
Hierarchical Transformers Are More Efficient Language Models

Anonymous ACL submission

Abstract
Transformer models yield impressive results001
on many NLP and sequence modeling tasks.002
Remarkably, Transformers can handle long se-003
quences, which allows them to produce long004
coherent outputs: entire paragraphs produced005
by GPT-3 or well-structured images produced006
by DALL-E. These large language models are007
impressive but also very inefficient and costly,008
which limits their applications and accessibil-009
ity. We postulate that having an explicit hierar-010
chical architecture is the key to Transformers011
that efficiently handle long sequences. To ver-012
ify this claim, we first study different ways to013
downsample and upsample activations in Trans-014
formers so as to make them hierarchical. We015
use the best performing upsampling and down-016
sampling layers to create Hourglass - a hier-017
archical Transformer language model. Hour-018
glass improves upon the Transformer baseline019
given the same amount of computation and can020
yield the same results as Transformers more021
efficiently. In particular, Hourglass sets new022
state-of-the-art for Transformer models on the023
ImageNet32 generation task and improves lan-024
guage modeling efficiency on the widely stud-025
ied enwik8 benchmark.026

1 Introduction027

Transformer models (Vaswani et al., 2017) are ca-028

pable of solving many sequence modeling tasks,029

including classical NLP tasks (Devlin et al., 2019),030

summarization (Zhang et al., 2020), language mod-031

eling (Radford et al., 2019; Brown et al., 2020),032

code generation (Chen et al., 2021), or even mu-033

sic generation (Huang et al., 2018; Dhariwal et al.,034

2020) and image generation (Parmar et al., 2018;035

Chen et al., 2020; Ramesh et al., 2021). One com-036

pelling feature of Transformers is their ability to037

handle long contexts given as part of the input.038

This is particularly visible in tasks where the out-039

put depends on parts of the context that may not be040

close-by in the generated sequence, like in summa-041

rization, where the summary may need to refer to042

information scattered across the context, or in large- 043

scale image generation, where pixels belonging to 044

the same object may be far apart in the generation 045

order. Transformers excel at such tasks thanks to 046

self-attention, and they are used with longer and 047

longer contexts. 048

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Seconds per one training step

1.08

1.10

1.12

1.14

1.16

1.18

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6@1

8@1

10@1

12@1

14@1

2@1 8@4 2@1

2@1 4@4 2@1

2@1 4@3 2@1

2@1 8@3 2@1

2@1 16@3 2@1

3@1 8@4 3@1

4@1 8@4 4@1

4@1 3@3 4@6 3@3 4@1
5@1 8@2 5@1

Transformer-XL
Hourglass

Figure 1: Bits-per-character vs. training cost for base-
line (orange) and hierarchical Transformers (green). We
observe significant perplexity improvements on enwik8
over the vanilla Transformer–XL baseline, see text for
details.

The ability of Transformers to handle long con- 049

texts comes at a price: each self-attention layer, at 050

least in its original form, has complexity quadratic 051

in the length of the context. When a stack of n 052

Transformer layers is used, both memory and time 053

complexity is equal to O(L2n) where L is a se- 054

quence length and n number of decoder blocks. 055

Due to this limitation, vanilla transformers are in- 056

feasible to train on tasks with very long input se- 057

quences, for instance, on high-resolution images. 058

This issue has been studied extensively, and a num- 059

ber of techniques were introduced that modify at- 060

tention mechanism without changing overall trans- 061

former architecture (Child et al., 2019; Roy et al., 062

2020; Ren et al., 2021). These sparse attention 063

mechanisms reduce the complexity of self-attention 064

but still force the model to operate on the sequence 065

of the same length as the input. 066

1

Sh
or

te
ni

ng
, s

f =
 k

1

L tokens

In
pu

t t
ok

en
s

sf
 =

 k
2

O
ut

pu
t t

ok
en

s

sf
=k

2

U
ps

am
pl

in
g,

 s
f =

 k
1

L/k1 tokens L/k1 tokens

L tokens

L/k1k2 tokens

Pre Vanilla Layers

Shortened1 Layers Shortened1 Layers

Shortened2 Layers

Post Vanilla Layers

Figure 2: Hourglass - a high-level architecture overview. The arrows denote residual connections.

For generative Transformer models, operating at067

the granularity of the input sequence is necessary,068

at least in the early and final layers, as the input069

must be processed at first and generated at the end070

(Section 4.3). But forcing the models to operate at071

this granularity throughout the layer stack has both072

fundamental and practical shortcomings:073

• Fundamentally, we aim for the models to cre-074

ate high-level representations of words, enti-075

ties, or even whole events – which occur at076

a very different granularity than single letters077

that the model receives on input.078

• On the practical side, even layers with linear079

complexity can be slow and memory-intensive080

when processing very long sequences.081

To alleviate these issues, we propose to change082

the Transformer architecture to first shorten the in-083

ternal sequence of activations when going deeper084

in the layer stack and then expand it back before085

generation. We merge tokens into groups using a086

shortening operation (Section 2.1) and so reduce087

the overall sequence length, and then up-sample088

them again combining with the sequence from ear-089

lier layers (Section 2.3), The first part is analogous090

to the Funnel-Transformer architecture (Dai et al.,091

2020), and the whole architecture takes inspiration092

from U-Nets (Ronneberger et al., 2015). In contrast093

to both these architectures, the model we present is094

autoregressive, which is harder to ensure in hierar-095

chical models than in vanilla Transformers.096

The resulting model – which we call Hourglass –097

is an autoregressive Transformer language model098

that operates on shortened sequences. It yields099

significant performance improvements for different 100

attention types (Fig. 6,7). We tested Hourglass with 101

Transformer-XL (Dai et al., 2019) and Reformer 102

(Kitaev et al., 2020) blocks on enwik8 dataset. In 103

both cases, it is not only better in terms of perplex- 104

ity, but it is faster and uses less memory during 105

training. We also propose a regularization tech- 106

nique for hierarchical Transformers called shorten 107

factor dropout which improves perplexity upon 108

baselines trained with fixed shorten factor (see Sec- 109

tion 4.1). Finally, Hourglass achieves the new state- 110

of-the-art among Transformer models for image 111

generation of ImageNet32 (see Tab. 3). 112

2 Model 113

Standard self-attention mechanism uses full token- 114

level sequence representations. In the Hourglass, 115

we bring efficiency to the model by utilizing short- 116

ening, which allows us to use the Transformer lay- 117

ers on inputs with significantly smaller lengths. A 118

high-level overview of our proposed model archi- 119

tecture is shown in figures 2 and 3. 120

Attention type in the vanilla layers and shortened 121

layers is a configurable parameter. By default we 122

use relative attention defined in Transformer-XL 123

(Dai et al., 2019). Any attention module can be 124

used - we show significant efficiency gains when 125

applying Hourglass also for LSH (Kitaev et al., 126

2020) attention (see Section 3.2 and Fig. 7). 127

2.1 Methods of shortening the input sequence 128

Shortening can be defined as any function S that 129

accepts a tensor x of shape (l, d) and returns a ten- 130

sor x′ of shape (l
k , d), where k is a hyperparameter 131

called shorten factor. 132

2

Algorithm 1 HourglassLM
procedure HOURGLASS(x, [k, ...s_factors])

