is well-known that deep neural networks are easily
“over-armed”, i.e., the bulky structure is too complicated to
some relatively simple tasks, for example under dehazing
scenario, the light mist. Therefore, besides the mainstream
deep exploration pipeline, we also assign a paralleled shallow
counterpart as a light mission supplement, as shown in the
left bottom of Fig. 3. Specifically, it is composed of two
consecutive Shallow NN blocks, respectively matching 1/2
and 1/4 resolution, each of which contains two various field
convolution and ReLU layers. From a global perspective, this
light pipeline is in fact an intermediate route between full deep
exploration and direct short cut (skip connections), namely,

2

Clearly, this comprehensive three-in-one fitting pipeline struc-
ture is more beneficial to fully cover the various unpredictable
mission difficulty levels.

Qualified Domain = Combine(S patial, Frequency).

Pipeline = Integrate(Deep NN//S hallowNN |/ Direct).
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iv. In general, based on the involved receptive range, image
features could be roughly divided into two categories, the
global and the local. Clearly, a high-quality image should be
excellent on the features of both scope types, namely,

Covered Feature S copes = Global + Local. 3)
Hence, to fully respect each feature category, we arrange
an independent description plus alternating deployment based
hybrid feature extraction and analysis structure. Here both
feature classes are respectively modeled through specialized
physical structure units according to their own characteristics.
In detail, the small-size convolution operator is deployed
for modeling local range detail features, while a customized
long-range feature description unit, the Transformer Block
introduced by Zhao et al. [41] is enrolled for that of global.
As shown in the bottom of Fig. 3, both units are alternating
arrayed. Since the modeling of various refined local details is
relatively more complex than that of long-range global, both
units are unbalanced deployed with the quantity ratio 9:3.

B. Learnable Piecewise Affine Transformation Regression

In order to intentionally suppress data-driven dehazing
model’s fitting flexibility for better faulty GT resistance, we
choose to specifically create and structurally embed (through
dense communication) a novel learnable linear regression
centered fitting degenerating mechanism/substructure, LPATR.

1) Theoretical Foundation and Methodology: 1t is well-
known that linear regression may be the weakest fitting model
due to the fixed-form straight line fitting shape (hyperplane).
Hence, it is an ideal tool to degrade a comprehensive model’s
overall fitting flexibility.

While, on the other hand, in McCartney’s well-known
atmospheric scattering model [42] for haze decomposition, it
is defined

Ix) = J(x) - 1(x) + A - [1 = ()], “4)
where x = [x,x,]7 denotes pixel location, I(x) represents
hazy image, J(x) is the corresponding haze-free image, t(x)
indicates scene transmission, and A is the global atmospheric
light. In this classical model, there is a clear pixel-level linear
relationship between the hazy and clear image. Therefore, lin-
ear regression should be effective in modeling image dehazing,
as least under above mentioned ideal circumstance.

Therefore, according to the above twofold reasons, lin-
ear form regression fundamentally satisfies our intention for
flexibility restrained dehazing. Hence, we specifically choose
affine transformation (AT), the most typical linear regression
modality, as our core foundation of restricted dehazing fitting,
namely,

() = Q@) - 1) + b(x) = R0 - [0, 11T, (5)
where under the common true color image configurations,
there is RGB-channel image pixels I*7(x),I(x) € R3*!, and
R’(x) = [Q(x),b(x)] € R*** indicates the full parameters of
affine transformation.

On the other hand, considering the widely-exsiting local
similarity on visual image, the extremely inefficient pixel-level
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Input Learned Piecewise Affine Transformation

Para. 1 Para. 2 Para. 3
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Without Trilinear Interpolation

Para. | Para. 2

Fig. 5. The demonstration of a group of learned piecewise affine transformations (middle column group), where each column respectively corresponds to
one of the four affine transformation parameters (Para.). Since here the visible appearance difference among each of the three RGB channel is trivial, only
one channel is presented for conciseness. In addition, the feature number C is set as 1. Thus, the demonstrated transformation R is of size H x W x 4 and
could be illustrated in four images. Besides, we also exhibit the corresponding affine transformation acquired without the boundary artifacts resisting trilinear

interpolation in the right side column group as comparison.

ultra-high-density regression modeling is evidently unneces-
sary. Thus, we further evolve above individual pixel regression
model into that of three-dimensional piecewise alternate, i.e.,

1I"7(x) = R [1(%), 7, (0),  FAG)] - [T, 1], (6)

3D Piecewise Regression

where 7(-) = [, T,] is the piece locating function that maps
2D pixel location into their corresponding quantified piece,
{f |R3X1 — Rl} acts as a guiding image feature acquisition
function normalized to the range [0 ~ 1], and function v(:) is
charge of the piecewise quantization mapping on the feature
value range dimension [43]. In our specific settings, we let
piecewise regression parameter matrix R” € R3>*8x8x3x4 ‘the
image size is [H, W], and hence there is

T|[1:H,1: W] [1:8,1:8], (7)
v[[0~ 1]+ [1:8]. (8)

Here, compared with classical sole location 2D quantization,
the enrollment of an extra feature value piecewise quantization
evidently promotes the general fitting performance with quite
limited computing overheads. In addition, it is worth men-
tioning that through diversifying the feature extractor JF(-),
various regression equations/models could be obtained from
the parameter matrix RP [7,(x), 7,,(x), "(F(I(x)))]. This kind
of regression mapping extension could directly increase the
fitting diversity and thus effectively enrich the overall model’s
representation ability.

