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ABSTRACT

Incorporating multiple modalities into large language models (LLMs) is a powerful
way to enhance their understanding of non-textual data, enabling them to perform
multimodal tasks. Vision language models (VLMs) form the fastest growing cate-
gory of multimodal models because of their many practical use cases, including in
healthcare, robotics, and accessibility. Unfortunately, even though different VLMs
in the literature demonstrate impressive visual capabilities in different benchmarks,
they are handcrafted by human experts; there is no automated framework to create
task-specific multimodal models.

We introduce Mordal, an automated multimodal model search framework that
efficiently finds the best VLM for a user-defined task without manual intervention.
Mordal achieves this both by reducing the number of candidates to consider during
the search process and by minimizing the time required to evaluate each remaining
candidate. Our evaluation shows that Mordal can find the best VLM for a given
problem using 8.9x—11.6x lower GPU hours than grid search. We have also
discovered that Mordal achieves 1.2x—-3.3x better performance than the state-of-
the-art model selection methods on a variety of tasks.

1 Introduction

Vision Language Models (VLMs) bridge the
gap between visual and language understand-
ing, rising as the dominant approach to solving
visual information-based tasks. Notably, GPT- ,
4o Hurst et al.| (2024]), a large-scale multimodal § S 80
language model, demonstrates impressive vision DocVQA <« LVN
reasoning capabilities by taking images as in- GQa
put and generating detailed natural language de-  —— LLavA-Next-Vieuna-78

scriptions. Although the technical details behind ~ ~7~ pravi-soxtismat7s
GPT-40 remain undisclosed, researchers have +— Qwen2-VL-TB
proposed a number of publicly available VLMs [nternVL2-88 ScienceQA AI2D

(e.g., LLaVA|Liu et al.|(2023a), InternVL |Chen

et al.| (2024b) and Qwen-VL Bai et al.|(2023)) Figure 1: Benchmark performance of five latest
that aim to match GPT-40’s capabilities. Many  ppen-source VLMs on six multimodal tasks.

of these open-source VLMs share a similar ar-

chitecture, in which a feature projector converts the image embeddings generated by a vision encoder
and feeds it to a large language model (LLM) along with the text embeddings.

ChartQA VizWiz
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To construct and train a VLM, the common approach starts from selecting an appropriate pretrained
vision encoder and LLM. Thanks to the ever-growing ecosystem like HuggingFace [Face| (2025)),
developers are able to choose from countless pretrained models for their own VLMs. Unfortunately,
despite the great number of available models, it is difficult to determine which pretrained models
(i.e., vision encoders and LLMs) are the most appropriate ones. Given a user-specific downstream
task, it is unclear which pretrained models can form the VLM that will meet the user’s needs most
effectively. As shown in Figure[T] no single VLM consistently outperforms the others in accuracy
across all dimensions.

VLM capabilities vary significantly depending on their pretrained components |Liu et al.|(2023c); Xu
et al.[(2023); |Zhang et al.| (2024). It is unreliable and unpredictable to rely on human “intuitions”
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to select pretrained models for the given downstream task, such as selecting the latest one or the
most well-known one. Existing model selection methods, such as EMMS [Meng et al.| (2023) and
LogME [You et al.|(2021), also fall short in the VLM context. These methods are primarily designed
for classification, regression, or language-only tasks, where zero-shot performance can serve as an
indicator of model quality |Brown et al.|(2020); Lin et al.| (2024); |Yi et al.| (2024)). However, VLMs
require vision-text alignment, making zero-shot evaluations unreliable. Without proper alignment, the
language model cannot correctly interpret the image embeddings, leading to random and meaningless
outputs. With significant constraints on available time and computation cost, it is also unrealistic
to try every pretrained model combination and train corresponding VLM candidates. Training a
single VLM with vision-text alignment data could take more than 100 GPU hours Liu et al.| (2023a));
Karamcheti et al.| (2024)). This motivates the key question of this work: How to effectively find the
best pretrained models in a VLM given a downstream task?

To address this question, we formulate the pretrained model selection problem for VLMs and model it
as a resource-constrained task to predict the alignment performance of a VLM, i.e., the performance
on the downstream task after training the feature projector with the vision-text alignment data. We
empirically show that existing model selection methods fail to find the best pretrained model for
downstream tasks and a naive approach like grid search is infeasible in practice.

We present Mordal, a novel pretrained model selection framework, which automatically and effi-
ciently explores different pretrained model combinations in VLM. Mordal builds on our observation
that efficiently solving this problem needs jointly considering two optimization directions: (1) mini-
mizing the number of VLM candidates, where each candidate has different pretrained vision encoders
and LLMs; and (2) reducing the evaluation time for each candidate. Overall, we make the following
contributions in this work:

* We define the pretrained model selection problem in the context of VLMs and demonstrate
that off-the-shelf VLMs often do not contain the best pretrained components for a given
downstream task.

* We propose Mordal, an efficient pretrained model search framework, to find the best VLM
for a given downstream task. Mordal clusters VLM candidates by their representation
similarities while employing early stopping and scaling prediction mechanisms to reduce
evaluation time.

» Extensive evaluations show that Mordal efficiently finds the best VLMs with 8.9x—-11.6x
less computation time than grid search. It also achieves 1.2x—3.3 X better performance than
the state-of-the-art model selection methods for a wide range of tasks.

2 Background and Motivation

We start by outlining the architecture of typical VLMs. Following this, we highlight the challenges in
pretrained model selection for VLMs and show that existing VLMs often do not pick ideal pretrained
models for downstream tasks. Based on these observations, we present the limitations of potential
solutions like grid search, which motivate Mordal’s design.

2.1 Vision Language Model

Common VLM architectures, like LLaVA [Liu et al.| (2023a)), include a pretrained visual encoder to
encode visual features, a pretrained large language model (LLM) to comprehend the user instructions
and produce responses, and a vision-language cross-modal feature projector to align the vision
encoder outputs to the language models:

Vision Encoder (VE). The vision encoder is responsible for processing input images and extracting
relevant features. Potential encoder options are CLIP Radford et al.[(2021)), SigL.IP|Zhai et al.| (2023)),
and InternViT (Chen et al. (2024Db)), etc.

Feature Projector (FP). The vision-language cross-modal feature projector aims to align the
encoded image features to the text token embedding space. The feature projector can be achieved
directly by a Linear Projector or Multi-Layer Perceptron (MLP)|Liu et al.|(2023b).
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Table 1: Evaluation results of capability on tasks of Visual QA, Doc QA, and Knowledge for four
VLMs with different pretrained models. CLIP-Vicuna has the same pretrained models and mode
structure as LLaVA-1.5-7B |Liu et al.| (2023a)). The best result for each scenario is in bold text. There
is no silver bullet.