x← PreV anillaLayers(x)
x′ ← Shortening(ShiftRight(x, k−1), k)

if EMPTY(s_factors) then
x′ ← ShortenedLayers(x′)

else
x′ ← HOURGLASS(x′, s_factors)

end if
x← x+ Upsampling(x, x′, k)
x← PostV anillaLayers(x)
return x

Figure 3: The architecture starts with pre vanilla lay-
ers – a stack of Transformer blocks operating on the
full token-level sequence. After them we insert short-
ening layer where k is shorten factor parameter (Fig.
4). The sequence is shifted right before shortening to
prevent information leak (Fig. 5). Then we recursively
insert another Hourglass block operating on k times
smaller scale. On the final level of shortening, we apply
shortened layers – Transformer blocks operating on the
smallest scale. Upsampling layer brings the resulting
activations x′ back to the original resolution. After up-
sampling and residual, the activations are processed by
token-level post vanilla layers.

A simple shortening method is 1D average pool-133

ing with stride k and pool size k, applied along the134

sequence dimension l. Another way of shortening135

is what we will further call linear pooling (l and d136

denote sequence length and dmodel):137

Algorithm 2 LinearPooling

x′ ← Reshape(x, (l
k , k · d))

x′ ← LinearProjection(x′)

Shortening can be also performed by attention,138

as was introduced in (Dai et al., 2020): x′ = S(x)+139

Attention(Q = S(x),K = V = x) where S140

is shortening function, originally S = AvgPool.141

Directly after this attention operation, a position-142

wise feed-forward with a residual is performed, so143

that these two layers form a Transformer block144

(Vaswani et al., 2017). In this work we also try145

S = LinearPool and find it more effective on146

image tasks (see Tab. 8).147

Initial
ShiftRight(1)

Shortening

ShiftRight(sf-1)

Figure 4: An overview of our shortening approach. Dif-
ferent colors denote token positions. Initially, we shift
right by one, which is a standard step in TransformerLM.
Then, just before performing shortening, we additionally
shift the tokens right by shorten factor− 1 to preserve
the autoregressive property of the model.

2.2 Shortening and autoregressive property 148

Information leaks Shortening interferes with the 149

standard causal masking used in Transformer de- 150

coders. Namely, in any shortened representation 151

by a factor of k each shortened token contributes 152

to predicting up to the next k tokens in the finest 153

scale, that is if e is the shortened sequence and x is 154

the sequence on the finest scale, e0 is not only used 155

to generate x0; in fact, the same embedding is used 156

to generate tokens x0, ..., xk−1. 157

Therefore, we need to guarantee that e0 and any 158

other ei cannot access information about tokens 159

they will implicitly predict. To ensure that, we 160

apply another shift right by k − 1 tokens, directly 161

before any shortening by a factor of k (Fig. 4). 162

The shift is the smallest that does not cause an 163

information leak (see Fig. 5 for an example of a 164

shifting that leads to a leak). We included a more 165

detailed analysis of this fact in the Appendix. 166

Reduced expressivity Let consider an Hourglass 167

model with shortening by a factor of k and no 168

transformer blocks operating on the finest scale 169

(that is, a model without vanilla layers). 170

In this situation 171

P (x) =
∏n−1

i=0 P (xi|e0, ..., e⌊ i
k⌋) = 172∏n−1

i=0 P (xi|x0, ..., x⌊ i
k⌋·k−1) because for pre- 173

dicting xi we combine the processing done 174

on shortened representations e with token- 175

independent operations. This means token xi 176

is generated independently from the tokens 177

x⌊ i
k⌋·k, ..., xi−1. This situation is detrimental to 178

the model’s capabilities, though including at least 179

one vanilla layer solves this issue. In the Appendix 180

we provide a detailed example illustrating this 181

problem. 182

3

Shortening

ShiftRight(sf-2)

Upsampling

Figure 5: An example of information leak. If the shift
right factor is too small, after upsampling the knowledge
from the next tokens leaks to previous ones violating
autoregressiveness and making decoding impossible.