But it should also be emphasized that, under image process-
ing scenario, piecewise model may unavoidably incur certain
visual gaps at piece boundaries, and hence degrade the overall
processing quality. Even though the mentioned extra value-
domain quantization may partly relieve this negative effect
through simultaneously focusing on both space and value
dimension, generally the grid boundary artifacts are hardly
totally eliminated. The right column group of Fig. 5 in the
experiment section (Section IV-C) gives a straightforward
visual demonstration.

Therefore, to suppress such artifacts, instead of directly
employing Equation (6), we choose to further evolve it to its

trilinearly interpolated (77) version, namely,

R"(x, F) = Trilnterpolate [R”(, -, )] . 9)

X, F DT, Ty, V

Here, since linear interpolation is naturally equipped with
the weighted sum operator among neighboring area grids,
in theory the boundary artifacts could be effectively allevi-
ated. The illustration shown in the middle column group of
Fig. 5 verified this assertion (through comparing with above-
mentioned that of the right side column group).

At last, in order to conveniently obtain these regression
parameters and at the same time seamlessly merge into the
entire dehazing fitting framework, above mentioned piecewise
regression model will be totally learned and implemented
through data-driven deep neural network structure, as intro-
duced follows.

2) Network Implementation: As mentioned in the begin-
ning, DNN architecture is currently the overwhelming SOTA
within dehazing society. Following this track, what we want in
this paper is a highly-integrated end-to-end robust deep neural
network dehazing architecture. Thus, all above-mentioned
linear regression dehazing methodology will be specifically
implemented through transforming into corresponding net-
work structure, the Learnable Piecewise Affine Transformation
Regression (LPATR) component, as shown in Fig. 4. As shown
in the figure, in structure, LPATR could be roughly divided
into three parts (from top to bottom): the Feature Enrich-
ing Based Regression Diversification, Learnable Regression
Model Acquisition, and LPAT Regression Implementation.

Specifically, the first regression diversification block is
intentionally constructed to sufficiently extend the candidate
regression pool. As mentioned above, through continuously
alternating the feature extractor F(-), a series of various
available piecewise regressions could be obtained. Benefited
from this diversity augmentation, the overall model’s fitting
ability could be evidently promoted. Structurally, the first
composition of this block is the Raw Feature Diversification
unit. Here, the input raw image is unfolded in channel dimen-
sion to facilitate the exploration to more visual fine details.
This unit is mainly realized through efficient pointwise depth-
wise separable convolution. The second processing unit is
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above-mentioned (Paragraph IV of Page 5, Section III-A.1)
MS-FAP, as shown in the top of Fig. 4. It is mainly responsible
for scale-level feature extension (in pyramid hierarchy). At
last, we also attach a shallow feature analysis unit composed
of three sequential convolution-ReLU layers. The final output
of this block is a set of diversified features, denoted as
I ={F,F,....Fc}

The middle regression acquisition block of Fig. 4 is the
core of LPATR component, where all pre-designed dehaz-
ing regressions are totally settled down through data-driven
automatic learning. The main learning course is conducted
on down-sampled images to cut down computing burden. In
structure, as shown in the figure, this block mainly consists
of four compositions: Downsampling, Content Enhancing,
PRMA, and Model Enhancing through Trilinearly Interpo-
lation. The downsampling process is placed ahead of all to
shrink the overall data scale. The following Content Enhanc-
ing structure is enrolled to preliminarily enhance raw data
and moderately alleviate the quality degradation incurred by
former downsampling. This part is implemented based on a
U-Net [44] like encoding-decoding architecture. Then, as the
functional core of this block, PRMA (Piecewise Regression
Model Acquisition) is in charge of determining the regression
model, namely figuring out the specific regression parameters.
Since linear regression is a kind of relatively concise model
form, here as shown in the figure, we work out a single route
deep convolution based efficient model prediction architecture.
Structurally, it is comprised of two sections of stacked (x 2
and X 3) convolution blocks, respectively corresponding to 2D
and 3D convolution. This is an elaborate design for the subtle
balance among dimension cover, generalization, and efficiency.
Generally speaking, 3D convolution is powerful in both space
and channel dimension cover, but relatively slow and easily
incurs overfitting. While, the systematical combination of 2D
and 3D convolution could evidently overcome these defects.
That’s because the import of space dimenson only 2D convolu-
tion is beneficial to both computing saving and generalization
promotion. Meanwhile the remaining 3D convolution could
keep sufficient attention to channel dimension analysis, and
the fusion of space and channel dimension. Thus, this is the
optimal choice considering all factors. In addition, similar with
the multi-heading mechanism [45], we also stack a number of
PRMAs to further diversify and boost the acquired regres-
sion model, R”. At last, in the trilinear interpolation based
model enhancing unit, through importing diversified features
I' and executing the interpolation conducting Equation (9), the
evolved fully functional regression model R” is acquired. It is
the key to carry out proposed LPATR to boost the overall
dehazing framework.

