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Abstract 1 

Commonsense knowledge as external 2 

knowledge enhances the semantic under-3 

standing of the input sequences of the 4 

model and is of guidance to text generation 5 

models. In this paper, we propose a novel 6 

approach of incorporating commonsense 7 

knowledge for enhancing the performance 8 

of end-to-end text generation models. 9 

Firstly, given an input sequence and retriev-10 

ing the relevant knowledge triples, the em-11 

bedding of the commonsense knowledge 12 

and the context vector encoded in the en-13 

coder part are spliced for sampling, allow-14 

ing the prior distribution to approximately 15 

fit the posterior distribution to achieve the 16 

selection of appropriate knowledge even 17 

without posterior information. Then an au-18 

toregressive transformation is applied to the 19 

sampling to prevent the problem of too 20 

slow fitting of simple Gaussian distribution, 21 

and a new learning objective is designed in 22 

the training phase to make this transformed 23 

distribution fit the posterior distribution. In 24 

addition, we perform variational operations 25 

on the decoding part of the attention mech-26 

anism to weaken the attention strength and 27 

prevent reconstruction from playing a deci-28 

sive role in generation while ignoring other 29 

modules. Experiments show that our pro-30 

posed model can generate more fluent and 31 

significantly more diverse sentences, and 32 

the contributions of each module to the 33 

model are analyzed, achieving satisfactory 34 

results. 35 

1 Introduction 36 

Natural language generation (NLG) is one of the 37 

main problems in natural language processing. 38 

Currently, seq-to-seq (Sequence to Sequence) 39 

model is  the main method of text generation. 40 

However, due to the flaws of model and the lack 41 

of commonsense reasoning, seq-to-seq model 42 

may generates a lot of low-quality text with sim-43 

ple repetition or factual errors (Brown et al., 44 

2020)(Bi et al., 2019). 45 

In order to solve these problems, related work 46 

firstly adopted VAE (Variational Autoencoder) 47 

model as encoder to improve the diversity of the 48 

generated text. However, posterior collapse, 49 

which is generally caused by the disappearance of 50 

KL divergence, is a flaw in VAE. Posterior col-51 

lapse is mainly prevented from two aspects, that 52 

is, KL term and reconstruction. One resolution is 53 

KL cost annealing (Bowman et al., 2016), which 54 

is done by improving KL item by multiplying a 55 

weight coefficient on the KL which is allocated to 56 

0 at the beginning and gradually increased to 1 57 

during training, optimizing Reconstruction part 58 

with high priority, and gradually paying attention 59 

to KL, can be seen as a gradient from AutoEn-60 

coder to Variational AutoEncoder. Another resolu-61 

tion is making the latent variables more flexibility 62 

on the strength of reversible transformation (Chen 63 

et al. 2016). Unfortunately, a pure Gaussian distri-64 

bution is difficult to fit the distribution of real data 65 

(Papamakarios et al., 2021), so some transfor-66 

mations are needed to map the original Gaussian 67 

space to a suitable feature representation space. 68 

Mathematical transformations are difficult to sim-69 

ulate or even cannot fit for data in different appli-70 

cation scenarios. The other solution is to improve 71 

from the Reconstruction term, and the mainstream 72 

method is mainly to add loss to let the latent vari-73 

ables participate in the prediction directly, which 74 

alleviates the posterior collapse problem, but the 75 

defects of model itself have not been solved (Zhao 76 
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et al., 2017). 77 