Model Vision Encoder Language Model Visual Q_A X Doc QA ) Knowledge
GQA VizWiz ChartQA DocVQA ScienceQA AI2D
CLIP-Vicuna CLIP-ViT-L/14 Vicuna-1.5-7B 61.5 41.2 18.2 27.6 70.4 54.8
SigLIP-Vicuna SigLIP-s0400m-patch14 Vicuna-1.5-7B 66.4 44.8 184 24.1 68.5 53.0
CLIP-Llama CLIP-ViT-L/14 Llama-3-8B 558 37.9 13.3 17.3 757 582
SigLIP-Llama SigLIP-s0400m-patch14 Llama-3-8B 56.4 38.1 13.4 17.4 78.5 60.1
Large Language Model (LLM). The language model processes -~ AR

mixed embeddings generated from both user instructions in text as
well as image inputs. The commonly used LMs in VLMs are decoder-
only LLMs, which include Llama [Touvron et al.|(2023a), Qwen|Yang Projection
et al.|(2024) and Mistral Jiang et al.[(2023)).
With this structure, a VLM first processes an input image Ty, € El:;zizr
RZ*W with an image processor and passes it to a vision encoder
V. The vision encoder outputs a sequence of raw vision embeddings _ .
(or patches) pimg € RExhvis where Pimg = V(Timg) and hy;s is \\Image Text !
the hidden state dimension of the vision encoder outputs. The fea- "~~~ """""7777°~ -
ture projector P will then map pim,g to aligned vision embeddings  Figure 2: Overview of VLM
€img € RE*Nteat where hyeyy is the hidden dimension of the cor- architecture.

responding LM token. The aligned embeddings e;,,, will append to text prompt embedding

etexrt = embed(prompt) and feed into the LLM to generate output text.

2.2 Pretrained Model Selection: No Silver Bullet

VLMs are versatile and powerful because most vision tasks can be formulated as next-token prediction.
To train a VLM for a specific downstream task, developers usually cherry-pick pretrained vision
encoders and language models for alignment. However, different pretrained models have varying
capacities, which affect VLM performance. To investigate the impact of different pretrained models,
we conduct grid search on 49 VLM candidates (i.e., seven vision encoders and seven language models)
and train each candidate with the same alignment data. While complete evaluation is described
in Section 4] we present the performance of four representative VLM candidates on six datasets,
across three dimensions: Visual QA (GQA |[Hudson & Manning|(2019) and VizWiz |Gurari et al.
(2018)), Doc QA (ChartQA Masry et al.|(2022) and DocVQA Mathew et al.[(2021)) and Knowledge
(ScienceQA [Lu et al.[(2022) and AI2D Kembhavi et al.|(2016))). As shown in Tablem both pretrained
vision encoders and language models have a significant impact on VLM performance. We further
show in Appendix [A] that fine-tuning on specific datasets does not eliminate these differences, since
model performance remains bounded by the quality of its pretrained components. Overall, there is no
silver bullet pretrained model or model combination that reigns supreme for all tasks.

Given these observations, one may naturally ask: how can we select the best combination of pretrained
models for a specific task? In this paper, we address the pretrained model selection problem in the
context of VLMs. Given an alignment dataset and a target task, we aim to find the combination of a
pretrained vision encoder and a language model that achieves the best performance on the target task
after alignment.

2.3 Limitations of Existing Solutions

Solving the pretrained model selection problem by relying on empirical experiences or intuitions,
such as choosing the newest, largest or most well-known model, is unreliable. For example, in
Table[I] a VLM with Vicuna-1.5-7B can outperform a VLM with LLaMA-3-8B in certain settings.
Existing model selection methods, such as EMMS [Meng et al.| (2023)), LogME |You et al.| (2021]),
LEEP |[Nguyen et al.| (2020a), and NLEEP |L1 et al.| (2021)), primarily focus on tasks involving
classification or regression Brown et al.|(2020). These methods typically assess models based on
transferability metrics, which are inadequate for VLMs requiring alignment [Vu et al.| (2020); |Yi
et al.| (2024)); [Lin et al.[|(2024). VLMs like LLaVA [Liu et al.|(2023al), as shown in Figure involve
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combining vision encoders with large language models (LLMs) through a feature projector to achieve
multimodal interaction. Without alignment, the LLM cannot interpret image embeddings, rendering
transferability metrics less effective.

Performing an exhaustive search for pretrained model selection is also computationally prohibitive.
Even within a manageable search space, training a single VLM candidate with the LLaVA-1.5 dataset,
using a pretrained 7B LLM backbone, can consume over 100 GPU hours. Considering the vast
number of pretrained models available (e.g., over 150,000 LLMs on HuggingFace as of January
2025), exhaustively evaluating every candidate becomes impractical. The cost is further exacerbated
as new encoders and LLMs continue to be introduced, necessitating constant re-evaluation to integrate
new components.

To address the inefficiencies of exhaustive search in pretrained model selection, we must reduce the
search cost along two key dimensions: (1) reducing the number of candidates and (2) minimizing the
time required to evaluate each candidate. By optimizing these two dimensions, the exhaustive search
process can be replaced with a more efficient pipeline that balances time consumption and selection
accuracy.

3 Mordal Design

This section details the core components of Mordal’s design. The exhaustive search is expensive
because it (1) needs to evaluate every candidate (large search space), and (2) needs to train each
candidate with a full dataset to see its performance (high evaluation cost). Mordal reduces search
space by clustering the candidates based on their similarity and by introducing a two-step inter- and
intra-cluster evaluation (§3.1)), and reduces evaluation cost of each candidate with early stopping and

scaling prediction (§3.2).
3.1 Candidate Clustering

With the rapid increase in the number of pretrained models in popular model zoos (e.g., Hugging-
Face [Face| (2025)), evaluating every candidate combination is expensive. Based on prior observations
that similar models tend to have similar performance |[Hu et al.| (2023)); |Yu et al.| (2024); Lai et al.
(2023)), Mordal clusters candidates and evaluates them in two steps: inter-cluster and intra-cluster, to
reduce the search space.

Measuring similarity. Measuring the similarity of VLM candidates — without training projectors
between vision encoders and language models — is challenging. Parameter similarity |Lai et al.| (2023),
which has been used to measure similarity between model architectures, does not fully consider the
data distribution pattern in the target task. Models with high parameter similarity could still show
different performance on different tasks. Therefore, in Mordal, we consider representation similarity
between VLM candidates, which depends on the target task.