In the end, the bottom row of Fig. 4 demonstrates the
execution of acquired piecewise affine regression model. This
block includes two main implementation constituents. First, in
the LPA Transformation unit, the collected regression R’ is
directly imposed on current data, namely the boosted images
obtained through preceding processing (shown in Fig. 3). Here,
this implementation process is the straightforward execution
of pixel-level affine transformation (Equation (5)). Second,
another stack of multi-scale feature extension unit MS-FAP is
enrolled to realize scale-level knowledge enhancement. Then
we could acquire the ultimate output of LPATR component in
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size Hx W x (C+4) x 3. As shown in the middle of Fig. 3, this
output will be densely merged into the below high-accuracy
dehazing fitting component, All-Mattering, to collaboratively
realize desired flexibility restrained robust image dehazing.

C. Learning Objective

Image dehazing is a high-standard comprehensive content
restoration mission, which pursues for perfect visual appear-
ance under each plausible aspect of consideration. Thus, a fully
qualified dehazing approach should seek to achieve full-range
completely competent.

According to this goal, as to the training of proposed robust
high-accuracy dehazing framework LPATR-Net, we specially
construct an end-to-end multi-view plus multi-scale oriented
comprehensive training objective guiding system. It is realized
through the composite integration of a number of single aspect
supervising objectives.

In detail, the view and scale single loss is defined as,

Liingie(v, 5) = Eyor o, | ¥, [DSACT, 60)] =¥, (09, (10)

where v denotes the observation view (namely feature cate-
gory) ranging from microscopic pixel to macroscopic global
frequency, s indicates the feature scale-level, W,(-) repre-
sents feature extraction operator, DS(-,-) stands for image
downsampling at designated ratio, I°7 is ground truth image,
6, = 1/257" denotes downsampling ratio, and O is the
multi-scale phase output as annotated in the Multi-Scale Loss
Objective block (plus the final output) in lower right corner
of Fig. 3.

Based on each single aspect loss, the integrated overall
composite objective is constructed as,

macro

Leom = Z

v~micro

S
@, Zﬂv : £single(V7 S), (1 1)
s=1

where S indicates the number of scale levels, and @, and 8
are the relative weights respectively specified to each view and
scale level.

IV. EXPERIMENTS

In this section, proposed LPATR-Net will be extensively
and multi-perspectively evaluated to verify its effectiveness.
The specific experiment schedule is as follows:

First, detailed experimental exploration on the nature and
function of the core part of proposed approach will be con-
ducted in Subsection C. Second, the specific quantitative and
qualitative experiment performance on multiple public datasets
will be discussed in Subsection D and E, respectively. Third,
the constituents’ necessity exploration namely ablation study
will be systematically conducted in Subsection F. Fourth, since
faulty GT is also inevitable in test set’s construction, current
experimental performance may be inaccurate due to such dis-
turbance. Thus, in pursuit of genuine performance evaluation,
in Subsection G, we will inspect LPATR-Net’s achievement on
a manually constructed fault-free test dataset. At last, since
proposed fitting restriction core component LFFT is created
relatively independent with other remaining structure, we are
curious about and will explore its transplanting performance,
namely when it is injected into and collaborates with other
general dehazing fitting frameworks, in Subsection I.
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A. Datasets

Our experiments are systematically organized and con-
ducted on a group of publicly available datasets, including
RESIDE [13], O-HAZE [46], Dense-Haze [47], I-HAZE [48],
and NH-HAZE [49]. The RESIDE is a famous commonly
adopted large-scale dehazing benchmark dataset comprised
by five subsets. In our experiments, we specifically use the
Outdoor Training Set (OTS), Indoor Training Set (ITS), and
Synthetic Objective Testing Set (SOTS). The OTS is composed
by 313,740 outdoor hazy images generated from 8,970 outdoor
haze-free images. The ITS contains 13,990 indoor hazy images
generated from 1,399 indoor images. The SOTS is split into
the SOTS-outdoor and SOTS-indoor, each of which contains
500 pairs of hazy/clear images. The model is trained on OTS
and ITS, and then tested correspondingly on the SOTS-ourdoor
and SOTS-indoor respectively. Meanwhile, the O-HAZE [46],
Dense-Haze [47], I-HAZE [48], and NH-HAZE [49] are all
small-scale real haze datasets where the haze is generated by
professional machine.

B. Implementation Details

Our verification experiments are conducted based on Torch
1.9.1 on NVIDIA GTX 3090 Ti, A100, and L40 GPUs. The
Adam optimizer [50] is specifically adopted for training, with
the value of 0.9 for §; and 0.999 for B, respectively. Our
initial learning rate is set as 0.0001 with gradually descending
strategy applied [51]. Proposed LPATR-Net is accompanied
and will be compared with 28 newly published approaches,
including AOD-Net [52], GFN [53], DM2F-Net [54], GCANet
[55], GridDehazeNet [33], PFDN [56], FFA-Net [34], DW-
GAN [57], DeHamer [36], PMNet [58], MAXIM-2S [59],
UDN [60], D4 [61], SGID-PFF [23], SANet [62], MITNet
[63], FocalNet [38], SFNet [64], DehazeFormer-B [15], FSNet
[39], IRNeXt [65], MB-TaylorFormer-L [16], C?PNet [66],
DEA-Net-CR [37], DCMPNet [14], OKNet [67], EENet [68],
and PoolNet-B [69].