Secondly, related work introduces external 78 

knowledge into the model to improve the factual 79 

accuracy of the generated text and have made a lot 80 

of progress (Zhu et al., 2017; Li et al., 2021; Yu et 81 

al., 2020). However, the shortcomings of these 82 

works are that most of the external knowledge 83 

used is domain-specific rather than general com-84 

monsense knowledge. At the same time, external 85 

knowledge is directly embedded as a whole in the 86 

process of knowledge embedding and result in the 87 

loss of semantics because relationship between 88 

edges and nodes in the graph structure cannot be 89 

established (Qiao et al., 2020). 90 

In response to the above problems, this paper 91 

proposes a new Commonsense knowledge Aug-92 

mented Variational Seq-to-Seq generation model 93 

CAVSS. The main contributions are: 94 

1. To solve the problem of posterior collapse, we 95 

propose an autoregressive sampling method 96 

from the KL perspective by defining a new 97 

conversion function with the help of asymp-98 

totic property of the fully connected layer’s 99 

parameter approximation. It can train the sam-100 

pling space of the fitted data, and a new learn-101 

ing objective is designed to guide the direc-102 

tion of model training. From the Reconstruc-103 

tion perspective, the attention mechanism in 104 

the Seq-to-Seq model is weakened to prevent 105 

the model from bypassing other modules. 106 

2. Using commonsense knowledge to enhance 107 

model's understanding of entities in sentences, 108 

and designing a new attention mechanism 109 

when embedding to make full use of the re-110 

trieved knowledge graph structure. According 111 

to the graph structure, nodes (entities) are con-112 

nected by edges (relations) to form triples 113 

such as (thunder, RelatedTo, shocking). Word 114 

"thunder" is related to "shocking", which 115 

helps the model to generate commonsense 116 

and diverse sequences. 117 

2 Related Work 118 

Sequence-to-Sequence (Seq2Seq) general model 119 

has been successfully applied in the Generation 120 

tasks (Sutskever et al., 2014), and the attention-121 

fused Seq2Seq model greatly improves the quality 122 

of text generation (Bahdanau et al.2015). Varia-123 

tional AutoEncoder (VAE) is widely used in vari-124 

ous tasks (generating summaries, dialogue sys-125 

tems, etc.), and produces many improved versions. 126 

β-VAE can increase the quality of Reconstruction 127 

by adding constraints in latent representation 128 

space (Irina et al., 2016), and VAE guided by in-129 

ternal knowledge (topic) and Householder Trans-130 

formation can make the approximate posterior of 131 

latent code highly flexible (Wang et al., 2019) . 132 

For those knowledge graphs that are con-133 

structed based on data outside the input text (e.g., 134 

ConceptNet), we refer to them as external 135 

knowledge. Internal knowledge often refers to 136 

keywords, subject word and other ways to pro-137 

mote the generated text closely to the topic (Wei 138 

et al., 2019; Wang et al., 2019, Li et al., 2020), in-139 

ternal knowledge plays an active role in under-140 

standing the input sequence, while texts generated 141 

with external knowledge are more diverse. The 142 

method of juxtaposing knowledge graph construc-143 

tion, data preprocessing and generating sequences 144 

forms a way to generate sequences in an end-to-145 

end manner. Although the generated sequences 146 

may be diverse, it may be caused by error propa-147 

gation (Liu et al., 2021). 148 

149 

150 



 

3 

Figure 1: Overview Of CAVSS. 

3 Model 151 

3.1 Variational Sequence to Sequence 152 

model（VSS） 153 

3.1.1 Variational Auto-Encoder (VAE) 154 

VAE (Variational Autoencoder)(Kingma and 155 

Welling, 2013) has been successfully applied in 156 

various applications. VAE contains the framework 157 

of AE (Auto-Encoding), VAE directly encodes the 158 

input sequence as latent variable 𝑧. In the decod-159 

ing stage, the features are sampled on top of 𝑧: 160 

𝑧 ൌ 𝑚 ൅ exp ሺ𝜎ሻ ∗ 𝜀   (1) 161 

Where 𝑚 and 𝜎 are the mean and variance 162 

calculated from the input sequence 𝑋 after pass-163 

ing through the neural network, and 𝜀 is the noise 164 

obtained by sampling from the 𝜎  reparameter 165 

trick. The desired sequence will be decoded on 166 

this feature to obtain. 167 

VAE uses variational inference to continu-168 

ously approximate the probability of the posterior 169 

by learning all observed parameters. The learning 170 

objective function is a variational lower bound on 171 

the log-likelihood of the edges of the data: 172 

𝑙𝑜𝑔𝑝ఏሺ𝑦ሻ ൒ 𝐸𝐿𝐵𝑂 ൌ 𝔼௭~௤കሺ𝑧|𝑥ሻሺ𝑙𝑜𝑔𝑝ఏሺ𝑦|𝑧ሻሻ െ 173 

𝐾𝐿ሺ𝑞ఝሺ𝑧|𝑦ሻ||𝑝ሺ𝑧ሻሻ    (2) 174 

3.1.2 Motivation 175 

The KL divergence of VAE makes up for the de-176 

fect that the Auto-Encoding model can only re-177 

construct on the input sentences, and AE cannot 178 

generate new samples. In the process of encoding, 179 

VAE adds the sampling of Gaussian distribution 180 

to form latent variable 𝑧, and then decodes from 181 

𝑧 to generate new samples. Where 𝑧 contains the 182 

noise 𝜀  obtained from 𝜎  reparameterization 183 

trick. The training goal of the VAE is to generate 184 

samples from 𝑧 that are similar but not identical 185 

to the input, and reconstruct 𝑥 from the distribu-186 

tion of 𝑧 . However, for 𝑧 , if 𝑧 ⊆ 𝑥 , that means 187 

𝑧, 𝑥 are not independent of each other, the model 188 

will ignore 𝑧, 𝑞ఝሺ𝑧|𝑥ሻ ൌ 𝐷𝑖𝑟𝑎𝑐_𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝑧଴ሻ, 189 

