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Abstract
The size and the computational load of fine-
tuning large-scale pre-trained neural networks
are becoming two major obstacles in adopting
machine learning in many applications. Con-
tinual learning (CL) can serve as a remedy
through enabling knowledge-transfer across se-
quentially arriving tasks. However, existing
CL algorithms primarily consider learning uni-
modal vision-only or language-only tasks. We
develop a transformer-based CL architecture
for learning multimodal vision-and-language
(VaL) tasks based on dynamic model expan-
sion and knowledge distillation. Additional
parameters are used to specialize the network
for each task. Our approach, Task Atten-
tive Multimodal Continual Learning (TAM-
CL), enables sharing information between the
tasks while addressing catastrophic forgetting.
Our approach is scalable, requiring little mem-
ory and time overhead. TAM-CL reaches
SOTA performance on challenging multi-
modal tasks. The code is publicly available
on https://github.com/YuliangCai2022/TAM-
CL.git.

1 Introduction

Large-scale pre-trained transformer models are ap-
plied in a wide range of applications across modali-
ties, including vision-and-language tasks (Dosovit-
skiy et al.; Kim et al., 2021; Xu et al., 2023). These
models are usually pretrained on a large dataset and
then fine-tuned to generalize on a downstream task.
Such task-level fine-tuning compromises the model
generalizability and necessitates storing a copy of
the base model for each task. Continual learning
(CL) algorithms (Jin et al., 2021; Yang et al., 2022;
Wang et al., 2022; Pelosin et al., 2022; Ermis et al.,
2022; Srinivasan et al., 2023) have explored mit-
igating these challenges for transformers through
using a shared model that benefits from cross-task
knowledge transfer.

Catastrophic forgetting is the primary challenge
in CL (French, 1999). A group of CL algorithms

regularize a fixed shared model to learn each
task through different information pathways, i.e.,
weights (Kirkpatrick et al., 2017; Aljundi et al.,
2018). The core idea is to identify a subset of model
parameters that are important to encode the learned
knowledge about each task and then consolidate
these parameters when updating the model to learn
new tasks. A second approach is based on model
expansion (Rusu et al., 2016; Yoon et al.). The idea
is to expand a base model via a small number of
additional weights and specialize the network to
learn new tasks through these weights. Finally, a
group of algorithms use pseudo-rehearsal through
experience replay (Rolnick et al., 2019; Mirtaheri
et al., 2023). The idea is to store a representative
subset of training data for each task in a mem-
ory buffer, and replay them back along with the
current task’s data to maintain the encoded knowl-
edge about the past task. Some methods relax the
need for a memory buffer by enabling the model to
generate pseudo-samples for the past learned tasks
that are used to implement experience replay (Shin
et al., 2017; Rostami and Galstyan, 2023). De-
spite being effective, existing CL methods consider
unimodal tasks, e.g., vision-only (Lin et al., 2021;
Douillard et al., 2022) or language-only tasks (Jin
et al., 2021; Yang et al., 2022), without considering
the unique challenges of multimodal tasks, making
them inapplicable on VaL tasks.

We develop a new algorithm for learning vision-
and-language (VaL) tasks in a CL setting based on
dynamic model expansion. To this end, we leverage
the self-attention layers of a base bimodal trans-
former as a shared encoder across all tasks. We
then equip the base model with task-attention layers
(Douillard et al., 2022) that help to specialize the
model for each task using a task-specific token. Our
approach requires a small memory overhead and a
limited inference time overhead during testing. It
also does not need extensive hyper-parameters and
remains robust when facing an unknown number



of tasks. Our specific contributions include:

• A dynamically expanding, efficient trans-
former architecture for multimodal CL.

• A training algorithm to handle diverse, sequen-
tially arriving vision-and-language tasks.

• Extensive experiments to demonstrate that the
proposed model achieves SOTA performance.

2 Background and Related Work

Transformers for Vision and Language Tasks:
Multimodal transformers are developed for pro-
cessing vision-and-language (VaL) tasks (Su et al.,
2019; Tan and Bansal, 2019; Kim et al., 2021;
Chochlakis et al., 2022; Chen et al., 2020). The
core idea is to use modality-specific self-attention
layers to extract suitable features from each of the
vision and language inputs. These features then are
integrated at higher layers to extract cross-modal
contextualised representations of the multimodal
inputs. The idea is that these global vectors can
model the interaction between the vision and the
language inputs which is helpful to perform VaL
tasks well. The idea has also been adopted in other
modalities, including in the context of video pro-
cessing to relate vision and speech inputs (Arnab
et al., 2021; Sun et al., 2019). These transformers
are usually trained on a large-scale dataset and have
been found to be highly effective when fine-tuned
on downstream tasks. Due to a significant perfor-
mance improvement, transformers are increasingly
replacing older architectures.

Continual learning for transformers: Despite
the successful adoption of transformers in various
benchmarks, fine-tuning naturally compromises
their generalizability. Using an independent trans-
former per task would lead to a significant memory
load on disk as the size of transformers are increas-
ing dramatically to account for solving more ab-
stract tasks. CL seems to be a natural solution for
these challenges but works on CL using transform-
ers are limited. Xin et al. (Jin et al., 2021) use
adapters in combination with a hypernetwork to en-
able CL for language tasks. Alternatively, Yang et
al. (Yang et al., 2022) propose a transformer calibra-
tion module to make a transformer adaptive. The
calibration module is considered to be independent
from the base pre-trained transformer and helps to
specialize it on a downstream task. The Lifelong
Vision Transformer (Wang et al., 2022) utilizes an

