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Abstract

Many classic Reinforcement Learning (RL) algorithms rely on a Bellman operator,
which involves an expectation over the next states, leading to the concept of
bootstrapping. To introduce a form of pessimism, we propose to replace this
expectation with an expectile. In practice, this can be very simply done by replacing
the L2 loss with a more general expectile loss for the critic. Introducing pessimism
in RL is desirable for various reasons, such as tackling the overestimation problem
(for which classic solutions are double Q-learning or the twin-critic approach of
TD3) or robust RL (where transitions are adversarial). We study empirically these
two cases. For the overestimation problem, we show that the proposed approach,
ExpectRL, provides better results than a classic twin-critic. On robust RL
benchmarks, involving changes of the environment, we show that our approach is
more robust than classic RL algorithms. We also introduce a variation of ExpectRL
combined with domain randomization which is competitive with state-of-the-art
robust RL agents. Eventually, we also extend ExpectRL with a mechanism for
choosing automatically the expectile value, that is the degree of pessimism.

1 Introduction

Pessimism is a desirable concept in many Reinforcement Learning (RL) algorithms to stabilize the
learning and get an accurate estimation of the value function. This idea is developed in Double
Q-learning (Hasselt, 2010), an RL technique designed to address the issue of overestimation bias
in value estimation, a common challenge in Q-learning and related algorithms. Overestimation bias
occurs when the estimated values of actions are higher than their true values, potentially leading to a
suboptimal policy. By maintaining two sets of Q-values and decoupling action selection from value es-
timation, Double Q-learning provides a more accurate and less optimistic estimate of the true values of
actions. In general, Double Q-learning enhances the stability of the learning process and these princi-
ples can be extended to deep RL known as Double Deep Q-Networks (DDQN), a successful approach
in various applications (Van Hasselt et al., 2016). Pessimism also appears in the twin critic approach,
the equivalent of Double Q-learning for continuous action spaces, which requires training two critics
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to select the most pessimistic one. Many state-of-the-art RL algorithms are based on this method, such
as TD3 (Fujimoto et al., 2018) that uses this method to improve on DDPG (Lillicrap et al., 2015) and
SAC (Haarnoja et al., 2018) that uses this trick to stabilize the learning of Q-functions and policies.

The idea of pessimism is also central in Robust RL (Moos et al., 2022), where the agent tries to find
the best policy under the worst transition kernel in a certain uncertainty space. It has been introduced
first theoretically in the context of Robust MDPs (Iyengar, 2005; Nilim & El Ghaoui, 2005) (RMDPs)
where the transition probability varies in an uncertainty (or ambiguity) set. Hence, the solution
of robust MDPs is less sensitive to model estimation errors with a properly chosen uncertainty
set, as RMDPs are formulated as a max-min problem, where the objective is to find the policy that
maximizes the value function for the worst possible model that lies within an uncertainty set around
a nominal model. Fortunately, many structural properties of MDPs are preserved in RMDPs (Iyengar,
2005), and methods such as robust value iteration, robust modified policy iteration, or partial robust
policy iteration (Ho et al., 2021) can be used to solve them. It is also known that the uncertainty
in the reward can be easily tackled while handling uncertainty in the transition kernel is much more
difficult (Kumar et al., 2022; Derman et al., 2021). Finally, the sample complexity of RMDPs has
been studied theoretically (Yang et al., 2021; Shi & Chi, 2022; Clavier et al., 2023; Shi et al., 2023).
However, these works usually assume having access to a generative model.

Robust RL (Moos et al., 2022) tries to bridge a gap with real-life problems, classifying its algorithms
into two distinct groups. The first group engages solely with the nominal kernel or the center
of the uncertainty set. To enhance robustness, these algorithms often adopt an equivalent risk-
averse formulation to instill pessimism. For instance, Clavier et al. (2022) employ mean-standard
deviation optimization through Distributional Learning to bolster robustness. Another strategy
involves introducing perturbations on actions during the learning process, as demonstrated by Tessler
et al. (2019), aiming to fortify robustness during testing. Another method, known as adversarial kernel
robust RL (Wang et al., 2023), exclusively samples from the nominal kernel and employs resampling
techniques to simulate the adversarial kernel. While this approach introduces a novel paradigm, it
also leads to challenges associated with poor sample complexity due to resampling and requiring
access to a generative model. Despite this drawback, the adversarial kernel robust RL paradigm
offers an intriguing avenue for exploration and development in the realm of robust RL. Finally, policy
gradient (Kumar et al., 2023; Li et al., 2023) in the case of Robust MDPs is also an alternative. A
practical algorithm using robust policy gradient with Wasserstein metric is proposed by Abdullah
et al. (2019), but this approach requires having access to model parameters which are usually not
available in a model-free setting. The second category of algorithms engages with samples within
the uncertainty set, leveraging available information to enhance the robustness and generalization of
policies to diverse environments. Algorithms within this category, such as IWOCS (Zouitine et al.,
2023), M2TD3 (Tanabe et al., 2022), M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017)
actively interact with various close environments to fortify robustness in the context of RL.

In all these settings, the idea of pessimism is central. We propose here a new simple form of pessimism
based on expectile estimates that can be plugged into any RL algorithm. For a given algorithm, the
only modification relies on the critic loss in an actor-critic framework or in the Q-learning loss for Q-
function based algorithms. Given a target y (r, s′) = r+ γQϕ,targ (s

′, π(s′)) with reward r, policy π,
we propose to minimize L (ϕ,D) = E

(s,a,r,s′)∼D
[Lα

2 (Qϕ(s, a)− y (r, s′))] , where Lτ
2 is the expectile

loss defined in Section 3.3. For α = 1/2, the expectile coincides with the classical mean, and we re-
cover the classical L2 loss of most RL algorithms. We denote this modification as ExpectRL. In many
RL algorithms, we are bootstrapping the expectation of the Q-function over the next state, by defini-
tion of the classical Bellman equation. Our method ExpectRL is equivalent to bootstrapping the expec-
tile and not the expectation of the Q value. Bootstraping expectiles still leads to an algorithm with the
contraction mapping property for the associated Expectile Bellman Operator, but adds pessimism by
giving more weight to the pessimistic next state compared to a classical expectation (see Section 3.3).

The ExpectRL modification is relevant in the context of the twin critic approach as when employing
this method, the challenge arises in effectively regulating the level of pessimism through the
application of the twin critic method, which remains heuristic for continuous action spaces, although
it has been studied in the discrete case by Hasselt (2010). Furthermore, the acquisition of imprecise
Q functions has the potential to yield detrimental outcomes in practical applications, introducing the
risk of catastrophic consequences. Using the ExpectRL method, the degree of pessimism in learning
the value or Q function is controlled through the parameter α, and our first question is:
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Can we replace the learning of two critics in the twin critic method, using only a simple expectile
bootstrapping?