2.3 Upsampling methods183

Upsampling is a crucial part of the Hourglass ar-184

chitecture since we need to convert shortened rep-185

resentations back to the full token-level sequence186

in order to perform language modeling.187

A method proposed in (Dai et al., 2020) is re-188

peating each shortened vector shorten factor times.189

This method is computationally efficient, but it190

does not distinguish tokens with respect to position191

inside the group.192

Another method is linear upsampling which193

works analogously to linear pooling – it projects194

vectors of shape (l
k , d) to (l

k , k · d) and then re-195

shapes to l vectors, each of dimension d. This196

method is fast and allows to project shortened em-197

beddings differently for each position in the group.198

This happens because the (k · d)× d projection ma-199

trix can be thought of as k separate d× d matrices,200

one per each position.201

We also investigated a method which we further202

call attention upsampling. It is similar to atten-203

tion pooling (Dai et al., 2020) and to the aggre-204

gation layer from (Subramanian et al., 2020). It205

works as follows: x = U(x, x′)+Attention(Q =206

U(x, x′),K = V = x′) where x are embeddings207

from just before the shortening, x′ are final short-208

ened embeddings and U is an arbitrary upsampling209

function. After the attention operation there is also210

a residual with a feed-forward layer.211

Linear upsampling learns a fixed pattern that212

is the same for each shortened token. Attention213

upsampling has the advantage of being content-214

based – each token can extract relevant infor-215

mation from the shortened embeddings. We set216

U(x, x′) = x + LinearUpsampling(x′) which217

allows to explicitly inject group-level information218

into the attention queries. We experimentally show219

that variants of attention upsampling lead to the220

best results for our model across different datasets 221

(see Tab. 7). 222

3 Experiments 223

In this section, we present experimental results of 224

Hourglass. We start with a quick analysis of time 225

and memory complexity of the approach (Section 226

3.1). Then we investigate the efficiency gains of 227

applying Hourglass to Transformers with different 228

attention types (Section 3.2). Finally, we use Hour- 229

glass with relative attention parametrization from 230

Transformer-XL (Dai et al., 2019), evaluate it on 231

three language modeling tasks, and compare the 232

results with other models. (Sections 3.3, 3.4) 233

To show cross-domain generalization of our 234

method, we train our model on one dataset related 235

to Natural Language Processing and two from the 236

Computer Vision field. 237

To ensure consistency in presenting config- 238

urations of our model, we introduce a nota- 239

tion describing hierarchy of our architecture: 240

(N1@f1, . . . , Nk@fk) where each entry (Nj@fj) 241

means Nj layers shortened by factor fj . 242

3.1 Computational cost analysis 243

In vanilla Transformers, the number of parameters 244

can indicate the computation required to train the 245

model. This is not true for Hourglass – for instance, 246

it can have 128 layers operating on a sequence 247

shortened by 32 and still fit into the memory of 248

a single GPU. A weak correlation between true 249

Hourglass’ computational cost and its number of 250

parameters can be observed in Table 1. 251

Hourglass achieves the biggest speedup with 252

the standard O(l2) attention. In that case, a 253

single shortening by a shorten factor k reduces 254

the complexity to O(l2

k2
) so by a factor of k2. 255

For more recent linear-time attention mechanisms 256

(Katharopoulos et al., 2020; Choromanski et al., 257

2021) the reduction would be smaller – but still by 258

a factor of k. Feed-forward layers also have linear 259

complexity so shortening reduces it by a factor of 260

k. 261

In Table 1 we show an empirical efficiency com- 262

parison between Hourglass and Transformer-XL. 263

3.2 Impact of Hourglass 264

To demonstrate the efficiency of Hourglass, we 265

measured how computational cost decreases and 266

perplexity improves, purely adding the technique 267

to Transformer-XL (Dai et al., 2019) and Re- 268

4

Hierarchy BPC GB Speed #Param
6@1 (Baseline) 1.182 4.53 0.95 21M
2@1 1@3 2@1 1.163 4.41 1.11 24M
2@1 4@4 2@1 1.143 4.41 1.10 34M
8@1 (Baseline) 1.151 5.75 0.73 28M
2@1 4@3 2@1 1.128 4.88 1.00 34M
2@1 8@4 2@1 1.128 4.98 0.99 48M
2@1 1@2 4@4 1@2 2@1 1.115 4.69 0.86 48M
2@1 8@3 2@1 1.111 5.50 0.88 48M
10@1 (Baseline) 1.128 6.99 0.56 34M
3@1 8@4 3@1 1.109 6.14 0.76 55M
12@1 (Baseline) 1.115 8.12 0.47 41M
4@1 8@4 4@1 1.098 7.20 0.62 62M
2@1 16@3 2@1 1.096 5.89 0.71 75M
14@1 (Baseline) 1.102 9.35 0.40 48M
5@1 8@2 5@1 1.079 9.57 0.45 69M

Table 1: Efficiency comparison between Hourglass vari-
ants and Transformer-XL baseline on enwik8 – we re-
port validation set perplexity (BPC), running memory
(GB) and number of training steps per second (Speed).
We observe significant perplexity gains over the baseline
for a matching computation cost. It is also visible that
for Hourglass the number of model parameters (#Param)
correlates poorly with true computational cost.

former (Kitaev et al., 2020) backbones (results de-269

picted in Figures 6 and 7, respectively).270

In both cases, models are implemented under271

the same codebase and the only difference between272

Hourglass and its corresponding baseline is the us-273

age of shortening and upsampling layers. We show274

that by incorporating a single shortening of the in-275

put, we can train larger models with the same mem-276

ory requirements and training speed and achieve277

better perplexity than baselines.278

5 6 7 8 9
Maximum observed memory during training [GB]

1.08

1.10

1.12

1.14

1.16

1.18

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6

8

10

12

14

2@1 8@4 2@1

3@1 8@4 3@1

2@1 16@3 2@1

4@1 3@3 4@6 3@3 4@1
5@1 8@2 5@1

Transformer-XL
Hourglass

Figure 6: Comparison between Transformer-XL base-
line and Hourglass on Enwik8 valid set w.r.t. maximum
memory used during training. All models are trained
for 200k steps with the same hyperparameters.

0.6 0.8 1.0 1.2 1.4 1.6
Seconds per one training step

1.125

1.150

1.175

1.200

1.225

1.250

1.275

Bi
t p

er
 c

ha
ra

ct
er

 o
n

en
wi

k8
 v

al
id

 se
t

6

9

12

16

20

2@1 6@3 2@1

3@1 9@3 3@1

4@1 12@3 4@1

6@1 15@3 6@1

Baseline (LSH)
Hourglass (LSH)

Figure 7: Comparison between Reformer baseline and
Hourglass, both with LSH attention, on Enwik8 valid
set w.r.t. cost of one training step in seconds.

Enwik8 #Param BPC
Transformer-XL (2019) 24L 277M 0.99
Hourglass 146M 0.98
Adaptive-Span (2019) 24L 209M 0.98
Transformer-LS (2021) 110M 0.97
Feedback Transformer (2021) 77M 0.96
Expire-Span (2021) 24L 277M 0.95

Table 2: Enwik8 Results. We report bits-per-character
(BPC) on the test set and number of model parameters.
Hourglass applied to Transformer-XL significantly out-
performs its baseline. Our technique could be also used
with other more performant attention methods which
we leave for future work.

