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Abstract

This paper presents Granger mediation analysis, a new framework for causal

mediation analysis of multiple time series. This framework is motivated by a

functional magnetic resonance imaging (fMRI) experiment where we are

interested in estimating the mediation effects between a randomized stimulus

time series and brain activity time series from two brain regions. The

independent observation assumption is thus unrealistic for this type of time‐
series data. To address this challenge, our framework integrates two types of

models: causal mediation analysis across the mediation variables, and vector

autoregressive (VAR) models across the temporal observations. We use

“Granger” to refer to VAR correlations modeled in this paper. We further

extend this framework to handle multilevel data, in order to model individual

variability and correlated errors between the mediator and the outcome

variables. Using Rubin's potential outcome framework, we show that the causal

mediation effects are identifiable under our time‐series model. We further

develop computationally efficient algorithms to maximize our likelihood‐based
estimation criteria. Simulation studies show that our method reduces the

estimation bias and improves statistical power, compared with existing

approaches. On a real fMRI data set, our approach quantifies the causal effects

through a brain pathway, while capturing the dynamic dependence between

two brain regions.
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1 | INTRODUCTION

Mediation analysis is a popular statistical approach for
many social and scientific studies. It aims to assess the role
of an intermediate variable or mediator sitting in the
pathway from a treatment variable to an outcome variable.
In many studies, observations from multiple units or
subjects are collected, and existing mediation methods
usually impose the assumption of independent units
explicitly or implicitly. For example, the Baron‐Kenny
method (Baron and Kenny, 1986; MacKinnon, 2008), built

on the structural equation modeling framework, relies on
the independence assumption to carry out estimation and
inference. Causal mediation analysis has been widely
studied in the statistical literature (Imai et al., 2010), and
most causal mediation methods again assume indepen-
dent errors. These methods thus cannot be applied to time‐
series data where temporal dependence is present.

In this paper, we will focus on the time‐series data
generated from a functional magnetic resonance imaging
(fMRI) experiment where each participant performs a
motor conflict task, responding to randomized STOP/GO
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experimental stimuli in a sequence of trials. Participants
are instructed to press buttons when seeing the GO
stimulus, and to withhold from pressing under the STOP
stimulus. During the experiment, brain activities are
measured by fMRI using the blood‐oxygen level depen-
dent (BOLD) contrast. It is well established that the GO
stimulus, compared with STOP, will increase brain
activation in the primary motor cortex (M1), a brain
region responsible for finger movements. Previous
studies (Aron et al., 2007; Duann et al., 2009) also
discovered that multiple other brain regions also respond
to the STOP/GO stimuli. One brain region, the pre-
supplementary motor area (preSMA), was hypothesized
to be one of the primary areas for processing the stimuli
and mediating the M1 response, though some researchers
were not convinced about the primary role of preSMA.
Obeso et al. (2013) used repetitive transcranial magnetic
stimulation to demonstrate the existence of a brain
pathway from preSMA to M1. However, it remained
unclear to what extent preSMA mediates the stimulus
effect on M1. This question cannot be addressed using
widely available neuroimaging analysis tools, because
they usually analyze either the stimulus activations or the
connectivity (correlations) between regions. This paper
tackles this scientific question by developing a new causal
mediation model. In this data example, the stimulus is
the treatment variable, and we model the hemodynamic
response delay by convolving with a standard hemody-
namic response function (Lindquist, 2008). The BOLD
activities in preSMA and M1 are the mediator and
outcome variables, respectively. All these variables are
time series, and an example of these three time series
from one participant is shown in Figure 1.

It has been well established before that BOLD time
series by fMRI have nonignorable temporal correlations,
which can be effectively modeled by stationary autoregres-
sive (AR) models with a small lag order (Lindquist, 2008).
Indeed, AR modeling is an important approach for time‐
series analysis widely studied in the fields of economics and
statistics. One earlier approach, named as Granger causality
(Granger, 1969; 1980), assesses if the current value of time
series x can be predicted by the past values of time series x
and another time series y. Such predictive relationship is
usually modeled linearly by AR models. This idea is
generalized to model multiple time series using multivariate
AR (MAR) models, also known as vector AR models.
Popular estimation methods include (generalized) least
squares, the Yule‐Walker moments estimator, and max-
imum likelihood (Lütkepohl, 2005). In particular, Johansen
(1991) proposed a conditional maximum likelihood esti-
mator (CMLE) for MAR, using the likelihood of the time‐
series samples in later periods conditional on the time series
from the initial periods. Recently, MAR is becoming

increasingly popular in fMRI analysis, for example, the
implementations in Harrison et al. (2003) and Goebel et al.
(2003). Despite its growing popularity, researchers often
consider it as a model for “predictive causality,” and
practitioners need to be careful about the causal interpreta-
tion and assumptions (Granger, 2004; Maziarz, 2015). For
trivariate time series, conditional Granger causality analysis
(Geweke, 1984) is often used to construct test statistics for
the “indirect” and “direct” effects. However, these effects
are defined differently from the causal mediation effects
constructed using potential outcomes. In this paper, we will
further develop a multilevel mediation model for time‐
series data, where the temporal correlations are modeled by
MAR. To estimate the mediation and MAR parameters
jointly in our model, we will further develop the conditional
likelihood principle (Johansen, 1991). To the best of our
knowledge, causal mediation models of multiple stationary
AR time series have not been studied before, especially
when data are multilevel like those collected in our fMRI
experiment.

