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ABSTRACT

Recent advances in visual generation have made significant strides in producing
content of exceptional quality. However, most methods suffer from a fundamental
problem - a bottleneck of inference computational efficiency. Most of these al-
gorithms involve multiple passes over a transformer model to generate tokens or
denoise inputs. However, the model size is kept consistent throughout all itera-
tions, which makes it computationally expensive. In this work, we aim to address
this issue primarily through two key ideas - (a) not all parts of the generation pro-
cess need equal compute, and we design a decode time model scaling schedule
to utilize compute effectively, and (b) we can cache and reuse some of the com-
putation. Combining these two ideas leads to using smaller models to process
more tokens while large models process fewer tokens. These different-sized mod-
els do not increase the parameter size, as they share parameters. We rigorously
experiment with ImageNet256×256 , UCF101, and Kinetics600 to showcase the
efficacy of the proposed method for image/video generation and frame prediction.
Our experiments show that with almost 3× less compute than baseline, our model
obtains competitive performance.

1 INTRODUCTION

The last decade has witnessed tremendous progress in image and video generation, under diverse
paradigms - Generative Adversarial Networks (Brock, 2018; Sauer et al., 2022), denoising processes
such as diffusion models (Ho et al., 2020; 2022b; Dhariwal & Nichol, 2021; Rombach et al., 2022;
Gu et al., 2022), image generation via vector quantized tokenization (Razavi et al., 2019; Esser et al.,
2021; Ge et al., 2022; Van Den Oord et al., 2017), and so on. In recent years, diffusion models and
modeling visual tokens as language have been the de-facto processes used to generate high-quality
images. While initially proposed with a CNN or U-Net based architectures (Rombach et al., 2022;
Saharia et al., 2022), transformer models have become the norm now for these methods (Peebles &
Xie, 2023; Yu et al., 2023a).

The recent advancements in visual generation can be categorized along two axes – (a) different
types of denoising processes in the continuous latent space (Ho et al., 2020; Nichol & Dhariwal,
2021b), discrete space (Gu et al., 2022; Lou et al.) or masking in the discrete space (Yu et al.,
2023a; Chang et al., 2022), continuous space (Li et al., 2024a) (b) modeling tokens either auto-
regressively (Kondratyuk et al., 2024; Esser et al., 2021; Yu et al., 2021) with causal attention or
parallel decoding with bi-directional attention (Gu et al., 2022; Yu et al., 2023a; Chang et al., 2022;
Zheng et al., 2022). To achieve a high synthesis fidelity, both, denoising in diffusion models, and
raster scan based auto-regressive token modeling require several iterations.

Recently, parallel decoding of discrete tokens have shown promise in generating high quality images
with few iterations - MaskGIT (Chang et al., 2022), MAGVIT (Yu et al., 2023a), MUSE (Chang
et al., 2023), MaskBIT (Weber et al., 2024), TiTok (Yu et al., 2024b). These models are trained with
Masked Language Modeling (MLM) type losses, and the generation process involves unmasking
a few confident tokens every decoding iteration, starting from all masked tokens. They can even
surpass diffusion models, given a good visual tokenizer (Yu et al., 2023b; Weber et al., 2024).
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MaskGIT++ (FID=2.3)               MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 1: Class-conditional image generation on ImageNet.. Comparing MaskGIT++ and MaGNeTS

Although MaskGIT reduces decode complexity significantly, parallel decoding still includes several
redundant computations. First, the need for same capacity model for all steps needs to be inves-
tigated. Second, unlike auto-regressive models, which cache its computation in all steps, parallel
decoding models perform re-computation for all tokens. We empirically find that a smaller model
can generate good-quality images but its performance saturates after a point with more decoding
iterations. A bigger model can perform finer refinement and generate better-quality images.

Motivated by these observations, we present Masked Generate Nested Transformers with Decode
Time Scaling (MaGNeTS). We design a model size curriculum over the decoding process, which
efficiently utilize compute. MaGNeTS gradually scales the model size up to the full model size
over the decoding iterations instead of using a single large model throughout. Operating on discrete
tokens, we cache key-value pairs of unmasked tokens and reuse them in later iterations. A combined
effect of these two techniques leads to processing more tokens with smaller and fewer tokens with
larger models. The heterogenous sized models share parameters, sequentially occupying larger and
larger subspaces of the parameter space, as in MatFormer (Kudugunta et al., 2023). We build MaG-
NeTS on top of MaskGIT. We find that MaskGIT can be drastically improved using classifier-free
guidance, specifically when trained with it. We call this MaskGIT++ and use this as the improved
baseline, presenting all results on top of it.

On ImageNet, with ∼ 3× less compute, MaGNeTS generates images of similar quality as
MaskGIT++ (see Figure 1). It is also comparable to state-of-the-art methods, which need signif-
icantly more compute. We also show MaGNeTS’s efficacy on video datasets like UCF101 (Soomro
et al., 2012) and Kinetics600 (Carreira et al., 2018). We summarize our main contributions below:

• We introduce model size scheduling over the generation process for inference efficiency.
• We show that like auto-regressive models, KV-caching can also be used in parallel decoding,

which can effectively reuse computation when refreshed appropriately.
• We introduce nested modeling in image/video generation to exploit the above ideas effectively.
• Extensive experiments show that MaGNeTS offers 2.5 - 3.7× compute gains across tasks.

2 RELATED WORK

Efficient Visual Generation. Image generation literature has seen significant improvements in
the past years - Generative Adversarial Networks (Brock, 2018; Sauer et al., 2022), discrete token
based models (Chang et al., 2022; Yu et al., 2023a), diffusion-based models (Kingma & Gao, 2023;
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Figure 2: MaGNeTS Decoding. We start from the smallest nested model with an empty cache and gradually
move to bigger models over the decode iters. We iterate with a model size for a few iterations, before moving
onto the next model size. As we cache key-value for the unmasked tokens, the KV cache size also increases
over time. We also refresh the cache when we switch models, hence its dimension increases over decode iters.