3.3 Enwik8 279

Enwik8 (Mahoney, 2011) is a byte-level language 280

modeling benchmark containing the first 100M 281

bytes of unprocessed English Wikipedia text, split 282

into 90M train, 5M valid, and 5M test sets. 283

Similarly to (Dai et al., 2019) and (Beltagy et al., 284

2020), we evaluate our model on the test set, split- 285

ting it into overlapping sequences of size l with 286

a step size of 128 and calculate the test loss only 287

over the last 128 tokens. With a (4@1, 8@3, 4@1) 288

hierarchy, dmodel = 768, dff = 3072 and 8 heads, 289

we reach 0.98 test bpc, evaluated with l = 4096. 290

3.4 Image Generation 291

We use datasets introduced in (van den Oord et al., 292

2016a) which are downsampled versions of the 293

popular ImageNet. In the autoregressive image 294

generation setup, they consist of respectively 32× 295

32×3 and 64×64×3 values per image. As the 296

only preprocessing step we flatten the images. 297

3.4.1 ImageNet32 298

For our main result the following hierarchy is 299

used: (3@1, 24@3, 3@1). We use dmodel = 512, 300

5

Completions

Input

Completions

Input

Figure 8: Examples of our model completions, where
bottom half of each image was generated by our model,
prompted by the upper half.

ImageNet32 BPD
PixelCNN (van den Oord et al., 2016b) 3.83
Image Transformer (Parmar et al., 2018) 3.77
Axial Transformer (Ho et al., 2019) 3.76
Hourglass 3.74
VDM (Kingma et al., 2021) 3.72
DenseFlow (Grcić et al., 2021) 3.63
ImageNet64 BPD
Reformer (Kitaev et al., 2020) 3.65
Performer (Choromanski et al., 2021) 3.64
Hourglass 3.44
Sparse Transformer (Child et al., 2019) 3.44
Routing Transformer (Roy et al., 2020) 3.43
Combiner (Ren et al., 2021) 3.42
VDM (2021) 3.40
DenseFlow (2021) 3.35

Table 3: Bits per Dimension (BPD) on downsampled
imagenet. Autoregressive models are separated by a
horizontal line from non-autoregressive ones. On Ima-
geNet32, our model yields new state-of-the-art for au-
toregressive models.

dff = 2048, 8 attention heads and 0.01 dropout rate.301

With this configuration we achieve 3.741 bits/dim,302

yielding the new state-of-the-art among autoregres-303

sive (Transformer-based) models on this dataset,304

compared to the previous state-of-the-art of 3.758305

bpd by (Ho et al., 2019).306

3.4.2 ImageNet64307

The sequence length that our model can handle is308

limited mainly by the computational complexity of309

used attention module. We replace relative atten-310

tion in vanilla layers by LSH attention (Kitaev et al.,311

2020), which allows us to handle 12288-long se-312

quences. To achieve relative attention parametriza-313

tion, the LSH attention is combined with rotary314

positional embeddings (Su et al., 2021). In short-315

ened layers, standard relative attention is used. For316

LSH attention, we set chunk length to 128 and use317

2 hashes, which results in small memory consump-318

tion in our full-size layers. In this setup, we reach319

a score of 3.443 bpd with a (3@1, 12@3, 3@1) ar-320

chitecture. All attention layers had dmodel = 768,321

dff = 3072 and 8 heads. No dropout was used.322

3.4.3 CIFAR-10 323

CIFAR-10 (Krizhevsky, 2009) is an image dataset 324

consisting of 60000 images of size 32x32. We use 325

this dataset primarily for our ablations (Section 4). 326

Due to the relatively small number of examples 327

compared to ImageNet, models reach convergence 328

after 100k steps. 329

4 Ablations 330

In this section, we start by introducing a training 331

technique called shorten factor dropout (Section 332

4.1), and then analyze Hourglass’s components de- 333

scribed above. We show that shortened layers be- 334

have similarly to full token-level layers in terms 335

of scalability (Section 4.2). Then we study the ef- 336

fect of different distributions of (pre, post) vanilla 337

layers on Hourglass’ accuracy (Section 4.3). We 338

further analyze the performance of various upsam- 339

pling and downsampling methods (Sections 4.4 and 340

4.5). Finally, we discuss different shorten factors 341

and multi-stage shortening in Section 4.6. 342

We conduct the ablations on both text and image 343

generation to show applicability across different 344

domains. We report bits per character (BPC) on 345

the enwik8 validation (dev) set evaluated without 346

context (sequence length 2048) and bits per dim 347

(BPD) on the CIFAR-10 test set. For the exact 348

hyperparameter setup refer to the Appendix. 349

4.1 Shorten factor dropout 350

Different shorten factors can be used for the same 351

model when using parameterless pooling methods. 352

We propose a training procedure where the shorten 353

factor is randomly sampled with uniform distribu- 354

tion from a predefined set in each step. We observe 355

that such a training regime improves validation 356

loss compared to a baseline trained with a single, 357

fixed shorten factor. For example, a model trained 358

with shorten factor randomly sampled from {2, 3} 359

performs better when evaluated with any of these 360

shorten factors, compared to models trained with a 361

corresponding fixed shorten factor (Tab. 4). 362

We hypothesise that such a technique promotes 363

a more uniform distribution of information over 364

the sequence of tokens. It may be essential for 365

fixed-size pooling techniques as they do not ac- 366

count for variable length constituents like words. 367

By spreading information uniformly, we prevent a 368

situation where we lose content by shortening three 369

information-dense tokens or lose available capacity 370

by merging three low information ones. 371

6

Shorten factor dropout is not limited to our ar-372

chitecture and can be applied to any model that373

utilizes shortening, particularly (Dai et al., 2020).374

Hierarchy Train k Val k = 2 Val k = 3
2@1 8@k 2@1 {2, 3} 1.104 1.116

2 1.116
3 1.124

4@1 12@k 4@1 {2, 3} 1.086 1.094
2 1.098
3 1.101

5@1 10@k 5@1 {2, 3} 1.082 1.087
2 1.096
3 1.095

Table 4: Comparison between models trained with
shorten factor dropout (Train k = {2, 3}, Section 4.1)
and fixed shorten factor baselines on enwik8.

4.2 Scaling shortened layers375

In this study, we show that layers operating on376

the shortened sequence contribute significantly to377

Hourglass’s accuracy. In Table 5 we measure the378

impact of scaling the depth of the shortened part of379

the model with a fixed number of vanilla layers.380

We also check if scaling laws of Transformers,381

described in (Kaplan et al., 2020), hold by com-382

paring a regression line fitted to various Hourglass383

configurations and one fitted to Transformer-XL384

baseline. We observe in Figure 1 that the slopes are385

very similar, which indicates that the laws hold.386

Number of shortened layers enwik8 CIFAR-10
Baseline (n = 1) 1.164 3.28
n = 4 1.134 3.16
n = 8 1.111 3.07
n = 16 1.096 3.03

Table 5: Impact of increasing the number of shortened
layers on perplexity. Vanilla layers: (1, 1) for CIFAR-
10 and (2, 2) for enwik8, shorten factor 3 used in both.