Figure 1: The proposed CL training procedure: (1) A small
portion of the data for previous tasks are randomly selected
and stored in a memory buffer. (2) The current task arrives
withDi. (3) The training dataDi is used as input to the teacher
model to compute the distillation loss. (4) The memory buffer
samples are replayed along with the current task data to train
the main model. (5) After learning the current task, the teacher
model of the next task will be a copy of the current model.

inter-task attention mechanism to integrate infor-
mation from previous tasks and reduces the rate at
which important attention weights shift away from
old tasks towards the current task. Douillard et
al. (Douillard et al., 2022) propose a CL architec-
ture for vision tasks using the ViLT model (Kim
et al., 2021). Pelosin et al. (Pelosin et al., 2022)
extend this work to an exemplar-free setting via dis-
tilling the attention-level matrices of transformers
to enable model plasticity and to mitigate forget-
ting effects. Ermis et al. (Ermis et al., 2022) use the
idea of adapters in a vision context. To the best of
our knowledge, no prior work has explored CL for
multimodal tasks using transformer architectures.

3 Problem Description

Consider a set of sequentially arriving VaL tasks
{Ti}Ti=1, each with the annotated training dataset
Di = {⟨(Ij

i ,L
j
i )

i, yji ⟩
Ni
j=1}, where Ij

i ∈ RH×W×C

represents the image input, Lj
i ∈ RL×|V | repre-

sents the language input, while yji is the text-typed
discrete label. The order of these tasks and T are
not known a priori. The training data points for Ti
are assumed to be drawn iid from a task-specific
joint distribution pti(·, ·, ·). Our goal in multimodal
CL is to learn each task at time-step i and then
move forward to learn the next tasks. The learned
tasks can be encountered at any time during testing
in the future and hence, we would like to main-
tain the performance of previous learned tasks by
preventing catastrophic forgetting.

When learned in isolation, each of these VaL
tasks Ti can be learned using supervised learn-
ing conditioned on selecting the suitable predictive
model f i

θM
(·, ·), e.g., a transformer with trainable



Figure 2: The proposed transformer-based architecture: (left) The VaL inputs are converted into two sequences
and then fed into the self-attention layers to generate a fused global feature vector. The data feature vector is
then concatenated with the learnable task-specific tokens and then fed into the task attention layer to generate the
input for the task-specific classifier heads. The same VaL inputs are also fed into the teacher model’s transformer
architecture to compute Knowledge Distillation. (right) The task-attention block architecture.

parameters θM , and the discrimination loss L(·),
e.g., cross-entropy. However, due to the storage
limit, we assume a shared model should be used,
as training a separate model per task is impracti-
cal. Additionally, only a small portion of training
data for each task Ti can be stored after training
for space-saving purpose, which makes multitask
learning (Caruana, 1998) an impractical solution.
The single task learning strategy using a shared
model is not ideal in CL either. Because when
the model is updated to learn the current tasks, its
performance on the past tasks will degrade due to
catastrophic forgetting (Kirkpatrick et al., 2017).

Figure 1 visualizes the high-level presentation of
the solution that we propose to address multimodal
CL. To use a shared model across all tasks and
benefit from knowledge transfer across all tasks,
we consider a base transformer model as fθ(·, ·)
and make it adaptive by adding a unique task at-
tention layer after its final layer. Additionally, we
modify the loss supervised learning loss by adding
a knowledge distillation loss (Hinton et al., 2015)
on the intermediate model layers. We consider the
teacher model in the knowledge distillation formu-
lation to be a copy of f i−1

θ (·, ·) when training the
main student model on ith task Ti. Additionally,
we rely on pseudo-rehearsal through experience
replay (Rolnick et al., 2019) using a small memory
buffer to tackle catastrophic forgetting.

4 The Proposed Architecture

Figure 2 visualizes our transformer-based archi-
tecture for multimodal CL. The architecture con-

sists of a shared pre-trained replaceable multimodal
transformer, an independent task attention block,
and MLP classification headers. The task attention
block receives task-specific tokens that make the
model adaptive. We provide details about these
modules and the strategies that we use to train it.

4.1 Sequential Feature Extraction Block
We follow the ViLT feature generation proce-
dure (Kim et al., 2021). To build a sequence from
the input images, we decompose a given image
I ∈ RH×W×C into patches and then flatten these
patches to generate 2D vectors v ∈ RN×(P 2·C).
Here, C is the number of channels, P × P is the
size of each image patch, and N = HW/P 2 is the
number of patches with size P × P . After gener-
ating the set of vectors, we apply a trainable linear
projection, V ∈ R(P 2·C)×H , and a position embed-
ding, V pos ∈ R(N+1)×H , to transform v into the
sequential representation v ∈ RN×H

v = [vclass;v1V ;v2V ; ...;vNV ] + V pos (1)

We also extract word vectors for l ∈ RL×|V |

after applying a word embedding matrix T ∈
R|V |×H and using a position embedding matrix
T pos ∈ R(L+1)×H , we embed data into t ∈ RL×H .

t = [tclass; l1T ; l2T ; ...; lLT ] + T pos (2)

We then sum the image and text embeddings with
their independent model-type embedding vector
ttype and vtype ∈ RH , and concatenate them to
build a single sequence s.

s0 = [vtype + v; ttype + t] (3)



The combined vector s is passed through D classic
self-attention layers of the base VaL transformer,
i.e., ViLT, and then are fed into the task attention
layer, with the output embedding from the trans-
former attention layers denoted as sD and output
from the task attention layer as sD+1.