In the Robust RL setting, ExpectRL can also be beneficial as by nature expectiles are a coherent,
convex risk measure, that can be written as a minimum of an expectation over probability measure on a
close convex set (Delbaen, 2002). So implicitly bootstrapping an expectile instead of an average leads
to a robust RL algorithm. Compared to many Robust RL algorithms, our method is simple in the sense
that the α-expectile is more interpretable and easy to choose than a penalization or trade-off parameter
in mean-standard deviation optimization (Clavier et al., 2022). ExpectRL has the advantage of being
computationally simple compared to other methods, as it uses all samples, compared to the work of
Wang et al. (2023), that needs resampling to induce robustness. Finally, our method is simple and can
be adapted to practical algorithms, compared to robust policy gradient methods such as Kumar et al.
(2023); Li et al. (2023). Moreover, while these algorithms can be considered more mathematically
grounded and less heuristic, the second group with IWOCS, M2DTD2, RARL (Zouitine et al., 2023;
Tanabe et al., 2022; Li et al., 2019; Pinto et al., 2017) tends to rely on heuristic approaches that exhibit
practical efficacy on real-world benchmarks. This dichotomy prompts the question:

Can we leverage ExpectRL method as a surrogate for Robust RL and formulate robust RL algorithms
that are both mathematically founded and requiring minimal parameter tuning?

By extending expectile bootstrapping (ExpectRL) with sampling from the entire uncertainty set
using domain randomization (DR), our approach bolsters robustness, positioning itself competitively
against the best-performing algorithms. Notably, our algorithm incurs low computational costs
relatively to other algorithms and requires minimal or no hyperparameter tuning. Our contributions
are the following.

Our first contribution, is to introduce ExpectRL, and demonstrate the efficacy of that method as
a viable alternative to the twin critic trick with L2 loss across diverse environments. This substitution
helps empirically control of the overestimation in the Q-function, thereby reducing the computational
burden associated with the conventional application of the twin trick, which entails learning two
critics. The second contribution of our work lies in establishing that expectile bootstrapping
or ExpectRL facilitates the development of straightforward Deep Robust RL approaches. These
approaches exhibit enhanced robustness compared to classical RL algorithms. The effectiveness
of our approach combining ExpectRL with DR is demonstrated on various benchmarks and results
in an algorithm that closely approaches the state of the art in robust RL, offering advantages such
as lower computational costs and minimal hyperparameters to fine-tune. Our third contribution
introduces an algorithm, AutoExpectRL that leverages an automatic mechanism for selecting the
expectile or determining the degree of pessimism. Leveraging bandit algorithms, this approach
provides an automated and adaptive way to fine-tune the expectile parameter, contributing to the
overall efficiency and effectiveness of the algorithm.

2 Related Work

TD3 and twin critics. To tackle the problem of over-estimation of the value function, TD3 al-
gorithm (Fujimoto et al., 2018) algorithm uses two critics. Defining the target ymin as ymin (r, s

′) =
r + γmini=1,2 Qϕi,targ

(s′, π (s′)) , both critics are learned by regressing to this target, such that,
for i ∈ {1, 2}, L (ϕi,D) = E

(s,a,r,s′,d)∼D
(Qϕi

(s, a)− ymin (r, s
′))

2 Our approach is different as we

do not consider the classic L2 loss and only use one critic. We will compare ExpectRL to the classic
TD3 algorithm both with twin critics and one critic to understand the influence of our method.

Expectiles in Distributional RL. Expectiles have found application within the domain of
Distributional RL (RL), as evidenced by studies such as (Rowland et al., 2019; Dabney et al.,
2018; Jullien et al., 2023). It is crucial to note a distinction in our approach, where we specifically
focus on learning a single expectile to substitute the conventional L2 norm. This diverges from
the methodology adopted in these referenced papers, where the entire distribution is learned using
different expectiles. Moreover, they do not consider expectile statistics on the same random variable
as they consider expectiles of the full return.
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Expectile in Offline RL and the IQL algorithm . Implicit Q-learning (IQL) (Kostrikov et al.,
2021) in the context of offline RL endeavors to enhance policies without the necessity of evaluating
actions that have not been encountered. Like our method, IQL employs a distinctive approach by
treating the state value function as a random variable associated with the action, but achieves an
estimation of the optimal action values for a state by utilizing a state conditional upper expectile.
In ExpectRL, we employ lower expectiles to instill pessimism on the next state and approximate
a minimum function, contrasting with the conventional use of upper expectiles for approximating
the maximum in the Bellman optimality equation.

Risk-Averse RL. Risk-averse RL, as explored in studies like Pan et al. (2019), diverges from
the traditional risk-neutral RL paradigm. Its objective is to optimize a risk measure associated with
the return random variable, rather than focusing solely on its expectation. Within this framework,
Mean-Variance Policy Iteration has been considered for optimization, as evidenced by Zhang et al.
(2021), and Conditional Value at Risk (CVaR), as studied by Greenberg et al. (2022). The link
between Robust and Risk averse MDPS has been highlighted by Chow et al. (2015) and Zhang et al.
(2023) who provide a mathematical foundation for risk-averse RL methodologies, emphasizing the
significance of coherent risk measures in achieving robust and reliable policies. Our method lies
in risk-averse RL as expectiles are a coherent risk measure (Zhang et al., 2023), but to the best of our
knowledge, the expectile statistic has never been considered before for tackling robust RL problems.

Regularisation and robustness in RL. Regularization plays a pivotal role in the context of
Markov Decision Processes (MDPs), as underscored by Derman et al. (2021) or Eysenbach & Levine
(2021), who have elucidated the pronounced connection between robust MDPs and their regularized
counterparts. Specifically, they have illustrated that a regularised policy during interaction with a given
MDP exhibits robustness within an uncertainty set surrounding the MDP in question. In this work, we
focus on the idea that generalization, regularization, and robustness are strongly linked in RL or MDPs
as shown by Husain et al. (2021); Derman & Mannor (2020); Derman et al. (2021); Ying et al. (2021);
Brekelmans et al. (2022). The main drawback of this method is that it requires tuning the introduced
penalization to improve robustness, which is not easy in practice as it is very task-dependent. The
magnitude of the penalization is not always interpretable compared to α, the value of the expectile.