Hoogeboom et al., 2023), and more recently hybrid models (Peebles & Xie, 2023; Yu et al., 2024c),
but they often guzzle computing power. Researchers tackle this bottleneck of computational costs
with efficient model architectures and smarter sampling strategies.

In diffusion model literature, there have been some work to reduce the number of sampling steps, by
treating the sampling process like ordinary differential equations (Song et al., 2022; Lu et al., 2022;
Liu et al., 2022), incorporating additional training process (Kong & Ping, 2021; Nichol & Dhariwal,
2021a; Salimans & Ho, 2022; Song et al., 2023), sampling step distillation (Salimans & Ho, 2022;
Song et al., 2023; Berthelot et al., 2023; Meng et al., 2023; Feng et al., 2024), sampling and training
formulation modifications (Esser et al., 2024; Song et al., 2023), and more. Recently, there has
been growing interest in understanding how each step in the diffusion sampling process contributes
(Choi et al., 2022; Park et al., 2023; Lee et al., 2024). These approaches analyze sampling steps
leveraging distance metrics such as LPIPS, Fourier analysis, and spectral density analysis. Building
on these explorations researchers have designed methods based on optimal sampling steps (Watson
et al., 2022; Lee et al., 2024), weighted training loss (Choi et al., 2022), and step-specific models (Li
et al., 2023; Yang et al., 2024; Lee et al., 2023). These step-specific models use compute expensive
evolutionary search algorithms, directly optimizing the quality metric, FID (Heusel et al., 2017).
Concurrently, researchers are actively addressing the inherent architectural costs of diffusion models,
particularly the transformer attention mechanism (Yuan et al., 2024; Yan et al., 2024).

Certain works also focus on building better tokenizers. Rombach et al. (2022) took diffusion models
from pixel to compressed latent space for efficient and scalable generation. Yu et al. (2023b); Weber
et al. (2024) explore vector quantizers in the tokenization process to improve generation quality.
Tian et al. (2024) explore multi-scale tokenizer, while Yu et al. (2024b) look at 1D tokenizers to
reduce the number of compressed tokens. Instead of sampling or tokenization optimization, we
tackle an orthogonal problem of efficient compute allocation over the multi-step generation process.
This makes our approach usable with a variety of tokenizers, architectures and sampling schemes.

Nested Models. Rippel et al. (2014) introduced nested dropout to learn ordered representations
that improve retrieval speed and adaptive data compression. Matryoshka Learning (Kusupati et al.,
2022) introduces the concept of nestedness in embedding space, making them flexible. MatFormer
(Kudugunta et al., 2023) applies the same concept to the MLP hidden layer in each transformer
block. Recent methods like (Cai et al., 2024a; Hu et al., 2024) explore the idea of nested models in
multimodal large language models. MoNE (Jain et al., 2024) and Flextron (Cai et al., 2024b) learn
to route tokens to variable sized nested models leading to inference compute efficiency. In this work,
we show how different stages of a multi-step task like image generation, can be efficiently handled
by nested models instead of relying on the full model at every step.

3 PRELIMINARIES

Parallel Decoding for Image Generation. Masked Generative Image Transformer (MaskGIT)
(Chang et al., 2022) introduces a novel approach to image generation that significantly differs from
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Figure 3: Unmasked Token Density visualization in each decoding iteration averaged over 50k generated
samples on ImageNet. Yellow represents higher density. Each pixel represent a token from 16×16 latent token
space. (See Appendix A for category-wise token density).

traditional autoregressive models. In autoregressive decoding, images are generated sequentially,
one pixel/token at a time, following a raster scan order (Esser et al., 2021; Kondratyuk et al., 2024;
Yu et al., 2024a; Li et al., 2024b). This sequential approach is computationally inefficient, as each
token is conditioned only on the previously generated tokens, leading to a bottleneck in processing
time. MaskGIT generates all tokens of an image simultaneously and then iteratively refines them.
This method enables significant acceleration in the decoding process. The tokens are discrete and
obtained using Vector Quantized (VQ) autoencoders, learned with self-reconstruction and photo-
realism losses (Yu et al., 2023a). The iterative parallel decoding process is represented as:

Xk ←Mask ○ Sample(M(Xk−1, c), k) (1)

where X ∈ ZN
≥0, are the input tokens, N is the number of tokens, k ∈ [1,K] denote the iteration

number, with K being the total number of iterations, X0 is either completely masked for full gener-
ation, and partially masked for conditional generation tasks like frame prediction, c is the category
of image/video under generation. The Sample function utilizes logits predicted by the model M(.),
introduces certain randomness, and sorts them by confidence, unmasking only top-k tokens while
masking the rest. We also follow the above process (Chang et al., 2022; Yu et al., 2023a).

Nested Models. The core of our algorithm for inference-efficient decoding relies on variable-sized
nested models for efficient parameter-sharing. We use MatFormer’s (Kudugunta et al., 2023) model-
ing approach to extract multiple nested models, from a single model, without increasing the total pa-
rameter count. Given a full transformer modelM , MatFormer defines nested models {m1, . . . ,mC},
such that m1 ⊂ m2 ⋅ ⋅ ⋅ ⊂ mC = M . Each mi has fewer parameters and reduced compute. The core
idea of extracting nested models is that in a transformer block, a reduced computation using a pa-
rameter subspace can be performed via a sliced matrix multiplication. Assuming a parameter matrix
W ∈ Rd′×d and feature vector x ∈ Rd, then the computation y = Wx can be partially obtained by
computing y

[∶ d
′

p ]
=W

[∶ d
′

p ,∶]x, if y is desired to be partial and y =W[∶,∶ dp ]
x[∶ dp ]

, if input x is partial.
Nested models can be obtained via partial computations throughout the network.

While MatFormer (Kudugunta et al., 2023) obtained sub-models with partial computation only in the
MLP layer, we also do it in the Self-Attention layer, specifically in obtaining the Q,K,V features.
These features are of dimension nh × dh

p
, where nh, dh and p are number of attention heads, head

feature dimension, and model downscaling factor respectively. We choose four downscaled models
C = 4, with p ∈ {1,2,4,8} in this work. After attention computation, we obtain p-times downscaled
features, that are projected back to the full model dimension d using partial computation, as the input
features are partial. The same strategy is applied to the MLP layer. This process gives us models
with close to linear reduction in parameter count and inference compute with downscaling factor p.