the first term of equation (2) in the model degen-190 

erates to 𝑙𝑜𝑔𝑝ఏሺ𝑥|𝑧଴ሻ , at which point the model 191 

bypasses the latent variable 𝑧, making the recon-192 

struction of 𝑥 independent of the variational pro-193 

cess, so that 𝑧 is added to this with a reparame-194 

terization trick containing 𝜀 to decouple the ran-195 

domness in the latent variable 𝑧 from the formal 196 

information of the data. If 𝑧 ⊈ 𝑥 , and 𝑧, 𝑥  are 197 

completely independent of each other, that is, the 198 

noise of the variational distribution is too large, 199 

resulting in the phenomenon of "posterior col-200 

lapse".𝑞ఝሺ𝑧|𝑥ሻ ൌ 𝑝ఏሺ𝑧ሻ, equation (2) in the model 201 
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degenerates to 𝐸𝐿𝐵𝑂 ൌ  𝔼௭~௤കሺ𝑧|𝑥ሻሺ𝑙𝑜𝑔𝑝ఏሺ𝑥|𝑧ሻሻ , 202 

the KL divergence vanishes, the variational distri-203 

bution Regardless of 𝑥, it is very difficult to re-204 

construct output sequence from 𝑧. Therefore, the 205 

selection of latent variable 𝑧  is particularly im-206 

portant. The variational distribution in VAE often 207 

uses Gaussian distribution to sample 𝑧. The opti-208 

mal parameters within the family cannot make 209 

𝑞ఝሺ𝑧|𝑥ሻ  and 𝑝ఏሺ𝑥|𝑧ሻ  equal, and ELBO cannot 210 

reach the upper bound 𝑙𝑜𝑔𝑝ఏሺ𝑥ሻ. The approach in 211 

VAE is to add auxiliary variables 𝜀~𝑁ሺ0, 𝐼ሻ, 𝑧 ൌ212 

𝑚 ൅ exp ሺ𝜎ሻ ∗ 𝜀 So we design a flow model with 213 

the addition of the non-affine transformation 𝑇 214 

that convert the standard Gaussian distribution 215 

into a complex distribution, the distribution is 216 

gradually fitted thanks to the approximation abil-217 

ity of MLP. 218 

3.1.3 Sequence to Sequence with Attention 219 

The model has input 𝑋 ൌ 𝑥ଵ, 𝑥ଶ … 𝑥௡ , and 𝑒ሺ𝑥௧ሻ 220 

is obtained through the embedding layer, the en-221 

coder receives the input text, after encoding to get 222 

the hidden vector ℎ௘௡௖ ൌ ℎଵ, ℎଶ … ℎ௡. After getting 223 

each hidden vector, the semantic vector 𝑐 ൌ224 

𝑅𝑁𝑁ሺℎ௘௡௖ሻ  is generated. In the decoding phase, 225 

the hidden vector of decoder and the semantic 226 

vector 𝑐 are firstly used to calculate the attention 227 

weights to get the new semantic vector 𝑐′, and fi-228 

nally the new semantic information and output of 229 

the previous step to generate the next word 𝑦௧ ൌ230 

 ∏ 𝑝ሺ𝑦௧|𝑦ଵ, 𝑦ଶ, … 𝑦௧ିଵ, 𝑐′ሻ௧
௧ୀଵ . 231 

3.1.4 Sampling in Decoder  232 

As demonstrated by Zheng et al. (Zheng et 233 

al.2018), it is shown that the attention mechanism 234 

is so powerful that removing other connections 235 

between the encoder and decoder has little effect 236 

on the BLEU score of the generated sequence. 237 

Therefore, a Sequence-to-Sequence with deter-238 

ministic attention may learn reconstructions 239 