4.3 Impact of vanilla layers387

We observe a significant contribution to Hourglass’388

performance with increasing the number of vanilla389

layers. One reason is that we perform more compu-390

tations as in vanilla layers we process the sequence391

in token-level - no shortening is applied. We also392

see that the distribution of vanilla layers before393

shortening and after shortening does impact the394

training (see Tab. 6), and equal distribution leads395

to the best perplexity.396

4.4 Upsampling method397

In Table 7 we investigate different possibilities of398

choosing the upsampling method. For attention-399

free methods, linear upsampling performs better400

Vanilla layers enwik8 CIFAR-10
(0, 0) 1.460 3.429
(0, 2) 1.176 3.108
(2, 0) 1.189 3.035
(1, 1) 1.171 3.012
(2, 2) 1.128 2.966

Table 6: Impact of the distribution of vanilla layers on
enwik8 (BPC) and CIFAR-10 score (BPD). We see that
equal distribution of layers before and after shortening
leads to better results on both datasets.

on images, while repeat upsampling works well for 401

text. Attention upsampling works well regardless 402

of the function U and has the lowest perplexity. 403

Upsampling method enwik8 CIFAR-10
Repeat 1.148 3.062
Linear 1.163 3.020
U(x, x′) = x 1.145 2.967
U(x, x′) = x+ Linear(x′) 1.132 3.012

Table 7: Upsampling method ablation - baseline config-
urations are (2@1, 24@4, 2@1) and (1@1, 8@3, 1@1)
for enwik8 and CIFAR-10, respectively.

4.5 Pooling method 404

Table 8 presents impact of pooling method on 405

both enwik8 (BPC) and CIFAR-10 (BPD). Atten- 406

tion pooling reaches the lowest perplexity for both 407

datasets. Average pooling performs well on text 408

among attention-free methods, while linear pool- 409

ing works better for images. Both of these methods 410

perform significantly worse for the other modality. 411

Attention pooling demonstrates small differences 412

with respect to chosen shortening function S (Sec- 413

tion 2.1), still preserving the preference towards 414

linear pooling on images and average pooling on 415

text. 416

Pooling method enwik8 CIFAR-10
AvgPool 1.129 3.116
Attention, S = AvgPool 1.124 3.012
Attention, S = LinearPool 1.142 2.998
LinearPool 1.159 2.998

Table 8: Ablation of pooling methods. Attention pool-
ing achieves the best perplexity on both datasets.