C. Explore the Nature and Function of the Learned
Piecewise Affine Transformation Regression

As mentioned in the beginning, the newly-designed piece-
wise affine regression component is a critical key ingredient of
the proposed robust dehazing architecture. Theoretically, sub-
ject to the fixed-form fitting hyperplane and strictly restricted
parameter amount, this regression module can only rely on
the majority of training data and hence could inherently resist
the misleading of minority of faulty GT. In order to actually
unpack this core structure, in this subsection, we will in-depth
explore its nature characteristics and specific function through
visualized practical experimental data.

A series of practically learned piecewise affine transforma-
tions, namely the R’ in Equation (9), are shown in Fig. 5
(middle column group). Here, each column respectively corre-
sponds to one of the four affine parameters as presented in the
row of Equation (5). From this figure, it could be observed that
the acquired transformations are full of information derived
from the input image, but each parameter image has its special
focus. For example, the 2nd row image of Para. I focuses on
remote buildings, while the corresponding one of Para. IV pays
more attention in nearby scene. Through the pixel-level affine
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combination of these highly-relative meanwhile focus various
information, theoretically it is plausible to achieve moder-
ate image content enhancing (dehazing). Especially when
these transformation parameters are all automatically obtained
through high-precision data-driven based deep learning. But
on the other hand, it is also worth noting that this dehazing
fitting mechanism is relatively weak, due to the strictly limited
parameter amount (only four) and the fixed-form low-order
fitting modality (affine). Thus, in a word, this acquired system
is in line with our original purpose, i.e., it could achieve
moderately dehazing fitting but is genetically weak in general
fitting flexibility.

In addition, the right side column group of Fig. 5 provides
a straightforward visualized parameter comparison, where
the grid based trilinear interpolation operator introduced in
Equation (9) is discarded. According to the figure, it could
be found that without this deliberately deployed grid-level
smoothing mechanism, the overall quality of learned trans-
formations drops dramatically, especially in detail expression
and boundary artifacts resistance. Thus, it could be asserted
that the introduced extra trilinear interpolation mechanism is
valuable to the acquisition of high quality regression model.

Besides the regression model’s visualization, in Fig. 6, we
also demonstrate the direct outcomes of applying the acquired
Learnable Piecewise Affine Transformation, namely the output
of the LPA Transformation unit shown in the bottom of Fig. 4,
the O-LPAT matrix. In Fig. 6, it could be observed that through
executing the learned affine transformation, a series of content
enhancement could be achieved, i.e.,

e As for O-LPAT 1 (2" Row), the global noise is effectively
depressed without evidently losing content details. Mean-
while, the overall frequency is simultaneously diminished,
which is beneficial for dehazing because generally the
widely-distributed haze will elevate image’s holistic fre-
quency.

e As for O-LPAT 2 (3" Row), the contrast between low-
frequency composition (central zone) and that of high-
frequency (surrounding zone) is moderately eased. This
is a positive effect action, because global-range gradual
hazy image generally has stronger low-frequency which
means the low-high visual contrast will be more evident.

e As for O-LPAT 3 (bottom Row), the specific enhancing
processing on each column seems prominent but diverse
(in both spacial and frequency domain). For example, the
Ist column evidently promotes the overall clarity, the 2nd
focuses on general smoothing, and the 3rd specializes in
detail restoration. This is plausible and profitable, after
all, the haze removing calculation to each specific image
should be exclusive and highly-customized based on its
own characteristics.

According to these visualized outcomes, it could be asserted
that proposed LPAT regression is effective in diversified
content enhancement. This is positive for final dehazing per-
formance promotion.

D. Quantitative Evaluation

The quantitative performance on both the SOTS-indoor and
SOTS-outdoor dataset is summarized in Table II. According
to the table, generally proposed LPATR-Net performs well on
both indoor and outdoor hazy images. Specifically, LPATR-Net
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Fig. 6. The demonstration of practical outcomes of applying the acquired
Learnable Piecewise Affine Transformation (LPAT). In this experiment, feature
number C = 1, and hence the size of LPAT’s output matrix (O-LPAT) is
H x W x 3, which are specifically exhibited through the three image rows,
from O-LPAT 1 to O-LPAT 3. In addition, the corresponding frequency domain
images are also demonstrated aside for thorough analysis.