3 Background

3.1 Markov Decision Processes

We first define Robust Markov Decision Processes (MDPs) as MΩ = {Mω}ω∈Ω, with
Mω =

〈
S,A, Pω, P

0
ω , rω, γ

〉
the MDP with specific uncertainty parameter ω ∈ Ω. The chosen state

space S and action space A are subsets of real-valued vector spaces in our setting. The transition
probability density Pω : S × A × S → R, the initial state probability density P 0

ω : S → R, and
the immediate reward rω : S × A → R depend on ω. Moreover, we define Psa,w the vector of
Pω(s, a, .). The discount factor is denoted by γ ∈ (0, 1). Let πθ : S → A be a policy parameterized
by θ ∈ Θ and π∗ the optimal policy. Given an uncertainty parameter ω ∈ Ω, the initial state
follows s0 ∼ P 0

ω . At each time step t ⩾ 0, the agent observes state st, selects action at = πθ (st),
interacts with the environment, and observes the next state st+1 ∼ Pω (· | st, at), and the immediate
reward rt = rω (st, at). The discounted return of the trajectory starting from time step t is
Rt =

∑
k⩾0 γ

krt+k. The action value function qπθ (s, a, ω) and optimal action value q∗(s, a, ω)
under ω is the expectation of Rt starting with st = s and at = a under ω; that is,

qπθ (s, a, ω) = EPω,πθ
[Rt | st = s, at = a] , q∗(s, a, ω) = EPω,π∗ [Rt | st = s, at = a] ,

where E is the expectation. Note that we introduce ω to the argument to explain the Q-value
dependence on ω. Lastly, we define the value function as

vπθ (s, ω) = EPω,πθ
[Rt | st = s] , v∗(s, ω) = EPω,π∗ [Rt | st = s] .

In the following, we will drop the ω subscript for simplicity and define the expectile (optimal) value
function, that follows the recursive Bellman equation

vπ,P (s) = vπ(s) = Ea∼π(·|s)[r(s, a) + γEPsa [v
π]︸ ︷︷ ︸

≜qπ(s,a)

], v∗(s) = max
a∈A

(r(s, a) + γEPsa [v
∗]︸ ︷︷ ︸

≜q∗(s,a)

)). (1)
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Finally, we define the classical Bellman Operator and optimal Bellman Operator that are
γ-contractions, so iteration of these operators leads vπ or v∗:

(Tπv)(s) := (Tπ
r,P v)(s) =

∑
a

π(a|s)(r(s, a) + γEPsa
[v]) (2)

(T ∗v)(s) := (Tπ∗

r,P v)(s) = max
a

(r(s, a) + γEPsa
[v]). (3)

3.2 Robust MDPs

Once classical MDPs are defined, we can define robust (optimal) Bellman operators T π
U and T ∗

U ,

(Tπ
U v)(s) := min

r,P∈U

(
Tπ
r,P v

)
(s), (T ∗

Uv) (s) := max
π∈∆A

min
r,P∈U

(
Tπ
r,P v

)
(s), (4)

where P and r belong to the uncertainty set U . The optimal robust Bellman operator T ∗
U and robust

Bellman operator Tπ
U are γ-contraction maps for any policy π (Iyengar, 2005, Thm. 3.2) if the

uncertainty set U is a subset of ∆s where ∆s it the simplex of |S| elements so that the transition
kernel is valid. Finally, for any initial values vπ0 , v

∗
0 , sequences defined as vπn+1 := Tπ

U v
π
n and

v∗n+1 := T ∗
Uv

∗
n converge linearly to their respective fixed points, that is vπn → vπU and v∗n → v∗U .

3.3 Expectiles

Let’s first define expectiles. For α ∈ (0, 1) and X a random variable, the α-expectile is defined as
mα(X) = argminm Ex[L

α
2 (x −m)] with Lα

2 (u) = |α − 1{u<0}|u2 = αu2
+ + (1 − α)u2

−, where
u+ = max(u, 0) and u− = max(−u, 0). We can recover the classical mean with m 1

2
(X) = E[X]

as L
1/2
2 (u) = u2.Expectiles are gaining interest in statistics and finance as they induce the only

law-invariant, coherent (Artzner et al., 1999) and elicitable (Gneiting, 2011) risk measure. Using
the coherent property representation (Delbaen, 2000), one has that ρ : L∞ → R is a coherent risk
measure if and only if there exists a closed convex set P of P -absolutely continuous probability
measures such that ρ(X) = infQ∈P EQ[X],∀X ∈ L∞. with L∞ the vector space of essentially
bounded measurable functions with the essential supremum norm. The uncertainty set induced by
expectiles as been described by Delbaen (2013) as mα(X) = minQ∈E EQ[X] such as

E =

{
Q ∈ P | ∃η > 0, η

√
α

1− α
≤ dQ

dP
≤

√
(1− α)

α
η

}
(5)

where we define dQ
dP as the Radon-Nikodym derivative of Q with respect to P . Here, the uncertainty

set corresponds thus to a lower and upper bound on dQ
dP with a quantity depending on the degree

of uncertainty. For α = 1/2, the uncertainty set becomes the null set and we retrieve the classical
mean. This variational form of the expectile will be useful to link risk-sensitive and robust MDPs
formulation in the next section.

4 ExpectRL method

First, we introduce the Expectile Bellman Operator and then we will explain our proposed method
ExpectRL and AutoExpectRL that work both in classic and robust cases.

4.1 Expectile Bellman Operator

In this section, we derive the loss and explain our approach. Recall that for α ∈ (0, 1) and X a
random variable taking value x and following a probability law P , the α-expectile is denoted mα(X)
or mα(P, x) in the following. Writing the classical Bellman operator for q function

(Tq)(s, a) = r(s, a) + γ⟨Psa, v⟩ = r(s, a) + γEs′∼Psa(·)[v(s
′)].

and denoting Vsa the random variable which is equal to v(s′) with probability Psa(s
′), it holds that:

(Tq)(s, a) = r(s, a) + γm 1
2
(Vsa) = r(s, a) + γm 1

2
(Psa, v).
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Our method consists instead in considering the following Expectile Bellman operator

(Tαq)(s, a) = r(s, a) + γmα(Vsa). (6)

With α < 1
2 , Eq. (6) allows to learn a robust policy, in the sense that it is a pessimistic estimate about

the value we bootstrap according to the value sampled according to the nominal kernel. Next, we
define the expectile value of a given policy and the optimal expectile value as:

vπα(s) = Ea∼π(·|s)[r(s, a) + γmα(Psa, v
π
α)︸ ︷︷ ︸

≜qπα(s,a)

], v∗α(s) = max
a∈A

(r(s, a) + γmα(Psa, v
∗
α︸ ︷︷ ︸

≜q∗α(s,a)

)). (7)

With α = 1
2 , we retrieve the standard Bellman equations but we consider α < 1

2 for the robust case.
Finally, we define (optimal) expectile Bellman Operator as:

(Tπ
α v)(s) =

∑
a

π(a|s)(r(s, a) + γmα(Psa, v)). (T ∗
αv)(s) = max

a
(r(s, a) + γmα(Psa, v)).

Theorem 4.1. The (optimal) Expectile Bellman Operators are γ-contractions for the sup norm.
(proof in Appx. A).