4.6 Shortening strategies 417

While the analysis above gives a clear indication of 418

what methods to choose for shortening and upsam- 419

pling, we are still left with the question of which 420

shorten factors to use and whether to do single- 421

stage or multi-stage shortening. 422

Consistently, it is beneficial to do at least one 423

shortening and by a factor of at least 3, while keep- 424

ing 2-3 vanilla layers. Beyond that, a number of 425

different configurations can yield similar results. In 426

7

Table 1 we present the different hierarchical con-427

figurations that we tested on enwik8 and plotted in428

Figure 1. It can be seen that configurations with429

similar computation costs perform similarly. The430

sequence length used in these experiments is 2048431

– we hypothesise that more hierarchy may be bene-432

ficial with even longer sequences.433

5 Related Work434

Shortening in Transformers Shortening in our435

work is inspired by Funnel-Transformer (Dai et al.,436

2020). The key difference is that they train an en-437

coder model for text classification, where our work438

is entirely focused on language modeling, which439

provides additional challenges we had to solve re-440

garding shortening in the autoregressive setup (Sec-441

tion 2.2). Another difference is that they use repeat442

upsampling method while we use attention. There443

are also a few works related to character-level mod-444

eling which use shortening, namely (Clark et al.,445

2021) and (Tay et al., 2021). However, the authors446

of these works focused mainly on shortening se-447

quence in encoder part of the transformer, whereas448

we focused on applying shortening in decoder.449

The idea of shortening is also discussed in (Sub-450

ramanian et al., 2020). However, proposed architec-451

tures either focus on downsampling or upsampling,452

while Hourglass is a U-Net-like architecture and453

is symmetric in these terms. Their models use454

transformer layers on the finest scales when post-455

processing final representations. We do these also,456

in the beginning, to preprocess tokens on the finest457

scale, and we have found it essential to the score458

(Section 4.3). Our attention upsampling method is459

similar to their aggregation layer in the bottom-up460

model, however we use one upsampling for each461

scale change while they combine different scales462

to create one global upsampling.463

Relative positional encoding Our work is pri-464

marily built on the backbone of Transformer-XL465

(Dai et al., 2019) - we use the same relative at-466

tention parametrization. Instead of the segment-467

level recurrence mechanism, we use shortening468

to make our model more efficient and feasible to469

train on longer sequences. Another relative atten-470

tion parametrization is RoFormer (Su et al., 2021)471

where rotary positional embeddings are introduced.472

We find this work particularly relevant because the473

method is compatible with any attention type, in-474

cluding efficient attention, and can be combined475

with our model (Section 3.4.2).476

Sparse Attention A well-known approach ad- 477

dressing the memory bottleneck is utilizing sparsity 478

patterns in the attention matrix - Routing (Roy et al., 479

2020) and Sparse Transformer (Child et al., 2019) 480

are examples of such methods. Our solution is dif- 481

ferent in the sense that it uses full attention - just 482

with shortened sequence length. Combiner (Ren 483

et al., 2021) makes a step further and provides full 484

attention capabilities with similar computational 485

complexity to Routing and Sparse transformers by 486

leveraging structured factorization. This work, sim- 487

ilarly to papers mentioned above on efficient trans- 488

formers, concentrates on speeding up the attention 489

component, while the most important feature of 490

the Hourglass architecture is that it can use any 491

attention module as a drop-in. 492

Image generation on downsampled ImageNet 493

VDM (Kingma et al., 2021) and DenseFlow (Grcić 494

et al., 2021) are recently proposed state-of-the-art 495

methods for density estimation on this dataset. The 496

difference between these methods and Transformer- 497

based methods (Parmar et al., 2018; Ho et al., 2019) 498

including this work is that the former, unlike Trans- 499

formers, are non-autoregressive. 500

6 Conclusion 501

In this paper, we show how hierarchy can improve 502

the efficiency of Transformers in a language mod- 503

eling setup. Our proposed architecture, Hourglass, 504

significantly outperforms the baseline both in terms 505

of perplexity reached at a given computation cost 506

(Figure 1) and empirical metrics like running mem- 507

ory (Figure 6). Hourglass achieves state-of-the-art 508

results among autoregressive models on the Ima- 509

geNet32 generation task and competitive results 510

on other image generation and language modeling 511

tasks. 512

Hourglass can be used with any attention type, 513

which opens many directions for future research re- 514

lated to Transformers capable of processing longer 515

sequences. Another line of future work might be 516

related to advances in the shortening mechanism 517

itself, for example, involving a dynamic pooling 518

operation that could explicitly handle the problem 519

of fixed-size groups in multi-stage shortening. We 520

also leave open the problem of choosing the best hi- 521

erarchy for a task. We conjecture that experiments 522

with much longer contexts will provide better guid- 523

ance for this choice and will benefit even more 524

from the Hourglass architecture. 525

8

References526

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.527
Longformer: The long-document transformer.528

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie529
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind530
Neelakantan, Pranav Shyam, Girish Sastry, Amanda531
Askell, Sandhini Agarwal, Ariel Herbert-Voss,532
Gretchen Krueger, Tom Henighan, Rewon Child,533
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,534
Clemens Winter, Christopher Hesse, Mark Chen, Eric535
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,536
Jack Clark, Christopher Berner, Sam McCandlish,537
Alec Radford, Ilya Sutskever, and Dario Amodei.538
2020. Language models are few-shot learners.539

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu,540
Heewoo Jun, David Luan, and Ilya Sutskever. 2020.541
Generative pretraining from pixels. In Proceedings542
of the 37th International Conference on Machine543
Learning, volume 119 of Proceedings of Machine544
Learning Research, pages 1691–1703. PMLR.545

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming546
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-547
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,548
Greg Brockman, Alex Ray, Raul Puri, Gretchen549
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-550
try, Pamela Mishkin, Brooke Chan, Scott Gray,551
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz552
Kaiser, Mohammad Bavarian, Clemens Winter,553
Philippe Tillet, Felipe Petroski Such, Dave Cum-554
mings, Matthias Plappert, Fotios Chantzis, Eliza-555
beth Barnes, Ariel Herbert-Voss, William Hebgen556
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie557
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,558
William Saunders, Christopher Hesse, Andrew N.559
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan560
Morikawa, Alec Radford, Matthew Knight, Miles561
Brundage, Mira Murati, Katie Mayer, Peter Welinder,562
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya563
Sutskever, and Wojciech Zaremba. 2021. Evaluating564
large language models trained on code.565

Rewon Child, Scott Gray, Alec Radford, and Ilya566
Sutskever. 2019. Generating long sequences with567
sparse transformers.568

Krzysztof Choromanski, Valerii Likhosherstov, David569
Dohan, Xingyou Song, Andreea Gane, Tamas Sar-570
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin,571
Lukasz Kaiser, David Belanger, Lucy Colwell, and572
Adrian Weller. 2021. Rethinking attention with per-573
formers.574

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John575
Wieting. 2021. Canine: Pre-training an efficient576
tokenization-free encoder for language representa-577
tion.578

Zihang Dai, Guokun Lai, Yiming Yang, and Quoc V. Le.579
2020. Funnel-transformer: Filtering out sequential580
redundancy for efficient language processing.581

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car- 582
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019. 583
Transformer-xl: Attentive language models beyond a 584
fixed-length context. 585

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 586
Kristina Toutanova. 2019. Bert: Pre-training of deep 587
bidirectional transformers for language understand- 588
ing. 589

Prafulla Dhariwal, Heewoo Jun, Christine Payne, 590
Jong Wook Kim, Alec Radford, and Ilya Sutskever. 591
2020. Jukebox: A generative model for music. 592

Angela Fan, Thibaut Lavril, Edouard Grave, Armand 593
Joulin, and Sainbayar Sukhbaatar. 2021. Address- 594
ing some limitations of transformers with feedback 595
memory. 596

Matej Grcić, Ivan Grubišić, and Siniša Šegvić. 2021. 597
Densely connected normalizing flows. 598

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and 599
Tim Salimans. 2019. Axial attention in multidimen- 600
sional transformers. 601

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszko- 602
reit, Noam Shazeer, Ian Simon, Curtis Hawthorne, 603
Andrew M. Dai, Matthew D. Hoffman, Monica Din- 604
culescu, and Douglas Eck. 2018. Music transformer. 605

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. 606
Brown, Benjamin Chess, Rewon Child, Scott Gray, 607
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 608
Scaling laws for neural language models. 609

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap- 610
pas, and François Fleuret. 2020. Transformers are 611
rnns: Fast autoregressive transformers with linear 612
attention. 613

Diederik P. Kingma, Tim Salimans, Ben Poole, and 614
Jonathan Ho. 2021. Variational diffusion models. 615

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 616
2020. Reformer: The efficient transformer. 617

Alex Krizhevsky. 2009. Learning multiple layers of 618
features from tiny images. 619

Matt Mahoney. 2011. Large text compression bench- 620
mark. 621

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz 622
Kaiser, Noam Shazeer, Alexander Ku, and Dustin 623
Tran. 2018. Image transformer. 624

Alec Radford, Jeff Wu, Rewon Child, David Luan, 625
Dario Amodei, and Ilya Sutskever. 2019. Language 626
models are unsupervised multitask learners. 627

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott 628
Gray, Chelsea Voss, Alec Radford, Mark Chen, and 629
Ilya Sutskever. 2021. Zero-shot text-to-image gener- 630
ation. 631

9

http://arxiv.org/abs/2004.05150
http://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v119/chen20s.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2103.06874
http://arxiv.org/abs/2006.03236
http://arxiv.org/abs/2006.03236
http://arxiv.org/abs/2006.03236
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1901.02860
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.00341
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2002.09402
http://arxiv.org/abs/2106.04627
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1912.12180
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2006.16236
http://arxiv.org/abs/2107.00630
http://arxiv.org/abs/2001.04451
http://arxiv.org/abs/1802.05751
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092
http://arxiv.org/abs/2102.12092