Mordal employs centered kernel alignment (CKA) [Kornblith et al.| (2019) to evaluate the similarity
of representations between two VLM model structures. CKA has been proven to be an effective tool
for understanding and comparing the information encoded across different layers of neural networks.
Formally, CKA operates on two datasets by analyzing their corresponding activation matrices. The
CKA score is defined as:
CKA(K, L) = HSIC(K, L) )
/HSIC(K, K) - HSIC(L, L)

where K and L are the kernel matrices of activations of two models. HSIC is the Hilbert-Schmidt
Independence Criterion (HSIC) defined as:

HSIC(K,L) = Tr(KHLH) )

where Tr() is the trace of a matrix and H is the centering matrix H = [ — %11? CKA is particularly
useful in this context for two reasons. First, CKA can compare representations with differing shapes
generated by different pretrained models, a task where traditional metrics such as cosine similarity fail.
Second, as vision representations are commonly projected through MLP layers, this transformation
does not compromise CKA’s properties, making it robust and well-suited for such evaluations.
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Candidate Clustering Efficient Evaluation

VE OO OO C] C] :k)‘D ’ @ Early :] Scaling [:
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Pretrained Models Clusters : Inter-Cluster Candidates Intra-Cluster Candidates Best Candidate

Figure 3: An overview figure for Mordal. Gray shapes represent pretrained models and VLM
candidates, while white blocks are eliminated ones. Mordal clusters similar candidates, evaluates one
per cluster, eliminates weak clusters, and uses regression to predict the best candidate.

1.0
Vision Encoder ScienceQA  VizWiz g : I(w f
CLIP-ViT-L/14 67.6 41.2 "3
SigLLIP-s0400m-patch14 67.7 44.8 & W &
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(a) Evaluation Results (b) ScienceQA (¢) VizWiz

Figure 4: Evaluation results of VLMs with different vision encoders and the same language model
(i.e., Vicuna-1.5-7B). Similarity scores between four vision encoders on ScienceQA and VizWiz.

To validate the effectiveness of CKA, we train multiple VLM combinations with four vision encoders
(CLIP [43], SigLIP [58], DEN-CLIP [12], InternViT [7]) and the same LLM backend Vicuna-1.5-7B.
The trained VLMs are evaluated on two different datasets: ScienceQA and VizWiz. As shown in
Figure[d] the image representation (i.e., outputs of projection heads) generated by different vision
encoders show different levels of similarity to each other. For example, with input images from
ScienceQA, CLIP, SigL.IP, and DFN-CLIP generate similar representations. Meanwhile, DFN, CLIP
and InternViT generate similar representations in VizWiz. From the results in Figure[4a] the vision
encoders with similar representations will have similar performance with the same language model.
Although this observation does not allow us to directly predict the target task’s performance, it helps
reduce the number of VLM candidates by eliminating similar pretrained models.

Two-step clustering. Computing the CKA score between each pair of candidates can be expensive,
since K and L are activations from batched data input. To reduce the amount of pair-wise CKA
computation, Mordal introduces a two-step VLM clustering strategy: (1) clustering vision encoders,
(2) clustering language models based on a fixed vision representation. We detail the clustering process
as follows (see full pseudocode in Appendix [B):

* Vision encoder clustering. Mordal computes the representation similarity between vision
encoders using CKA. A distance matrix Dist,. is then constructed based on the dissimilarity
values. The clustering function will take an input threshold ¢, and output the vision encoder
clusters Cye.

* Language model clustering. Language model clusters are constructed based on vision
representations of each vision encoder cluster. Using the medoid vision encoder from each
cluster, Mordal generates a fixed image embedding for the dataset and a warmed-up feature
projector transforms the shape of image embeddings to match the LLM input shape. A
distance matrix Dist;;,, will record the dissimilarity and language models are then clustered
based on an input threshold ¢;;,,,.

For each vision encoder cluster and the corresponding language model clusters, Mordal generates the
candidate clusters by conducting the Cartesian product of the two clusters. The two-step clustering
process reduces the computation costs by avoiding computing the similarity between candidates that
have dissimilar vision encoders, which we show in Section[d.3]that usually yield distinct performance.

Inter- and intra-cluster evaluation. After grouping the candidates into clusters, Mordal finds
the best candidate with two-step evaluation: inter-cluster evaluation and intra-cluster evaluation.
The detailed process is shown in Figures[5a)and [5b] Given that candidates in the same cluster have
similar performance, inter-cluster evaluation first picks medoid from each cluster as the representative
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(c) Inter-cluster evaluation with early stopping. Two (d) Intra-cluster evaluation with scaling prediction.
candidates are early stopped and C' is selected. Cs,2 is selected based on the predicted performance.

Figure 5: Inter- and intra-cluster evaluation with candidate clusters. Applying early stopping
mechanism and scaling prediction to inter- and intra-cluster evaluation.

candidate and compares performance of each cluster to eliminate poorly performing clusters. The
remaining Top-K clusters will be evaluated in the second step, where K is a user-defined parameter.

With the inter-cluster evaluation, many fewer candidates remain in consideration. Intra-cluster
evaluation goes back to candidate-granularity evaluation by aggregating candidates from the remaining
Top-K clusters. It trains all of them on the given alignment dataset, and returns the one with the best
performance to the user.

3.2 Efficient Evaluation

Sectionreduces the search space; however, evaluating each candidate in both stages (i.e., inter- and
intra-) still requires training each candidate with a full dataset, which remains expensive. To address
this, Mordal integrates two complementary techniques: early stopping for inter-cluster pruning, and
scaling prediction for efficient intra-cluster evaluation. These components are co-designed to reuse
intermediate checkpoints, further reducing redundant computation.

Early stopping. Mordal adopts the Successive Halving Algorithm (SHA) Jamieson & Talwalkar
(2016) to aggressively eliminate low-quality candidates during inter-cluster evaluation. As shown in
Figure|5c| SHA is conducted during inter-cluster evaluation, where all representative candidates are
evaluated with the maximum data sample ratio R. It consists of multiple rounds, also known as rung.
In each round, Mordal allocates a budget b to each candidate, evaluates all of them, and keeps the top
1/n candidates. In the next round, Mordal increases the budget to b x 7 per candidate. This repeats
until representative candidates are converged or Top-K candidates are determined. In cases where the
number of remaining candidates is large, Mordal also applies SHA again to intra-cluster evaluation.
With SHA as the early stopping mechanism, Mordal eliminates poor-performing candidates earlier.
This mechanism concentrates resources on the most promising clusters and produces intermediate
checkpoints that can be reused downstream.

Scaling prediction. Scaling laws have traditionally been used to characterize the relationship
between model size, training data, and performance in language models [Kaplan et al.| (2020);
Hoffmann et al.|(2022)). These laws are typically formulated as a power-law relationship between
LLMs’ cross-entropy loss L and their compute scale measures, which take the form:
a b

L(N,D)—W—&-ﬁ—ke 3)
where N the number of model parameters, and D the number of training samples. The fitted
parameters (v, 03, a, b, €) are derived from training models across different scales. These relationships
are typically log-linear under a log-log transformation and have been exploited for model selection
in LLMs Lin et al.[(2024); Ruan et al.| (2024)). In contrast to prior work, our focus is on alignment
performance in VLMs, where the model size IV is fixed, but the alignment data size D is varied. We
find that a similar log-linear trend exists between the size of alignment data and task-specific error
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metrics (details are provided in Section[d.3)). This observational scaling law enables us to estimate a
candidate VLM’s full-data performance from a small number of low-cost training runs.