So as Tπ
α and T ∗

α are γ-contractions, it justifies the definition of fixed point vπτ and v∗α. The central idea
to show that expectile bootstrapping or ExpectRL is implicitly equivalent to Robust RL comes (Zhang
et al., 2023) where we try to estimate the optimal robust value function v∗E = maxπ minQ∈E v

π,Q.
Theorem 4.2. The (optimal) Expectile value function is equal to the (optimal) robust value function

v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q, vπα(s) = vπE := min
Q∈E

vπ,Q (8)

where E is defined in 3.3. Proof can be found in A.2. Note that his formulation does not converge
to the expectile of the value distribution but to v∗E the robust value function. Moreoever, for α > 1/2,
Expectile Bellman operator is not anymore a contraction and there is no theoretical convergence
guarantees for risk-seeking RL, not considered here. Now that expectile operators are defined, we
will define the related loss.

4.2 The ExpecRL Loss

In this section, we present the method more from a computational and practical point of view. As
stated before, this method can be plugged into any RL algorithm where a Q-function is estimated,
which included any Q-function-based algorithm or some actor-critic framework during the critic
learning. For a given algorithm, the only modification relies on modifying the L2 loss in the Q-value
step by the Expectile loss. Given a target y (r, s′) = r + γQϕ,targ

(s′, π(s′)) with reward r, policy
π, we propose to minimize

L (ϕ,D) = E
(s,a,r,s′)∼D

[Lα
2 (Qϕ(s, a)− y (r, s′))] , (9)

where Lα
2 is the expectile loss defined in Section 3.3. For α = 1/2, the expectile coincides with

the classical mean, and we retrieve the classical L2 loss present in most RL algorithms. We will
use TD3 as a baseline and replace the learning of the critic with this loss. The actor loss remains
the same in the learning process. With ExpectRL, only one critic is needed, replacing the double
critic present in this algorithm. We will compare our method with the classical TD3 algorithm using
the twin critic trick and TD3 with one critic to see the influence of our method.

4.3 ExpecRL method with Domain randomisation

From a practical point of view, many Robust RL algorithms such as M2TD3 (Tanabe et al., 2022),
M3DDPG (Li et al., 2019), and RARL (Pinto et al., 2017) not only interact with the nominal environ-
ment but also with environments that belong to the uncertainty set U . Sampling trajectories from the
entire uncertainty set allows algorithms to get knowledge from dangerous trajectories and allows algo-
rithms to generalize better than algorithms that only sample from the nominal. Receiving information
about all environments that need to be robust during the training phase, the algorithm tends to obtain
better performance on minimum performance over these environments on testing. With the same idea
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of generalization, Domain Randomisation (DR) (Tobin et al., 2017) focuses not on the worst case
under the uncertainty set but on the expectation. Given a point of the uncertainty set Pω ∈ U , the DR
objective is: π∗

DR = argmaxπ Eω∈Ω,s∼P 0
ω
[vπ(s, w)]. In other words, DR tries to find the best policy

on average over all environments in the uncertainty set. The approach we propose to be competitive
on a robust benchmark is to find the best policy using ExpectRL under domain randomization or

π∗
DR,α = argmax

π
Eω∈Ω,s∼P 0

ω
[vπα(s, ω)] = argmax

π
Eω∈Ω,s∼P 0

ω
[ min
Pω∈E

vπ,P (s, ω)], (10)

where vπα(s, ω) is the expectile value function under uncertainty kernel Pω and E defined in Section
3.3. Using this approach, we hope to get sufficient information from all the environments using
DR and improve robustness and worse-case performance using ExpectRL. The advantage of
the approach is that any algorithm can be used for learning the policy, sampling from the entire
uncertainty set uniformly and replacing the critic loss of this algorithm learning with ExpecRl loss.
The effectiveness of this algorithm on a Robust benchmark will be conducted in Section 3. Getting
an algorithm that is mathematically founded and which tries to get the worst-case performance, the
last question is how to choose the degree of pessimism or α ∈ (0, 1/2) in practice. The following
section tries to answer this question using a bandit algorithm to auto-tune α.

4.4 Auto-tuning of the expectile α using bandit

In the context of varying levels of uncertainty across environments, the selection of an appropriate
expectile α becomes contingent on the specific characteristics of each environment. To automate
the process of choosing the optimal expectile, we employ a bandit algorithm, specifically the
Exponentially Weighted Average Forecasting algorithm (Cesa-Bianchi & Lugosi, 2006). We denote
this method as AutoExpectRL. This formulation adopts the multi-armed bandit problem, where each
bandit arm corresponds to a distinct value of α. We consider a set of D expectiles making predictions
from a discrete set of values {αd}Dd=1. At each episode m, a cumulative reward Rm is sampled, and
a distribution over arms pm ∈ ∆D is formed, where pm(d) ∝ exp (wm(d)). The feedback signal
fm ∈ R is determined based on the arm selection as the improvement in performance, specifically
fm = Rm − Rm−1, where Rm denotes the cumulative reward obtained in the episode m. Then,
wm+1 is obtained from wm by modifying only the dm according to wm+1(dm) = wm(dm)+η fm

pm(d)

where η > 0 is a step size parameter. The exponential weights distribution over α values at episode
m is denoted as pα

m. This approach can be seen as a form of model selection akin to the methodology
presented by Pacchiano et al. (2020). Notably, instead of training distinct critics and actors for each
α choice, our approach updates one single neural network for the critic and one single neural network
for the actor. In both critic and actor, neural networks are composed of one common body and
different heads for every value of α, in our case 4 values for {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. The
critic’s heads correspond to the 4 expectile losses for different values of α. The actor’s neural network
is trained using 4 classical TD3 losses, evaluated with action chosen by one specific head of the actor.
Then in both critic and actor, the 4 losses are summed, allowing an update of all heads at each iteration.
Finally, the sampling of new trajectories is done using the chosen head of the actor, proposed by the
bandit algorithm. More details about implementation can be found in Appendix B. Intuitively, when
the agent receives a higher reward compared to the previous trajectory, the probability of choosing this
arm is increased to encourage this arm to be picked again. Note that the use of a bandit algorithm to
automatically select hyperparameters in an RL algorithm has been proposed in other contexts, such as
Moskovitz et al. (2021); Badia et al. (2020). The AutoExpectRL method allows picking automatically
expectile α and reduces hyperparameter tuning. Practical details can be found in Appendix B where
we expose the neural network architecture of this problem and associated losses. Note that this
approach does not work in the DR setting as uncertainty parameters change between trajectories in
DR. It is difficult for the algorithm to know if high or low rewards on trajectories come because the
uncertainty parameter leads to small rewards, or if it is due to bad expectile picked at this iteration.