ŝd = MSA(LN(sd−1)) + sd−1, d = 1, ..., D

sd = MLP (LN(ŝd)) + ŝd, d = 1, ..., D
(4)

4.2 Task Attention Block

The core idea of our work lies in adopting the idea
of self-attention on task-level, each time a new task
is learned. Different from the vanilla input data
level self-attention layer, the task-attention layer
is a task-focused attention layer that a trainable
task token is initialized for each new task, denoted
as τi ∈ RG×1 for task i ⊆ [1, 2, .., T ], where G
is the size of latent space of each self-attention
layer. Similar to the self-attention block (SAB), the
task attention block (TAB) is a module which con-
sists of an attention layer, layer normalization, and
MLP. The attention layer is instantiated as a task-
attention layer, rather than vanilla self-attention.
Task attention block takes two inputs, the output of
the self-attention blocks sD and the task token τ ,
note that the same task token τ is used for all the in-
put instances in that task-specific train/test dataset.
The two vectors are concatenated to generate an
input for task attention:

s′
D+1
i = [τi, s

D] ∈ R(N+1)×G, i = 1, ..., T

ŝD+1
i = TA(LN(s′

D+1
i )), i = 1, ..., T

sD+1
i = MLP(LN(ŝD+1

i )) + ŝD+1
i , i = 1, ..., T

(5)
The task attention block is placed after the last
self-attention block of the transformer. While we
can have more than one task attention block, our
architecture uses a single TAB. The operation of
the task attention layer is given as follows:

Qi = Wq × τi,

Ki = Wk × sD+1
i ,

Vi = Wv × sD+1
i ,

Ai = Softmax(Qi ·KT
i /

√
G/h),

Oi = WoAiVi + bo ∈ R1×G

(6)

where h is the number of attention heads in the
transformer (Vaswani et al., 2017).

Finally, the output of the task attention block,
sD+1
i is then fed into task-specific classifier layers:

yi = Clfi(s
D+1
i ), i = 1, ..., T (7)

5 Training Algorithm

The architecture in Figure 2 visualizes a snapshot of
our model, TAM-CL, at a given timestep. Note that
the architecture is dynamically expanded as more
tasks are learned sequentially. We describe the
suitable CL loss functions that we use for training.

5.1 Token Expansion
During the training stage, the transformer’s self
attention blocks and the task attention block are
shared among all the tasks. However, for each of
the new tasks, we define a new task token with
the same dimension, τ ∈ G × 1, and initialize a
new accumulative task-specific classifier, Clfi(·),
for task i, which the output dimension of Clfi(·)
is expanded based on Clfi−1(·). With more tasks
added on, the output dimension of task-specific
classifier i would be accumulating in the way:

Ei = Eorig
i +Ei−1, i = 1, . . . , T, (8)

Where Ei denotes the output dimension for ith

classifier, Eorig
i is the output dimension for ith task

in its original design. For task i, we combine the
ith task token with the updated path token, sD from
the last self-attention block of the transformer, and
send it into the task attention block, as described in
Sec 4.2. At this stage, only the ith task token and
task-specific classifier would be trainable, while all
the other task tokens and classifiers remain frozen.

During the testing stage, the task number, i, of
test data is explicitly given, and sD is combined
with the ith learned task token to feed into task
attention block along with using its correspond-
ing task-specific classifier, while all other the task
tokens and classifiers remain unused.

5.2 Loss and Knowledge Distillation
Our objective function consists of three loss terms:
(i) cross-entropy Loss, Lc, which is the original
objective function for each task in single task learn-
ing setting. Note it can vary from task to task,
(ii) the knowledge distillation (KD) loss, which is
computed from sD of the main student model and
the teacher model, Likd, (iii) the diverse loss Ldiv

which compares the data distribution of task tokens
and makes them more diverse. The final loss is:

L = (1− λ)Lc + λαLikd + βLdiv, (9)



where λ is set to Tn−1
Tn

, Tn denotes the total num-
ber of tasks we have seen so far, α denotes a con-
stant which varies for different tasks, and β =
min(Ldiv, 0.1× ((1− λ)Lc + λαLikd)).

The application of intermediate knowledge dis-
tillation is the core of TAM-CL, which aims to
distill the knowledge from the teacher model into
the main student model in order to constrain the
distribution shift and prevent catastrophic forget-
ting. In our architecture, the teacher model is a
copy of model f i−1

θ (·, ·) when training on ith task.
Different from most other methods which apply
knowledge distillation by computing the loss from
the last layer output, y and yteacher, we introduce
an intermediate knowledge distillation loss, i.e.,
the loss term Likd is computed between the last
self-attention block of the transformer and the task
attention block, sD. Through experiments in Sec-
tion 6.2, we find that compared with knowledge
distillation computed from the last layer output, eg.
Dytox, y and yteacher, such an intermediate knowl-
edge distillation is helpful in the architecture of a
pre-trained model followed by a non-pre-trained
block, which could constrain the probability shift
of pre-trained parameters and leave the rest of the
layers flexible enough to learn new tasks. To our
best knowledge, TAM-CL is the first to introduce
intermediate knowledge distillation objective func-
tion in multimodal continual learning.

5.3 Experience Replay

The above training procedure enables training a
shared model across the tasks but still, it need
datasets for all tasks which breaks a primary as-
sumption in CL. To address this issue, we use a
memory buffer during the training stage at each
time-step which stores a tiny percentage, e.g.,
≈ 5%, of the training dataset for all the previous
tasks. When learning the current task with a spe-
cific batch number, the next batch will be randomly
selected from the memory buffer to consolidate
the parameter distribution on previous tasks. As a
result, forgetting effects will be mitigated.

We introduce the Task Attentive Multimodal
Continual Learning (TAM-CL) training procedure,
which enables stable and high-performances while
mitigating forgetting effects in Multimodal contin-
ual learning in Algorithms 1 and 2.

6 Experimental Results

We evaluate TAM-CL using five VaL tasks.