TABLE I

THE QUANTITATIVE DEHAZING PERFORMANCE ON THE
SOTS-INDOOR AND SOTS-OUTDOOR DATASET

SOTS-indoor SOTS-outdoor

Methods Venues PSNR(1) SSIM(t) PSNR(1) SSIM(T) FLOPs
AOD-Net ccv’17 20.51 0.816 24.14 0.920 0.54 G
GFN CVPR’18 22.30 0.880 21.55 0.844 -
DM2F-Net ICCV’19 34.29 0.984 - - 112.19 G
GCANet WACV’19 30.23 0.980 - - 68.34 G
GridDehazeNet ICCV’'19 32.16 0.984 30.86 0.982 8143 G
PFDN ECCV’20 32.68 0.976 - - -
FFA-Net AAAI'20 36.39 0.989 33.38 0.980 125129 G
DW-GAN CVPRW’21 35.94 0.986 - - 14247 G
DeHamer CVPR’22 36.63 0.988 35.18 0.986 214.88 G
PMNet ECCV’22 38.41 0.990 34.74 0.985 -
MAXIM-2S CVPR’22 38.11 0.991 34.19 0.985 -
UDN AAAT22 38.62 0.991 34.92 0.987 -
D4 CVPR’22 25.42 0.932 25.83 0.956 -
SGID-PFF TIP’ 22 38.52 0.991 - - 716.15 G
SANet TICAT'23 40.40 0.996 38.01 0.995 147.65 G
MITNet MM’23 40.23 0.992 35.18 0.988 7225 G
FocalNet ICCV’23 40.82 0.996 37.71 0.995 11891 G
SFNet ICLR23 41.24 0.996 40.05 0.996 538.11 G
DehazeFormer-B TIP’23 37.84 0.994 34.95 0.984 111.15 G
FSNet TPAMI'23 42.45 0.997 40.40 0.997 475.34 G
IRNeXt ICML’23 41.21 0.996 39.18 0.996 182.01 G
MB-TaylorFormer-L. ~ ICCV’23 42.64 0.994 38.09 0.991 368.59 G
C?PNet CVPR’23 42.56 0.995 36.68 0.990 2005.98 G
DEA-Net-CR TIP 24 41.31 0.995 36.59 0.990 140.26 G
DCMPNet CVPR24 42.18 0.997 36.56 0.993 289.63 G
OKNet AAAI'24 40.79 0.996 37.68 0.995 158.10 G
EENet PR’25 42.08 0.997 39.10 0.996 202.82 G
PoolNet-B TIP’25 42.01 0.997 - - 273.84 G
LPATR-Net 42.58 0.997 41.24 0.997 49497 G

achieves optimal accuracy under three of all four indicators.
The only exception is the PSNR on SOTS-indoor, where
LPATR-Net is slightly lower than that of MB-TaylorFormer-L
(by 0.06), but still better than all others. While, the most evi-
dent promotion appears on the PSNR of SOTS-outdoor, where
LPATR-Net reaches 41.24 and attains 0.84 advantage com-
pared with the second optimal approach (FSNet). Considering
the overall difficulty of SOTS-outdoor, this improvement is
promising, especially when here the involved outdoor scenario
is doomed to be haunted by faulty GT. On the other hand, it
is sad to see LPATR-Net doesn’t achieve efficiency promotion
as to runtime FLOPs, but it is still comparable with several
SOTA approaches, such as C2?PNet, FSNet, SFNet, SGID-PFF,
FFA-Net, and so forth. Meanwhile, as will be demonstrated in
Section IV-F (Ablation) and I'V-I (Transplantability), proposed
core structure could be aggressively pruned or transplanted
into other general dehazing architectures to evidently depress
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TABLE IIT
THE QUANTITATIVE DEHAZING PERFORMANCE ON THE
O-HAZE, DENSE-HAZE, I-HAZE, AND NH-HAZE DATASET
Method: Ve O-HAZE Dense-Haze -] NH-HAZE
ethods fenues PSNR()  SSIM(f) PSNR() SSIM() PSNR(1) SSIM(T) PSNR(1) SSIM(T)
SANet 1ICAI'23 27.55 0.951 17.25 0.703 20.81 0.867 19.73 0.792
FocalNet Iccv23 27.61 0.955 16.91 0.695 20.43 0.858 19.83 0.792
SFNet ICLR’23 27.63 0.955 17.29 0.698 20.39 0.858 20.32 0.803
DehazeFormer-B  TIP’23 26.88 0.944 16.92 0.668 20.33 0.835 19.66 0.771
FSNet TPAMI'23 27.71 0.953 17.50 0.719 20.15 0.864 20.25 0.806
DEA-Net-CR TIP"24 27.52 0.953 17.10 0.699 20.68 0.867 19.90 0.789
OKNet AAAI'24 27.30 0.951 16.75 0.673 20.48 0.866 19.21 0.781
EENet PR’25 27.67 0.955 17.45 0.701 21.18 0.863 19.76 0.794
LPATR-Ne 27.72 0.956 17.62 0.704 21.01 0.876 20.33 0.809
TABLE IV
AVERAGE RUNTIME PERFORMANCE (MS) ON THE
RESIDE SOTS-OUTDOOR DATASET

SGID-PFF SENet FSNet DehazeFormer-B MB-TaylorFormer-B C2PNet LPATR-Net
(TIP’22) (ICLR’23)  (TPAMI'23) (TIP23) (ICCV’23) (CVPR’23) . e

167.99 162.22 148.45 115.20 652.81 323.82 200.36

computing burden while maintain moderate dehazing accuracy.
Those will be more efficient options.