mainly from attention, while the posterior of the 240 

latent space can fit its prior to minimize the KL 241 

term. In our model, this strong deterministic atten-242 

tion may cause the model to ignore other modules, 243 

and we believe that the decoder needs to weaken 244 

the attention to the semantic information of the 245 

original input hidden vector. Therefore, in addi-246 

tion to the sampling of the input sequence in the 247 

Encoder part, VSS also performs a sampling pro-248 

cess in the Decoder stage to obtain variational at-249 

tention. Assuming that the hidden state of decoder 250 

at all moments is 𝑠ଵ, 𝑠ଶ, … , 𝑠௠, then in seq2seq we 251 

have: 252 

𝛼௜௝ ൌ  𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝑒௜௝൯    (3) 253 

𝑒௜௝ ൌ  ℎ௜
்𝑊௘𝑠௝     (4) 254 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡௝ ൌ  ∑ 𝛼௜௝ℎ௜
௡
௜ୀଵ       (5) 255 

The context vector 𝑐𝑜𝑛𝑡𝑒𝑥𝑡௝  that incorpo-256 

rates the semantic information of the hidden vec-257 

tor of Encoder is obtained by calculating the atten-258 

tion weights. The latent variable 𝑧௔௧௧ is sampled 259 

from the hidden vector 𝑐𝑜𝑛𝑡𝑒𝑥𝑡௝, and VSS uses a 260 

bidirectional LSTM in the encoding stage to ob-261 

tain the memory unit 𝑐 and hidden vector ℎ of 262 

the entire sentence. VSS splices the 𝑧  sampled 263 

by the encoder and the decoder input at the next 264 

moment, that is 𝑒ሺ𝑦௧ିଵሻ ൌ ሺ𝑒𝑚𝑏𝑒𝑑ሺ𝑦௧ିଵሻ: 𝑧௔௧௧ሻ , 265 

𝑦௧ିଵ is the groundtruth in the training phase and 266 

the predicted value from the previous moment is 267 

input to decoder in the testing phase. In order to 268 

prevent the decoder from being limited in obtain-269 

ing information from the original hidden vector 270 

space, we designed a variational attention mecha-271 

nism in the decoder, where 𝑠௧ ൌ272 

 𝐿𝑆𝑇𝑀ሺ𝑒ሺ𝑦௧ିଵሻ, 𝑐, 𝑠௧ିଵሻ , and decoder generates a 273 

token by sampling from the output probability dis-274 

tribution, which can be calculated as follows, 275 

𝑦௧ ൌ  ∏ 𝑝ሺ𝑦௧|𝑦ଵ, 𝑦ଶ, … 𝑦௧ିଵ, 𝑠௧, 𝑧௔௧௧ሻ௧
௧ୀଵ  (6) 276 

The final loss is: 277 

ℒ௏ௌௌ ൌ  𝔼௭~௤കሺ𝑧|𝑥ሻ,௭ೌ೟೟~௤ക൫𝑧௔௧௧ห𝑥൯ሺ𝑙𝑜𝑔𝑝ఏሺ𝑦|𝑧, 𝑧௔௧௧ሻሻ 278 

െ𝐾𝐿ሺ𝑞ఝሺ𝑧௔௧௧|𝑦ሻ||𝑝ሺ𝑧௔௧௧ሻሻ െ 𝐾𝐿ሺ𝑞ఝሺ𝑧|𝑦ሻ||𝑝ሺ𝑧ሻሻ 279 

(7) 280 

3.2 CAVSS: Commonsense Augmented VSS 281 

In the field of generation, there may be multiple 282 

choices of candidate words, the embedding of the 283 

knowledge graph is incorporated into the process 284 

of sampling the latent variable z. Before this, the 285 

encoding process in the encoder is improved. As 286 

shown in Figure 1, we equip encoder with a com-287 

monsense knowledge graph attention mechanism 288 
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KGA to incorporate commonsense knowledge 289 