4 METHOD

Given the preliminaries, here we introduce the core algorithm. We first discuss the idea of scheduling
models of different sizes over decode iters of MaskGIT. Then, we discuss the process of caching key-
value in parallel decoding, followed by how to refresh them to improve performance. We finally
discuss the nested model training method. See Figure 2 for a visual overview of our method.

Decode Time Model Schedule. In iterative parallel decoding (Chang et al., 2022; Yu et al., 2023a),
the same-sized model is used for all steps, starting with all tokens being masked. However, we
hypothesize that certain stages of the generation process might be easier than others. For example,

4



Published as a conference paper at ICLR 2025

in the initial steps, the model only needs to capture coarse global structures, which is achieved
efficiently using smaller models. In the later steps, the model must refine finer details, which requires
larger models. This hypothesis is bolstered with Figure 3, which shows that the generation process
starts unmasking tokens from the background and shifts to the middle of the image in the later
iterations (more categorical examples in Appendix Figure 8).
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Figure 4: Nested Models at different
decoding iterations. Different values of
the downscaling factor p correspond to the
nested models. The diameter of the blobs
indicates #iterations.

Our hypothesis is further motivated by Figure 4, which
presents the generation quality (FID) over iterations of
parallel decoding for different-sized models. The small-
est model reaches a reasonably good FID score with very
low FLOPs compared to the biggest model. However, it
saturates after a point, and the larger models surpasses the
smaller ones in performance, demonstrating their ability
to capture finer details and generate higher-quality images
when provided with sufficient compute. This trend sug-
gests that dynamically scaling the model size during de-
coding can exploit the varying task difficulty and achieve
compute efficiency.

We use nested models to extract multiple models rather
than using models with disjoint parameters. Nested mod-
els do not increase the parameter count and it also helps

in better alignment of hypothesis when we shift model size over decode steps. The decode time
model schedules can be generalized and represented as making the model choice in Equation (1)
dependent on the iteration index as follows:

Xk ←Mask ○ Sample(Mk(Xk−1, c), k)

M = {(mp1)
k1 , (mp2)

k2 , . . . , (mpn)kn}, s.t.
n

∑
i

ki =K (2)

where p1, p2, . . . , pn denoting the downscaling factors of the corresponding nested models, and
(m)k denotes that model m will be executed for k iters. K represents the total number of iters.
We can think of different model schedules - downscaling (starting with the full model and then
gradually moving to the smallest model), upscaling, intermittently switching among a few models,
and so on. We can also modify the integers ki to choose the number of times we stick to a model
before switching. However, as intuitively discussed before, we empirically validate that gradually
upscaling the model size gets the best trade-off between the compute and generation quality.

Cached Parallel Decoding. Inspired by caching key-value pairs in auto-regressive models, we ex-
plore caching in parallel decoding, which retains relevant computations and enhances efficiency. In
auto-regressive models, caching progressively happens in one fixed direction. However, in parallel
decoding, caching must depend on which tokens are unmasked over the iterations.

Algorithm 1 MaGNeTS Decoding Algorithm
Input: X0 (Initial Tokens), K (#steps), N (#tokens),M (Nested Model Schedule), c (class),
Initialize: k ← 0; cache← {};
Note: X0 is a list of token ids (Mask token id = −1)
while step k <K do

if k > 0 andMk ≠Mk−1 then
Clear cache

end
Get uncached tokens: Xk

uc ← {xi ∣ xi ∈Xk; i ∉ cache}
Compute prediction probabilities and key-values: pk, (kv)←Mk(Xk

uc; cache)
Sample tokens using current predictions pk , without modifying previous predictions,

X
k+1 ← MaskGIT-Sample(pk)

New indices to cache: C ← {i ∣ i ∉ cache, Xk+1
i ≠ −1}

Update the kv cache: cache← cache ⋃ {i ∶ (kv)i ∣ i ∈ C}
k ← k + 1

end
return XK

Concretely, starting from an empty
cached set, we keep adding keys and
values to the set for the tokens that are
unmasked after the Mask ○ Sample
steps (see Section 3). We do not up-
date the predicted token indices for
these unmasked tokens. Hence, the
cached key and values for the un-
masked tokens are the only features
the other masked tokens need; hence,
we do not need any further compu-
tation. In every decoding iteration,
we can categorize tokens into three
main categories: unmasked tokens
(for which we have cached KV), to-
kens that will be unmasked during the
current iteration, and the rest of the
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Model AR FID ↓ IS ↑ Prec ↑ Rec ↑ # params # steps # Gflops

BigGAN-deep◻ (Brock, 2018) 7.0 171.4 87 28 160M 1 -
StyleGAN-XL◻g (Sauer et al., 2022) 2.3 265.1 - - 166M 1 -

Improved DDPM◻ (Nichol & Dhariwal, 2021b) 12.3 - 70 62 280M 250 >150k
ADM + Upsample◻g (Dhariwal & Nichol, 2021) 3.9 215.8 83 53 554M 250 371k
LDM-4◻g∗ (Rombach et al., 2022) 3.6 247.7 - - 400M 250 51.5k
DiT-XL/2◻g∗ (Peebles & Xie, 2023) 2.3 278.2 83 57 675M 250 59.5k
MDT◻g∗ (Gao et al., 2023) 1.8 283.0 81 61 676M 250 >59k
MaskDiT◻g∗ (Zheng et al., 2023) 2.3 276.6 80 61 736M 250 >28k
CDM◻ (Ho et al., 2022a) 4.9 158.7 - - - 8100 -
RIN◻ (Jabri et al., 2022) 3.4 182.0 - - 410M 1000 334k
Simple Diffusion◻g (Hoogeboom et al., 2023) 2.4 256.3 - - 2B 512 -
VDM++◻g (Kingma & Gao, 2023) 2.1 267.7 - - 2B 512 -
EDiff◻g (Hang et al., 2024) 2.1 - - - 450M 50 119k
LPDM-ADM◻g (Wang et al., 2023) 2.7 - - - - 50 7.8k
MAR◻g (Li et al., 2024b) ✓ 1.8 296.0 81 60 479M 128 -