Inferring stimulus effects on BOLD responses has
been a central topic in neuroimaging analysis. They are
usually implemented using massive linear regressions
(Lindquist, 2008). For randomized stimuli, Luo et al.
(2012) studied the causal stimulus effects using potential
outcomes and nonparametric tests. Sobel and Lindquist
(2014) proposed a parametric causal inference framework
for fMRI time series, and formulated the causal assump-
tions using potential outcomes. Some of their assump-
tions overlap those used by Granger (2004). Recently,
several papers used mediation analysis for fMRI to
provide further understanding of the causal mechanisms
and pathways. Atlas et al. (2010) applied mediation
analysis to study the brain mediators of a self‐reported
behavioral outcome. They utilized a general linear model
approach to extract the brain activities for each trial
(sometimes referred to as single‐trial betas), and thus
these coefficients in their mediation model can be
considered independent. Lindquist (2012) proposed a
functional mediation model with fMRI mediators and a
scalar outcome. With also a scalar behavioral outcome,
Chén et al. (2017) recently proposed multiple mediator
models where none of the mediators is modeled as time
series. Zhao and Luo (2014) proposed a multilevel causal
mediation framework for single‐trial betas as the
mediator and the outcome. It addresses the issues related
to unmeasured confounding and individual variation, but
did not directly model the temporal dependence in fMRI
time series. Built on the causal framework of Sobel and
Lindquist (2014), this paper will extend the multilevel
mediation framework to a time‐series setting. We use
“Granger” in this paper to mean temporal MAR
correlations, rather than Granger causality.
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In a related setting for longitudinal data, marginal
structural models (Robins et al., 2000) were employed to
quantify causal mediation effects for time‐varying treat-
ments and mediators (VanderWeele, 2015). VanderWeele
and Tchetgen Tchetgen (2017) introduced the media-
tional g‐formula to estimate the interventional analogs of
the natural direct and indirect effects using a semipara-
metric approach. Lin et al. (2017) later proposed a fully
parametric g‐formula approach to improve statistical
efficiency, especially when the exposure and the med-
iator are continuous. In these longitudinal mediation
models, the outcome of interest is often measured at one
time point (at the end) rather than a time series. Their
temporal dependence models are also different from our
parametric MAR model.

We address these methodological limitations by
proposing a new framework, called Granger mediation
analysis (GMA). It is a mediation model for three MAR
time series. A conceptual diagram of our model is
illustrated in Figure 2. Compared with standard media-
tion models, this model allows the error time series to
have more complex dependencies to be discussed later.
The causal interpretation of the model parameters will be
presented in Section 2.1.

This paper is organized as follows. In Section 2, we
introduce our GMA framework, which consists of a
lower‐level mediation model (Section 2.2) and a two‐level
mediation model (Section 2.4). We compare our method
with existing methods through simulation studies in
Section B of the supporting information and an analysis

FIGURE 1 The stimulus input time series (Z f S= ( ̄ )t t t , the convolution of the stimulus S S S̄ = ( , …, )t t1 with the canonical hemodynamic
response function), and the preSMA (Mt) and M1 (Rt) fMRI BOLD time series from one of the 121 participants. The notations are given in
Section 2.1. BOLD, blood‐oxygen level dependent; fMRI, functional magnetic resonance imaging; preSMA, presupplementary motor area
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of the fMRI data set in Section 3. Section 4 summarizes
this paper with discussions and future work.

2 | MODEL AND METHODS

In this section, we first introduce our single‐level GMA
model for the time‐series data from each participant i
(Sections 2.1‐2.3). To keep the following discussion
uncluttered, we drop the participant index i hereafter.
In Section 2.4, we will extend this model to multilevel
data from multiple participants.

2.1 | Causal definitions

Our approach builds on Rubin's potential outcome
framework (Rubin, 2005). To model fMRI potential
responses, we adopt the causal fMRI model and the five
causal assumptions (denoted as (SL1)‐(SL5) here) in
Sobel and Lindquist (2014) (details in Supporting
Information Section A.1). Readers interested in other
applications may skip to Equation (2). Briefly, these five
assumptions are as follows: (SL1) BOLD response
decomposition; (SL2) true response time invariance;
(SL3) temporal consistency; (SL4) p period carry‐over;
and (SL5) no treatment by period interaction. We also
assume the stable unit treatment value assumption
(SUTVA; Rubin, 1980) that one participant's outcomes
do not depend on the treatment assignments of other
participants. For t T= 1, …, equally spaced time periods,
define s = 1qt if stimulus q is applied at time t and 0

otherwise. In our experiment, we only need to consider
two randomized stimuli: q = 1 (GO) and q = 2 (STOP).
Let s ss = ( , )t t t1 2 be the stimulus assignment at time t ,
and s s s̄ = ( , …, )t t1 be the historical stimulus assignment
up to time t . Following Sobel and Lindquist (2014), we
first write the following model for the potential BOLD
response of the mediator region:

̃ ν νM ν f a f a

ε

s s s N s N

s

( ̄ ) = + ( ̄ ) + ( ̄ ) + ( ̄ ) + ′

+ ( ̄ ),

t t t t t t t

t
M

t

0 1 1 2 2

( ) (1)

where ν0 is the intercept, ∑f s hs( ̄ ) =qt t j

p
q t j j=0 , − is the

convolution between the stimulus q and the canonical
hemodynamic response function h (Lindquist, 2008),
(N s N( ̄ ),t ) is a vector of measured “nuisance” factors, and

ν νa a( , , , ′)1 2 is a vector of coefficients. The Gaussian
error ε s( ̄ )t

M
t

( ) is assumed to be a zero‐mean AR process.
This model is essentially the same as Model (5) in Sobel
and Lindquist (2014) under a single‐subject setting. We
will discuss the strategy to average the parameter
estimates across subjects in Section 2.4.

In fMRI analysis, neuroscientists are often interested in
the contrasts between the hemodynamic responses under
different stimuli, because BOLD measures have arbitrary
units. In our experiment, we are interested in modeling the
coefficient contrast ≔α a a−2 1, which is interpreted as the
effect of the STOP stimulus relative to the GO stimulus. We
thus consider a simple “modified covariate" approach
below, in the same spirit of the proposal in Tian et al.
(2014). Moreover, it is a common practice to preprocess the
raw BOLD data by removing the effects of those nuisance
covariates, such as head motion and machine drift.
Motivated by these two points, we model the “adjusted”
mediator response as

̃ ν

ν

M M γ f f a

f a a ε

Z α ε

s s s s N s

N

s s

s s

( ̄ ) = ( ̄ ) − − ( ( ̄ ) + ( ̄ )) − ( ̄ )

− ′

= ( ̄ )( − ) + ( ̄ )

= ( ̄ ) + ( ̄ ),

t t t t t t t t t

t t t
M

t

t t t
M

t

0 2 1 1

2 2 1
( )

( )

(2)

where Z fs s( ̄ ) = ( ̄ )t t t t2 . This adjustment also makes the
computation later more trackable and the presentation more
focused on our mediation model. Using the adjusted brain
responses, we propose the following model:

FIGURE 2 A conceptual diagram for
the time‐series data of a single participant.
At each time point, the bold arrows
between the convolved stimulus time
series Zt , the mediator Mt , and the
outcome Rt depict the causal mediation
mechanism we aim to study. E t1 and E t2

are random autoregressive errors. An
unmeasured confounding variable Ut
influences both errors. Dotted lines
represent the autoregressive dependence
in our model
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R M Z γ M β εs s s s s s( ̄ , ( ̄ )) = ( ̄ ) + ( ̄ ) + ( ̄ , ̄ ).* * *t t t t t t t t t
R

t t
( )

(3)

Note that this model includes nested counterfactual
R Ms s( ̄ , ( ̄ ))*t t t t , the potential outcome when the stimulus
is set to st̄ and Mt to the value when the stimulus is set to
s ̄*t .

Following the standard mediation definitions, we
define the average total causal effect by comparing the
potential outcomes under the treatment assignment st̄
and s ̄*t as

R M R M

Z Z γ αβ

s s s s s s

s s

ATE( ̄ , ̄ ) = { ( ̄ , ( ̄ )) − ( ̄ , ( ̄ ))}

= { ( ̄ ) − ( ̄ )}( + ).

* * *

*

t t t t t t t t t t

t t t t



The coefficient γ αβ+ is interpreted as the effect on the
outcome response for each unit change in Z Zs s( ̄ ) − ( ̄ )*t t t t

due to the stimulus assignment change. A similar
formulation for the stimulus effect on a brain region is
defined in Sobel and Lindquist (2014).

Under our mediation model, this average total effect is
decomposed as the sum of the average (natural) indirect
effect (AIE) and the average (natural) direct effect (ADE):

R M R M

R M

R M

s s s s s s

s s

s s

s s s s

ATE( ̄ , ̄ ) = { ( ̄ , ( ̄ )) − ( ̄ , ( ̄ ))}

+ { ( ̄ , ( ̄ ))

− ( ̄ , ( ̄ ))}

= AIE( ̄ , ̄ ) + ADE( ̄ , ̄ ),

* *

*

* *

* *

t t t t t t t t t t

t t t t

t t t t

t t t t




where the two terms above are

Z Z αβ

Z Z γ

s s s s

s s s s

AIE( ̄ , ̄ ) = { ( ̄ ) − ( ̄ )} , and ADE

( ̄ , ̄ ) = { ( ̄ ) − ( ̄ )} .