With the observational scaling law, Mordal em- Algorithm 1: Scaling Prediction

ploys a scaling predlctlop algorlthm thgt Uto- " “nout  :Maximum data sample ratio R,
matically detects the log-linear scaling with sam- scaling ratio u, minimum required
pled alignment dataset to conserve resources. As point p, VLM candidate ¢
shown in Algorithm [T} for each candidate ¢ in 2 Output :Prediction result

remaining candidate list C', the algorithm starts 3 Initialize loss-size pair list P = ]

from an initial data sample ratio R (e.g., §). ¢ Initialize data sample ratior = R

It evaluates a checkpoint trained on randomly 5 While 7rue do

sampled data with ratio R. The corresponding ¢ /+ Evaluate performancex/
performance point (Log(r), Log(Err)) willbe 7 grr = Edmll“ate(?aligg’ Drask, ¢, 1)
recorded in list P. After that, the algorithm re- : if’ﬁgf e>np(t(hgﬁ (), log(Err)))

duces data sample ratio and repeats the above

> : - 10 Fit a linear regression model f. on P
process until enough performance points (i.e., Break if f. fitting loss > 0
p) are collected and the log-linear relationship ,, end
is observed for a given candidate c. Since data 3 r=r/u/* Reduce data
sample ratio r is decreasing, we may effectively samplesx/

start the evaluation of 7 /u from existing inter- 14 end
mediate checkpoints to save computation costs. 15 Return fc(1)

Scaling prediction complements Mordal’s two-stage evaluation and helps reduce search cost. By
fitting a log-linear model f. on a few sampled alignment points P, Mordal can estimate the full-data
performance f.(1) without fully training the candidate c. This enables early elimination of weaker
candidates while prioritizing promising ones. Since the evaluation proceeds from larger to smaller
sample ratios, intermediate checkpoints can be reused to save additional GPU time.

4 Evaluation

We conducted extensive experiments to thoroughly evaluate Mordal’s performance. These experi-
ments assessed its effectiveness in pretrained model selection and performed an ablation study. The
key findings are summarized as follows:

1. Mordal identifies the best combination of vision encoder and LLM for the target task 8.9x-
11.6x faster than the grid search. It also achieves 1.2x-3.3x better performance than the
state-of-the-art model selection methods for a wide range of tasks.

2. We further validate the effectiveness of observational scaling law. By conducting the ablation
studies, we show that each component in Mordal helps reduce the total search time while
ensuring that it can still identify the top-performing candidates.

4.1 Experimental Setup

The experiments are conducted on seven mainstream datasets across three domains with seven vision
encoders and seven LLMs. We deployed Mordal on a set of VMs on a cluster with a total of 16
NVIDIA A40 GPUs. Each GPU has 48 GB GDDR6 memory.

Dataset. We use LLaVA-1.5-Instruction dataset Liu et al.|(2023a) for alignment. In practice, users
may use their own alignment datasets. For target evaluation, we first select six standard benchmarks
across Visual QA, Doc QA, and Knowledge tasks. To test broader generality, we further include
MMMU, a multi-disciplinary benchmark covering diverse real-world domains. These datasets are
commonly used to assess VLM performance [Zhang et al.|(2024).

Model zoo. We select seven vision encoders and seven language models based on popularity and
performance. The selected vision models include both language-supervised models (e.g., OpenAl
CLIP) and self-supervised models (e.g., DINOv2). For LLMs, all models follow the decoder-only
structure, and we pick the most commonly used 7B LLMs from HuggingFace. The vision encoder is
connected to the LLM using a two-layer MLP projector. The complete list of models and additional
training details are provided in Appendix D}
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Table 2: Summary of improvements. Search Time (h) and Top-1 Model Quality (%) results for
different datasets. For each task, grid search exhaustively evaluates 49 candidates, requiring 5439
GPU hours. Mordal significantly reduces the amount of training needed (i.e., GPU Saving) while
successfully finding the Top-1 VLM candidate.

CLIP-Vicuna Grid Search Mordal (ours)
Task Dataset .
(LLaVA-1.5) Top-1 Score Model Name Time Speedup Top-1 Score
Visual QA GQA [Hudson & Manning|(2019) 61.5 66.4 SigLIP-Vicuna 483 11.2x 66.4
VizWiz|Gurari et al.|(2018) 41.2 46.9 SigLIP-Mistral 469 11.6x 46.9
Doc QA ChartQA Masry et al.|(2022) 18.2 20.2 CLIP-Qwen 607 8.9x% 18.6
DocVQA Mathew et al.|(2021) 27.6 28.5 SigLIP-Qwen 593 9.2% 28.5
ScienceQA |Lu et al.|(2022) 70.4 78.5 SigLIP-Llama 472 11.5% 78.5
Knowledge
AI2D |Kembhavi et al.|(2016) 54.8 65.2 SigLIP-Qwen 496 10.9x 65.2
Multi-discipline MMMU |Yue et al.|(2024) 353 36.6 SigLIP-Llama 503 10.8 x 36.6

SigLIP-Vicuna
SigLIP-Mistral

SigLIP-Vicuna
SigLIP-Mistral

SigLIP-Qwen2
DFN5B-Qwen2

SigLIP-Qwen2
DENSB-Qwen2

DINOV2-Vicuna CLIP-Vicuna DINOV2-Qwen2 DINOV2-Qwen2
CLIP-Vicuna SigLIP-Qwen2 InternViT-Qwen2 InternViT-Qwen2
SigLIP-Qwen2 CLIP-Mistral SigLIP-Phi3 CLIP-Qwen2
50 55 60 65 70 50 55 60 65 70 50 55 60 65 70
(a) Grid Search (GQA) (b) Mordal (GQA) (c) Grid Search (AI2D) (d) Mordal (AI2D)

Figure 6: Top-5 candidates from grid search and Mordal on GQA and AI2D.