Correspondingly, Table III demonstrates the detailed quan-
titative performance on the O-HAZE, Dense-Haze, - HAZE,
and NH-HAZE dataset. Compared with densely trained SOTS
experiments, these small-scale datasets are relatively more
challenging, which directly leads to evident general per-
formance degradation in quantitative metrics shown in the
table. But as to the performance comparison, LPATR-Net still
achieves optimal in 6/8 indicators, and the second optimal
in the left 2/8. This is a typical accuracy advantage similar
with that achieved on SOTS. Thus, it could be asserted that
proposed LPATR-Net is widely effective in various datasets.

In addition, the general runtime performance on the
RESIDE SOTS-outdoor dataset is reported in Table IV. All
this series of experiments are conducted on a same hardware
platform, with Intel Xeon 3204 CPU, 32 GB Memory, and
single NVIDIA GTX 3090Ti with 24GB GPU. There are all
500 images involved and we report the mean runtime elapse.
The image size on this dataset is not even, and the average
size is 549.95 x 477.62. According to the table, it could
be observed that though as a complicated multi-components
dense parameters network structure, LPATR-Net is not good
at running faster, generally its runtime cost is in the same
level with a number of contemporaneous approaches. In other
words, we believe the running speed is not LPATR-Net’s
unacceptable fatal deficiency.

E. Qualitative Evaluation

The qualitative dehazing performance on the SOTS-indoor
and SOTS-outdoor dataset is demonstrated in Fig. 7, where
besides input hazy and corresponding ground truth, we directly
exhibit the difference image (with corresponding GT) for com-
parison convenience. According to these visual demonstration,
it could be observed that proposed LPATR-Net effectively nar-
rows the general difference between the obtained dehazed and
corresponding GT. Lots of high-frequency details which are
more easily destroyed by global-range densely distributed haze
have been successfully restored. Especially on the tougher
SOTS-outdoor dataset, the performance promotion compared
with other SOTA is clearly more evident. Fig. 8 and 9
respectively exhibits the dehazing outcomes on the NH-HAZE
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Fig. 7. The qualitative dehazing performance on the SOTS-outdoor and SOTS-indoor dataset. Here the difference image with corresponding ground truth is
directly demonstrated for better visual performance evaluation, where black color denotes the difference.

and O-HAZE dataset. According to both figures, generally
proposed LPATR-Net achieves promising overall dehazing
performance, in details:

(1) More thorough haze removal effects, e.g., the 1st sam-
ple of Fig. 8, where certain haze residuals are easily
located on output of other approaches, especially in the
zoomed-in patches.

(2) Better color restoration, e.g., the 2nd sample of Fig. 8,
especially the tile color.

(3) More similar overall or local color tone with correspond-
ing GT, e.g., samples of Fig. 9, especially the wood color
tone on sample 1.

(4) Occasionally better than GT (due to the intrinsic
faulty GT resisting capacity), e.g., the zoomed-in region
on the Ist sample of Fig. 9, where the GT seems
more like a light mist image than that dehazed by
LPATR-Net.

Due to the strict page amount limit, please refer to the 2nd
section of the Supplementary for more qualitative performance
demonstration.

F. Ablation Study

LPATR-Net is a relatively complicated structure, and hence
it is necessary to carefully check the value of each of its critical
elements. The detailed ablation study of proposed LPATR-Net
is summarized in Table V. From the first row, it could be
observed that the lack of the core LFFT component evidently
degrades the overall performance, especially on PSNR of
SOTS-outdoor (2.47 |). On the other hand, the absence of
each of other involved key compositions also incurrs certain
general accuracy reduction. Specifically, on the All-Mattering
component, the long-range feature descriptor Transformer
Block contributes the most; while, on the LFFT component,
the outstanding composition reflected by each indicator varies
but the general descending trend is clear. In addition, it should
be noticed that through removing a certain relatively bulky
ingredient, the involved runtime FLOPs could be evidently
decreased with limited accuracy loss. For example, cutting
down half feature channels could save 202.81G FLOPs at
the expense of only 0.88 PSNR decline (to 40.36, outdoor).
This accuracy still ranks the 2nd in Table II. Hence, it could
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Fig. 8. The qualitative dehazing performance on the NH-HAZE dataset.
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Fig. 9. The qualitative dehazing performance on the O-HAZE dataset.

be asserted that proposed LPATR-Net framework actually
possesses the potential to pursue higher-level computing effi-
ciency.

Corresponding qualitative performance on SOTS-outdoor is
demonstrated in Fig. 10, where we adopt the difference image

with ground truth to give more straightforward comparison.
Here it could be observed that the full size LPATR-Net has evi-
dent visual advantage than any other shrank size counterparts.
Thus, the value of each mentioned individual composition
of LPATR-Net is verified. Meanwhile, given such evident
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Fig. 10. The qualitative ablation study shown in the difference image with GT.