VQVAE-2◻ (Razavi et al., 2019) ✓ 31.1 ∼45 36 57 13.5B 5120 -
VQGAN◻ (Esser et al., 2021) ✓ 15.8 78.3 - - 1.4B 256 -
VQGAN (architecture) + MaskGIT (setup)◻ 18.7 80.4 78 26 227M 256 -
MaskGIT◻(Chang et al., 2022) 6.2 182.1 80 51 227M 8 647
Mo-VQGAN◻ (Zheng et al., 2022) 7.2 130.1 72 55 389M 12 ∼1k
MaskBit◻g Weber et al. (2024) 1.7 341.8 - - 305M 64 10.3k
PAR-4×◻ Wang et al. (2024) ✓ 3.8 218.9 84 50 343M 147 -
PAR-16×◻ Wang et al. (2024) ✓ 2.9 262.5 82 56 3.1B 51 -

MaskGIT++g4 2.5 260.3 83 54 303M 12 1.3k
MaskGIT++g6 2.3 280.6 84 51 303M 16 1.8k
MaGNeTS (ours)g4 3.1 254.8 85 50 303M 12 490
MaGNeTS (ours)g6 2.9 253.1 84 51 303M 16 608

Table 1: Class-conditional Image Generation on ImageNet 256 × 256. “#
steps” refers to the number of neural network runs. ◻ denotes values taken from prior
publications. ∗ indicates usage of extra training data. g denotes use of classifier-free
guidance (Ho & Salimans, 2022) for all steps. gx represents use of guidance only for
final x steps.
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tokens. Note that the KV cache for the second category tokens cannot be used in the next iteration
but only in the iteration after that once we know their token indices after the forward pass. We cache
them in the next iteration for use in the immediately next iteration.

Caching is more useful for decode time model schedules. For a schedule that progressively scales up
the model size as decoding progresses, smaller models process more tokens, while the larger models
process fewer tokens, leading to an efficient yet good quality image generation process.

Intermittent Cache Refresh. Caching the key-value pairs for the unmasked tokens helps reduce
computation, but it can slightly degrade performance. This happens because - (a) when we cache,
the unmasked tokens are not updated in the subsequent iterations. (b) when we shift model size
during generation, in the attention layer, the query size differs from the cached KV (see Section 3).

To remedy this, we strategically refresh the cache while changing the model size. Refreshing in-
volves discarding the cached KV for that iteration and caching a newly computed KV for the im-
mediate next iteration. We empirically find that it bridges the performance gap that arises due to
caching. The proposed decode time model scaling algorithm is presented in Algorithm 1, which
uses MaskGIT’s sampling strategy (Chang et al., 2022; Yu et al., 2023a) to sample tokens from
predicted logits.

Training Nested Models. MatFormer (Kudugunta et al., 2023) opts for a joint optimization of
losses w.r.t. ground-truth from all models with equal weights. We found this mode of training to
hurt performance with larger downscaling factors p. We introduce a combination of ground truth and
distillation loss to address this issue. We perform online distillation progressively, where the teacher
for model mi is model mi+1. The full model mN(= M) is trained with only ground truth loss.
This provides a simpler optimization for the smaller nested models while maintaining the overall
objective. Progressive distillation also reduces the teacher-student size gap, which can otherwise
hurt distillation performance (Stanton et al., 2021; Beyer et al., 2022; Mirzadeh et al., 2019). Given
input X, ground truth label Y and loss function L, our training loss is expressed as:

Ltrain = 1

N
(L(mN(X),Y) +

N−1

∑
i=1

αiL(mi(X),Y) + (1 − αi)L(mi(X),mi+1(X))) (3)

where αi, the weight between the distillation and ground truth loss, is linearly decayed from 1 to
0 as training progresses. Note that a stop gradient is applied during distillation on mi+1 in the third
term of the equation.

Classifier-Free Guidance. We find that adding classifier-free guidance (Ho & Salimans, 2022) only
to few final sampling steps offers similar quality images as applying to all (refer Figure 9b). See
Appendix C for detailed analysis.
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Method Class FVD ↓ IS↑ # params # steps # GFlops

RaMViD◻∗ (Höppe et al., 2022) - 21.71 ± 0.21 308M 500 -
StyleGAN-V◻∗(Skorokhodov et al., 2022) - 23.94 ± 0.73 - 1 -
DIGAN◻ (Yu et al., 2022) 577±21 32.70± 0.35 - 1 ∼148
DVD-GAN◻ (Clark et al., 2019) ✓ - 32.97± 1.70 - 1 -
Video Diffusion◻∗ (Ho et al., 2022b) 57.00± 0.62 1.1B 256 -
TATS◻ (Ge et al., 2022) 420± 18 57.63± 0.24 321M 1024 -
CCVS+StyleGAN◻ (Le Moing et al., 2021) 386± 15 24.47± 0.13 - - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 367 33.00 - - -
TATS◻ (Ge et al., 2022) ✓ 332± 18 79.28± 0.38 321M 1024 -

CogVideo◻∗ (Hong et al., 2022) ✓ 626 50.46 9.4B - -
Make-A-Video◻∗ (Singer et al., 2022) ✓ 81 82.55 ≫3.5B ≫250 -
PAR-4×◻ Wang et al. (2024) ✓ 99.5 - 792M 323 -
PAR-16×◻ Wang et al. (2024) ✓ 103.4 - 792M 95 -

MAGVIT-B◻ (Yu et al., 2023a) ✓ 159± 2 83.55± 0.14 87M 12 ∼1.3k
MAGVIT-L (Yu et al., 2023a) ✓ 74.4± 2 89.54± 0.21 306M 12 ∼4.3k
MaGNeTS (ours) ✓ 96.4±2 88.53±0.20 306M 12 ∼1.7k

