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ABSTRACT

Despite significant advancements in deep probabilistic models, effective learn-
ing of low-dimensional discrete latent representations remains challenging. This
paper introduces a novel method to improve variational inference in discrete la-
tent variable models by employing Error-Correcting Codes (ECCs) to add redun-
dancy to the latent representations, later exploited by the variational approximated
posterior to provide more accurate estimates, thereby reducing the variational
gap. Drawing inspiration from ECCs used in digital communications and data
storage, we demonstrate proof-of-concept using a Discrete Variational Autoen-
coder (DVAE) with binary latent variables and block repetition codes. We then
extend it to a hierarchical structure inspired by polar codes, in which some latent
bits are more robustly protected than others. Our approach significantly enhances
generation quality, data reconstruction, and uncertainty calibration compared to
the uncoded DVAE, even when trained with tighter bounds such as the Importance
Weighted Autoencoder (IWAE) objective. In particular, we demonstrate superior
performance on MNIST, FMNIST, CIFAR10, and Tiny ImageNet datasets. The
general approach of integrating ECCs into variational inference is compatible with
existing techniques to boost variational inference, such as importance sampling or
Hamiltonian Monte Carlo. We also formulate the properties that ECCs need to
possess to be effectively used for improved discrete variational inference.

1 INTRODUCTION

Discrete latent space models seek to represent data using a finite set of features. Recent progress in
generative models has increasingly favored these representations, as they are well-suited for datasets
characterized by naturally discrete hidden states. However, effective learning of low-dimensional
discrete latent representations is technically challenging. Vector Quantized-Variational Autoen-
coders (VQ-VAEs) (Van Den Oord et al., 2017; Razavi et al., 2019) stand out as solutions for this
problem but rely on a non-probabilistic autoencoder, which does not provide uncertainty quantifica-
tion in the latent space (as further discussed in Appendix L). To fit a fully probabilistic Variational
Autoencoder (VAE) model (Kingma & Welling, 2013), a common approach considers either Con-
crete (Maddison et al., 2017) or Gumble-Softmax (Jang et al., 2017) approximations to sample
from a discrete latent distribution in a reparameterizable manner (Ramesh et al., 2021; Lievin et al.,
2020). However, this approach leads to instabilities since the gradient variance is sensitive to the
temperature that controls these approximations. The DVAE in Rolfe (2016); Vahdat et al. (2018b;a),
augments the binary latent representations with a set of continuous random variables, pairing each
bit with a continuous counterpart where reparameterization can be done in a more stable manner
after marginalizing the latent bits. The key distinction between the DVAE (Rolfe, 2016) and the
DVAE++ (Vahdat et al., 2018b) lies in their smoothing transformations: while Rolfe (2016) intro-
duces spike-and-exponential transformations, Vahdat et al. (2018b) uses overlapping exponential
distributions. These overlapping transformations are generalized in Vahdat et al. (2018a), enabling
tighter variational bounds. We demonstrate the effectiveness of our method over a simplified version
of the DVAE++ (Vahdat et al., 2018b).

This work presents a novel method to improve variational inference and representation learning in
generative models with discrete latent variables. In particular, for a latent variable model, we argue
that one should use ECCs to introduce redundancy into the latent sample before the reconstruction
decoder network processes it to generate the data. The variational approximation to the true posterior
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Figure 1: Comparison between uncoded and coded DVAE models with 8 latent bits, where the
uncoded models are identified by the number of latent bits, and the coded models by their code rate.
Fig. (a) presents uncurated generation examples for FMNIST. Fig. (b) illustrates the evolution of
the reconstruction and regularization terms of the ELBO loss. Fig. (c) depicts the graphical model
of the uncoded DVAE, while Fig. (d) shows the graphical model of the coded DVAE.

distribution can then exploit the added redundancy to provide more accurate estimates, reducing, in
turn, the variational gap to the data likelihood.