5 Empirical Result on Mujoco

The Mujoco benchmark is employed in this experiment due to its significance for evaluating robustness
in the context of continuous environments, where physical parameters may vary. In contrast, the Atari
benchmark very deterministic with discrete action space without physical parameters cannot change
during the testing period. In this section, we compare the performance of the TD3 algorithm using the
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TD3 Twin Critic TD3 1 critic ExpectRL best Expectile AutoExpectRL

Ant(×103) 3.65 ± 0.33 1.90 ± 0.07 4.46 ± 0.12 4.27 ± 0.25

HalfCheetah(×103) 10.91 ± 0.14 10.36 ± 0.54 10.42 ± 0.13 10.40 ± 0.09

Hopper(×103) 2.88 ± 0.10 2.022 ± 0.09 3.10 ± 0.05 3.03 ± 0.11

Walker(×103) 2.95 ± 0.12 2.35 ± 0.25 3.22 ± 0.11 3.02 ± 0.09

HumanoidStandup(×105) 1.101 ± 0.09 1.087 ± 0.09 1.197 ± 0.05 1.143 ± 0.010

Table 1: Expectile vs Twin-critic, Mean performance ± standard error, on 10 train seed

TD3 mean ExpectRL mean Auto mean TD3 worst ExpectRL worst Auto worst

Ant1(×103) 2.76 ± 0.5 3.55 ± 0.65 3.55 ± 0.51 2.22 ± 0.5 2.65 ± 0.57 2.71 ± 0.43

Ant2(×103) 2.28 ± 0.09 2.50 ± 0.89 2.41 ± 0.77 1.59 ± 0.08 2.49 ± 0.94 2.42 ± 0.51

Ant3(×103) 0.31 ± 1.13 0.54 ± 0.08 0.53 ± 0.69 −0.99 ± 1.13 −0.94 ± 0.21 −0.88 ± 0.34

Half1(×103) 2.79 ± 0.22 3.05 ± 0.48 2.98 ± 0.19 −0.34 ± 0.04 −0.27 ± 0.19 −0.27 ± 0.21

Half2(×103) 2.63 ± 0.20 2.51 ± 0.41 2.58 ± 0.32 −0.53 ± 0.06 −0.223 ± 0.16 −0.23 ± 0.10

Half3(×103) 2.47 ± 0.18 2.45 ± 0.42 2.39 ± 0.15 −0.61 ± 0.08 −0.557 ± 0.27 −0.58 ± 0.09

Hopper1(×103) 2.39 ± 0.14 2.76 ± 0.04 2.52 ± 0.11 0.4 ± 0.02 0.44 ± 0.01 0.449 ± 0.15

Hopper2(×103) 1.54 ± 0.17 2.06 ± 0.01 1.87 ± 0.02 0.21 ± 0.04 0.32 ± 0.03 0.32 ± 0.03

Hopper3(×103) 1.15 ± 0.14 1.43 ± 0.02 1.433 ± 0.09 0.14 ± 0.03 0.25 ± 0.22 2.42 ± 0.19

Walker1(×103) 3.12 ± 0.2 3.66 ± 0.68 3.58 ± 0.27 0.68 ± 0.12 2.77 ± 0.15 1.99 ± 0.13

Walker2(×103) 2.70 ± 0.2 3.98 ± 0.58 3.88 ± 0.61 0.28 ± 0.07 1.36 ± 0.82 1.11 ± 0.15

Walker3(×103) 2.60 ± 0.18 3.84 ± 0.45 3.58 ± 0.15 0.17 ± 0.06 0.65 ± 0.12 0.87 ± 0.09

Humanoid1(×105) 1.03 ± 0.4 1.12 ± 0.25 1.13 ± 0.26 0.85 ± 0.07 0.97 ± 0.23 0.98 ± 0.24

Humanoid2(×105) 1.03 ± 0.3 1.13 ± 0.15 1.11 ± 0.12 0.73 ± 0.07 0.83 ± 0.23 0.80 ± 0.18

Humanoid3(×105) 1.01 ± 0.3 1.06 ± 0.13 1.05 ± 0.18 0.57 ± 0.04 0.71 ± 0.21 0.68 ± 0.09

Table 2: Result on Robust Benchmark for TD3 ExpectRL and AutoExpectRL

twin critic method during learning, only one critic, and finally our method ExpectRL. The different
values of α are {αd}Dd=1 = {0.2, 0.3, 0.4, 0.5}. We can notice that ExpectRL with α = 0.5 is exactly
TD3 with one critic. Here, we only interact with the nominal and there is no notion of robustness. The
mean and standard deviation are reported in Table 1, where we use 10 seeds of 3M steps for training,
each evaluated on 30 trajectories. The last column is our last algorithm, AutoExpectRL. In all envi-
ronments except HalfCheetah, ExpectRL with fine-tuning of α has the best score and AutoExpectRL
has generally close results. The scores for every expectiles can be found in AppendixD. In Halcheetah
1 environment, it seems that no pessimism about Q-function is needed and our method ExpectRL
is outperformed by TD3 with twin critic. Similar observations have been observed in Moskovitz et al.
(2021) on this environment. Moreover, results for α = 0.5 and α = 0.4 are very close in Appendix D
while the variance is reduced using α = 0.4. Results of Table 1 show that it is possible to replace the
twin critic approach with only one critic with the relevant value of pessimism or expectile. Moreover,
one can remark in Appendix D that in Hopper, Walker, and Ant environment, high pessimism is
needed to get an accurate Q function and better results, with a value of α = 0.2 or α = 0.3 whereas
less pessimism with α = 0.4 is needed for HumanoidStandup and HalfCheetah. Note that the value
of α = 0.5 is never chosen and leads to generally the worst performance as reported in column
TD3 with one critic which coincides with α = 0.5. Finally, the variance is also decreased using our
method compared to TD3 with twin critics or TD3 with one critic. Finally, our method AutoExectRL
allows choosing automatically the expectile almost without loss of performance and outperforming
TD3, except on the environment HalfCheetah. Learning curves can be found in Appendix D.

6 Empirical Results on Robust Benchmark

This section presents an assessment of the worst-case and average performance and generalization
capabilities of the proposed algorithm. The experimental validation was conducted on optimal control
problems utilizing the MuJoCo simulation environments (Todorov et al., 2012). The performance
of the algorithm was systematically benchmarked against state-of-the-art robust RL M2TD3 as it
is state of the art compared to other algorithms methodologies, M3DDPG, and RARL. Furthermore,
a comparative analysis was undertaken with Domain Randomization (DR) as introduced by Tobin
et al. (2017) for a comprehensive evaluation. To assess the worst-case performance of the policy
π under varying uncertainty parameters ω ∈ Ω, following the benchmark of Tanabe et al. (2022),
30 evaluations of the cumulative reward were conducted for each uncertainty parameter value
ω1, . . . , ωK ∈ Ω. Specifically, Rk(π) denotes the cumulative reward on ωk, averaged over 30 trials.
Subsequently, Rworst(π) = min1⩽k⩽K Rk(π) (denoted (w) in Table 2 and 3) was computed as an
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DR+ExpectRL mean M2TD3 mean DR mean DR+ExpectRL worst M2TD3 worst DR worst