Method FVD ↓ IS ↑ # params # steps # GFlops

CogVideo◻ (Hong et al., 2022) 109.2 - 9.4B - -
CCVS◻ (Le Moing et al., 2021) 55.0±1.0 - - - -
Phenaki◻ (Villegas et al., 2022) 36.4 ± 0.2 - 1.8B 48 -
TrIVD-GAN-FP◻ (Luc et al., 2020) 25.7 ± 0.7 12.54 ± 0.06 - 1 -
Transframer◻ (Nash et al., 2022) 25.4 - 662M - -
RaMViD◻ (Höppe et al., 2022) 16.5 - 308M 500 -
Video Diffusion◻ (Ho et al., 2022b) 16.2 ± 0.3 15.64 1.1B 128 -

MAGVIT-B◻ 24.5± 0.9 - 87M 12 ∼1.3k
MAGVIT-L 7.2 ± 0.1 16.48 ± 0.01 306M 12 ∼ 4.3k
MAGVIT-Lg2 6.6 ± 0.1 16.29 ± 0.01 306M 12 ∼ 5.1k
MaGNeTS (ours) 10.8 ± 0.1 16.25 ± 0.02 306M 12 ∼1.2k
MaGNeTS (ours)g2 9.6 ± 0.1 16.25 ± 0.01 306M 12 ∼1.4k

Table 2: Class-conditional Video Generation on UCF-101 (left) and Frame prediction on K600 (right).
Methods in gray are pretrained on additional large video data. Methods with ✓ in the Class column are class-
conditional, while the others are unconditional. In UCF101, methods marked with ∗ use custom resolutions,
while the others use 128×128. ◻ denotes values taken from prior publications. No guidance is used for UCF101.
For K600, gx denotes use of guidance only for final x steps.

5 EXPERIMENTS AND RESULTS

We evaluate our model on ImageNet 256 × 256 (Deng et al., 2009) for image generation, UCF101
(Soomro et al., 2012) for video generation and Kinetics600 (Carreira et al., 2018) for frame predic-
tion (5-frame condition). We use Fréchet Inception Distance (FID) (Heusel et al., 2017; Dhariwal
& Nichol, 2021) for image generation, Fréchet Video Distance (FVD) (Unterthiner et al., 2019) for
the video generation tasks, Inception Score (Salimans et al., 2016) for both tasks, as well as preci-
sion and recall for image generation. For efficiency, we compare algorithms using inference-time
GFLOPs. Refer Appendix F for GFLOPs computation and Appendix B for implementation details.

5.1 IMAGE GENERATION

Comparison with Baselines. Here we compare MaGNeTS with state-of-the-art methods for image
generation. We list the results in Table 1 for 256 × 256 image generation on ImageNet-1k. Table 1
shows that MaGNeTS can speed up the generation process by 2.65 − 3× (depending on total step
count), with a similar FID. Refer Appendix F for real-time gains. Figure 5 illustrates that MaGNeTS
significantly accelerates parallel decoding, which gets more pronounced as image resolution grows.
Figure 1 and Figure 10 show generated images from MaskGIT++ and MaGNeTS (ours). As shown
in recent literature, using a superior tokenizer (Yu et al., 2023b; Weber et al., 2024) or optimized
training/inference configurations (Ni et al., 2024) can further boost MaGNeTS’s performance. Note
that several recent diffusion-based methods report results only on the low-resolution of ImageNet
(typically 64×64), and therefore a direct comparison is not possible.
Scaling Analysis. To understand the scaling properties of MaGNeTS we train various sized models
- S (22M), B (86M), L (303M) and XL (450M). We use the same hyper-parameters for all, such as
learning rate, epochs, weight decay, etc. We present the results in Figure 6. It shows the compute vs
performance of different models, with the blob size denoting the model size. For a certain parameter
count, the baseline uses the full model for all 12 decoding steps, while the scheduled routines use a
sequence of nested models with downsampling factors p = 8,4,2,1 for 3 steps each. It can be seen
that scaling up model size lead to almost 3× cheaper compute scaling of MaGNeTS than baseline.

5.2 VIDEO GENERATION

We use the MAGVIT (Yu et al., 2023a) framework to train parallel decoding based video generation
and frame prediction models. Figure 11 shows generated videos of UCF101. We summarize the
results for class-conditional video generation on UCF101 and for frame prediction on Kinetics600
in Table 2. Despite the challenging nature of video generation relative to image generation, results
indicate that the decode time scaling of model size holds true even for video generation. MaGNeTS
remains competitive to MAGVIT for frame prediction with ∼ 3.7× lower compute.

5.3 ABLATION STUDIES

Impact of Decode Time Model Schedule. We can think of different model schedules - scaling
up model size, scaling down, periodic scaling up and down, and so on. For this analysis, we con-
sider the L-sized model, with three nested models within it with parameter reduction by roughly
1
2
, 1

4
, 1

8
. We can denote the number of times these four models are called during decoding as

(k1, k2, k3, k4), s.t.,∑4
i=1 ki = 12. We drop the model notation mp in Equation (2) for simplicity

and explicitly mention the model names in the text as discussed next.
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Figure 7: Scheduling Options. (a) This shows the compute-performance trade-off for different schedule
options while always scaling up model size over generation iters. The four numbers for each point denote the
number of iters each model size operates in the order of downsampling factor p = (8,4,2,1). (b) This shows
the benefit of scaling up model size compared to scaling it down during decoding.

Algorithm Baseline + Cache + Refresh Scheduled + Cache + Refresh

FID 2.5 3.4 2.6 3.1 4.8 3.1
FLOP Gains (times) 1.0 1.3 1.2 2.1 3.5 3.0

Dataset Nested Models Standalone Models

ImageNet (FID) 3.1 3.1
UCF101 (FVD) 96.4 115.0

Table 3: Caching Ablation (left) and Nested vs Standalone Models (right). We use L-sized models.

First, we evaluate all combinations of ki for which we always scale up in Figure 7a in red and
scale down in Figure 7b in blue. The green curve shows the performance of the individual nested
models. We have the following observations - (1) for a certain compute budget, the scheduling of
models over generation iterations (red dots) can offer better performance than using a single nested
models (green curve) for all steps. (2) Models that have smoother transitions in nested models, such
as (3,3,3,3) or (0,0,8,4), offer much better performance than the ones which has abrupt model
transition such as (6,0,0,6) or (3,0,0,9), i.e., directly jumping from the smallest to the biggest
model. (3) Figure 7b shows that scaling up nested model size offers much better performance than
scaling down model size. This shows that bigger models are better utilized in the later iterations.