TABLE V
THE QUANTITATIVE ABLATION STUDIES

SOTS-indoor SOTS-outdoor

TABLE VI

THE QUANTITATIVE DEHAZING PERFORMANCE ON A GENUINE GT
TEST DATASET CONSTRUCTED BASED ON SOTS-OUTDOOR

Evaluated Component ~ Models PSNR(1) SSIM(1) PSNR(1) SSIM(1) FLOPs(])
All w/o LFFT Component 39.79 0.9952 38.77 0.9960 176.23 G PSNR(T)
Half Feature Channels 4021 0.9962 4036 09964  292.16 G Methods Venue :
All-Mattering wlo ResBlock 4129 0994 3993 09965  393.59 G on Raw GT  on Genuine GT
w/o Transformer Block 39.49 0.9946 39.06 0.9961 363.31 G N
wlo General Enhancing ~ 41.55 0.9958 39.79 09966  317.45G SENet ICLR’23 40.05 39.51 ( )
wlo MS-FAP 41.66 0.9967 39.42 09961 49577 G FSNet TPAMI’23 40.40 39.71 ( )
w/o Content Enhancing 41.98 0.9969 40.12 0.9968 45479 G s
Leamable Fiting /0 PRMA 41.65 0.9964 39.74 09965  494.61 G MB-TaylorFormer-L  ICCV’23 38.09 38.15 (+0.06)
ey Thenng 0 ST 0 Do o0 0w asiore C2PNet CVPR'23 36.68 3501 ¢1.67)
(LFFT) Reg. Diversity: C =3 4160 09960 4072 09971 49392 G DEA-Net-CR TIP 24 36.59 36.42 ( )
Reg. Diversity: C = 6 41.28 0.9965 40.83 09971 49459 G
Single Channel Reg. 42.15 0.9971 39.98 09966 49490 G TR_-Ne _
Quadratic Regression 4243 0.9966 40.01 09968  495.06 G LPATR-Net 41.24 41.58 (+0.34)
LPATR-Net 42.58 0.9972 41.24 09972 49497 G

appearance superiority, it could be asserted that let efficiency
alone, proposed full size LPATR-Net architecture is still the
optimal in general dehazing performance. Removing key parts
should only be considered when the runtime cost conditions
are tough.

G. Performance on Genuine GT Test Dataset

As mentioned in the beginning, since natural weather is
hardly controllable and accurately distinguishable, potential
faulty GT samples (as shown in Fig. 1) consistently haunt
image dehazing society. Here, it should be further emphasized
that clearly, this GT impureness uniformly exists in both
training and test data, and hence will not only affect the
training process, but also the execution of test evaluation. As a
consequence, current mainstream testing protocol (as we used
above) may be a little bit inaccurate. Because the faulty GT in
test set will provide wrong hint and hence impact the fairness
of evaluation. Clearly, removing these disturbance will lead to
more reasonable evaluation outcomes.

Thus, besides above standardized experiments commonly
adopted within current dehazing society, we also would like

to conduct an extra fairer evaluation experiment on a genuine
GT test dataset as a critical complementation. In detail, here all
156 suspicious faulty GT (out of all 500) within SOTS-outdoor
test set are manually filtered out to construct a pure genuine
GT test dataset. The specific quantitative performance is listed
in Table VI. According to this table, it could be observed
that compared with original raw GT, on this genuine GT
evaluation, proposed LPATR-Net gains evident performance
promotion in PSNR (0.34 1), while most other SOTA suffer
certain accuracy reduction. This is an indication that our
LPATR-Net is more inclined to pursue genuine image dehazing
rather than solely labeled data learning.

H. The Tolerance to Faulty Ground Truth

In order to further systematically verify the robustness of
proposed approach to endure unqualified flawed ground truth
samples, we specially organize a refined validation experiment
conducted on gradually increased faulty GT samples.

In detail, we randomly pick up 400 pairs [hazy, clear]
data from the OTS of RESIDE dataset to construct the
base of training set, while 50 pairs images from the SOTS-
outdoor dataset consistently comprise the test set. The series
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Fig. 11. The performance under incrementally polluted ground truth training datasets.

TABLE VII

THE TRANSPLANTING PERFORMANCE OF THE LFFT COMPONENT
INTO FOUR GENERAL DEHAZING ARCHITECTURES

SOTS-indoor SOTS-outdoor

Methods Venue PSNR(1)  SSIM(t) PSNR()  SSIM() Param(})  FLOPs(])
SANet ICLR’23 40.40 0.996 38.01 0.995 381 M 147.65 G
+ LFFT 42.66 1 0.997 1 38.217 0.995= 4207 M 497.89 G
+ LFFT (w/o CE) 42381 0.997 1 38.241 0.995= 24.80 M 32391 G
+ LFFT (w/o GE) 42351 0.997 1 38.13 1 0.995= 24.80 M 45771 G
+ LFFT (w/o CE&GE) 42461 0.997 1 38.40 1 0.996 1 753 M 283.73 G
DehazeFormer-B TIP’23 37.84 0.994 34.95 0.984 252M 11115 G
+ LFFT 41.621 0.996 1 40311 0.997 1 3995 M 43181 G
+ LFFT (w/o CE) 39.86 1 0.995 1 38.50 1 0.996 1 22.68 M 25782 G
+ LFFT (w/o GE) 41.371 0.996 1 40.89 1 0.997 1 22.68 M 391.63 G
+ LFFT (w/o CE&GE) 40.221 0.996 1 41.001 0.997 1 541 M 217.64 G
OKNet AAAT'24  40.79 0.996 37.68 0.995 472 M 158.10 G
+ LFFT 42111 0.997 1 38.44 1 0.996 1 4298 M 508.35 G
+ LFFT (w/o CE) 41.941 0.997 1 38.36 1 0.996 1 2571 M 33436 G
+ LFFT (w/o GE) 41.96 1 0.997 1 39.01 71 0.996 1 2571 M 468.17 G
+ LFFT (w/o CE&GE) 42.091 0.997 38.51 71 0.996 1 8.44 M 294.18 G
EENet PR’25 42.08 0.997 39.10 0.996 544 M 202.82 G
+ LFFT 42271 0.997 = 38.16 0.995 43.69 M 577.88 G
+ LFFT (w/o CE) 42421 0.997 = 38.51 0.996 = 2642 M 389.54 G
+ LFFT (w/o GE) 42.271 0.997 = 38.53 0.995 2642M  537.70 G
+ LFFT (w/o CE&GE) 42.371 0.997 = 38.95 0.996 = 9.15 M 349.36 G