Ant1(×103) 4.84 ± 0.43 4.51 ± 0.08 5.25 ± 0.1 3.36 ± 0.55 3.84 ± 0.1 3.51 ± 0.08

Ant2(×103) 5.63 ± 0.43 5.44 ± 0.05 6.32 ± 0.09 2.72 ± 0.42 4.13 ± 0.11 1.64 ± 0.13

Ant3(×103) 2.86 ± 1.03 2.66 ± 0.22 3.62 ± 0.11 0.28 ± 0.35 0.10 ± 0.10 −0.32 ± 0.03

Half1(×103) 5.3 ± 0.59 3.89 ± 0.06 5.93 ± 0.18 2.86 ± 0.99 3.14 ± 0.10 3.19 ± 0.08

Half2(×103) 5.25 ± 0.32 4.35 ± 0.05 5.79 ± 0.15 1.77 ± 0.31 2.61 ± 0.16 2.12 ± 0.13

Half3(×103) 4.52 ± 0.24 3.79 ± 0.09 5.54 ± 0.16 1.02 ± 0.24 0.93 ± 0.21 1.09 ± 0.06

Hopper1(×103) 2.58 ± 0.23 2.68 ± 0.11 2.57 ± 0.15 0.64 ± 0.20 0.62 ± 0.45 0.53 ± 0.26

Hopper2(×103) 2.53 ± 0.22 2.51 ± 0.07 1.89 ± 0.08 0.55 ± 0.07 0.53 ± 0.28 0.47 ± 0.02

Hopper3(×103) 2.21 ± 0.33 0.85 ± 0.07 1.5 ± 0.07 0.39 ± 0.07 0.28 ± 0.25 0.21 ± 0.03

Walker1(×103) 3.77 ± 0.89 3.70 ± 0.31 3.59 ± 0.26 3.41 ± 0.05 2.83 ± 0.39 2.19 ± 0.42

Walker2(×103) 4.75 ± 0.57 4.72 ± 0.12 4.54 ± 0.31 2.74 ± 0.61 3.14 ± 0.39 2.31 ± 0.51

Walker3(×103) 4.39 ± 0.37 4.27 ± 0.21 4.48 ± 0.16 1.14 ± 0.79 1.34 ± 0.43 1.32 ± 0.34

Humanoid1(×105) 1.21 ± 0.23 1.08 ± 0.04 1.12 ± 0.05 1.04 ± 0.86 0.93 ± 0.07 0.96 ± 0.06

Humanoid2(×105) 1.23 ± 0.22 0.97 ± 0.04 1.06 ± 0.04 0.86 ± 0.28 0.65 ± 0.07 0.73 ± 0.78

Humanoid3(×105) 1.12 ± 0.35 1.09 ± 0.06 1.04 ± 0.07 0.84 ± 0.26 0.62 ± 0.06 0.54 ± 0.34

Table 3: Result on Robust Benchmark for ExpectRL + DR , M2TD3 and DR.

estimate of the worst-case performance of π on Ω. Additionally, the average performance was
computed as Raverage(π) = 1

K

∑K
k=1 Rk(π) (denoted (m) in Table 2 and 3). For the evaluation

process, K uncertainty parameters ω1, . . . , ωK were chosen according to the dimensionality of ω:
for 1D ω, K = 10 equally spaced points on the 1D interval Ω; for 2D ω, 10 equally spaced points
were chosen in each dimension of Ω, resulting in K = 100 points; and for 3D ω, 10 equally spaced
points were selected in each dimension of Ω, resulting in K = 1000 points or different environments.
Each approach underwent policy training 10 times in each environment. The training time steps Tmax

were configured as 2M, 4M, and 5M for scenarios with 1D, 2D, and 3D uncertainty parameters
respectively, following Tanabe et al. (2022). Table 6 summarizes the different changes of parameters
in the environments. The final policies obtained from training were then evaluated for their worst-case
performances and average performance over all uncertainty parameters. The results are the following.

We first demonstrate that our method ExpectRl is more robust than the classical RL algorithm. To do
so, we conduct the benchmark task presented previously on TD3 algorithm (with twin critic trick) as a
baseline and our method ExpectRl. As exposed in Table 2, our method outperforms TD3 in all envi-
ronments on worst-case performance, which was expected as TD3 is not designed by nature to be ro-
bust and to maximize a worst-case performance. Moreover, AutoExpectRL has good and similar per-
formance compared to the best expectile like in Table 1. As TD3 has sometimes very bad performance,
our method also performs better on average over all environments except HalfCheetah 2 and HalfChee-
tah 3. These two environments required more exploration, and pessimism is in general not a good thing
for these tasks. Moreover, robustness is not needed in HalfCheetah environments that are already quite
stable compared to other tasks in Mujoco. However, ExpectRL needs to be compared with algorithms
designed to be robust, such as M2TD3 which has state-of-the-art performance on this benchmark.

If performance of ExpectRL in Table 2 and the performance of M2TD3 in Table 3 are compared,
we can observe a large difference on many tasks where M2TD3 outperforms, in general, our method.
This is because sampling trajectories from the entire uncertainty set allows M2TD3 to get knowledge
from dangerous trajectories and allows the algorithm to generalize better than our method, which
only samples from the nominal. The comparison between methods is then not fair for ExpectRl
which has only access to samples from the nominal and this is why the method ExpectRL + DR
was introduced. Receiving information about all environments that need to be robust during the
training phase, the algorithm tends to obtain better performance on minimum performance over
these environments on testing. Table 3 shows the result on average and on worst-case performance
between our second method ExpectRL + DR with tuning of α against M2TD3 and DR approach.
Recall that AutoExpectRL cannot be used with DR as mentioned at the end of Section 4.4.

In terms of worst-case performance, our method outperforms 9 times M2TD3 (8 times in bold and one
time when DR is better in general for HalfCheetaht3) and has a worse performance on 6 tasks com-
pared to M2TD3. Our method is therefore competitive with the state of the art in robust algorithms
such as M2TD3, which already outperformed M3DDPG and RARL on worst-case performance. Ex-
cept on Hopper1, our method outperforms M2TD3 on average, results which show that M2TD3 is very
pessimistic compared to our method. However, in terms of average results, we can see that DR, which
is designed to be good on average across all environments, generally performs better than our method
and M2TD3 expect on Hopper, Walker1 and 2, and HumanoidStandup which are not stable and need
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to be robustified to avoid catastrophic performance that affect too much the mean performance over all
environment. Moreover, compared to M2TD3, our method ExpecRL, even without auto fine-tuning
of α, has the advantage of having fewer parameter tuning compared to the M2TD3 algorithm.