Impact of Caching and Refresh. We now discuss the impact of caching and its refresh. For this
analysis, we use a uniform model schedule: k1 = k2 = k3 = k4 = 3. We also perform caching
and refresh on the baseline model, which has not been trained with any nesting and has the same
model applied for all iterations. We also refresh the cache at exactly the same steps as the scheduled
model for the baseline. We present the results on ImageNet in Table 3. The columns “Baseline” and
“Scheduled” do not involve any cache. While caching degrades the performance a bit, refreshing it
intermittently avoids the degradation entirely at the cost of slight compute overhead. Scheduling of
models with caching and refresh has the best compute-performance trade-off.

The efficiency of using nested models. In MaGNeTS we use nested models instead of separately
trained smaller sized models. This has two advantages - (a) parameter sharing, which limits the
number of parameters to just that of the full model, compared to 1.875× (= 1+ 1/2+ 1/4+ 1/8) for
disjoint models, reducing memory requirements. (b) Nested models are trained efficiently in just a
single training run. When trained with distillation, they generate better models than training like-
sized standalone models (refer Appendix E). For performance comparison, we trained standalone
models of the same size as the nested models for both UCF101 and ImageNet. The results are
presented in Table 3. Nested models can efficiently share parameters without loss in performance
(ImageNet) and offer constraints that help in better performance (UCF101) than standalone models.

6 CONCLUSION

In this paper, we propose MaGNeTS, a novel approach for allocating different compute to different
steps of the image/video generation process. We show that instead of always using the same sized
transformer model for all decoding steps, we can start from a model which is nested and fraction of
its full size, and then gradually increase model size. This along with key-value caching in the parallel
decoding paradigm obtains significant compute gains. We believe that our exploration of dynamic
compute opens exciting new directions for research in efficient and scalable generative models. In
future works, we plan to explore token-dependent model schedules for further compute gains.
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Tobias Höppe, Arash Mehrjou, Stefan Bauer, Didrik Nielsen, and Andrea Dittadi. Diffusion models
for video prediction and infilling. arXiv preprint arXiv:2206.07696, 2022.

Wenbo Hu, Zi-Yi Dou, Liunian Harold Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Ma-
tryoshka query transformer for large vision-language models. arXiv preprint arXiv:2405.19315,
2024.

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens, 2024.
URL https://arxiv.org/abs/2407.19985.

Diederik P Kingma and Ruiqi Gao. Understanding the diffusion objective as a weighted integral of
elbos. arXiv preprint arXiv:2303.00848, 2, 2023.
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Figure 8: Visualization of token density unmasked in each iteration averaged over 10k generated
samples on different categories of ImageNet. The top example shows category volcano (non-
center-focused). Middle and bottom examples show dishrag,dishcloth and goldfish,Carassius au-
ratus center-focused categories, respectively. Yellow color represents higher density, and each pixel
represents a token from the 16 × 16 token space.

A MOTIVATION FOR DECODE TIME MODEL SCALING

Our visualization of token density averaged across 50k ImageNet samples reveals a dynamic pattern
- initial decoding iterations prioritize background regions. In contrast, later iterations focus on the
center where foreground objects or region of interest typically reside. This highlights the need to
allocate resources efficiently during generation. To further investigate this behavior, we examine
token density across various ImageNet categories (refer Figure 8). This category-wise analysis
further motivates our focus on decode time scaling. Figure 10 shows more qualitative results on
ImageNet256 × 256 and Figure 11 shows samples on UCF101.

B IMPLEMENTATION DETAILS

We utilize the pretrained tokenizers from MaskGIT (Chang et al., 2022) (for images) and MAGVIT
(Yu et al., 2023a) (for videos) with the codebook size of 1024 tokens. We train models for image
size 256 × 256. The tokenizer compresses it to 16 × 16 discrete tokens. For videos, we learn models
for 16 × 128 × 128, where the tokenizer outputs 4 × 16 × 16 tokens. Following MaskGIT, we utilize
the Bert model (Devlin et al., 2019) as a transformer backbone. We perform experiments at several
model scales to understand the scaling behaviors of our algorithm. We utilize the same training
hyper-parameters to train our nested models as these baselines. We train our model for 270 epochs
for all the experiments. Unless otherwise mentioned, throughout the paper, we employ same number
of steps per model before switching to the next model, i.e., k1 = k2 = .... = kn. We follow a cosine
schedule of unmasking tokens during inference. For image generation and frame prediction, we use
classifier-free guidance for both MaGNeTS and respective baselines. Following literature, we drop
input class condition labels for 10% of the training batches in image generation.

C HYPER-PARAMETER DETAILS

The MaskGIT algorithm has the following hyper-parameters which we discuss next.
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Figure 9: (a) Inference GFLOPs per step for baseline and MaGNeTS. (b) generation performance (FID) on
ImageNet vs Number of decoding iterations w/ guidance for different model scales. Note that we start from
last decoding iteration. For example, ”No. of iterations w/ Guidance = 6” means we use guidance only for final
six iterations (out of total 16 iterations). This shows that using guidance only for few final iterations is enough
in the parallel decoding setup.

MaskGIT++ (FID=2.3)             MaGNeTS (FID=2.9)~3x FLOPs Reduction

Figure 10: Class-conditional Image Generation. More qualitative results on ImageNet. Compar-
ing MaskGIT++ and MaGNeTS (size: L, epochs: 270).

Guidance Scale (gs). It is used in classifier-free guidance (Ho & Salimans, 2022) and governs the
calculation of final logits during inference as shown in Equation (4).

logitsfinal = logitscond + λ ⋅ gs ⋅ (logitscond − logitsuncond) (4)

where logitscond are from class-conditional input, logitsuncond are from unconditional input, and λ
depends on the mask-ratio of the current decoding iteration.