from ConceptNet. In ConceptNet semantic net-290 

work, there is a knowledge triple 𝑡𝑟𝑖 ൌ ሺℎ, 𝑟, 𝑡ሻ , 291 

and the ℎ-head node and the 𝑡-tail node have the 292 

relation 𝑟 . Assuming that there are 𝑙  entities in 293 

the input sequence 𝑥௞, then we have 𝑒𝑛𝑡𝑖𝑡𝑦௫ೖ
ൌ294 

ሼ𝑒𝑛𝑡ଵ, 𝑒𝑛𝑡ଶ, … , 𝑒𝑛𝑡௟ሽ , where each entity corre-295 

sponds to a different number of triples group, then 296 

we have 𝑔௘௡௧೗
ൌ ሼ𝑡𝑟𝑖ଵ, 𝑡𝑟𝑖ଶ, … , 𝑡𝑟𝑖ே೗

ሽ , for entities 297 

not in the commonsense database, We assign them 298 

the value of 𝑒𝑚𝑝𝑡𝑦. 299 

When given a set of input and output se-300 

quences, for external commonsense knowledge, 301 

the model can only select valid commonsense 302 

knowledge triples based on prior distribution 303 

learning, and it is difficult to obtain the correct 304 

posterior distribution in the inference stage. Our 305 

solution is to splice the context vectors of the em-306 

bedding and encoder parts of the commonsense 307 

knowledge before sampling, so that the prior dis-308 

tribution approximates the posterior distribution, 309 

so that appropriate knowledge can be selected 310 

even without the posterior information. We intro-311 

duce an auxiliary loss(section 3.2.4), called align 312 

loss, to measure the distance between the prior and 313 

posterior distributions. 314 

The graph attention mechanism needs to gen-315 

erate vector representations for the retrieved sub-316 

graphs, but the relationship between entities is of-317 

ten not negligible, so the KGA in the model is di-318 

vided into two modules: the graph embedding at-319 

tention module and graph attention module. 320 

3.2.1 Attention in Graph Embedding 321 

This module aims to facilitate the semantic fusion 322 

of relation vectors and head-tail entities by re-323 

trieving the entire general commonsense 324 

knowledge base using each word in Input (red 325 

node) as a key entity. The retrieved graph consists 326 

of a key entity (red node), its neighboring entities 327 

(blue nodes are the head nodes and green nodes 328 

are the tail nodes), and relationships (directed 329 

edges). For common words that do not match en-330 

tities in the commonsense knowledge base (such 331 

as in), they are represented by the special node 332 

Empty (gray node). Then, the knowledge in the 333 

interpreter computes the graph vector 𝐺௘௡௧೗
 of the 334 

retrieved graph using a static graph attention 335 

mechanism. 336 

Considering the relationship between nodes 337 

and then encoding more structured semantic infor-338 

mation, we design the following attention, each 339 

entity subgraph 𝑔௘௡௧೗
ൌ ሼ𝑡𝑟𝑖ଵ, 𝑡𝑟𝑖ଶ, … , 𝑡𝑟𝑖ே೗

ሽ as in-340 

put to construct the graph vector 𝐺௘௡௧೗
: 341 

𝜏௡ ൌ  𝑊௥𝑟௡tanh ሺ𝑊௛ℎ௡ ൅ 𝑊௧𝑡௡ሻ  (8) 342 

𝛼௡
ா௄ீ ൌ  𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝜏௡ሻ    (9) 343 

𝐺௘௡௧೗
ൌ  ∑ 𝛼௡

ா௄ீே೗
௡ୀଵ ሺℎ௡: 𝑡௡ሻ     (10) 344 

𝑊௥, 𝑊௛, 𝑊௧  are the weight matrices of rela-345 

tionship nodes, head entities and tail entities, and 346 

the attention weight measures the degree of asso-347 

ciation between head and tail and relation. The 348 

graph vector 𝐺௘௡௧೗
 is a weighted sum that com-349 

bines the semantic relationships of head and tail 350 

nodes. 351 

3.2.2 Graph Attention 352 

As shown in Figure 1, the graph in the model is 353 

embedded after the encoder. As described in sec-354 

tion 3.2.1, the vector 𝑐 with the semantic infor-355 

mation of the input sequence enters the KGA 356 

module to query the target triplet and calculates 357 

the probability of using each triplet: 358 

𝛼௟೟
௄ீ஺ ൌ  𝑐௧𝑊௖𝐺௘௡௧೗

        (11) 359 

𝛽௟೟
௄ீ஺ ൌ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥ሺ𝛼௟೟

௄ீ஺ሻ      (12) 360 

𝑘௟ ൌ  ∑ 𝛽௟೟
௄ீ஺ே೗

௧ୀଵ 𝐺௘௡௧೗
   (13) 361 

𝑊௖ is a trainable parameter, the graph vector 362 

𝑘௟ is the weighted sum of the target graph embed-363 

ding, and the graph vector 𝑘௟ is spliced with the 364 

context vector 𝑐 output by the encoder to obtain 365 

ሺ𝑘௟: 𝑐ሻ. The ሺ𝑘௟: 𝑐ሻ is input to the sampling layer, 366 

and the latent variable 𝑧 is sampled on this basis 367 

to yield 𝑧 ൌ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔ሺሺ𝑘௟: 𝑐ሻሻ. 368 

3.2.3 Autoregressive Transformer 369 

According to section 3.1.2, the autoregressive 370 

sampling transformation is proposed to prevent 371 

the KL vanishing phenomenon. The mean 𝑚 and 372 

variance 𝜎  sampling in VAE are both imple-373 

mented through the fully connected feedforward 374 

neural network structure, so the sampling can be 375 
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trained. By continuously iterating the reversible 376 