Baseline and metric. We use grid search as the primary baseline, where every VLM candidate is
fully trained and evaluated to find the top-1 model. We also measure the total training time, in GPU
hours, required by both grid search and Mordal. To evaluate ranking quality, we compare candidate
rankings from grid search (based on performance) and Mordal (based on elimination order) using
weighted Kendall’s 7 coefficient. We further compare Mordal with four model selection baselines:
EMMS Meng et al.|(2023)), LogME |You et al.| (2021), LEEP |Nguyen et al.|(2020a), and NLEEP [Li
et al.[(2021)). For a fair comparison, we use the same alignment data and ensure that the total training
time allocated to each candidate matches Mordal’s overall budget. This allows us to assess both
accuracy and efficiency under equal resource constraints. Implementation details can be found in

Appendix
4.2 Performance Results

This sections evaluates Mordal’s effectiveness in identifying top-performing VLM candidates under
constrained training budgets. We also report the weighted Kendall’s 7 between Mordal’s candidate
rankings and baselines’ candidate rankings to assess ranking quality.

Mordal is significantly faster than grid search. Table[2]shows that grid search requires 5439 GPU
hours to exhaustively train 49 VLM candidates per task. In contrast, Mordal reduces the total search
time by 8.9x to 11.6x across tasks, with search time varying by cluster formation and candidate
convergence rates. Despite this reduction, Mordal successfully identifies the top-1 model in six out of
seven tasks. For example, on VizWiz, Mordal completes the search in 469 GPU hours and selects
SigLIP-Mistral, which achieves 46.9% accuracy. Notably, for most tasks, the best VLM candidates
have different pretrained model combinations and all of them surpass the performance of the default
LLaVA-1.5-7B structure, highlighting the importance of pretrained model selection.

Mordal outperforms existing model selecing methods in finding top-performing models.
Mordal consistently outperforms existing model selection methods (EMMS, LogME, LEEP, and
NLEEP) by achieving higher weighted Kendall’s 7 scores across all seven datasets, as shown in
Table@ For example, on the ScienceQA dataset, Mordal achieves a 7 value of 0.96, significantly
surpassing the best baseline (EMMS) with a 7 of 0.77. This is because Mordal effectively captures
the alignment performance of VLM combinations, while baseline methods rely on features from
foundation models that do not fully distinguish between different model pairings. However, Mordal
can occasionally miss the best combinations when promising candidates are grouped with weaker
ones or are prematurely excluded by the early stopping mechanism (See Figure [6). Despite this
limitation, Mordal consistently identifies top-performing models more accurately and efficiently than
traditional methods.
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Table 3: Comparison of different model selection modethods with the same time consumption.
Kendall 7 represents the differences of top-performing candidates compared with the groundtruth
(i.e., grid search) and larger 7 is better.

Task Dataset EMMS LogME LEEP NLEEP Mordal (Ours)
Visual QA GQA |Hudson & Manning]2019) 0.682 -0.162 0.232 0.435 0.814
VizWiz|Gurari et al.|(2018) 0.657 0.236 0.351 0.502 0.882
Doc QA ChartQA [Masry et a1.52022) 0.238 -0.144 -0.071 0.298 0.765
DocVQA [Mathew et al.|(2021) 0.172 0.155 0.111 0.265 0.897
Knowledge ScienceQA |Lu et a].jiO22) 0.770 0.269 0.344 0.562 0.960
AI2D |Kembhavi et al.|(2016) 0.557 0.193 0.316 0.614 0.894
Multi-discipline MMMU Yue et al.|(2024) 0.526 0.101 0.245 0.220 0.875
0.8 0.50
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Figure 7: Observational scaling law validation and ablation study results for efficient evaluation (EE),
early stopping (ES) and scaling prediction (SP). The results are on GQA and AI2D.

4.3 Ablation Studies

In this section, we first validate observational scaling law in Mordal. Then we conduct a comprehen-
sive ablation study to evaluate the candidate clustering and efficient exploration in Mordal and their
contributions to overall performance.

Observation scaling law validation. To validate the existence of scaling laws in VLM alignment,
we train multiple VLM combinations with different vision encoders and the same language model
Qwen2-7B on the sampled LLaVA-1.5-Instruction dataset. The trained VLMs are evaluated on two
different datasets: GQA and AI2D. As shown in Figures[7aland[7b] we observe log-linear scaling
across different VLMs, which supports the design of scaling prediction. However, the log-linear
scaling will only appear after a certain number of training samples, which is consistent with the
conclusion in previous work |Lin et al.|(2024); Ruan et al.| (2024)).

Effect of candidate clustering. Candidate clustering plays a vital role in Mordal as it enables
inter- and intra-cluster evaluation. As illustrated in Figure [7d] inter- and intra-cluster evaluation
(i.e., Mordal without efficient evaluation) significantly reduces training time while maintaining a
high 7 value. By grouping candidates with similar characteristics into clusters, Mordal evaluates
representative candidates from each cluster first and eliminates candidates in poor-performed clusters.

Effect of efficient exploration. Early stopping mechanism prunes candidates during the early stage
of training. While it significantly reduces the search time, applying it during the entire evaluation (i.e.,
Mordal without scaling prediction) will eliminate some promising candidates (e.g., SigLIP-Qwen on
AI2D shown in Figure[7b). It evaluates candidates based on intermediate performance and leads to a
low 7 value. Mordal limits the usage of early stopping and introduces scaling prediction instead to
predict the performance of promising candidates. As shown in Figure|/c| this leads to a significant
improvement in the 7 value while further reducing the total training time.

5 Conclusion

We presented Mordal, an automated framework for efficient pretrained model selection in vision-
language models (VLMs). Mordal reduces search cost by pruning candidate combinations and
minimizing evaluation time per model. Experiments show that Mordal achieves up to 11.6x speedup
over grid search while maintaining top-1 accuracy, and outperforms existing baselines by 1.2x-3.3x
in ranking quality. This highlights the effectiveness of task-aware, alignment-required model selection
for VLM deployment.
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A Task-Specific Fine-Tuning Does Not Eliminate Performance Differences

Table 4: Task-specific fine-tuning results across three datasets.

Model GQA ChartQA ScienceQA
CLIP-Vicuna 62.8 24.4 71.3
SigLIP-Vicuna 67.4 26.3 70.2
CLIP-LLaMA 56.5 22.9 78.1
SigLIP-LLaMA  58.7 23.2 81.5

An important question is whether performance differences across VLMs disappear after task-specific
fine-tuning. Prior studies in both single-modality and multimodal settings indicate that this is not
the case: performance differences often persist even after fine-tuning. For example, |Lin et al.| (2024)
and [Zeng et al.| (2025) show that not all pretrained LLMs converge to similar performance after
fine-tuning, even with identical data and compute budgets. Our work extends this investigation to the
multimodal domain.