Algorithm 1 TAM-CL Train
INPUT: Model M, MemBuffer B, ReplayFreq f
for epoch in num_epoch do

for step, batch in dataloader do
Loss← TrainStep(M, batch)
if step % f == 0 then

batchreplay ← B.getBatch()
Lossreplay ← TrainStep(M, batchreplay)

Algorithm 2 TAM-CL TrainStep
INPUT: Model M, Teacher Model T, Batch, Target t, Token
k
p←Model(Batch)
loss← CrossEntropyLoss(p, t)
ModelSabPre←M.SAB(Batch)
TeacherSabPre← T.SABs(Batch)
lossikd ← KL-Div(ModelSabPre, TeacherSabPre)
lossdiv ← CrossEntropyLoss(ki, kj) j = 1, .., i− 1
loss← (1− λ)loss + λαlossikd + βlossdiv
loss.backward()
Return loss

6.1 Experiment Setup

We use five VaL datasets to generate sequential
tasks. We use SNLI-VE (Xie et al., 2019), an
image-sentence pairs dataset whereby a premise
is defined by an image, rather than a natural lan-
guage sentence as in traditional Textual Entail-
ment tasks, COCOQA (Ren et al., 2015), a vi-
sual question answering dataset based on Microsoft
COCO image dataset, GQA (Hudson and Man-
ning, 2019), a compositional question-answering
and visual reasoning dataset leverages scene graph
structure, NLVR2 (Suhr et al., 2018), a visual
reasoning dataset which takes two images and
determine the correctness of the given sentence,
OKVQA (Marino et al., 2019), a knowledge-based
visual question-answering dataset whhere the im-
age content is not sufficient to answer questions.
Due to the computational limits, we trained all the
models on part of the whole dataset, where the
maximum size of the training examples are 80000.
Table 1 provides statistics of these dataset.

We use ViLT model with pre-trained weights,
“BERT-base-uncased” in our experiments. To main-

Name # Training Examples # Labels

NLVR2 80000 2
SNLI-VE 80000 3
COCOQA 78736 430

GQA 80000 1842
OKVQA 18032 2910

Table 1: Statistics of the VaL dataset.



COCOQA→ NLVR2→ OKVQA→ SNLI-VE→ GQA

COCOQA NLVR2 OKVQA SNLI-VE GQA

TAM-CL 66.09 (13.15%) 66.07 (14.87%) 21.24 (22.59%) 64.05 (19.13%) 50.86
Finetune 40.67 (47.09%) 53.85 (79.42%) 8.26 (74.37%) 53.83 (46.81%) 51.92

FDR 48.74 (32.12%) 55.91 (29.89%) 11.59 (55.44%) 59.30 (28.26%) 50.67
EWC 51.44 (33.10%) 60.87 (42.19%) 16.16 (49.40%) 57.93 (35.21%) 49.67
ER 56.30 (27.20%) 62.06 (34.27%) 15.62 (50.10%) 61.12 (27.91%) 50.12

Dytox 60.67 (20.52%) 65.56 (15.37%) 10.41 (25.26%) 62.26 (20.70%) 11.12
Avg. 53.98 (28.63%) 60.72 (36.00%) 13.88 (46.19%) 59.75 (29.67%) 44.06

Table 2: Comparative: the accuracy and forgetting rate for each task in two different task sequences. For each task
sequence, each value means the final accuracy of that task after learning the last task, and (forgetting rate %)
means the forgetting rate of final accuracy compared with the best accuracy of each task. The last row represent the
average accuracy and forgetting rate of each task.

OKVQA→ GQA→ COCOQA→ SNLI-VE→ NLVR2

OKVQA GQA COCOQA SNLI-VE NLVR2

TAM-CL 15.09 (54.56%) 41.91 (27.59%) 60.86 (18.36%) 60.47 (29.34%) 65.86
ablation TAB 13.97 (57.22%) 39.95 (28.69%) 59.92 (19.65%) 57.35 (37.22%) 65.71
ablation Likd 11.53 (65.36%) 37.19 (34.07%) 58.62 (21.71%) 58.34 (35.30%) 65.21

ablation replay 2.11 (93.69%) 27.25 (51.84%) 41.59 (44.33%) 50.06 (56.40%) 65.64

Table 3: Ablation: the accuracy and forgetting rate for each task in ablation experiments.

tain consistency in our comparison, we use ViLT
with the same pre-trained parameters for all the ex-
periments. Hence, we have 11 self-attention blocks
(SAB), with dimension of 768 and attention heads
of 12. We then attach one task attention block
(TAB) after the transformer encoder which also has
768 hidden dimensions and 12 attention heads. For
all four tasks, we apply AdamW optimizer with l =
1e-2, ϵ = 1e-8, β1 = 0.9, and β2 = 0.98.

Since there is no prior method for multimodal
CL, we use extensions of Dytox (Douillard et al.,
2022), FDR (Titsias et al., 2020), EWC (Kirk-
patrick et al., 2017), Experiment Replay (Rolnick
et al., 2019), and Direct Fine-Tuning, as five alter-
natives for comparison. Note that direct fine-tuning
serves as a lowerbound to measure the effect of
catastrophic forgetting and effectiveness of CL.

After learning each task Ti, we evaluate the for-
getting rate on previous tasks Tk, k ∈ 1, .., i − 1.
To study the effect of task order, we perform ex-
periments with different task orders that reflect
the difficulty of tasks. For each of the learned
tasks, the final performance accuracy and the for-
getting rates compared with its best accuracy are re-
ported. To assist the analysis of task order’s impact
to the experiment’s performance, we intuitively

rank the difficulty level of the five tasks by a met-
ric: # Training Examples

# Labels , which are presented in
Table 1. Roughly, the bigger this value is, the eas-
ier the tasks is. In this case, we rank our five tasks
from difficult to easy as: OKVQA, GQA, CO-
COQA, SNLI-VE and NLVR2, of which corre-
sponding scores are 6.19, 43.43, 183.10, 26666.66
and 40000. To eliminate the bias due to a specific
task order, we perform experiments on several task
orders. More results are included in the Appendix.