Our approach is based on well-known digital communications and data storage techniques where in-
formation is protected with ECCs before transmission/storage to reduce the overall error rate during
recovery. For different datasets, our results demonstrate that, compared to the uncoded DVAE, the
DVAE with ECCs (Coded-DVAE) achieves superior generation quality, better data reconstruction,
and critically calibrated uncertainty in the latent space. In Fig. 1, we highlight some representative
results for both MNIST and FMNIST data sets. We note that the use of ECCs is a general design
approach that is perfectly compatible with state-of-the-art techniques for improved variational in-
ference, such as importance sampling (Burda et al., 2016; Thin et al., 2021) or Hamiltonian Monte
Carlo (Wolf et al., 2016; Caterini et al., 2018). In summary, our main contributions are:

• We provide proof-of-concept results demonstrating that training deep generative models
can be improved by ECC techniques, an idea that, to the best of our knowledge, is com-
pletely novel in the literature.

• We formulate a coded version of DVAE using block repetition codes. We show that encod-
ing/decoding of the block repetition code can be efficiently done with linear complexity.

• We show that Coded-DVAE improves reconstruction, generation, and uncertainty calibra-
tion in the latent space when compared to the uncoded case using the same latent dimen-
sion, even when the uncoded DVAE is trained with tighter bounds such as the IWAE ob-
jective (Burda et al., 2016).

• We discuss the generalization of this method to other coding schemes and introduce a
hierarchical structure, inspired by polar codes (Arikan, 2009), that effectively separates
high-level information from finer details.

• Through an extensive ablation study, we show that the enhancement in performance is not
attributed to the increased dimensionality introduced by the redundancy from the ECC.

2 OUR BASELINE: THE UNCODED DVAE

This section introduces a simplified version of the uncoded DVAE (Rolfe, 2016; Vahdat et al.,
2018b;a), serving as the foundational model upon which the subsequent aspects of our work are
constructed. Let X = {x0, . . . ,xN} denote a collection of unlabelled data, where xi represents a
K-dimensional feature vector. While Rolfe (2016), Vahdat et al. (2018b) and Vahdat et al. (2018a)
use Boltzmann machine priors, we consider a generative probabilistic model characterized by a sim-
ple low-dimensional binary latent variable m ∈ {0, 1}M comprising independent and identically
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distributed (i.i.d.) Bernoulli components p(m) =
∏M

j=1 p(mj) =
∏M

j=1 Ber(ν). Since backprop-
agation through discrete variables is generally not possible, a smoothing transformation of these
binary variables is introduced. While the smoothing transformations proposed in Rolfe (2016) are
limited to spike-and-X type of transformations, Vahdat et al. (2018b) show better results by using
truncated exponential distributions:

p(z|m) =

M∏
j=1

p(zj |mj), p(zj |mj) =
e−β(zj−mj)

Zβ
, (1)

for mj ∈ {0, 1}, zj ∈ [0, 1], and Zβ = (1 − e−β)/β. The parameter β serves as an inverse
temperature term, similar to the one in the Gumbel-Softmax relaxation (Jang et al., 2017). Given the
simplicity of the defined binary prior, the complexity of the model is primarily determined by the
likelihood function pθ(x|z) = p(fθ(z)), where the likelihood is a Neural Network (NN) (referred
to as the decoder) with parameter set θ.

Variational family and inference

Following Rolfe (2016), we assume an amortized variational family of the following form:

qη(m, z|x) = qη(m|x)p(z|m), qη(m|x) =
M∏
j=1

Ber(gj,η(x)), (2)

where gη(x) represents a parameterized function; here, a NN (referred to as the encoder) with
parameter set η. Inference is achieved by maximizing the Evidence Lower Bound (ELBO), which
can be expressed as

log p(x) ≥
∫

qη(m, z|x) log
(
pθ(x, z,m)

qη(m, z|x)

)
dmdz = Eqη(m,z|x) log

(
pθ(x|z)p(z|m)p(m)

qη(m|x)p(z|m)

)
= Eqη(m,z|x) log pθ(x|z)−DKL

(
qη(m|x)||p(m)

)
,

(3)
where the first term corresponds to the reconstruction of the observed data and the second term
is the Kullback-Leibler (KL) Divergence between the variational family and the binary prior
distribution, which acts as a regularization term. This can be computed in closed form as
DKL

(
qη(m|x)||p(m)

)
=
∑M

j=1

[
qj log

qj
ν + (1 − qj) log

1−qj
1−ν

]
, where qj = qη(mj = 1|x).