transformation 𝑇 , the latent variable 𝑧  is made 377 

smoother and more flexible, and the direct use of 378 

Gaussian sampling is not accurate enough. 379 

𝑇ሺ𝑧ሻ ൌ  
ଵ

௄
∑ 𝑤௝𝑓ሺ𝑤௝

ᇱ𝑧 ൅ 𝑏௝ሻ௄
௝ୀଵ    (14) 380 

The final latent variable 𝑇ሺ𝑧ሻ is obtained af-381 

ter 𝐾 transformations. 𝑤௝, 𝑤௝
ᇱ, 𝑏௝ are the training 382 

parameters of the neural network. Here 𝑓ሺ൉ሻ uses 383 

the PRelu function. Since the model incorporates 384 

the semantics of the knowledge graph into the 385 

context vector for sampling as well, the sampling 386 

space of 𝑧  will be slightly larger than the sam-387 

pling space of the original input. Therefore, we 388 

add autoregressive transformation hoping to grad-389 

ually fit the distribution of 𝑃ሺ𝑥ሻ. 390 

3.2.4 Training Target 391 

The autoregressive transformation 𝑇  is intro-392 

duced in section 3.2.3. The parameters of this 393 

transformation are trainable, but this training 394 

lacks objects that need to be aligned. In other 395 

words, these parameters require a training target. 396 

We introduce the alignment vector 𝑧௔௟௜௚௡, where 397 

the latent variable 𝑧  sampled on the Gaussian 398 

distribution tends to the distribution of 𝑃ሺ𝑥ሻ after 399 

transformation 𝑇. Therefore, in the training phase, 400 

𝑦 is used as the existing data to be input into the 401 

model together with 𝑥 to obtain the 𝑧௔௟௜௚௡ vec-402 

tor, and the distance between 𝑧 and 𝑧௔௟௜௚௡ distri-403 

bution is approximated by KL divergence. Note: 404 

This part is only used during the training phase. 405 

Add the loss of 𝑧௔௟௜௚௡  sampling to the original 406 

loss: 407 

𝑙𝑜𝑠𝑠௔௟௜௚௡ ൌ െ𝐾𝐿ሺሺ𝑞ఝ൫𝑧௔௟௜௚௡ห𝑦, 𝑥, 𝑔൯||𝑝൫𝑧௔௟௜௚௡൯ሻ ൅408 

𝔼௭ೌ೗೔೒೙~௤കቀ𝑧௔௟௜௚௡ቚ𝑥ቁ
ሺ𝑙𝑜𝑔𝑝ఏ൫𝑦|𝑧, 𝑧௔௟௜௚௡൯ሻ         (15) 409 

3.3 Loss 410 

To prevent the model from ignoring sampling and 411 

focusing only on text generation based on recon-412 

struction, we add a hyperparameter 𝛾௄௅  to the 413 

loss function to balance the reconstruction loss 414 

and KL loss. The new loss function is obtained as 415 

follows: 416 

ℒ ൌ  𝔼௭~௤ക൫𝑧ห𝑥, 𝑦, 𝑔൯ሺ𝑙𝑜𝑔𝑝ఏ൫𝑦|𝑧, 𝑧௔௧௧, 𝑧௔௟௜௚௡൯ሻ െ 417 

𝛾௄௅ሺ𝐾𝐿ሺ𝑞ఝሺ𝑧௔௧௧|𝑦ሻ||𝑝ሺ𝑧௔௧௧ሻሻ ൅ 418 

    𝐾𝐿ሺሺ𝑞ఝ൫𝑧௔௟௜௚௡ห𝑦, 𝑥, 𝑔൯||𝑝൫𝑧௔௟௜௚௡൯ሻ ൅ 419 

𝛽௔௧௧𝐾𝐿ሺ𝑞ఝሺ𝑧|𝑦ሻ||𝑝ሺ𝑧ሻሻ     (16) 420 

Since the sampling of the knowledge graph 421 

and the sampling of the decoder layer are inte-422 

grated into the sampling of the knowledge graph, 423 

we want to favor the sampling of the knowledge 424 

graph to generate more diverse texts, we set the 425 

hyperparameter 𝛽௔௧௧ between the two KLs. 426 

4 Experiment 427 

4.1 Dataset 428 

Commonsense External Knowledge 429 

A commonsense knowledge base is built using 430 

ConceptNet, a semantic network that contains a 431 

large amount of information a computer should 432 

know about the world to help it do better searches 433 

and understand human intent. It consists of nodes 434 

that represent concepts expressed as words or 435 

phrases in natural language, and in which the re-436 

lationships of these concepts are labeled, e.g. 437 

(London, AtLocation, American), these features 438 

are important in the learning of the model. 439 

Dataset 440 

We applied the model to a question generation 441 

task using the Stanford Q&A dataset (Rajpurkar et 442 

al., 2016). The attention mechanism is particularly 443 

important when generating questions based on 444 