Most CL algorithms consider relatively homo-
geneous tasks. To evaluate the algorithm capacity
for preventing catastrophic forgetting on hetero-
geneous tasks that we have, we use the following
normalization-based metric (Srinivasan et al.):

TF(j ← i) =
Sj
A − Sj←i

A

Sj
A − Sj

R

(10)

where TF(j ← i) stands for the forgetting rate of
task j after learning task i, Sj

A denotes the accuracy
of task j before learning new tasks, Sj←i

A denotes
the accuracy of task j after learning task i, i > j,
and Sj

R means the accuracy of task j by randomly
choosing the output label, which is calculated by

1
# labels . In other words, Eq. (10) enables compar-
ing forgetting rates across tasks that are consider-



ably different because we are measuring how well
the model is preforming compared to a baseline of
total forgetting for that task. More details about
experimental setup are included in the Appendix.

6.2 Comparative Results

We report our performance results after training on
all five tasks in Table 1. As expected, we observe
that fine-tuning is the worst algorithm regarding
the forgetting rates for all tasks before GQA. On
the other hand, the accuracy of GQA is the high-
est among all the methods. The high accuracy is
also expected as there is a trade-off between ac-
curacy and forgetting rate of a task, without any
constrain to the forgetting rate, the accuracy of
fine-tuning method is supposed to be relatively
higher. This empirical observation demonstrates
the significance of adopting CL algorithm for learn-
ing multimodal tasks sequentially. We adopt two
regularization-based CL methods, EWC and Func-
tion Distance Regularization (FDR), in our compar-
ative experiments, and observe that most of results
are below the average accuracy for all the previous
tasks. EWC and FDR often is effective when used
on smaller models but in line with prior observa-
tions in the case of using transformers for unimodal
tasks (Srinivasan et al.; Jin et al., 2021; Douillard
et al., 2022), we conclude that regularization-based
CL methods are not suitable methods for CL with
large transformers. This result suggests that trans-
formers are sensitive with respect to weight consoli-
dation because their learning capacities are compro-
mised significantly when many weights are frozen.

In contrast, the accuracy and forgetting rate re-
sults for experience replay method is more decent.
In Table 2, all the accuracy results of experiment
replay are above the average line, which indicates
that experiment replay is a stable and relatively ef-
ficient CL method which is not constrained to only
small models and unimodal data. We also adopt
more state-of-the-art method, Dytox, as our base-
line. However, we observe that although Dytox
has some result close to those of our method in
some cases, the rest of the accuracies are relatively
lower compared with other methods. For exam-
ple, Dytox’s accuracy on OKVQA is 10.41, only
higher than fine-tuning. Noticing that this accuracy
is corresponded with a low forgetting rate, 25.26%,
which indicates that Dytox prevents forgetting by
underfitting the current task. Similarly, the accu-
racy of GQA is 11.12, which verifies that Dytox’s

underfitting on current task. While Dytox is de-
signed for unimodal tasks, we conclude that Dytox
is not suitable for multi-modal tasks.

Finally, TAM-CL outperforms every other
method in Table2. Especially, it is 8.93% higher
than the second best method for COCOQA, 31.43%
higher than the second best method for OKVQA,
and only 2.08% lower than the best accuracy for
the last task, GQA. In the cross-task, multimodal
CL scenario, TAM-CL is capable for significantly
reducing the forgetting rate of previous tasks while
maintaining the high accuracy of current task. Ad-
ditional experiments are included the Appendix.

6.3 Ablation Results

To reflect the necessity of each component in our
design, ablation experiments are performed on the
effect of Likd loss function, the training strategy
with experience replay, and using the task attention
block, respectively. In ablation experiments, we
use the task sequence order OKVQA→ GQA→
COCOQA→ SNLI-VE→ NLVR2.

In the ablative experiment, we choose the full
TAM-CL pipeline as the baseline and compare the
performance of TAM-CL to each ablation task. Ta-
ble 3 presents results for our ablation experiments.
We observe that the full pipeline for TAM-CL leads
to the best score in terms of both the forgetting
rate and the performance accuracy. These results
validate the necessity of every component in our
approach for an optimal performance. We observe
that the effect of dropping the Likd loss leads to
an average performance drop of 12.74% across the
four tasks, which demonstrates the significance of
intermediate knowledge distillation to CL.

Meanwhile, we also observe that when ablating
the whole task-attention block, which also includes
the Likd loss, the forgetting rates and accuracy per-
formances are slightly better than only ablating the
Likd loss. This higher performance may look unin-
tuitive but our hypothesis is that the loss term Likd
is specifically important to train the task-attention
layer which is the main continual learning compo-
nent in the model, leading to being more impactful.