* *

* *

t t t t t t

t t t t t t

The coefficient αβ represents the effect on the outcome
region that is mediated by the mediator region, for each
unit change in Z Zs s( ̄ ) − ( ̄ )*t t t t . The coefficient γ repre-
sents the effect not mediated by the mediator.

2.2 | A mediation model for time series
and causal assumptions

Because fMRI data are usually preprocessed with various
adjustments (not relevant for understanding our media-
tion method here), throughout the paper we will refer the
preprocessed and adjusted fMRI data as the “observed”
data. This also makes our method description relevant to
other applications when no preprocessing adjustment is
required. For the observed data Z M R t T( , , ), = 1, …,t t t ,
we first rewrite Models (2) and (3) as

M Z α E= + ,t t t1 (4)

R Z γ M β E= + + ,t t t t2 (5)

where E t1 and E t2 are two zero‐mean error processes.
Again, all variables are centered, so no intercepts are
included in above. To account for the spatiotemporal
dependence between the two error processes, E t1 and E t2

are assumed to follow a MAR model of order p (MAR(p)):

∑E ω E ω E ϵ= ( + ) + ,t

j

p

t j t j t1

=1

11 1, − 21 2, − 1j j
(6)

∑E ω E ω E ϵ= ( + ) + ,t

j

p

t j t j t2

=1

12 1, − 22 2, − 2j j
(7)

where the error vector ⊤ϵ ϵ( , )t t1 2 is assumed to be a
bivariate Gaussian white noise process as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N( )ϵϵ

σ δσ σ

δσ σ σ
0 Σ Σ~ ( , ), = .t

t

1

2

1
2

1 2

1 2 2
2

(8)

Here ⊤ϵ ϵ( , )t t1 2 is independent of ⊤ϵ ϵ( , )u u1 2 for ≠t u.
Univariate AR errors were considered in Sobel and
Lindquist (2014) because they modeled the stimulus
effect on each voxel/region separately. For the bivariate
errors, we introduce Σ and MAR(p) for the spatiotem-
poral correlations, where p is usually small (1 or 2) for
fMRI data (Lindquist, 2008).

We introduce the correlation parameter δ in (8) to
model the instantaneous mediator‐outcome dependence,
and such dependence (when ≠δ 0) can be due to another
unmeasured zero‐mean Gaussian process Ut as in the
following example. This example is adapted from a
sensitivity analysis model for independent observations
in Imai et al. (2010). Suppose

̃ϵ g U ϵ i= + , = 1, 2,it i t it (9)

where ̃ ̃U ϵ ϵ( , , )t t t1 2 are mutually independent and also
independent of ̃ ̃U ϵ ϵ( , , )u u u1 2 for ≠t u. It is easy to see that
the correlation parameter ≠δ 0 whenever ≠g g 01 2 . δ can
be interpreted as the magnitude of the unmeasured
confounding effect. Figure 2 shows a special case of our
proposed model with p = 1.

Granger causality analysis in economics (Granger,
1969; 1980) is usually implemented using MAR(p), and
recently it has been widely adopted in neuroimaging for
so‐called Granger connectivity analysis (Goebel et al.,
2003; Harrison et al., 2003). We thus name our method

792 | ZHAO AND LUO
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as GMA. It is important to note that we use the term
“Granger” here to refer to the temporal dependence in
the error processes, and we do not intend to interpret
these error dependence parameters as causal.

To identify the causal effects (AIE and ADE) from the
observed data, we impose the following assumptions:

(A1) The treatment randomization regime is the same
across time and participants.

(A2) Models are correctly specified, and there is no
treatment‐mediator interaction.

(A3) At each time point t , the observed outcome is one
realization of the potential outcome with observed
treatment assignment S̄t, where S S S̄ = ( , …, )t t1 .

(A4) The treatment assignment is fully random across
time, that is,

⊥⊥ ⊥⊥

≠

R m M

t u

s s S S S

S s s

{ ( ̄ , ), ( ̄ )} , for any

, and ( = ) > 0 for all .

*t t t t t t t u

t t t

(A5) From Models (2) and (3), the causal effects are
defined based on Z Ms s( ( ̄ ), ( ̄ ))t t t t and
Z M R Ms s s s( ( ̄ ), ( ̄ ), ( ̄ , ( ̄ ))* **t t t t t t t t at the same t , and
the causal parameters are time‐invariant.

(A6) The time‐invariant covariance matrix of the Gaus-
sian errors in Models (2) and (3) is not affected by
the treatment assignments. That is,

ε ε

ε ε

s s s

s s s Σ

Cov[{ ( ̄ ), ( ̄ , ̄ )}]

= Cov[{ ( ̄ ), ( ̄ , ̄ )}] =

* **t
M

t t
R

t t

t
M

t t
R

t t

( ) ( )

( ) ( )

for all t , where ⋅Cov[ ] is the covariance matrix of
the vector random variable inside.