We conducted 12 task-specific fine-tuning runs: the four representative VLM combinations from
Table[T)of the paper were fine-tuned on three target datasets that differ in their overlap with the LLaVA-
1.5 alignment mixture—GQA (in-distribution), ChartQA, and ScienceQA (out-of-distribution). Re-
sults are shown in Table il Even after fine-tuning on data from each target distribution, we still
observe performance differences of up to 1011 percentage points among models. Notably, the top-1
model remains consistent with the selection reported in Table 1 of the paper. These findings indicate
that Mordal generalizes well with the alignment data mixture and remains effective under distribution
shift. Practically, this result highlights that even if a model is fine-tuned, its performance is bounded
by the quality of its pretrained components. Thus, selecting strong pretrained VLMs remains crucial.
When sufficient fine-tuning data is available, Mordal can also be applied directly on the target data to
prune candidates, further reducing model selection time and compute.

B Algorithm

Algorithm 2: Candidate Clustering

Input :Target task D, Model Zoo M, and My, clustering threshold ¢, and ti;m,
Output : Candidate clusters Cyipm,
Def CandidateClustering(M e, Miim):
/* Vision Encoder Clustering=*/
for Ma,Mp € My, do
distap =1— CKA(D, Ma, MB)
D’L'Stve[MA] [MB} = Distve[MB} [MA] =dista,B
end
Cye = Clustering(Distye, tve)
/+ Candidate Clusteringx/
for C4 € Cye do
Mmedoia = PickMedoidModel(Ca)
/+ LLM Clustering =/
for Ma, Mp € My, do
distap=1— CKA(Mmedoid(D), Ma, MB)
Distum[MA] [MB] = Distim [MB} [MA] =dista,B
end
Cuim = Clustering(Distiim, tim)
Coim-append(Ca X Cim)

end
Return Cyim

Detailed two-step clustering algorithm for candidate clustering as described in Section We adopt
the MinibatchCKA for computation efficiency, which is introduced in|Nguyen et al.| (2020b) and
later used in|Raghu et al.|(2021). In LLM clustering, we use the last hidden state from LLM as the
sentence representation for CKA computation since it produces the best clustering performance. We
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leverage the hierarchical clustering from scipy.cluster.hierarchy library in SciPy |Virtanen
et al.| (2020). It is possible to adopt other clustering methods. Overall, this approach significantly
reduces the number of candidate to explore.

C Implementation

import mordal

def search_with_mordal (model_zoo, alignment_data, target_task_data):
model = mordal.query_for_model (
data=alignment_data, # LLaVA-1.5-Mixture
task=target_task_data, # GQA
pretrained_ve_zoo=model_zoo[’'ve’],
pretrained_llm_ zoo=model_zoo[’1llm’],
vlim_kwargs={
"projector’: "MLP’, ’freeze_ve’: True, ’freeze_llm’: False,
}

’
mordal_kwargs={

’clustering’: {’t_ve’: 0.7, 't_1llm’: 0.8},

"exploration’: {’top_k_ inter’: 3, ’'top_k_intra’: 3},
"early_stopping’: {’R’: 0.125, ’'b’: 0.03, ’'eta’: 2}
’scaling_prediction’: {’R’: 0.125, ’'u’: 2, ’'delta’: 0.01}

}
)

Listing 1: Mordal interface.

This section describes Mordal’s implementation details and configurations to ensure efficient and
scalable pretrained model selection. We highlight key design choices that optimize resource uti-
lization without compromising performance. As shown in code snippet Listing [I] to submit a job,
users need to provide the alignment data and data for the target task. Users are also allowed to
submit a list of available pretrained models. In vim_kwargs, users may specify the projector’s
architecture and whether to free pretrained components. When unfree pretrained components, instead
of performing expensive full finetuning, we uses Low-Rank Adaptation (LoRA) Hu et al.|(2021)
implemented by Parameter-Efficient Fine-Tuning (PEFT)|Mangrulkar et al.|(2022)) and manage LoRA
configurations for each pretrained model. LoRA injects task-specific adaptations into the pretrained
model by learning low-rank updates for certain layers while keeping the core parameters frozen.
This significantly reduces computational and memory overhead, making finetuning feasible under
resource-constrained settings. We incorporate Flash Attention Dao| (2023) for scalable attention
computation, which is a memory-efficient implementation of scaled dot-product attention that avoids
redundant operations and reduces memory overhead. All models are trained with torch bfloat16
precision, which balances computational efficiency and numerical stability. Mordal also automatically
allocates idle GPU resources to candidates that are not converged to speed up the exploration process.

D Additional Experiments

Vision Encoders LLMs

CLIP-ViT-L/14@336 Radford et al.| (2021) Vicuna-1.5-7B |Chiang et al.|(2023)
SigL.IP-s0400m-patch14 @384 [Zhai et al. (2023)  Llama-2-7B Touvron et al.| (2023b))
DFN-CLIP-ViT-H/14 @378 |[Fang et al.[(2023) Llama-3-8B|Dubey et al.[(2024)
InternViT-300M/14 @448 (Chen et al.| (2024Db) Mistral-v0.2-7B Jiang et al.|(2023)
DINOV2-ViT-L/14@518 0quab et al.| (2023) Qwen2-7B |Yang et al.|(2024)
EVA-CLIP-02-ViT-L/14@336|Sun et al.|(2023)  Phi-3-Small-7B |Abdin et al.|(2024)

ConvNeXt-L/14@256 [Ilharco et al. (2021) Gemma-1.1-7B|Team et al.[(2024)

Table 5: List of vision encoders and LLMs in experiments.

Model zoo and training settings. We evaluate seven vision encoders and seven language models
as shown in Table[5] Most models are available on HuggingFace [Face| (2025)) while EVA-CLIP and
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ConvNeXt are supported by timm library[Wightman| (2019). For ConvNeXt, we interpolate the output
embeddings to 16x16 patches following Cambrian-1 (2024). To make a fair comparison
with LLaVA-1.5-7B equivalent structure, we train an MLP projector and finetune pretrained LLM
with LoRA. The default training setting uses Adam optimizer with minibatch size 4 and initial
learning rate le-4. We use the linear schedule to decrease the learning rate linearly from the initial
value.

Hyperparameter settings. For pretrained model clustering, the threshold for vision encoder and
LLMs are set to t,, = 0.7 and t;;,,, = 0.8, respectively. And the warmup round for the feature
projector is 10. When performing an efficient evaluation, we set both topk;,te and topk;pirq to 3,
which means that the Top-3 clusters will be selected in inter-cluster evaluation and Top-3 candidates
will be selected in intra-cluster evaluation with the early stopping mechanism. We use n = 2 as
the default reduction factor, which is consistent with typical SHA settings. We further set p = 3
and = 5e — 5 by default for scaling prediction. We will discuss the effect of hyperparameters in

Appendix D2}

Baseline. We compare Mordal with four model selection baselines: EMMS (2023),
LogME (2021), LEEP Nguyen et al|(2020a), and NLEEP (2021). For a fair
comparison, we use the same alignment dataset and ensure that the total training time allocated to
all candidates matches Mordal’s overall GPU hour budget. Specifically, we divide Mordal’s total
training time by the number of candidates, and assign this budget to each candidate. Each VLM
candidate is partially trained using this fixed alignment time. We then extract features from the trained
model and compute label representations using three foundation models: CLIP [Radford et al.| (2021),
BERT Devlin et al.|(2019), and GPT-2 Radford et al.|(2019). These features and label representations
are used to compute the transferability metrics required by EMMS, LogME, LEEP, and NLEEP.
This comparison setup follows the standard protocol used in EMMS [Meng et al.| (2023), ensuring
consistency and fairness in evaluating model selection quality under limited compute.