As expected, our training strategy using experi-
ence replay is also contributing to the optimal per-
formance by mitigating catastrophic forgetting of
previous tasks. We observe that experience replay
is more helpful maintaining the accuracy of the
early tasks in the sequence. For example, in Table
3, by ablating experience replay, the forgetting rate



GQA→ COCQA→ OKVQA→ SNLI-VE→ NLVR2

COCOQA OKVQA SNLI-VE NLVR2
G G C G C O G C O S

3.22% 6.81% 5.81% 4.60% 4.58% 8.51% 9.43% 9.72% 20.72% 14.98%

COCOQA→ NLVR2→ SNLI-VE→ OKVQA→ GQA

NLVR2 SNLI-VE OKVQA GQA
C C N C N S C N S O

7.40% 8.45% 6.58% 11.08% 14.57% 19.23% 19.30% 23.34% 24.98% 27.29%

Table 4: Task order: the forgetting rate for each task in two different task sequences. The letter on each task
sequence represent the shortcut of the task name: S:SNLI-VE, N:NLVR2, C:COCOQA, O:OKVQA, G:GQA. The
second row of each task sequences represents the current task, while the third row of each sequence represent the
previous task. Eg. After trained on COCOQA, the forgetting rate of G(QA) is 15.42%.

of OKVQA after learning NLVR2 is 93.69%, while
the forgetting rate of GQA after learning NLVR2 is
51.84%, and the forgetting rate of COCOQA after
NLVR2 is 44.33%, which are significantly less than
93.69%. These results demonstrate that the optimal
performance of our method stems from using all
the three primary ideas that we proposed.

6.4 Effect of Different Task Orders

To further analyze the performance of TAM-CL,
we compare the performance of TAM-CL on two
different task sequences and analyze the impact of
the task order on catastrophic forgetting. Ideally we
would like to develop an algorithm that works well
on all task orders. Although in practice we don’t
control the task order and the tasks are encountered
in an order determined by the environment, we
study the effect of task order, assuming it is given.

Table 4 presents the forgetting rate results for
every time step. In another word, we evaluate the
forgetting rate of previous tasks after the training
of every single task. Inspecting results from both
sequence, we conclude that the task order is a key
factor to the performance of a certain task. For
example, in sequence 1, OKVQA is the third task,
and the forgetting rate of OKVQA is 20.72% af-
ter learning the last task. Meanwhile, in sequence
2, OKVQA is the fourth task, but its forgetting
rate is 27.29%, which is higher than that of the
previous sequence. By our intuitive metric of task
difficulty described in 6.1, our hypothesis is that, in
sequence 1, SNLI-VE and NLVR2 are two easier
tasks, which requires less parameter distribution
shift to achieve high accuracy, thus the parameter
distribution for OKVQA is less shifted. However,
in sequence 2, GQA is the second difficult task,

which requires more distribution shift from the pre-
vious task OKVQA, to achieve higher performance.
Such a correlations between the forgetting rate and
task difficulty can also be verified in sequence 2.
For example, the forgetting rate of COCOQA after
training the two relatively easier tasks, NLVR2 and
SNLI-VE, are 7.40% and 8.45%. In contrast, after
training OKVQA and GQA, the forgetting rate of
OKVQA is 11.08% and 19.30%, which are much
higher than after NLVR2 and SNLI-VE. For addi-
tional experiments, please refer to the Appendix.

We also observe that even though the NLVR2 is
a relatively easier task, in sequence 1, after trained
on NLVR2, all the forgetting rate of previous tasks
rise more than twice. Our hypothesis is that al-
tough NLVR2 is easy to train, it has an essential
difference from other tasks that NLVR2 takes two
images as a single input and perform visual reason-
ing while all the other tasks only take one image
at a time. Such a unique property of NLVR2 task
raises the extent of parameter distribution shift, but
not as drastically as the difficulty of task does.

Meanwhile, we surprisingly find that after
trained on some specific tasks, the forgetting rate of
previous tasks can even decrease. In sequence 1, af-
ter trained on OKVQA, the forgetting rate of GQA
and COCOQA are 6.81% and 5.81% respectively.
However, after trained on the next task, SNLI-VE,
the forgetting rates of those tasks drop to 4.60% and
4.58%, which might indicate the potential forward
transfer capacity that we can further explore.

7 Conclusions

We developed an algorithm for multimodal contin-
ual learning for transformer architectures based on
dynamic model expansion and knowledge distilla-



tion. We use a task-attention block which special-
izes the transformer architecture for a particular
tasks using a special learnable task token. Knowl-
edge distillation helps to benefit from knowledge
transfer across the tasks for positive forward trans-
fer. We mitigate catastrophic forgetting using ex-
perience replay. Our experiments demonstrate that
our approach is effective and leads to state-of-the
art performance in terms of both forward trans-
fer and catastrophic forgetting. Our TAM-CL ar-
chitecture is a first algorithm in studying CL in
multimodal settings and demonstrates that more
explorations in this direction is necessary.

Limitations

Although TAM-CL reaches the state-of-the-art per-
formance, it has its own limitations and we antic-
ipate several future research direction to address
these limitation. More specifically:

• As we have three visual question answering
tasks, one visual reasoning task and one visual
entailment task, the designed experiments are
not only cross-task, which is desired, but also
cross-domain. We will further explore the
performance of TAM-CL in single domain
cross-task settings and compare with the other
state-of-the-art methods.

• In multimodal learning scenario, the modal
can not only take multimodal input, but also
uni-modal input, by setting the input of other
modalities to some constant number. We will
further explore TAM-CL’s capacity on uni-
modal tasks and compare the result with other
state-of-the-art methods.

• Due to the computational limits, some of the
task that we trained on are not in its full ver-
sion. For example, we are training TAM-
CL on 80000 training examples for SNLI-VE
dataset, where the full SNLI-VE dataset con-
tains 529527 training examples. We will fur-
ther explore the performance of TAM-CL on
the full size of training examples for all the
tasks.
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A Appendix

A.1 Implemntation Details
A.1.1 Data Preprocessing
As the tasks, which the model trains on, have com-
pletely different dataset, we compress the image
from its original size to (384, 640) before sending
to the linear projection embedding block. In the
self-attention layers of the pre-trained transformer
and task-attention block, the image-text feature vec-
tor has the shape of (batch, 768).