Assumptions (A1) to (A3) are adapted from standard
causal mediation assumptions (Imai et al., 2010; Vander-
Weele, 2015). Assumptions (A1) and (A4) are expected to
hold in our experiment because the treatment St for every
t is randomized and the probability of S s=t t (for all
possible st) is the same for all participants and all t in the
experiment. Assumption (A4) also satisfies the randomi-
zation assumptions for time‐varying treatments (Robins
and Hernán, 2008), and is expected to hold in our
scientific experiment because the stimuli are randomly
generated before seeing the fMRI data. Assumptions (A2)
and (A3) are regularity conditions for our modeling
approach, and these two implicitly assume (SL1) to (SL5)
from Sobel and Lindquist (2014). Assumption (A2)
implies the parametric assumptions, such as linearity
and Gaussian errors, in our model. Assumption (A3) is
also known as the “consistency” assumption in causal
inference (VanderWeele, 2009). Assumption (A5)

considers only the effects at each time point in this
paper, because fMRI has low temporal resolution and
many fMRI analysis methods study only the effects
between regions at the same time point t (though the
actual measurement times between the two regions may
differ by an amount smaller than the sampling
frequency). This assumption is similar in spirit to the
“short‐term” effect considered in Keogh et al. (2017). In
Assumption (A6), we replace the ignorability assump-
tions of the mediator (Imai et al., 2010; VanderWeele and
Tchetgen Tchetgen, 2017) by a Gaussian covariance
assumption. Because all errors are multivariate Gaussian
(regardless of treatment assignments), setting δ = 0

implies the so‐called “cross‐world” independence as-
sumption. δ can also be treated as a sensitivity parameter
as in Imai et al. (2010). When multilevel data are
available as in our experiment, it can also be fitted using
another second‐level parametric model (Zhao and Luo,
2014) across participants with additional assumptions to
be discussed later. This approach essentially assumes that
the constant effect of unmeasured mediator‐outcome
confounder Ut is fully characterized by the error
correlation δ, as discussed in the example (9) before.
The correlation parameter δ is also assumed to be
constant across time, and this is similar to the constant
causal effect assumption in Granger (1980).

For the MAR(p) models (6) and (7), we impose the
following stationary condition for parameter estimation.

(A7) The eigenvalues of the companion matrix have
modulus less than one.

The companion matrix is given in Supporting Informa-
tion Section A.3. Assumption (A7) is a standard condition
for stationary AR processes (Lütkepohl, 2005). This
stationarity condition is deemed satisfied for adjusted
fMRI data after correcting for the stimulus effects and
other covariates (Harrison et al., 2003; Chang and Glover,
2010), as in our model.

2.3 | Method

In this section, we extend the maximum (conditional)
likelihood estimation for MAR (Johansen, 1991) to our
Granger mediation model. To derive the likelihood, we
note the following equivalent formulation for Models (4)
to (7) of the observed data:

∑M Z α ϕ Z ψ M ψ R ϵ= + ( + + ) + ,t t

j

p

j t j t j t j t

=1

1 − 11 − 21 − 1j j

(10)
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∑R Z γ M β ϕ Z ψ M ψ R

ϵ

= + + ( + + )

+ ,

t t t

j

p

j t j t j t j

t

=1
2 − 12 − 22 −

2

j j

(11)

where ϕ ϕ ψ ψ ψ ψ{ , , , , , }j j1 2 11 21 12 22j j j j
are the new para-

meters introduced to facilitate our likelihood formula-
tion, and we do not intend to interpret them individually.
The variance parameters for ϵ ϵ( , )t t1 2 are σ σ δ( , , )1 2 given
in (8). To see the equivalence, one can plug (6) and (7)
into (4) and (5), respectively, and then replace, respec-
tively, E t j1, − and E t j2, − by M Z α−t j t j− − and
R Z γ M β− −t j t j t j− − − , for j p= 1, …, .

The parameters in these two equivalent formulations
have an explicit linear relationship shown by Supporting
Information Lemma A.1. We thus propose to estimate the
parameters in Models (4) to (7) by transforming the
parameter estimates obtained from Models (10) and (11).

Our formulation (10) and (11) is a linear structural
equation model with correlated errors between two
equations. Therefore, one cannot fit (10) and (11)
separately, using, for example, standard (generalized)
least squares for AR models. We propose an estimation
approach based on the principle of maximizing the
conditional likelihood.