The reconstruction term needs to be approximated via Monte Carlo. Since pθ(x|z) does not depend
on the binary latent variable m, we can marginalize the posterior distribution as

qη(z|x) =
M∏
j=1

qη(zj |x), qη(zj |x) =
1∑

k=0

qη(mj = k|x)p(zj |mj = k). (4)

As shown in Vahdat et al. (2018b), the corresponding inverse Cumulative Density Function (CDF)
is given by

F−1
qη(zj |x)(ρ) = −

1

β
log

(
−b+

√
b2 − 4c

2

)
, (5)

where b =
(
ρ + e−β(qj − ρ)

)
/(1 − qj) − 1 and c = −[qje−β ]/(1 − qj). The equation 5 is a

differentiable function that converts a sample ρ from an independent uniform distribution U(0, 1)
into a sample from qη(z|x). Thus, we can apply the reparameterization trick to sample from the
latent variable z and optimize the ELBO with respect to the model’s parameters.

3 IMPROVING INFERENCE BY ADDING REDUNDANCY TO LATENT VECTORS

In the DVAE framework (Rolfe, 2016; Vahdat et al., 2018b;a), the authors use Boltzmann machines
as priors instead of the independent prior p(m) presented in Section 2. While these complex priors
increase the model’s flexibility and can produce competitive results, our objective is to enhance
inference through model design by maintaining the simpler independent prior. This approach would
improve interpretability and encourage the model to learn independent components in the latent
space, which is essential for capturing potentially disentangled representations.
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VAEs (Kingma & Welling, 2013) are often viewed as lossy compression models, where the goal is
to minimize reconstruction error while imposing regularization through a prior distribution. How-
ever, our approach is better understood from a generative standpoint. We first sample a latent vector
m, generate an observation x, and focus on minimizing the error rate when recovering m from x.
Achieving this requires the variational approximation to be sufficiently accurate. In fields where re-
liable data transmission or storage is important, introducing ECCs is a well-established approach to
reduce the error rate when estimating a discrete source m transmitted through a noisy channel with
output x. Estimating m from x implies approximating the true and unknown posterior distribution
p(m|x) with a proposed qη(m|x). The gap between qη(m|x) and p(m|x) is precisely the vari-
ational gap. We propose employing ECCs to safeguard m with controlled and known redundancy
that can be leveraged by the variational posterior qη(m|x) by design. This way, it is possible to
reduce the mistakes committed when comparing m with samples drawn from qη(m|x), obtaining a
tighter approximation to the true posterior p(m|x), therefore reducing the gap to optimal inference.

ECCs play a crucial role in information theory and digital communications by enabling reliable data
transmission over unreliable channels (Moon, 2005). They introduce redundancy into the trans-
mitted data, allowing the receiver to detect errors and, in many cases, correct them without re-
transmission. In his seminal work, Shannon (Shannon, 1948) demonstrated the arbitrarily reliable
communication is possible through error correction. Our approach builds on the idea that the gen-
erative model in Fig. 1c can be conceptualized as a communication system, where the bits sampled
from p(m) undergo continuous modulation into z and are then transmitted through a nonlinear
communication channel (in this setting, the decoder NN) characterized by the input/output response
pθ(x|z) = p(fθ(z)). In this scenario, the complexity of the channel is essential since it is necessary
to account for the intricate nature of the data at its output (e.g., complex images). Following this
idea, the process of inference via qη(m|x) can be thought of as deciphering the latent variable m
given the observed data x, where the encoder NN plays the role of the channel equalizer, trying to
reverse the channel’s effects without knowing the bit correlations from the ECC.

4 CODED DVAE

This section extends the previously described DVAE, introducing an ECC over m. We refer to this
model as coded DVAE. In ECCs, we augment the dimensionality of the binary latent space from
M to D in a controlled and deterministic manner, where R = M/D is the coding rate. An ECC
is typically designed so that the 2M possible codewords are separated as much as possible in the
space of binary vectors of D bits. This facilitates algorithms in detecting and/or correcting errors
by searching for the nearest code word. A random choice of the codewords brings what is known
as a random block code (Shannon, 1948). While they are known to be very robust and amenable to
theoretical analysis, their lack of structure makes them computationally intractable since we have to
rely on codeword enumeration during the encoding/decoding process. In Appendix M, we include
the formulation of a random code’s encoding/decoding process within the DVAE model.