Different from tasks such as COCOQA,
PathVqa, and SNLI-VE which takes only 1 input
image, NLVR2 takes 2 input images with a hypoth-
esis as text input. During the training stage, the text
input is combined with one image every time be-
fore feeding into the transformer, and concatenate
the output from two images as one. Consequently,
the output from transformer will be (batch, 1536).
However, due to the input size limitation of the
task-attention block, we compress the vector, V,
from 1536 to 768 by taking the average value of
the adjacent element:

V′[i] =
V[i] + V[i+ 1]

2
, i = 0, 2, 4, ..., 1534

(11)
, where V′ is the compressed feature vector. We
then feed V′ into the task-attention block.

A.1.2 Hyperparameters for the Experiments
For all experiments we perform, we use single
A100 GPU with batch size of 16.

For the training epochs, due to the limit of com-
putational force, we only train each task with small
epochs: 5 epochs for SNLI-VE, 10 epochs for CO-
COQA, GQA and NLVR2, 20 epochs for OKVQA.

For EWC method, we applied the fisher sample
percentage as 0.4, which means 40% of dataset
are collected to build the fisher matrix. During the
training stage, we set the EWC weight as 0.1. For
Experience Replay method, the sample size of data
in memory buffer is 5%, and the sample frequency
is 100, which means for every tasks, we randomly
extract 5% of data and store them into the memory
buffer. During the training stage, after 100 batches
of current dataset are trained, we randomly select
a batch of data from memory buffer and train the
model on that batch from a random previous task.
For TAM-CL, as the knowledge distillation loss is
extremely small compared with other loss, we set
the weight for Likd as 5000 for all the four tasks.
As in TAM-CL, we adopt experience replay as our

training strategy, we also set the sample size of
memory size as 5%, and the sample frequency as
100.

A.2 Results on Additional Task Orders

Due to space limit, additional comparative result
on different task sequence of all time steps are
presented here and each table presents the accuracy
of the task right after trained on it and the forgetting
rate of previous tasks after trained on the current
task. Through the four tables, we observe that
TAM-CL has the leading forgetting rate in different
time steps in most of the cases.

As discussed in Section 6.2, the two
regularization-based method, EWC and FDR are
not suitable for large-model and long sequence
continual learning. We observe that in some cases,
the forgetting rate of FDR and EWC are close or
even higher than the finetuning method, which
means in such condition, those methods are not
capable for preventing catastrophic forgetting. For
example, in Table 6, after trained OKVQA, the
forgetting rate of NLVR2 for Finetune method is
59.13%, while that of EWC is 52.07%, which is
close to the performance of without CL algorithm.
Meanwhile, after trained on GQA, the forgetting
rate of OKVQA for Finetune method is 40.90%
and that of EWC is 42.28%, which is even higher
than the non-CL method baseline. In table 8, after
trained on NLVR2, the forgetting rate of SNLI-VE
for Finetune is 50.07, and forgetting rate for FDR
is 47.51%, for EWC is 54.04%, which are close to
and above the non-CL baseline.

Regarding the experience replay method, it pro-
vides relatively high accuracy and low forgetting
rates compared to the two regularization methods.
However, the capacity of ER for preventing catas-
trophic forgetting in later tasks are not as stable as
it is in early tasks. For example, in Table 5, after
trained on the last task, GQA, the forgetting rate of
OKVQA for ER is 50.10%, which is close to FDR
and higher than EWC. Comparatively, after trained
on SNLI-VE, the forgetting rate of OKVQA for ER
is 26.57%, far greater than the forgetting rate for
FDR, which is 52.28%. In contrast, Dytox method
has the stable capacity to prevent catastrophic for-
getting, which is not affected drastically by length
of task sequence, however, it lost the competitive-
ness due to its low performance on training the
current task. We observe that in Table 5, the accu-
racy of OKVQA for Dytox is 19.12, whereas the



COCOQA→ NLVR2→ OKVQA→ SNLI-VE→ GQA

COCOQA NLVR2 OKVQA

COCOQA COCOQA NLVR2

TAM-CL 76.09 68.88 7.89% 31.63 9.45% 3.72%
Finetune 75.88 68.71 70.21% 32.24 19.41% 45.75%
EWC 75.89 67.93 73.65% 31.39 20.95% 64.20%
FDR 71.81 58.43 28.99% 26.01 24.54% 59.07%
ER 76.77 68.35 12.08% 31.19 13.64% 34.04%
Dytox 76.68 68.41 10.37% 13.93 16.15% 23.35%

SNLI-VE

COCOQA NLVR2 OKVQA

TAM-CL 71.32 10.25% 6.98% 15.19%
Finetune 71.6 31.71% 41.57% 71.71%
EWC 71.03 23.55% 43.49% 29.75%
FDR 68.56 71.13% 51.00% 52.28%
ER 71.37 12.05% 10.46% 26.57%
Dytox 69.82 14.30% 16.25% 2.15%

GQA

COCOQA NLVR2 OKVQA SNLI-VE

TAM-CL 50.86 13.15% 14.87% 22.59% 19.13%
Finetune 51.92 47.09% 79.42% 74.37% 46.81%
EWC 49.67 33.10% 42.19% 49.40% 20.45%
FDR 50.67 32.12% 29.89% 55.44% 28.26%
ER 50.12 27.20% 34.27% 50.10% 27.19%
Dytox 11.12 20.52% 15.37% 25.26% 20.70%

Table 5: Accuracy and forgetting rate of task order: COCOQA→ NLVR2→ OKVQA→ SNLI-VE→ GQA

accuracy for all the other methods are above 30.
Meanwhile, Dytox only obtains 6.10 in GQA and
the accuracy for all other methods are above 50.