To simplify the notation in our derivation, we introduce
the following matrix representations: let θ =1

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ϕ ψ ψ θ ϕ ψ ψα γ( , , , ) , = ( , , , )1 11 21 2 2 12 22 , where ϕ =j
⊤ ⊤ψϕ ϕ ψ ψ( , …, ) , = ( , …, )j j jk jk jkp p1 1

for j k, = 1, 2; X =t
⊤ ⊤ ⊤ ⊤Z Z M R( , , , )t t

p
t
p

t
p

−1
( )

−1
( )

−1
( ) , where ⊤Z ZZ = ( , …, )t

p
t t p−1

( )
−1 − ,

and Mt
p
−1

( ) and Rt
p
−1

( ) are defined analogously. Let
θ θ β σ σΘ = ( , , , , )1 2 1 2 be all the model parameters except

δ. Given the initial p time periods, the conditional log‐
likelihood (ignoring constants) is

∑ℓ ∣ ∣

∥

∥

∥

∥

I

θ

θ

θ

δ f M R

σ σ δ

β

κ

Θ Z X

M

X

R M X

M X

( , , ) = log (( , ) )

= − log (1 − ) −

−

− ( − − )

− ( − ) ,

p

t p

T

t t t

T p

σ

σ δ

= +1

−

2 1
2

2
2 2 1

2

1 2
2

1

2 (1 − ) 2

1 2
2

1
2

2
2 2

(12)

where I Z M R Z M R= {( , , ), …, ( , , )}p p p p1 1 1 is the initial p
observations; f is the likelihood for M R( , )t t conditioning
on the previous p periods;∥ ∥x 2 is the ℓ2‐norm of vector x;

⊤R RR = ( , …, )p T+1 , similarly for M and X; T is the
number of time points; and ∕κ δσ σ= 2 1.

In our model, δ accounts for the effect of an
unmeasured confounding process to the mediator and

the outcome, for example, Model (9) in Section 2.2. In the
classical mediation analysis setting when data are
collected from independent units, a similarly defined
parameter δ is not identifiable from observed data, and
thus it is often treated as a sensitivity parameter to
account for the effect of unmeasured confounding (Imai
et al., 2010).

Though we cannot estimate δ from the conditional
likelihood of single‐level data (Supporting Information
Theorem A.2), we show that our estimators for β and γ
are expressed as functions of δ. The CMLE of all the
remaining parameters is given in explicit forms in
Supporting Information Section A.5. In there, we also
show that our estimators for β and γ are consistent after
correcting for δ, and the asymptotic covariance matrix is
derived in Supporting Information Theorem A.4. Based
on these results, our method allows δ to be treated as a
parameter in sensitivity analysis. We illustrate these
points using a toy simulation example in Supporting
Information Section B.1. In Section 2.4, we consider an
alternative approach to estimate δ by maximizing a
second‐level likelihood function of all the estimates of
α β γ, , pooled across participants.

2.4 | Extension to two‐level data
In this section, we extend our GMA model for the two‐
level time‐series data in our fMRI experiment, adapting
the multilevel mediation method for independent ob-
servations proposed by Zhao and Luo (2014).

2.4.1 | Model

We will refer to the two levels as participant and scan
time in this paper. For the time series of participant i
(i N= 1, …, ), we model the first‐level scan‐time data by
our single‐level GMA model (4) and (7), and all the
modeling parameters should now be denoted with
subscript i. For example, α β,i i, and γi are the causal
parameters of participant i. In order to estimate the
population averages of the causal effects and account for
the between‐participant variations, we employ the
following multivariate linear model:

ϑ ϑ η= + ,i i (13)

where ⊤ϑ α β γ= ( , , )i i i i ; ⊤ϑ α β γ= ( , , ) denotes the popula-
tion level coefficients; and ⊤η ϵ ϵ ϵ= ( , , )i i

α
i
β

i
γ is the

random error of participant i, which is assumed to be
independent and identically distributed from a trivariate
normal distribution with mean zero and covariance
matrix Λ. The linear additive form in (13) for modeling
the population and individual parameters is standard in
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fMRI analysis (Lindquist, 2008). At the population level,
the population direct effect is γ , and the population
indirect effect is αβ by the product method. There is an
alternative definition of the population indirect effect by
the difference method (Kenny et al., 2003). This approach
would also require fitting a total effect model by
regressing outcome R on treatment Z for each partici-
pant, and a population equation analogous to Model (13).
For the sake of space, we omit the description of this
alternative approach in this paper, because they yield
very similar numerical results.

As discussed in Section 2.3, we estimate the
parameters through the equivalent formulation using

θX ,i it 1
, and θi2 defined in the same way as in Section 2.3

for participant i i N, = 1, …, . Let δi be the error
correlation between ϵi t1

and ϵi t2
. As shown in Supporting

Information Theorem A.2, δi is not estimable from the
individual conditional likelihood function for each
participant i. Because the joint likelihood of N

independent participants is simply a product of
individual likelihood functions, one cannot estimate
different δi from the joint likelihood function either. In
order to estimate δi from data, we adopt the optimiza-
tion methods in Zhao and Luo (2014), and impose the
following assumption.

(A8) δi is constant across participants, that is, δ δ=i for
all i.

Without assumption (A8), one may propose to perform
sensitivity analysis using different δi for each i. However,
the number of sensitivity parameters makes this proposal
computationally unrealistic for large N . Assumption (A8)
reduces the number of parameters in our model and
allows our model to pool information across subjects to
estimate a single δ . We will introduce two algorithms to
estimate δ in the next section.