Instead, we adopt a much simpler linear coding scheme, namely repetition codes. In a repetition
code, each bit of the original message m is repeated multiple times to create the encoded message c.
Intuitively, the more times an information bit is repeated, the better it is protected. Our experiments
consider uniform (M,D) repetition codes where all bits are repeated L times, resulting in codewords
of dimension D = ML and a coding rate of R = 1/L. Note that repetition codes represent a
special case of linear ECCs since each codeword can be deterministically computed by multiplying
a binary vector m by an M × D generator matrix G, such that c = mTG, where u-th row, with
u = 1, . . . ,M , has entries equal to one at columns L(u − 1) + 1, L(u − 1) + 2, . . . , Lu, and zero
elsewhere. For example, for M = 3 and L = 2, the generator matrix of the (3, 6) repetition code is

G =

[
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

]
. (6)

The generative process of the coded DVAE follows similarly to the uncoded case, and it is repre-
sented in Fig. 1d. We assume the same prior distribution p(m), but in this case the samples m are
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deterministically encoded using G. Now, the smoothing z transformations are defined over c

p(z|c) =
D∏

j=1

p(zj |cj), p(zj |cj) =
e−β(zj−cj)

Zβ
, (7)

for zj ∈ [0, 1], cj ∈ {0, 1} and Zβ = (1 − e−β)/β. The likelihood p(x|z) is again of the form
pθ(x|z) = p(fθ(z)). Note that, compared to the uncoded case, we have a larger input dimension-
ality to the decoder NN fθ(z). When comparing uncoded vs. coded DVAEs, the structure of the
decoder NN fθ(z) (detailed in Appendix C) is equal in both cases except for the first Multilayer
Perceptron (MLP) layer that attacks the input z. Therefore, if a rate R = 1/L repetition code is
used, the number of additional parameters of the fθ(z) NN is given by (L− 1)× h, where h is the
dimension of the first hidden space of fθ(z).

Variational family and inference

The repetition code introduces correlations between the bits in c that we will exploit to obtain an
improved variational bound. We again assume a variational family factorizing as

qη(m, z|x) = qη(m|x)p(z|c) (8)

where qη(m|x) =
∏M

u=1 qη(mu|x) is computed in two steps. First, we construct an encoder NN
gη(x) similar to that of equation 2, that retrieves the probabilities of the bits in c from x without
exploiting the correlations introduced by the repetition code:

quη(c|x) =
D∏

j=1

Ber(gj,η(x)), (9)

where the u superscript serves as a reminder that this posterior does not exploit the redundancy
introduced by the ECC.

Now, we utilize the known redundancy introduced by the ECC to constrain the solution of quη(c|x),
given that each bit from m has been repeated L times to create c. To do so, we follow a soft decod-
ing approach, where the marginal posteriors of the information bits are derived from the marginal
posteriors of the encoded bits, exploiting the repetition code’s known structure. In the case of repe-
tition codes, we compute the all-are-zero and the all-are-ones products of probabilities of the bits in
c that are copies of the same message bit and renormalize as

q(mu = 1|x) = 1

Z

Lu∏
j=L(u−1)+1

gj,η(x)
.
=

g+u,η(x)

Z
, (10)

q(mu = 0|x) = 1

Z

Lu∏
j=L(u−1)+1

(1− gj,η(x))
.
=

g−u,η(x)

Z
, (11)

for u = 1, . . . ,M and Z =
(
g+u,η(x) + g−u,η(x)

)−1
. This approach can be seen as a soft majority

voting strategy, enabling the recovery of the original information vector even if some bits in the in-
ferred encoded word are corrupted. All operations in equation 10 preserve the gradients concerning
the parameters in the encoder gη(x). We implement them in the log domain for stability.

When compared to the uncoded case, as in the likelihood term, we consider the same NN structure
for the encoder gη(x) where both cases only differ in the last MLP layer. The additional overhead
in the coded cases requires (L−1)×h′ parameters in the last layer, where h′ is the dimension at the
output of the last layer. In Appendix J.2, we conduct an ablation study on the number of trainable
parameters to demonstrate that the improvement in performance does not stem from this increase in
the number of parameters, but rather from the incorporation of the ECC in the latent space.