Finally, although TAM-CL is not leading on ev-
ery single forgetting rate, it outperforms the rest of
methods on 87.5% of the total forgetting rates. For
the rest of the exceptional cases, TAM-CL has the
above-average performance which proves its capac-
ity and stability to prevent catastrophic forgetting.

We also aware that the accuracy of TAM-CL is
not always leading among the six methods. How-
ever, as all of the differences between the top accu-
racy and TAM-CL’s accuracy are below 5%, and as
our main focus is on the improvement of forgetting
rate, we consider the slightly accuracy difference
is in an acceptable range.



COCOQA→ NLVR2→ SNLI-VE→ OKVQA→ GQA

COCOQA NLVR2 SNLI-VE

COCOQA COCOQA NLVR2

TAM-CL 76.73 69.99 7.40% 71.12 8.45% 6.58%
Finetune 76.95 67.83 74.75% 71.72 62.51% 38.12%
EWC 76.69 71.67 64.88% 70.84 58.61% 27.77%
FDR 72.43 57.99 31.31% 67.59 38.96% 65.08%
ER 76.38 70.35 8.15% 70.69 8.65% 8.52%
Dytox 76.63 68.89 8.50% 70.45 9.43% 7.94%

OKVQA

COCOQA NLVR2 SNLI-VE

TAM-CL 30.47 11.08% 14.57% 19.23%
Finetune 32.12 19.19% 59.13% 22.22%
EWC 31.68 18.83% 52.07% 15.44%
FDR 11.49 44.23% 45.52% 41.27%
ER 30.91 12.92% 28.12% 17.92%
Dytox 19.12 17.16% 32.55% 37.06%

GQA

COCOQA NLVR2 SNLI-VE OKVQA

TAM-CL 56.20 19.30% 23.34% 24.98% 27.29%
Finetune 57.03 36.53% 66.16% 34.11% 40.90%
EWC 57.21 33.51% 60.60% 32.84% 42.28%
FDR 42.67 41.08% 46.41% 74.08% 50.17%
ER 57.04 26.04% 32.89% 27.97% 41.33%
Dytox 6.10 21.81% 38.50% 30.10% 34.43%

Table 6: Accuracy and forgetting rate of task order: COCOQA→ NLVR2→ SNLI-VE→ OKVQA→ GQA



GQA→ COCOQA→ OKVQA→ SNLI-VE→ NLVR2

GQA COCOQA OKVQA

GQA GQA COCOQA

TAM-CL 56.58 74.44 3.22% 30.44 6.81% 5.81%
Finetune 58.11 75.95 10.60% 31.99 12.78% 10.65%
EWC 58.69 76.12 10.45% 31.15 13.46% 7.97%
FDR 55.50 71.42 12.70% 28.39 12.17% 6.21%
ER 57.61 75.17 4.17% 31.21 9.58% 4.26%
Dytox 56.83 75.22 1.93% 29.87 11.29% 7.87%

SNLI-VE

GQA COCOQA OKVQA

TAM-CL 71.49 4.60% 4.58% 8.51%
Finetune 72.54 9.91% 7.35% 15.93%
EWC 72.10 10.82% 6.43% 11.46%
FDR 70.17 8.29% 7.11% 13.43%
ER 72.39 6.00% 5.03% 10.47%
Dytox 72.44 8.13% 5.40% 10.07%

NLVR2

GQA COCOQA OKVQA SNLI-VE

TAM-CL 70.04 9.43% 9.72% 20.72% 14.98%
Finetune 70.32 55.09% 63.90% 77.80% 53.18%
EWC 67.57 57.47% 63.77% 80.89% 51.90%
FDR 53.60 33.54% 56.20% 63.64% 36.42%
ER 70.38 13.19% 9.90% 23.43% 19.93%
Dytox 67.34 15.86% 13.90% 41.45% 27.61%

Table 7: Accuracy and forgetting rate of task order: GQA→ COCOQA→ OKVQA→ SNLI-VE→ NLVR2



COCOQA→ GQA→ SNLI-VE→ OKVQA→ NLVR2

COCOQA GQA SNLI-VE

COCOQA COCOQA GQA

TAM-CL 76.59 57.83 3.86% 72.03 3.37% 1.66%
Finetune 76.84 58.72 18.86% 72.09 23.57% 5.64%
EWC 76.49 57.27 18.65% 72.11 21.18% 4.26%
FDR 72.00 53.42 14.66% 68.25 20.47% 2.74%
ER 76.88 58.07 17.52% 72.19 9.01% 1.71%
Dytox 76.77 25.41 4.51% 72.33 3.77% 2.14%

OKVQA

COCOQA GQA SNLI-VE

TAM-CL 30.74 6.64% 4.78% 5.66%
Finetune 32.77 24.37% 9.89% 9.27%
EWC 31.78 22.88% 5.88% 8.65%
FDR 26.57 26.88% 8.84% 4.77%
ER 33.22 11.64% 6.11% 5.74%
Dytox 13.74 10.61% 4.98% 6.74%

NLVR2

COCOQA GQA SNLI-VE OKVQA

TAM-CL 69.15 10.09% 11.74% 14.60% 16.79%
Finetune 67.27 76.18% 55.89% 50.07% 75.11%
EWC 68.43 78.72% 54.84% 54.04% 79.46%
FDR 58.73 38.38% 40.97% 47.51% 52.12%
ER 67.63 16.08% 12.26% 24.12% 19.80%
Dytox 69.01 18.20% 23.63% 26.89% 29.90%

Table 8: Accuracy and forgetting rate of task order: COCOQA→ GQA→ SNLI-VE→ OKVQA→ NLVR2