2.4.2 | Method

The principal idea in Zhao and Luo (2014) is to estimate δ
by maximizing the joint likelihood of N participants. We
adopt this idea for our GMA model here. Let

ϑ θ θδ β σ σϒ Λ= ( , , , ( , , ), ( , ))i i i 1 2i i1 2
, the conditional log‐

likelihood function (conditioning on the initial p time
points of each subject's data) is written as

∑ ∑

∑

∣

∣

θ θ

ϑ ϑ

h R M β δ σ σ

h h

ϒ X

Λ

( ) = log ( , , , , , , , )

+ log ( , ) = + ,

i

N

t p

T

i i i i i i i i

i

N

i

=1 = +1

=1

1 2

i

t t t 1 2 1 2

 (14)

where ϑ α β γ α= ( , , ),i i i i i and γi are the first element of
θi1 and θi2, respectively; Ti is the number of time points
of subject i; h1 is the sum of N log‐likelihood functions
(12), and h2 is the log‐likelihood function of Model
(13). It is challenging to optimize these many
parameters that grow with N . In particular, our
GMA model also contains several temporal correla-
tion parameters for each subject. We thus develop two
algorithms for maximizing the joint likelihood, with
different computational complexity and numerical
accuracy.

A two‐stage algorithm
This algorithm is inspired by the two‐level massive linear
regression method commonly applied for fMRI analysis,
for example, in Kenny et al. (2003) and Lindquist (2008).
In the first stage, we estimate, for each participant i, the
coefficients in the single‐level model with a given δ using
Supporting Information Proposition A.3. This stage splits
the computation cost by maximizing the summands in h1

for each participant, which can be computed in parallel. In
the second stage, we plug in the estimated coefficients
from the first stage into the left‐hand side of the second‐
level regression model (13), and we maximize its like-
lihood function h2. To estimate δ, we repeat the two‐stage
computation for different δ, and then use a one‐dimen-
sional optimization algorithm (e.g., Newton's method) to
find the δ that yields the maximum joint likelihood h.

The key challenge for proving the asymptotic con-
sistency of this algorithm is to show that δ is estimable
and consistently estimated using the above algorithm.
The consistency of the remaining parameters (given δ) is
guaranteed by the standard maximum likelihood theory
under regularity conditions.

Theorem 1. Assume assumptions (A1) to (A8) are
satisfied. Assume ∞Z q( ) = <i

2
t

 for i N= 1, …, . Let
T T= mini i.

(a) If Λ is known, then the two‐stage estimator δ̂
maximizes the profile likelihood of Model (13)

asymptotically, and δ̂ is NT ‐consistent.
(b) If Λ is unknown, then the profile likelihood of

Model (13) has a unique maximizer δ̂ asympto-

tically, and δ̂ is NT ‐consistent, provided that

∕ ∕ ∕

∕ ∕ ∑

Oϖ κ NT κ

σ σ κ N κ

1 = ̄ ϱ = (1 ),

= , ̄ = (1 )

p i

i i i

2 2

2 1

,

and ∕ ∑N κ κϱ = (1 ) ( − ̄)i
2 2.
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Using the two‐stage estimator δ̂ , the CMLE of our
model (Supporting Information Proposition A.3) is
consistent, as well as the estimator for ϑ α β γ= ( , , )

in Model (13).

To verify the estimability of δ in practice, we plot the
maximum log‐likelihood value against δ. Supporting
Information Figure B.2a illustrates such a plot for a toy
simulated data set. The joint likelihood h is unimodal,
while the single‐level likelihood in Supporting Informa-
tion Figure B.1a is flat.

A block coordinate‐descent algorithm
Though the two‐stage algorithm is computationally fast
and asymptotically consistent, it only approximately
maximizes the joint likelihood h. To improve the finite
sample performance, we propose a block coordinate‐
descent algorithm for maximizing h1 and h2 jointly. Some
finite sample improvement was observed by a similar
strategy in Zhao and Luo (2014). We propose the
following optimization problem:

∈S
h ϒmax ( ),

σ σϒ Λ:(( , ), )i i1 2

(15)

whereS is a constraint set for the variance components.
We put a positive constraint on σ σ( , )i i1 2

, and a positive‐
definite constraint on Λ. We propose to optimize blocks
of variables (except δ) iteratively because the updates for
each block of variables are given in explicit forms,
conditional on all other variables (Supporting Informa-
tion Theorem A.6). After obtaining the profile likelihood
value for each δ, we estimate δ by a one‐dimensional
optimization algorithm as before. The full algorithm is
summarized in Supporting Information Algorithm A.1.
For this block coordinate‐descent algorithm, we also
propose to check the solution of δ graphically as before
(Supporting Information Figure B.2b).

2.5 | Inference

Because the distribution of the product αβˆ ˆ can be far
from Gaussian, we propose to employ bootstrap over
participants to perform statistical inference on the
population causal effects.