Metric. To evaluate ranking accuracy, we compare candidates ranked by performance in grid search
with those ranked by elimination order in Mordal. Ideally, if a candidate ranks higher in grid search,
it should also rank higher in Mordal. This can be captured by Kendall’s 7 coefficient defined as:

2
TE Mo 2 ST T)sen(S: = S) @
1<i<j<M

where M is the total number of candidates and sgn() is the sign function. A perfect ranking
match results in 7 = 1. To further focus on top-performing candidates, we adopt the weighted

Kendall’s coefficient 7,,, which is previously used in (2021)); [Vignal (2013). The details for
implementing 7, can be found in SciPy |Virtanen et al.[(2020).

D.1 Evaluation Time Breakdown

400

I Inter-Cluster Early Stopping I Intra-Cluster Early Stopping B Scaling Prediction

[5]
=3
=1

GPU hours

GQA VizWiz ~ ChartQA  DocVQA  ScienceQA  AI2D MMMU

Figure 8: Total evaluation time breakdown for Mordal on seven datasets.

As shown in Table@ When evaluating Mordal on different tasks, the total evaluation time required is
different. To investigate the differences in time consumption, we analyze the breakdown time for
each component of Mordal and present the result in[8] As expected, the early stopping stage consists
of most of the evaluation time, and the prediction only takes a small part of time. This is because
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the scaling prediction is only performed for the candidates left after early stopping. The time varies
depending on when the model is converged and scaling is observed. The time for inter-cluster and
intra-cluster early stopping depends on the number of clusters, controlled by ¢, and ¢;;,,,. The cluster
is generally less obvious for difficult tasks (e.g., ChartQA and DocVQA), leading to many clusters
with only one candidate. As fewer candidates are eliminated, the total evaluation time increases.

D.2 Sensitivity Analysis

Category Config Time Top-1 Score T
Mordal Default 483 66.4 0.81
Candidate tye = 0.5 446 66.4 0.52
Clustering tye = 0.9 1041 66.4 0.86
Inter-Cluster  topkipter = 2 | 417 66.4 0.73
Evaluation  topkinier = 4 | 564 66.4 0.83
Intra-Cluster  topkinire =2 | 451 66.4 0.81
Evaluation  topkintra =4 | 522 66.4 0.81
Prediction p=4 501 66.4 0.81

Table 6: Summary of sensitivity analysis for GQA.

Sensitivity analysis explores how key hyperparameters affect Mordal’s performance and efficiency,
focusing on clustering thresholds ¢, and t;;,,,, exploration parameters S;,te and S;n¢rq, and scaling
prediction p. Careful tuning of these parameters ensures efficient operation without compromising
Mordal’s ability to select top-performing models. Generally, Mordal is robust and consistently
identifies the best-performing model across most hyperparameter settings.

Effect of clustering hyperparameters. The clustering threshold ¢, and t;;,, significantly affects
Mordal’s performance and efficiency. As shown in Table [6] a smaller threshold t,. = 0.5 creates
fewer, larger clusters based on the LLM’s general characteristics, which will lower the 7 value by
missing finer distinctions and discarding strong candidates with other LLM backend. On the other
hand, a larger threshold ¢, = 0.9 results in more, smaller clusters, capturing subtle differences and
improving the 7 value but increasing the number of candidates to evaluate during scaling prediction,
leading to longer searching time. Balancing the threshold is crucial to ensure diverse clusters while
keeping the computational cost reasonable.

Effect of inter- and intra-cluster hyperparameters. Based on Table[6] inter-cluster exploration
generally has a greater impact on Mordal’s performance than intra-cluster exploration. A smaller
topk;nter reduces the number of clusters evaluated, speeding up the search but lowering the 7 value
by excluding promising clusters aggressively. A larger topk;ntc, €xplores more clusters, increasing
search time but improving the 7 value by retaining diverse clusters. Intra-cluster early stopping
affects candidate selection within clusters, with smaller topk;,,, focusing on fewer candidates and
larger topk;n.rq €xploring more candidates for scaling prediction. However, its influence is smaller,
as clusters already limit diversity. Properly balancing these topk;, e, and topk;,s,, ensures efficient
exploration and strong performance.

Effect of scaling prediction hyperparameters. The scaling prediction parameter p has minimal
impact on Mordal’s overall performance but affects search time. Increasing p beyond appropriate
values adds to the computational cost without improving results. In practice, p = 3 is sufficient for
constructing the linear regression model used in scaling prediction.

D.3 Impact of Vision Encoders vs. LLMs
To understand the respective contributions of vision encoders and LLMs, we evaluated 4 x 4 combina-

tions of LLMs and vision encoders on two tasks: AI2D and VizWiz. Results are shown in Tables[Qal
and[9b] On AI2D, the choice of LLM dominates the performance: differences across LLMs (e.g.,
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Model CLIP  SigLIP DFN InternViT Model CLIP  SigLIP  DEN InternViT

Vicuna 54.8 53.0 52.7 53.4 Vicuna 41.2 44.8 344 30.7

Mistral 50.9 50.5 51.8 52.1 Mistral 45.1 46.9 35.6 313

Qwen 61.2 65.2 64.1 61.8 Qwen 433 44.6 38.9 334

LLaMA3 58.2 60.1 58.8 57.0 LLaMA3 379 38.1 35.2 325
(a) AI2D (b) VizWiz

Figure 9: Performance across combinations of LLMs and vision encoders on AI2D and VizWiz.

Qwen vs. Mistral) are significantly larger than differences across vision encoders within each row. On
VizWiz, vision encoders dominate—replacing InternViT with SigLIP improves accuracy by 6-15%
across all LLMs. These findings are consistent with prior work (Chen et al., 2024a; [Wang et al.,
2024), which shows that some tasks can be solved without a strong vision encoder.

Mordal accounts for these differences at a coarse granularity. For vision-centric tasks, the clustering
stage effectively eliminates underperforming clusters associated with weak vision encoders. Among
the remaining candidates—differing mainly in their language backbones—Mordal applies scaling
prediction to estimate and rank their performance.