42.58 0.997 41.24 0.997 4220 M 49497 G

of experiments is consisted of multiple independent rounds.
In each specific round, we randomly replace a fixed number
(gradually increased) of clear GT images in the training
set with corresponding hazy images to construct current
partially polluted training data. Through these rounds of
experiments, we could directly observe how the increasing of
faulty GT training samples may decay proposed approach’s
performance.

The performance under incrementally polluted training sets
are demonstrated in Fig. 11. It could be found from this
figure that the precision degrading curve of LPATR-Net is
generally gentle, especially in the intervals with less than
15% faulty GT. Quantitatively, when the polluted GT are
increased from 0% to 25%, LPATR-Net’s accuracy reduction is
2.71(PSNR) and 0.0327(SSIM), that of FSNet [39] is 3.33 and
0.0453, and that of SFNet [64] is 3.48 and 0.0372. Their aver-
age descending rate (Ay/Ax) is respectively -13.55, —16.65,
—17.40 (PSNR), and -0.1635, —0.2265, —0.1860 (SSIM).
These data imply proposed LPATR-Net is more competent to
tolerate moderate-level training GT fault, and possesses higher
robustness as to sample labeling accuracy compared with
SOTA.

1. The Transplantability of LFFT Component
As we have mentioned in Section III-A (also could be

observed in Fig. 3), proposed fitting flexibility restriction com-
ponent, the Learnable Fitting Flexibility Tightening (LFFT), is

relatively independent within the introduced overall dehazing
architecture, as to both functional purpose and structural
topology. Thus, it is interesting to explore its effectiveness
when transplanted into other high-accuracy fitting architecture,
namely without the specifically designed optimal partner All-
Mattering. Accordingly, in this series of experiments, LFFT
is transplanted into four SOTA dehazing fitting architectures,
and Table VII reports the corresponding performance.

From this table, it could be observed that the enrollment of
faulty GT resisting LFFT component generally could improve
the overall dehazing accuracy, especially in the DehazeFormer-
B and OKNet case. Here, the most evident promotion is T6.05
PSNR (to 41.00) in DehazeFormer-B on SOTS-outdoor. This
performance means DehazeFormer-B could directly rank the
2nd in Table II, while originally it is only the 14th, an amazing
advance. On the other hand, it could also be observed that
even the aggressively shrunk versions of LFFT (removing
the bulky General Enhancing or/and Content Enhancing) are
beneficial. Clearly, these approaches actually realize better
balance between accuracy and efficiency. In detail, the mini-
mal model is only 5.41 M (Parameter amount) and 217.64 G
(FLOPs), corresponding to DehazeFormer-B + LFFT wj/o
CE & GE.

Based on these experiments, it could be asserted that
proposed LFFT component could be viewed as a promising
widely applicable robustness improving plug-in.

V. CONCLUSION

Unlike most supervised image enhancing missions, dehaz-
ing is doomed to be bothered by part of unreliable ground truth
“haze-free” samples, because natural weather conditions are
extremely complicated and hardly correctly categorized. Thus,
the capacity of effectively resisting this disturbance should be
a requisite skill to any robust dehazing approaches. In this
paper, we propose to intentionally restrain fitting freedom to
force the model to mainly focus on the majority of training
data, so as to effectively diminish the negative effects of
faulty ground truth samples. Specifically, we work out a
novel robust dehazing framework, LPATR-Net, whose kernel
is an elaborately created fitting restricted dehazing regression
structure. Through the exceptional cooperation of such flexibil-
ity restriction mechanism and the highly-customized optimal
compensator, namely the multi-concerns high-accuracy fitting
expert All-Mattering, LPATR-Net elegantly achieves evident
general performance promotion. It is worth mentioning that
this improvement on the robustness to faulty GT does not incur
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any extra human labeling burden. Extensive experiments have
been conducted on a number of publicly available datasets
to verify its effectiveness. Moreover, it is also demonstrated
that its core flexibility restriction component LFFT could
be solely transplanted into many other general dehazing
fitting architectures to widely promote their resistance to
faulty GT.
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