3 | THE FMRI EXPERIMENT

The data set was obtained from the OpenfMRI database,
and the accession number is ds000030. In the experiment,
N = 121 right‐handed participants in healthy condition
were recruited. The participants were asked to perform

motor responses to two types of randomized stimuli:
GO or STOP. The STOP/GO stimuli were randomly
intermixed with 96 GO and 32 STOP stimuli, with
randomly jittered time intervals between the stimuli.
Under the GO stimulus, the participants should respond
with button presses; under the STOP stimulus, the
participants should withhold from pressing when a stop
signal (a 500 Hz tone) was presented after the GO
stimulus. More details about this experiment can be
found in Poldrack et al. (2016). Data preprocessing steps
are described in Supporting Information Section C.1.

We compare the mediation effect estimates from the
proposed block coordinate‐descent (GMA‐h) and two‐
stage (GMA‐ts) methods with the two‐level method in
Zhao and Luo (2014) (MACC‐h), the multilevel SEM
method proposed by Kenny et al. (2003) (KKB), and the
Baron‐Kenny (BK) method (Baron and Kenny, 1986).
Because other competing methods do not provide
estimates of the transition matrix, we compare the
transition matrix estimates with the MAR fits by
Harrison et al. (2003), which does not model the
mediation effects. We set the lag parameter p = 2 in
our GMA approach. We also tried , but the lag‐three
temporal correlation estimates are close to zero (Support-
ing Information Section C.4). All methods use 200
bootstrap samples for inference.

Table 1 presents the estimates (and the 95% bootstrap
confidence intervals) of δ γ, , and αβ. The estimates from
GMA‐ts and GMA‐h are close, consistent with our
simulations. Specifically, the GMA‐h estimates are
γ̂ = −1.729 and αβ = −0.623 . The negative estimates
suggest that the STOP stimulus deactivates M1 both
directly and indirectly through the preSMA pathway. The
AIE through preSMA is about half of the ADE or one‐
third of the average total effect. This confirms that the
mediation effect of preSMA is at least medium, while
there may be other pathways that account for a
substantial portion of the total effect. Thus future
research is needed to explore and understand these other
pathways. The estimates of δ by both GMA‐ts and GMA‐
h are negative and significantly different from zero. The
nonzero estimates provide evidence of the existence of
unmeasured confounding in the data. These two esti-
mates of δ are also close on this dataset. MACC‐h
produces a larger estimate of δ, which is consistent with
the simulation results.

Our GMA‐ts and GMA‐h estimates of γ and αβ are
different from all other methods. In particular, our GMA
methods produce the largest indirect effect estimates in
magnitude. MACC‐h yields a much smaller estimate
(about 30% less) in magnitude. KKB and BK also yield
smaller estimates, because they fail to account for the
confounding effect or nonzero δ. Though all these
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estimates give the same qualitative interpretation for the
role of preSMA, our quantitative estimates here suggest a
much larger role of preSMA than other methods.

Another advantage of our GMA methods is that it also
estimates the temporal dependencies between two brain
regions, which are represented by the transition matrix
Ω. The estimate ofΩ is shown in Supporting Information
Table C.1, where we observe significant feedback effects
from M1 to preSMA at lag one and lag two (ω̂ = 0.100211

and ω̂ = −0.076212
). Comparing with the estimates by

MAR (Supporting Information Table C.1), we find that
MAR produces larger point estimates of the diagonals
and has larger variability overall, probably because it
does not model the direct and indirect effects like ours.
MAR also yields wider confidence intervals for the off‐
diagonals than ours, though the point estimates are
similar. Supporting Information Section C.2 presents the
impulse response function plots of the MAR models.

4 | DISCUSSION

In this paper, we propose a mediation analysis frame-
work for time‐series data. Our approach integrates
MAR models and mediation analysis to yield a better
understanding of such data. Our approach is also
embedded in a causal mediation model for correlated
errors. We prove that a simple two‐stage algorithm will
yield asymptotically unique and consistent estimates,
and its finite sample performance is improved by a
more sophisticated optimization algorithm with in-
creased computational costs. Using both simulations
and a real fMRI data set, we demonstrate the numerical
advantages of our proposal.

Our model setup is motivated by several important
statistical models for task‐related fMRI data. It is likely that
other scientific experiments or studies will require different
modeling components, due to different data structures for
the treatment, mediator, and outcome. For example, Kenny
et al. (2003) discussed various multilevel data sets, where the

variables are scalars instead of time series at the participant
level. Time‐series modeling is also a topic with a long history,
and some other time‐series models, other than MAR, may be
more suitable for certain experiments. We will explore these
different settings in future research. In this paper, we focus
on randomized treatment. It is also interesting to further
develop our proposal using the tools for observational studies
to relax the randomization requirement.

Many extensions of mediation models have also
been considered in the literature (VanderWeele, 2015).
These models can also include interactions and
covariates, which are common in many social studies.
Our method relies on the fully parametric assumptions,
and our simulation shows that deviating from these
assumptions may introduce biases, for example when
nonlinear effects are present. We are interested in
extending our proposal to these more complex settings
in the future.
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