Figure 8 shows that the initial decoding iterations of parallel decoding focus on the background
region, and focus gradually shifts to the main object/region in the final decoding iterations. Mo-
tivated by this, we experimented with applying guidance to only few final decoding iterations and
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Figure 11: Class-conditional Video Generation on UCF101. 16-frame videos are generated at
128×128 resolution 25 fps. Every third frame is shown for each video. The classes from top to
bottom are Lunges, Bench Press, Handstand Pushups, Cutting In Kitchen.

          MaskGIT++                                 MaGNeTS

Figure 12: Failure cases. Similar to existing methods, our system can produce results with notice-
able artifacts.

present our findings in Figure 9b. As we can see, most of the decoding iterations do not require
guidance. We use guidance only for final few decoding iterations for class-conditional generation in
ImageNet256×256 and frame prediction in Kinetics600. Following MAGVIT (Yu et al., 2023a), for
class-conditional generation in UCF101 we do not use classifier-free guidance.

Mask Temperature (MTemp). It controls the randomness introduced on top of the token pre-
dictions to mask tokens.

Sampling Temperature (STemp). It controls the randomness of the sampling from the cate-
gorical distribution of logits. Tokens are sampled from logits/STemp. STemp is calculated by
Equation (5).

STemp = bias + scale ⋅ (1 − (k + 1)/K) (5)
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where bias and scale are hyperparameters (see Table 4), k is the current decoding iteration and K
is the total number of decoding iterations. We report the hyperparameters we use in in Table 4. We
use bias=0.5 and scale=0.8 for all experiments.

Dataset Method gs MTemp

ImageNet MaskGIT++ 65 6
MaGNeTS 65 5

UCF101 MAGVIT/ MaGNeTS 0 5

Kinetics600 MAGVIT 10 12.5
MaGNeTS 5 10

Table 4: Best Sampling Hyperparameters.

D ADDITIONAL EXPERIMENTS

D.1 PRELIMINARY DIFFUSION EXPERIMENTS

We conduct initial experiments using model scheduling on diffusion models. Instead of training a
new diffusion model with nesting and distillation, we focus solely on inference-time experiments.
We use publicly available pretrained checkpoints of UViT (Bao et al., 2023) on ImageNet64×64.
Specifically, we employ two models - U-ViT-L/4 (large) and U-ViT-M/4 (mid) - to investigate the
impact of model scheduling during inference.

Implementation Details We use the default number of sampling steps of 50 and batch size of 500
in all experiments. We do not use classifier-free guidance. We do not use any caching for these
experiments due to the continuous nature of the input. We use a single A100 GPU.

Optimal Model Schedule Since the initial denoising steps play a crucial role in shaping the final
output of the reverse diffusion process, we utilize the L model for these early stages and transition to
the M model for the later denoising steps. Given that the L model has greater denoising capacity than
the M model, we customize the noise schedule with larger denoising step sizes for L and smaller
step sizes for M, balancing efficiency and performance.

Quantitative Results Refer Table 5 for results. With only model scheduling, we are able to
achieve ∼1.53x inference compute gains with almost similar performance as baseline. Exploring
more refined schedules, training the models with nesting and distillation will offer better compute
gains. Additionally, nesting would enable parameter sharing, unlike the current setup, which re-
lies on separate models. This shows that the proposed method of model scheduling over multi-step
decode process in image/video generation is generic enough to be applied to different modeling
approaches.

Method FID (50k) # params # steps Time (sec/iter)

U-ViT-M/4 5.92 131M 50 17.12
U-ViT-L/4 4.21 287M 50 32.34
Ours (model sched) 4.58 (131 + 287) M 50 21.10

Table 5: Class-conditional Image Generation on ImageNet64×64. “# steps” refers to the number of neural
network runs.

Method FID # params # steps # GFLOPs

DPM-Solver◻g (Lu et al., 2022) 4.1 422M 12 >3k
MaskGIT++g4 3.2 303M 12 1.3k
MaGNeTS (ours)g4 3.9 303M 12 490

Table 6: Class-conditional Image Generation on ImageNet128×128. ”# steps”refers to the number of neural
network runs. ◻ denotes values taken from prior publications. g denotes use of classifier-free guidance (Ho &
Salimans, 2022) for all steps. gx represents use of guidance only for final x steps.
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D.2 RESULTS ON IMAGENET128×128

We utilize a pretrained tokenizer tailored for 128×128 resolution. Tokenizer compresses the images
to 16 × 16 discrete tokens. Refer Table 6 for results.

E ADDITIONAL ABLATIONS

Impact of number of nested models. We train different settings p={1, 2} (two models), p={1, 2,
4} (three models), p={1, 2, 4, 8} (four models), p={1, 2, 4, 8, 16} (five models), and p={1, 2, 4,
8, 16, 32} (six models). We observe that for all of these models, the biggest model performance
remains almost same for all cases. However, the performance of the smaller models degrades as
shown in Table 7.

We hypothesize that the drop in performance of smaller models is due to their lower representational
power. As we add more nested models, the complexity of the shared representation increases, and
burdens the smaller model. However, this drop in performance does not significantly impact the
performance of model scheduling, as the larger models dominate the final results. Note that all
of these results are on top of models trained with progressive distillation, which helps to retain the
performance up to some extent. Table 8 also shows that introducing distillation loss helps improving
the performance.

Model Schedules 2 3 4 5 6

p = 1 2.3 2.4 2.4 2.4 2.4
p = 2 2.6 2.7 2.7 2.8 2.8
p = 4 - 3.4 3.5 3.7 3.8
p = 8 - - 5.2 5.7 6.3
p = 16 - - - 8.9 10.8

(0, 0, 0, 0, 6, 6) 2.6 2.6 2.6 2.7 2.7
(0, 0, 0, 4, 4, 4) - 2.7 2.8 2.8 2.8
(0, 0, 3, 3, 3, 3) - - 3.1 3.2 3.2
(0, 3, 3, 2, 2, 2) - - - 6.3 6.6

Table 7: Ablation of number of nested models. Rows represent different model schedules and
columns represent the number of nested models used.