sentences and hopefully open-ended questions. 445 

The integration of commonsense knowledge al-446 

lows the generated questions to tend to be diverse.  447 

4.2 Evaluation 448 

Automatic Evaluation 449 

BLEU: We use BLEU-1 to BLEU-4 scores (Pap-450 

ineni et al.2002) as a criterion for evaluating the 451 

accuracy of generated sentences by measuring 452 

word overlap between ground truth and generated 453 

sentences, widely used in machine translation, di-454 

alogue and other text generation tasks. 455 

Dist: We use Dist-1, Dist-2 (Li et al.2016) to 456 

measure the diversity of generation. We count the 457 

proportion of distinct 1-grams and 2-grams in the 458 
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generated sentences to evaluate the diversity of 459 

the output. 460 

Manual Evalution 461 

We also perform human evaluation to more 462 

accurately evaluate the quality of the generated se-463 

quences. We ask evaluators to assess each group 464 

of 100 generated sequences, and for each gener-465 

ated sequence, three evaluators are hired to give a 466 

score from 1 to 5 based on the following three 467 

metrics. The scores of the three raters were 468 

averaged as the scores for each indicator. We de-469 

fine the following four metrics: Fluency (whether 470 

the sequence is appropriate in terms of grammar 471 

and logic), Topic (the degree of relevance of the 472 

generated sequence to the topic), Diversity 473 

(whether the sequence includes new information 474 

or knowledge in addition to the original input con-475 

tent), Commonsense (whether the generated se-476 

quence is incorrect in terms of commonsense).477 

Table 1: Automatic Evaluation with BLEU and Dist. 

Manual Evaluation 

Models Fluency Topic Diversity Commonsense 

VSS 3.93 3.96 3.93 3.92 

CAVSS 3.91 4.06 4.08 4.03 

CAVSS-T 4.01 3.97 4.12 4.08 

CAVSS-a 4.03 4.09 3.98 3.97 

Full Model 4.07 4.11 4.09 4.14 

Table 2: Manual Evaluation with Fluency, Topic and Diversity. 

 
Figure 2: BLEU1~4 with different 𝛾௄௅ values.

5 Result and Analysis 478 

An ablation study of text quality. To understand 479 

the contribution of each component of our model to 480 

the task, we train two ablation versions of the model: 481 

with or without commonsense knowledge for VSS 482 

("w/o KG") and with or without autoregressive 483 

transformation for CAVSS ("w/o T"), with or 484 

without align sampling ("w/o a"). Table 1 and Table 485 

2 show the automatic evaluation scores and human 486 

evaluation results for the ablation study. 487 

Experimental results. Table 1 and Table 2 488 

show the performance of our model and the baseline 489 

model, where we construct the traditional Seq2Seq 490 

model and the VAE model. By comparing VSS and 491 

CAVSS, we find that without commonsense 492 

knowledge, model performance degrades in all 493 

 Automatic Evaluation 

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 Dist-1 Dist-2 

VAE 29.31  12.42 6.55 3.61 - - 

Seq2Seq 31.34 13.79 7.36 4.26 - - 

VSS 32.71  16.24 9.63 5.91 0.140  0.211 

CAVSS 33.09 16.4 9.81 6.1 0.144 0.219 

CAVSS-T 33.08 16.52 9.91 6.2 0.158 0.229 

CAVSS-a 32.95 16.4 9.77 6.03 0.136 0.203 

Full Model 33.46 16.82 10.13 6.32 0.142 0.214 
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metrics. The improved Topic scores indicates that by 494 