Soft encoding for efficient reparameterization

Given the variational family in equation 8, the ELBO matches the expression in equation 3. How-
ever, the reparameterization trick in equation 5 requires independent bits, which is not the case in c.
To efficiently circumvent this issue during training, we employ a soft encoding approach. With soft
encoding, a marginal probability is computed for each bit in the codeword c, taking into account

5
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the structure of the ECC and the marginal probabilities of the information bits. For a repetition
code, this involves simply replicating the posterior probabilities qη(m|x) =

∏M
u=1 qη(mu|x) for

each copy of the same information bit. Hence, we treat the bits in c as independent but distributed
according to qη(m|x). The algorithm in Appendix B shows the training pseudo-code.

When marginalizing c using the soft encoding marginals, we disregard potential correlations be-
tween the coded bits. For instance, with repetition codes, sampling from the marginals could pro-
duce inconsistent bits, leading to an invalid codeword. However, since we do not sample the coded
bits during training but instead propagate their marginal probabilities, we consider this approxima-
tion to have minimal negative impact. In fact, it can be seen as a form of probabilistic dropout, which
enhances robustness during training. It is important to note that when sampling from the genera-
tive model in test time, we use hard bits encoded into valid codewords, yielding visually appealing
samples, indicating that our training approach is reliable.

Related work

While the use of deep neural networks and generative models in digital communications problems
have been profusely reported in recent years (see Ye et al. (2024), Chen et al. (2024), Guo et al.
(2022), Wu et al. (2023), and Shen et al. (2023) for representative examples), the use of ECC tech-
niques as a design tool in machine learning is scarce. The most prominent example is Dietterich &
Bakiri (1995), where the authors address multiclass learning problems via ECCs. In Aldaghri et al.
(2021), the authors proposed using linear codes for applications that may require removing the trace
of a sample from the system, e.g., a user requests their data to be deleted or corrupted data is dis-
covered. They address a regression problem by introducing a coded learning protocol that employs
linear encoders to divide the training data before the learning phase. More recently, in Xue et al.
(2024) the authors introduced ECCs to improve code-to-code translation using transformers.

5 EXPERIMENTS

This section empirically evaluates the DVAE and its coded counterpart using repetition codes. We
show results on reconstruction and generation tasks. In particular, we display results for MNIST
(Deng, 2012), FMNIST (Xiao et al., 2017), CIFAR10 (Krizhevsky et al., 2009), and Tiny ImageNet
(Le & Yang, 2015) datasets. The selection of these relatively simple datasets is deliberate to aid
in a clearer understanding of the behaviors of various configurations. Additionally, we compared
the coded model to the uncoded DVAE trained using the IWAE objective (Burda et al., 2016), as
presented in Appendix H. All experimental results were obtained using the same architecture, which
is detailed in Appendix C. When introducing the repetition code, we only modify the encoder’s
output layer and the decoder’s input layer to adapt the architecture to the augmented dimension.

5.1 RECONSTRUCTION

We first evaluate the model’s performance of reconstructing data by examining its uncoded and
coded versions across different configurations, varying the number of information bits and code
rates. The introduction of the repetition code led to improved reconstruction and smaller KL values,
indicating that the posterior latent features are disentangled and less correlated. In Appendices D,
E, F and G, we show the behavior of the ELBO loss function for all the models and datasets.

Image reconstruction quality. In the table included in Fig. 2, we first quantify the quality of the
reconstructions in FMNIST by measuring the Peak Signal-To-Noise Ratio (PSNR) in the test set.
The results for the rest of the datasets are provided in sections D, E, F and G of the Appendix. In all
the cases, the coded models yield higher PSNR values than their uncoded counterparts, indicating
a superior performance in reconstruction. This improvement is also evident by visual inspection
of Fig. 2, where the coded models exhibit a greater ability to capture details in the images for the
same latent dimension. We observe a general improvement in PSNR as we increase the number of
information bits, i.e., as we augment the latent dimensionality of the model. This increase in the
number of available latent vectors provides greater flexibility, enabling the models to capture the
underlying structure of the data more effectively. We also observe a general improvement in PSNR
as we decrease the code rate, i.e., as we add more redundancy. Note that adding redundancy does not
increase the model’s flexibility, since the information bits determine the number of latent vectors.
However, coded models yield more accurate and detailed reconstructions.
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ORIGINAL