7 Conclusion and perspectives

We propose a simple method, ExpectRL to replace twin critic in practice, only replacing the classic
L2 loss of the critic with an expectile loss. Moreover, we show that it can also lead to a Robust
RL algorithm and demonstrate the effectiveness of our method combined with DR on a robust RL
Benchmark. The limitations of our method are that AutoExpectRL allows fine-tuning of α only
without combining with DR. Another limitation is that the uncertainty set defined with expectile
is not very interpretable, and other algorithms with a more interpretable set and similar experimental
results would be interesting. About future perspectives, we demonstrate the effectiveness of our
method using as baselines TD3, but our method can be easily adapted to any algorithm using a
Q-function such as classical DQN, SAC, and other algorithms both with discrete or continuous
action space. Finally, theoretically, it would be interesting to study for example sample complexity
of this method compared to the classical RL algorithm.
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A Proof

Theorem A.1.
(Tπ

α v)(s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, v)). (11)

this is a contraction:

The expectile satisfies the following properties (Bellini et al., 2014; Bellini & Di Bernardino, 2017):

1. Translation invariance: mτ (X + h) = mα(X) + h

2. Monotonicity: X ≤ Y a.s.⇒ mτ (X) ≤ mα(Y )

3. Positive homogeneity:
λ ≥ 0⇒ mα(λX) = λmτ (X)

4. Superadditivity, for α ≤ 1
2 ,mτ (X + Y ) ≥ mα(X) +mα(Y ).
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So,

(Tπ
α v1)(s)− (Tπ

α v2)(s) =
∑
a

π(a|s)(r(s, a) + γmα(Psa, v1))−
∑
a

π(a|s)(r(s, a) + γmα(Psa, v2))

(12)

= γ
∑
a

π(a|s)(mα(Psa, v1)−mα(Psa, v2)) (13)

≤ γ
∑
a

π(a|s)(mα(Psa, v2 + ∥v2 − v1∥∞)−mα(Psa, v2)) (14)

(by monotonicity) and v1 ≤ v2 + ∥v2 − v1∥∞)

= γ
∑
a

π(a|s)(mα(Psa, v2) + ∥v2 − v1∥∞ −mα(Psa, v2)) (by translation invariance) (15)

= γ∥v2 − v1∥∞. (16)

In the same manner, T ∗
α is also a contraction, as the only line of this proof that differs is replacing

the expectation by a maxa. As maximum operator 1-Lipschitz, (ie) maxa f(a) − max g(a) ≤
max f(a)− g(a), we obtain γ- contraction results also for the optimal Bellman operator T ∗

α .

Similar ideas exist in Zhang et al. (2023), which show similar properties for risk-sensitive MDPs
defined through a convex risk measure, even though they do not consider explicitly the expectile
which is a convex risk measure for α < 1/2.
Theorem A.2. The (optimal) Expectile value function is equal to the (optimal) robust value function

v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q (17)

vπα(s) = vπE := min
Q∈E

vπ,Q (18)

where E is defined in section 3.3 or below.

Proof. This theorem is just an adaptation of Theorem 2 in Zhang et al. (2023) where we use expectile
risk measure mα(X) which implicitly defined the uncertainty set for robust E such that :

mα(X) = min
Q∈E

EQ[X];

E =

{
Q ∈ P | ∃η > 0,

√
α

1− α
η ≤ dQ

dP
≤

√
(1− α)

α
η

}
where P is the set of P -absolutely continuous probability measures. In Theorem Zhang et al. (2023),
they link Risk sensitive MDPs (in our case expectile formulation) with Regularised Robust MDPs. In
our case, we can rewrite the classical RMDPs to Regularised-Robust MDPs such that:

v∗E = max
π

min
Q∈E

vπ,Q = max
π

min
Q∈E

E
[∑

t

γtr(st, at)
]

=max
π

min
Q∈P

E
[∑

t

γt(r(st, at) + γD(Pt;st,at , Qt;st,at)
]

with D a penalty function that can be chosen as KL diverengence for example and Pt;st,at
the

transition kernel at time t with current state action (st, at).For the expectile risk measure, the
corresponding D is simply:

D(P,Q) =

{
0 if η

√
α

1−α ≤ P (s)/Q(s) ≤
√

(1−α)
α η,∀s ∈ S

+∞ otherwise.

where η is defined in 3.3. Using Theorem 2 of Zhang et al. (2023), we have directly that :
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v∗α(s) = vπE := max
π

min
Q∈E

vπ,Q (19)

vπα(s) = vπE := min
Q∈E

vπ,Q. (20)

B AutoExpectRL algorithm description

In the section, we gives implementation details of our algorithm AutoExpectRL. First, we choose
a neural network that has 4 heads for the critic, one per value of α, leading to 4 estimates of the
pessimist Q-function, Qϕd

(s, a), ∀d ∈ [1, 4]. Even if some parameters are shared in the body of
the network, we denote parameters of the critic as ϕ = {ϕ1, ϕ2, ϕ3, ϕ4}. A similar network is used
for actor neural network, with four heads, one per policy πθd ,∀d ∈ [1, 4]. with θ = {θ1, θ2, θ3, θ4}.
Given 4 target yd (r, s′) = r + γQϕd,targ

(s′, πθd(s
′)) with reward r, policy πθd , we propose to

minimize the AutoExpectRL critic loss

Lauto (ϕ,D) = E
(s,a,r,s′)∼D

[
4∑

d=1

Lαd
2 (Qϕd

(s, a)− yd (r, s
′))

]
. (21)

which as associated UpdateCritics(B, θ, ϕ) function which is a gradient ascent using :

∆ϕ ∝ ∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

4∑
d=1

Lαd
2 (Qϕd

(s, a)− yd (r, s
′)) . (22)

The actor of our algorithm AutoExpectRL is updated according to the gradient of the sum of the
actor’s head losses or UpdateActor(T, θ, ϕ):

∆θ ∝ ∇θ
1

|B|
∑
s∈B

4∑
k=1

Qϕk
(s, πθk(s)) . (23)

The dimension of our neural network is related to the dimension of the classical network of TD3. First,
we choose a common body of share weights for our neural network of hidden dimension [400, 300].
Then our network is composed of 4 heads, each with final matrix weights of dimensions 300 × 1
where 1 represents the value of one pessimist Q-function Qk. The dimension of the actor-network
hidden layers is similar to the critic network for share weights, but the non-shared weights between
the last hidden layer and the 4 policies have dimension 300 × |A|. Finally, the sampling of new
trajectories is done using the actor head with the chosen current α proposed by the bandit algorithm
using πθd with d the index of the chosen expectile.

The algorithm can be summarised as in Algorithm 1. The blue parts are parts that differ from the
traditional TD3 algorithm, as they are related to the bandit mechanism or ExpectRL losses. Note
that the parameter b, the delay between the update of the critic and the actor, is usually chosen as
2 in TD3 algorithm. Finally, in the update of the bandit, an extra parameter, the learning rate η of
the gradient ascent must be chosen. This parameter influences how fast the bandit converges to an
arm, and in our case is chosen as 0.2 like in Moskovitz et al. (2021) which uses bandit to fine-tune
parameters in Rl algorithm. for all environments. Finally, in the testing phase of the benchmark, the
best arm is chosen to maximize the reward.