Impact of Distillation. We use two types of losses to train the nested sub-models - loss w.r.t the
ground-truth tokens and distillation loss using the progressively bigger model as the teacher. The
weight between the two losses is also linearly interpolated from the former to the latter. We compare
this training strategy with the two extremes – only ground truth loss and only distillation loss and
present the results in Table 8. As we can see, using only distillation loss results in divergence. Using
ground-truth loss is inferior to linearly annealing between ground-truth and distillation loss.

Dataset Training Algo. p = 1 p = 2 p = 4 p = 8 Scheduled

ImageNet
Only GT 2.4 2.9 3.9 5.7 3.1
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 2.4 2.7 3.5 5.2 3.1

UCF101
Only GT 80.0 101.3 143.8 221.8 112.6
Only Distill ←Ð Training DivergedÐ→
GT→ Distill 78.3 91.2 115.4 164.4 96.4

Table 8: Distillation Ablation. This shows the impact of different training losses used for the nested sub-
models on ImageNet256×256 (size: L) and UCF101 (size: L). Using only distillation diverges while using
only ground-truth losses performs worse than our approach (third row), where we combine ground-truth and
distillation losses with a linear decay from the former to the latter.

Nested Attention Heads We also investigate nesting along the number of attention heads (nh), ap-
plying the same partial computation strategy as discussed before. However, this generally performed
worse than nesting along the head feature dimension in attention, which is what we use for this work.
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F COMPUTE GAINS

Per-step FLOPs. Figure 9a illustrates the inference-time computational cost, measured in GFLOPs,
per iteration for the baseline model and MaGNeTS. As we can see the amount of FLOPs are drasti-
cally reduced using MaGNeTS. This is for a schedule with k1 = k2 = k3 = k4 = 3. The spikes after
every 3 iterations are due to the cache refresh step. Mechanisms to get rid of the cache refresh can
further reduce the total compute needed.

Calculation of GFLOPs. We illustrate the calculation of inference GFLOPs via Python pseudo-
code in Table 10. We double the GFLOPs in decoding iterations where classifier-free guidance (Ho
& Salimans, 2022) is used. Note that we always use a cosine schedule to determine the number of
tokens to be unmasked in every step.

Real-Time Inference Benefits. In addition to the theoretical FLOP gains offered by MaGNeTS ,
here we want to analyze the real-time gains that it offers. We implement MaGNeTS on a single
TPUv5 chip and present the results in Table 9.

Algorithm→ Baseline (MaskGIT++) MaGNeTS

Images/Sec 22.5 56.3
Latency (ms) 712 285

Table 9: Real-Time Inference Efficiency. These show the number of generated images per sec and latency.
These results are on ImageNet256×256 with model size XL.

G LIMITATIONS.

While our approach demonstrates strong performance in image and video generation, we acknowl-
edge certain limitations. Some artifacts inherent to MaskGIT++ may also appear in our generated
outputs (see Figure 12 for examples on ImageNet256 × 256). Such artifacts are common in models
trained on controlled datasets like ImageNet. Moreover, the quality of the pretrained tokenizers (Yu
et al., 2023b; Weber et al., 2024) directly impacts our method’s effectiveness; however, improving
these tokenizers is beyond the scope of this work. Although, use of nesting and decode time scaling
does not have any specific requirement for model architecture and sampling scheme, KV caching
requires discrete tokens.
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1 # Function to get the GFlops for current decoding iteration
2 def get_flops(num_tokens_cached, num_tokens_processed, model_id, params,

version):
3 num_layers, hidden_size, mlp_dim, num_heads = params[version]
4 qkv = 4 * num_tokens_processed * hidden_size * (hidden_size //

model_id)
5 attn = 2 * num_tokens_processed * (num_tokens_processed +

num_tokens_cached) * hidden_size
6 mlp = 2 * num_tokens_processed * (mlp_dim // model_id) * hidden_size
7 return (qkv + attn + mlp) * num_layers // 1e9
8

9 # Function to get the total inference GFlops
10 def get_total_flops(version, num_iters, use_cache, refresh_cache_at,

total_tokens, model_id_schedule, params, num_cond_tokens=0):
11 assert num_cond_tokens < total_tokens
12 refresh_cache_at = [int(x) for x in refresh_cache_at.split(’,’) if x]
13 assert len(model_id_schedule) == num_iters
14 num_cached = 0
15 total_flops = 0
16

17 # MaGNeTS (ours) doesn’t need to process the conditioned tokens in
the frame prediction task

18 total_tokens -= num_cond_tokens
19

20 for i in range(num_iters):
21 ratio = i / num_iters
22

23 # Cosine masking schedule
24 num_processed = np.cos(np.pi/2. * ratio) * total_tokens
25

26 # Even if we are performing caching, all tokens are processed in
first iteration and iterations where cache is refreshed

27 if i == 0 or i in refresh_cache_at and use_cache:
28 total_flops += get_flops(0, total_tokens+num_cond_tokens,

model_id_schedule[i], params, version)
29

30 # we always cache the conditioned tokens
31 else:
32 total_flops += get_flops(num_cached+num_cond_tokens,

total_tokens-num_cached, model_id_schedule[i], params, version)
33

34 if use_cache:
35 num_cached = total_tokens - num_processed
36 return total_flops

1 # Sample function call for class-conditional image generation
2 # params is a dictionary of the form {version: (num_layers, hidden_size,

mlp_dim, num_heads)}
3 common = {’version’: ’L’, ’num_iters’: 12, ’total_tokens’: 257, ’params’:

params}
4 baseline = {’use_cache’: False, ’refresh_at’: ’’, ’model_id_schedule’:

(1,)*12, **common}
5 ours = {’use_cache’: True, ’refresh_at’: ’3,6,9’, ’model_id_schedule’:

(8,)*3+(4,)*3+(2,)*3+(1,)*3, **common}
6

7 print(get_total_flops(**baseline), get_total_flops(**ours))
8

9 # total_tokens = 1025 for class-conditional video generation and frame
prediction

10 # num_cond_tokens = 512 for frame prediction

Table 10: Python pseudo-code illustrating the calculation of inference GFLOPs.
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