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang,632
Jure Leskovec, Dale Schuurmans, and Bo Dai. 2021.633
Combiner: Full attention transformer with sparse634
computation cost.635

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.636
2015. U-net: Convolutional networks for biomedical637
image segmentation.638

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and639
David Grangier. 2020. Efficient content-based sparse640
attention with routing transformers.641

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng642
Liu. 2021. Roformer: Enhanced transformer with643
rotary position embedding.644

Sandeep Subramanian, Ronan Collobert, Marc’Aurelio645
Ranzato, and Y-Lan Boureau. 2020. Multi-scale646
transformer language models.647

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bo-648
janowski, and Armand Joulin. 2019. Adaptive at-649
tention span in transformers.650

Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen651
Roller, Arthur Szlam, Jason Weston, and Angela Fan.652
2021. Not all memories are created equal: Learning653
to forget by expiring.654

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,655
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon656
Baumgartner, Cong Yu, and Donald Metzler. 2021.657
Charformer: Fast character transformers via gradient-658
based subword tokenization.659

Aaron van den Oord, Nal Kalchbrenner, and Koray660
Kavukcuoglu. 2016a. Pixel recurrent neural net-661
works. CoRR, abs/1601.06759.662

Aaron van den Oord, Nal Kalchbrenner, Oriol663
Vinyals, Lasse Espeholt, Alex Graves, and Koray664
Kavukcuoglu. 2016b. Conditional image generation665
with pixelcnn decoders.666

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob667
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz668
Kaiser, and Illia Polosukhin. 2017. Attention is all669
you need.670

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-671
ter J. Liu. 2020. Pegasus: Pre-training with extracted672
gap-sentences for abstractive summarization.673

Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad674
Shoeybi, Tom Goldstein, Anima Anandkumar, and675
Bryan Catanzaro. 2021. Long-short transformer: Ef-676
ficient transformers for language and vision.677

10

http://arxiv.org/abs/2107.05768
http://arxiv.org/abs/2107.05768
http://arxiv.org/abs/2107.05768
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2003.05997
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2104.09864
http://arxiv.org/abs/2005.00581
http://arxiv.org/abs/2005.00581
http://arxiv.org/abs/2005.00581
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/1905.07799
http://arxiv.org/abs/2105.06548
http://arxiv.org/abs/2105.06548
http://arxiv.org/abs/2105.06548
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/2106.12672
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/1912.08777
http://arxiv.org/abs/2107.02192
http://arxiv.org/abs/2107.02192
http://arxiv.org/abs/2107.02192

A Autoregressive shortening678

In Section 2.2 we address two problems of short-679

ening in an autoregressive setup: information leaks680

and reduced expressivity. Here we study these is-681

sues in more detail.682

A.1 Motivation behind using vanilla layers683

At first sight, it may be tempting to create hier-684

archical models that directly shorten the input to685

maximize the efficiency gains. In this section, we686

explain why vanilla layers are crucial for modeling687

at least some sequences, especially due to autore-688

gressivity.689

Consider a sequence modeling task where the690

input is a random sequence with repeats, such691

as A#AC#CD#DB#B. The sequence consists of692

chunks L#L where L is a random uniform letter693

and # is a special symbol. A vanilla Transformer694

language model can achieve 66% sequence accu-695

racy on this task – it cannot predict the token at the696

beginning of the chunk, but it can predict the last697

token of the chunk by simply copying the token at698

2 positions earlier, which is possible using a vanilla699

self-attention layer.700

It is however not easy to learn this task in a short-701

ening setup when there are no vanilla layers operat-702

ing on the finest scale – this is the situation defined703

in Reduced expressivity subsection of Section 2.2.704

Assume shorten factor is k = 3 and the input is705

A#AB#BC#C. To avoid information leak, we shift706

the input sequence right by 1, and then by k−1 = 2707

directly before shortening. Then the sequence708

is 000A#AB#B. Our shortened embeddings are709

as follows: e0 = S(emb0, emb0, emb0), e1 =710

S(embA, emb#, embA) where emb is input em-711

bedding matrix and S is a shortening function.712

Shortened embeddings [000][A#A][B#B]
Shifted input embeddings 0A# AB# BC#
Target sequence A#A B#B C#C

Positions 123 456 789

Table 9: Example input sequence which is difficult to
model without vanilla layers. The model can use only
input embeddings shifted by one from the residual and
shortened embeddings (shorten factor is 3) to predict
the target sequence. Note that it is impossible to predict
tokens at positions divisible by 3 using only that infor-
mation.

Because no vanilla layers are used, for predic-713

tion we can use only shortened embeddings and714

input token embeddings shifted right by 1 from715

the residual connection. Note that to predict the A 716

token at position 3 we can use only embedding of 717

emb# and e0 - both of these contain no informa- 718

tion so we are unable to predict this token better 719

than randomly (see Table 9). An analogous situa- 720

tion occurs for prediction of any tokens at positions 721

divisible by 3, which makes the model unable to 722

achieve more than 50% accuracy when the task has 723

vocabulary size of at least 2. 724

This issue can be solved by adding at least one 725

vanilla layer to the model, so that it can attend 726

within the neighborhood of k previous tokens. For 727

this particular problem, it is sufficient to use local 728

attention with context size k in vanilla layers which 729

is significantly more efficient than full attention. 730

A.2 Information leaks – analysis 731

A.2.1 Definition of autoregressive model 732

Formally, given a target sequence, x = x1, ..., xn,
an autoregressive model (e.g. transformer
decoder) models the sequence as P (x) =∏n

i=1 P (xi|x1, ..., xi−1) and

∀iP (xi|x1, ..., xn) = P (xi|x1, ..., xi−1)

namely xi token depends only on previous tokens, 733

never on itself nor next ones. 734

A.2.2 Definition of information leak 735

We say that a leak was caused by function 736

Fn : An −→ An transforming sequence of 737

input tokens (x1, x2, ..., xn) into another 738

sequence (u1, ..., un) = F ((x1, ..., xn)) 739

when ∃i<j<nP (xi|x1, ..., xi−1, xj) ̸= 740

P (xi|x1, ..., xi−1), namely there exists j ≥ i 741

that token xi depends on xj which violates the 742

autoregressive property. 743

A.2.3 Model representation 744

Let Rk : A
n −→ An be a shift right function which 745

reindexes tokens by shifting each of them right by 746

k positions: 747

Rk((x1, x2, ...xn)) = (0, ..., 0︸ ︷︷ ︸
k

, x1, ..., xn−k)