D.4 Small-scale Models

Dataset Top-1 (Grid) Top-1 (Mordal) Time (Mordal) Kendall’s 7
GQA 62.4 (SigLIP-LLaMA) 62.4 189 (7.7x) 0.707
ChartQA 12.1 (SigLIP-Gemma) 12.1 217 (6.7x) 0.621
ScienceQA  66.8 (SigLIP-LLaMA) 66.8 166 (8.8 %) 0.740

Table 7: Small-scale results. Mordal matches grid search in identifying the top-1 model while
reducing training costs.

To evaluate scale robustness, we conducted additional experiments using the same seven vision
encoders in the paper and smaller LLMs (i.e., Gemma-2-2B, LLaMA-3.2-3B, and Phi-3.5-mini-3B).
The results are shown in Table[7] Mordal consistently selects the same top-1 model as full grid search
across all tasks, while reducing total training costs by 6.7x to 8.8x. However, we observe that
Kendall’s 7 is lower in the small-model setting. This is likely because smaller models exhibit more
inconsistent behavior, making scaling prediction less stable (Zohar et al.| 2025). In contrast, larger
models tend to demonstrate more predictable scaling behavior, which makes Mordal more effective.

E Discussion

Language Model Language Model A
Feature Projector Feature Projector
Vision Encoder Vision Encoder A\
Image Text Image Text

(a) Frozen pretrained modules (b) Updatable pretrained modules
Figure 10: Alternative alignment approaches for VLM instruction tunning.
Limitations. Mordal demonstrates promising results in efficiently selecting pretrained models fo
VLM with small vision encoders and 7B LLMs under a single-request. However, certain limitations

may be addressed to extend its utility and effectiveness. First, while Mordal significantly reduces
search time, it does not guarantee perfect top-1 prediction. On challenging tasks, poor clustering or
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early stopping may eliminate strong candidates. Second, Mordal’s performance can be sensitive to
both dataset and model scale; for instance, scaling prediction becomes less accurate with smaller
models, which tend to exhibit higher variance and less predictable behavior. Despite these limitations,
Mordal achieves a balance between efficiency and accuracy. It consistently identifies top-performing
models with a speedup of up to 11.6x over grid search, making it a practical solution for real-world
VLM selection where exhaustive search is often infeasible.

VLM alignment. One must go through an alignment process to ensure that the individual com-
ponents of the VLM are well integrated before using it. Developers integrate pretrained LLMs and
visual encoders, training the projector from scratch using visual alignment datasets like VQA |Antol
et al.[|(2015) . During the alignment process, pretrained components may remain frozen or be further
finetuned during alignment training [Liu et al.| (2023a). Recently, some proprietary models have
employed end-to-end training without using any pretrained models Bai et al.| (2023), but it is not
common due to the excessive training cost. While Mordal addresses pretrained model selection in
a popular VLM setting, it would be interesting to investigate its effectiveness under other VLM
structures with and without pretrained components.

Non-MLP projectors. We acknowledge the existence of non-MLP projector architectures, such
as the Q-former used in BLIP-2 (Li et al., [2023)). However, Q-former is being replaced in recent
VLMs. For example, BLIP-3 (Xue et al.|[2024) discards Q-former in favor of a more efficient sampler
mechanism. Currently, MLP-based projectors are the most prevalent choice in the VLM community
due to their simplicity, effectiveness, and compatibility with diverse architectures. Furthermore, MLP
projectors have been shown to generalize well beyond vision-language settings—for instance, in
multimodal projection for text, audio, and video in NExT-GPT (Wu et al., [2024). While our current
experiments focus on the MLP projector, Mordal is agnostic to the choice of projector architecture, as
long as the projector outputs a fixed embedding. We will expand our discussion in the future version
to clarify this point and outline how Mordal could be extended to handle non-MLP and multimodal
projectors.

Extend to smaller and larger models. Mordal’s design and evaluation have focused on small size
(i.e., 7B) pretrained models, making it efficient and practical for scenarios with limited computa-
tional resources. However, extending Mordal to handle smaller (e.g., 1B) and larger models (e.g.,
70B) introduces new challenges. For example, the computational overhead associated with larger
models significantly increases, requiring more memory and longer processing times for alignment
and evaluation. Mordal’s current optimization strategies may not scale effectively under these con-
ditions, necessitating further refinement to manage resource demands. Additionally, as shown in
Appendix [D.4] the similarity measurements and observational scaling law used to speed up evaluation
could become less effective with smaller or larger models due to shifts in their feature spaces, po-
tentially reducing the accuracy of candidate selection. To address these challenges, future iterations
of Mordal must incorporate distributed computing frameworks and advanced resource allocation
techniques. Adjustments to representation similarity metrics and scaling law formulations will also
be essential to maintain the framework’s robustness as models vary in size and complexity.

Similar requests among users. Mordal’s current implementation is designed to optimize pretrained
model selection for a single request at a time, which limits its efficiency in handling multiple similar
tasks submitted by users. This approach overlooks opportunities to reduce redundant computations
when user requests share overlapping requirements, leading to inefficient use of computational
resources. By evaluating a shared set of model candidates for grouped tasks, Mordal could eliminate
redundant computations and improve throughput. For example, implementing a caching mechanism
to store and reuse results for previously evaluated models and tasks could further enhance resource
efficiency. Addressing these limitations would enable Mordal to support multi-user environments and
dynamic workloads more effectively.

F Related Work

Model selection. Training-free model selection methods such as EMMS [Meng et al. (2023),
LogME |You et al.| (2021), LEEP [Nguyen et al.| (2020a)), and NLEEP |Li et al.| (2021) assess the
transferability of pretrained features without requiring additional finetuning. However, these methods
are primarily designed for architectures like CLIP and VisionEncoderDecoder models (as illustrated in
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Figure 11: Vision-language models: (a) CLIP-based VLM aligns image and text embeddings
via contrastive learning; (b) VisionEncoderDecoder VLM uses an encoder-decoder structure for
classification and OCR tasks; (c¢) LLM-based VLM combines a vision encoder with a language model
for multimodal interactions.

Figure [[Ta]and Figure [ITb). Other approaches assume that all candidates share the same architecture
and differ only in pretraining datasets [Tran et al.| (2019). LLM-based selection methods [Lin et al.
(2024) are also not directly applicable to VLMs, as vision and language components are pretrained
separately and not jointly aligned. Moreover, most existing techniques are tailored for classification
or regression tasks, and struggle with the open-ended nature of multimodal generation. Given the
growing number of open-source pretrained models and the unique challenges posed by multimodal
alignment, there is a clear need for pretrained model selection approaches specifically designed
for LLM-based VLMs (i.e., Figure [TTc). Mordal addresses this gap by enabling efficient and
alignment-aware selection of pretrained model combinations.

G LLM Usage

We used large language models solely to assist in polishing the writing of this paper. No part of the
research ideation, experimental design, or analysis relied on LLMs.
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