learning the correlation between an entity and its 495 

neighboring concepts, concepts that are more 496 

closely related to an entity receive higher attention 497 

during the generation process. The reason for the im-498 

proved Diversity is that the expansion of external 499 

knowledge graph information makes the output text 500 

more novel. The improvement in Fluency is because 501 

by learning the relationship between entities, it can 502 

help the model to better fit the data. All versions of 503 

our CAVSS models outperform the baselines in all 504 

evaluation metrics. In the manual evaluation, 505 

CAVSS-T obtained the highest score (4.12) for the 506 

Diversity index and Full Model obtained the highest 507 

score (4.07,4.11,4.14) for the Fluency, Topic, and 508 

Commonsense indices, and similar conclusions can 509 

be drawn from the automatic evaluation. Similar 510 

conclusions can also be drawn from the automatic 511 

evaluation. The improvement of CAVSS-T in gener-512 

ating text Diversity and Commonsense is significant, 513 

and this improvement comes from our external com-514 

monsense knowledge, as our sentence representa-515 

tions are generated by an autoregressive transfor-516 

mation of samples of continuous latent variables. 517 

Compared to the baseline, this step introduces more 518 

randomness. When using 𝑧௔௟௜௚௡  alignment sam-519 

pling on the basis of CAVSS-T, i.e. (Full Model), 520 

Full Model achieves the best performance in BLEU 521 

(33.46). However, we found that the Full Model did 522 

not significantly outperform the CAVSS model on 523 

diversity metrics (Dist-1, Dist-2). The results show 524 

that aligning the sampling is beneficial for the model 525 

to better fit the test set, but it does not significantly 526 

help other important metrics such as Dist. We find it 527 

interesting that CAVSS-T achieves the highest diver-528 

sity score when align-aligned sampling is removed 529 

and an autoregressive sampling transformation 𝑇 is 530 

added. We believe that the lack of 𝑧௔௟௜௚௡ alignment 531 

sampling constraints makes the text generation di-532 

versity increase, and the quality of generated se-533 

quences is not significantly improved. 534 

Loss factor experiment. We adjust the hy-535 

perparameter 𝛾௄௅  in Equation 16 with the BLEU 536 

index as the criterion, and we apply the Full Model 537 

for experiments. As shown in the Figure 2, 𝛾௄௅ 538 

takes values in 0.3 and 2.0 both have higher scores. 539 

When 𝛾௄௅ =0.3, that is, the reconstruction part is 540 

strong, the model does not need to extract features 541 

from latent variables, and the model construction 542 

fails, although various indices are improved, it de-543 

feats the original intent of the model.  When 544 

𝛾௄௅ =2.0, the model focuses on optimizing the KL 545 

term. The model generates sequences through latent 546 

variables and achieves better results in terms of gen-547 

eration quality. 𝛾௄௅ serves as a regularization factor 548 

that aims to constrain the capacity of latent variables 549 

and find the right balance between the Reconstruc-550 

tion part and KL, which is consistent with the find-551 

ings of Higgins et al. (Higgins et al., 2016). 552 

Case study. As shown in Table 3, for the origi-553 

nal input, there are triples "magnitude RelatedTo 554 

earthquake", "scale RelatedTo deep", "estimated Re-555 

latedTo model", and the model performs KGA on the 556 

knowledge triples. By learning relations and entities, 557 

we pay different attention to the neighboring entities 558 

of different entities in the original sentence and use 559 

this structured information to encode and decode 560 

them for the purpose of generating diverse sentences.  561 

Table 3: Sample questions generated by all the models. 

Input: In a united states geological survey usgs study preliminary rupture models of the earthquake indicated dis-

placement of up to 9 meters along a fault 240 km long by 20 km deep. 

Output: How large was the displacement? 

VSS What percentage of the earthquake was conducted by the earthquake? 

CAVSS What was the magnitude of the earthquake? 

CAVSS-T What was the scale of the earthquake? 

CAVSS-a How deep was the earthquake that damaged the US? 

Full Model What was the estimated displacement of the earthquake in the US? 
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