Sk : A∗ −→ A∗ shortening function with factor 748

k which takes on input x1, ..., xn sequence and 749

returns s1, ..., sm where m = n
k , Uk upsampling 750

function which works in similar way but upsamples 751

Uk((u1, ..., um)) = u1, ..., un. 752

Between them there is also applied D decoder 753

function, D = D1 ◦ · · · ◦Dl, where each Di is a 754

11

function representing decoder block. Due to causal755

attention masking in the decoder block, there is no756

risk of information leak caused by function D.757

A.2.4 Leak description758

Because of mentioned attention mask, we will omit759

the flow of information between tokens caused by760

the influence of attention mechanism because this761

mask keeps the autoregressive property.762

Now, let (x1, ..., xn) be an input sequence and763

(u1, ..., un) = U(D(Sk(Ts((x1, ..., xn))))) = F .764

In order to preserve autoregressive property, it is765

obligatory that no leak occurs.766

We will show that shift by any value 0 < s <767

k − 1 where k is the shorten factor will cause a768

leak.769

To start with, consider input sequence (x1, ..., xn)770

and perform operation F . Rs((x1, ..., xn)) =771

(0, ..., 0︸ ︷︷ ︸
s

, x1, ..., xn−s) = r. Assuming that n is772

divisible by s, we have Sk(r) = (v1, ..., vn
k
) = v773

where each vi consists of information obtained in774

(r(i−1)·k+1, ..., rik). Now let see that operation D775

preserves autoregressive property, let d = D(t).776

Now, U(d) = (u1, ..., un) and each ui depends on777

d⌊ i−1
k ⌋+1.778

Now consider s ≤ k − 2 and let (u1, ..., un) =
F ((x1, ..., xn)) will be a result of our Transformer
part. Let take u1 which depends on d1 and d1
depends on (r1, ..., rk) = (0, ..., 0, x1, ..., xk−s).
For that reason d1 depends on x1, x2, ..., xk−s, so
we have

P (x1|xk−s) ̸= P (x1)

which violates the autoregressive property.779

B Experimental setup780

B.1 Common parameters781

Here we list common hyperparameters used for all782

experiments mentioned in the paper. We use Adam783

optimizer with β1 = 0.9, β2 = 0.98 and ϵ = 1e−9.784

Weight decay and gradient clipping is not used.785

In terms of model details, we decided to use a786

Pre-Norm architecture and FastGelu activation in787

feed-forward layers.788

B.2 Enwik8789

We use dmodel = 512, dff = 2048 and 8 attention790

heads. Models in ablation study are trained for791

200k steps with cosine learning rate schedule, set-792

ting cycle length for 200k steps and linear warmup793

of 4000 steps.794

For the main result achieving 0.98 bpc with 795

4@1, 8@3, 4@1 hierarchy, we set dmodel = 768, 796

dff = 3072 and nheads = 8 which results in 146M 797

parameters. It is trained for a total number of 350k 798

steps with one cycle of cosine schedule. Linear 799

warmup of 20k steps is used. 800

At the beginning of our work on this paper, we 801

have performed grid search over following hyper- 802

parameters for enwik8: 803

• batch size: {8, 16, 32}, finally chosen 8 804

• dropout: {0.05, 0.1, 0.15, 0.20}, finally cho- 805

sen 0.15 806

• learning rate: 807

{1e−4, 2e−4, 3e−4, 4e−4, 5e−4}, 808

finally chosen 4e−4 809

All next experiments were conducted using these 810

parameters without additional searching. 811

B.3 Downsampled ImageNet - common 812

parameters 813

For ImageNet32 and ImageNet64 experiments we 814

use inverse square root learning rate decay, setting 815

warmup steps to 8000 in both experiments. Total 816

batch size is 64. 817

B.4 ImageNet32 818

In this dataset, we operate on input sequence length 819

of 3072. We use dmodel = 512, dff = 2048, 8 820

attention heads and 0.01 dropout rate. We perform 821

400k training steps with linear warmup and inverse 822

square root decay and then we train for additional 823

70k steps with cosine learning rate decay, starting 824

from the learning rate from the previous schedule 825

at 400k and decreasing it to 0 at 470k steps. 826

B.5 ImageNet64 827

As an input we receive a sequence of 12288 tokens 828

representing 64× 64× 3 images. We set dmodel = 829

768, dff = 3072, 8 attention heads and dropout 830

equal to 0. We perform 300k steps with linear 831

warmup and inverse square root decay. 832

B.6 CIFAR-10 833

All the ablation studies are run for 100k training 834

steps, unless otherwise specified. Input sequence 835

has length 3072 and model parameters are as fol- 836

lows: dmodel = 512, dff = 2048, 8 attention heads 837

and dropout equal to 0. Total batch size is 8. Co- 838

sine learning rate decay with linear warmup of 839

5000 steps and 100k cycle length is used. 840

12

C Environment setup841

C.1 Hardware842

Experiments are conducted on several setups.843

• Ablation Study and short training sessions844

were computed on nodes consisting of 4x Ti-845

tan V with 12GB memory each, 64GB RAM,846

Intel Xeon E5-2660 v4 CPU847

• longer trainings were completed on 8x RTX848

2080 Ti with 11GB memory each, 128GB849

RAM and Intel Xeon E5-2660 v4 CPU.850

• Few longest trainings were conducted on 8×8851

TPUv3 units, each with 16GB memory.852

C.2 Software853

All experiments were performed on Linux operat-854

ing system using Trax library version 1.3.9 along855

with all its dependencies from this particular re-856

lease date. Additionally, to run shorten factor857

dropout experiments we modified the Transformer-858

XL codebase in PyTorch.859

D Reproducibility860

To ensure the reproducibility of this work and to861

support open science principles, we made our code862

public and it will be shared after the review phase.863

D.1 Randomness864

Seeds in all experiments were chosen randomly,865

however each experiment contains history which866

allows retrieving all randomly set parameters for867

reproductions.868

For each ablation described in the ablation study869

section, we rerun the baseline 3 times to calculate870

standard deviation. All other experiments are run871

only once due to costs and since the variance we872

noticed was minimal.873

D.2 Experiment representation874

Each experiment is represented by a configuration875

file that unambiguously determines the whole setup876

– all hyperparameters and training details like spe-877

cific optimizers, data preprocessing functions, or878

batch size per device.879

13