C Hyperparameters

All experiments were run on an internal cluster containing a mixture of GPU Nvidia Tesla V100
SXM2 32 Go. Each run was performed on a single GPU and lasted between 1 and 8 hours, depending
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Algorithm 1 AutoExpectRL
1: Initialize critic networks Qϕd

and actor πθ ∀d ∈ [1, 4]
Initialize target networks for all networks, i.e. ∀d ∈ [1, 4] ϕ′

d ← ϕd, θ′d ← θd
Initialize replay buffer and bandit probabilities B ← ∅, pα

1 ← U([0, 1]D)
2: for episode in m = 1, 2, . . . do
3: Initialize episode reward Rm ← 0
4: Sample expectile αm ∼ pα

m
5: for time step t = 1, 2, . . . , T do
6: Select noisy action at = πθd(st) + ϵ, ϵ ∼ N (0, s2), obtain rt+1, st+1 where d is the index

in the bandit problem of chosen expectile αm

7: Add to total reward Rm ← Rm + rt+1

8: Store transition B ← B ∪ {(st, at, rt+1, st+1)}
9: Sample N transitions B = (s, a, r, s′)

N
n=1 ∼ B.

10: Update Critics(B, θ′, ϕ′) according to (22).
11: if t mod b then
12: UpdateActor(T, θ, ϕ) according to (23).
13: Update ϕ′

d: ϕ′
d ← τϕd + (1− τ)ϕ′

d, d ∈ {1, 4}
14: Update θ′: θ′d ← τθd + (1− τ)θ′d
15: end for
16: Update bandit pα weights using : wm+1(d) = wm(d) + ηRm−Rm−1

pα
m(d)

17: end for

Hyperparameter Value
Learning rate actor 3e− 4
Learning rate critic 3e− 3
Batch size 100
Memory size 3e5
Gamma 0.99
Polyak update τ 0.995
Number of steps before training 7e4
Train frequency and gradient step 100
Network Hidden Layers (Critic) [400, 300] like original implementation of TD3
Network Hidden Layers (Actor) [400, 300] like original implementation of TD3

Table 4: Hyperparameters

on the task and GPU model. Our baseline implementations for TD3 is Raffin et al. (2021) where we
use the same base hyperparameters across all experiments, displayed in Table C.

D AutoExpecRL vs other expectiles on Robust benchmark for mean on
Table 1

This section illustrates the fact that ExpecRLmethod outperforms on robust benchmark TD3 algorithm.
Without any hyperparameter tuning, AutoExpecRL achieves a similar performance to ExpecRL with
the best expectile, finding the best arms in the bandit problem. In Ant and Hopper environments,
the best expectile is frequently very low, typically α = 0.2 our 0.3 where this is less the case for
HalfCheetah and Humanoid where the best expectile is bigger. Finally, we can remark that smaller
expectiles give better performance in terms of min performance while for average metric, higher
expectiles are chosen, which is also verified in Table 5 for DR benchmark.
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Figure 1: Mean performance as a function of the expectile, non-robust case (corresponding to
Table 1).
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Figure 2: Learning curves non-robust case (corresponding to Table 1).

E Worst case performance for AutoExpecRL and ExpecRL (only nominal
samples) or Table 2.

E.1 For 1D uncertainty greed benchmark
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Figure 3: Min performance as a function of the expectile, robust case (corresponding to Table 2).

E.2 For 2D uncertainty greed benchmark

Figure 4: Min performance as a function of the expectile, robust case (corresponding to Table 2).

E.3 For 3D uncertainty greed benchmark

F Average performance for AutoExpecRL and ExpecRL(only nominal
samples) or Table 2.
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Figure 5: Min performance as a function of the expectile, robust case (corresponding to Table 2).

F.1 For 1D uncertainty greed benchmark

Figure 6: Min performance as a function of the expectile, robust case (corresponding to Table 2).

F.2 For 2D uncertainty greed benchmark
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Figure 7: Min performance as a function of the expectile, robust case (corresponding to Table 2).

F.3 For 3D uncertainty greed benchmark

Figure 8: Min performance as a function of the expectile, robust case (corresponding to Table 2).

G Additional details for expectiles on Robust benchmark for worst-case and
mean on Table 3
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Env Min Mean

Ant1 3 3
Ant2 2 3
Ant3 2 3
HalfCheetah1 3 3
HalfCheetah2 3 3
HalfCheetah3 3 3
Hopper1 3 4
Hopper2 3 4
Hopper3 3 3
Walker1 3 4
Walker2 4 4
Walker3 3 3
HumanoidStandup1 3 3
HumanoidStandup2 2 3
HumanoidStandup3 2 3

Table 5: Best Expectile in DR for ExpectRL

H Uncertainty sets used for Robust benchmark

Table 6: Uncertainty sets used for Robust benchmark
Environment Uncertainty Set Ω Reference Parameter Uncertainty Parameter Name

Baseline MuJoCo Environment: Ant

Ant 1 [0.1, 3.0] 0.33 torso mass

Ant 2 [0.1, 3.0] × [0.01, 3.0] (0.33, 0.04) torso mass × front left leg mass

Ant 3 [0.1, 3.0] × [0.01, 3.0] × [0.01, 3.0] (0.33, 0.04, 0.06) torso mass × front left leg mass × front right leg mass

Baseline MuJoCo Environment: HalfCheetah

HalfCheetah 1 [0.1, 4.0] 0.4 world friction

HalfCheetah 2 [0.1, 4.0] × [0.1, 7.0] (0.4, 6.36) world friction × torso mass

HalfCheetah 3 [0.1, 4.0] × [0.1, 7.0] × [0.1, 3.0] (0.4, 6.36, 1.53) world friction × torso mass × back thigh mass

Baseline MuJoCo Environment: Hopper

Hopper 1 [0.1, 3.0] 1.00 world friction

Hopper 2 [0.1, 3.0] × [0.1, 3.0] (1.00, 3.53) world friction × torso mass

Hopper 3 [0.1, 3.0] × [0.1, 3.0] × [0.1, 4.0] (1.00, 3.53, 3.93) world friction × torso mass × thigh mass

Baseline MuJoCo Environment: HumanoidStandup

HumanoidStandup 1 [0.1, 16.0] 8.32 torso mass

HumanoidStandup 2 [0.1, 16.0] × [0.1, 8.0] (8.32, 1.77) torso mass × right foot mass

HumanoidStandup 3 [0.1, 16.0] × [0.1, 5.0] × [0.1, 8.0] (8.32, 1.77, 4.53) torso mass × right foot mass × left thigh mass

Baseline MuJoCo Environment: Walker

Walker 1 [0.1, 4.0] 0.7 world friction

Walker 2 [0.1, 4.0] × [0.1, 5.0] (0.7, 3.53) world friction × torso mass

Walker 3 [0.1, 4.0] × [0.1, 5.0] × [0.1, 6.0] (0.7, 3.53, 3.93) world friction × torso mass × thigh mass
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