UNCODED 5

UNCODED 8

UNCODED 10

CODED 5/100

CODED 8/240

CODED 10/300

Model PSNR Acc Conf. Acc Entropy

uncoded 5 14.477 0.536 0.536 0.237
coded 5/50 16.241 0.647 0.700 1.899
coded 5/80 16.624 0.688 0.748 2.180
coded 5/100 16.702 0.700 0.757 2.256

uncoded 8 15.598 0.594 0.595 0.467
coded 8/80 17.318 0.750 0.816 2.905
coded 8/160 17.713 0.783 0.831 3.637
coded 8/240 17.861 0.799 0.893 4.000

uncoded 10 16.000 0.644 0.648 0.659
coded 10/100 17.694 0.790 0.850 3.879
coded 10/200 18.009 0.814 0.871 4.609
coded 10/300 18.111 0.817 0.870 5.076

Figure 2: Reconstruction performance over the test set in FMNIST. The figure at the left shows
an example of reconstructed test images obtained with different model configurations. Observe that
more details are visualized as we increase the number of bits in the latent space and decrease the
coding rate. The table at the right includes reconstruction metrics. Acc is the semantic accuracy and
Conf. Acc the confident semantic accuracy. Entropy is the average entropy of qη(m|x) in the test
set.

0.804

0.173

0.017

0.004

0.128

0.117

0.104

0.095

0.815

0.172

0.005

0.002

0.959

0.032

0.001

0.001

0.278

0.227

0.132

0.108

0.067

0.060

0.050

0.045

UNCODED 5 UNCODED 8 UNCODED 10 CODED 5/100 CODED 8/240 CODED 10/300

Figure 3: Example of erroneous reconstructions in FMNIST using the 4 most-probable a poste-
riori latent vectors. The first column in each image shows the original input to the model, while the
second column displays the reconstructions. The qη(m|x) probability is indicated in each row.

Semantic accuracy. As the PSNR operates at the pixel level, it does not account for the semantic
errors committed by the model. For example, if the model incorrectly reconstructs a nine instead of
a four in the MNIST dataset, the PSNR may still yield a large value due to the similarity between
the two images. Nonetheless, this would represent a severe failure in correct reconstruction of the
intended class. Therefore, we additionally evaluate the reconstruction accuracy, ensuring that the
model successfully reconstructs images within the same class as the original ones. For this purpose,
we trained an image classifier for each dataset and compared the reconstructed images’ predicted
labels against the originals’ ground truth labels. Additionally, we provide a confident reconstruction
accuracy. While the reconstruction accuracy is computed across the entire dataset partitions, for the
confident accuracy, we only consider those images projected into a latent vector with a probability
exceeding 0.4.1. Results for FMNIST are detailed in the table included in Fig.2, and corresponding
results for MNIST are available in Table 2 within Appendix E. In light of the results, we can conclude
that introducing an ECC in the model allows for latent spaces that better capture the semantics of the
images while employing the same number of latent vectors, significantly outperforming the uncoded
models in terms of accuracy in all the cases.

Posterior uncertainty calibration. Finally, also in the table included in Fig.2, we report the
average entropy of the variational posterior qη(m|x) over the test set. The low entropy observed
in the uncoded models suggests a low uncertainty when the model projects data points into the
latent space, which could be advantageous if the model consistently assigned high probability to the
correct latent vectors. However, the semantic accuracy results demonstrate this is not true in the

1Namely, we do not count errors when the Maximum a Posteriori (MAP) value of qη(m|x) is below 0.4.
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UNCODED 5 UNCODED 10

CODED 8/240 CODED 10/300

UNCODED 8

CODED 5/100

Model BER WER LL train LL test

uncoded 5 0.051 0.195 -266.157 -267.703
coded 5/50 0.011 0.046 -239.379 -241.882
coded 5/80 0.008 0.039 -227.550 -232.992

coded 5/100 0.010 0.049 -238.206 -241.404

uncoded 8 0.089 0.384 -247.964 -249.880
coded 8/80 0.021 0.144 -227.550 -232.992

coded 8/160 0.027 0.189 -228.585 -235.819
coded 8/240 0.037 0.231 -231.679 -238.459

uncoded 10 0.142 0.622 -242.842 -244.997
coded 10/100 0.040 0.321 -222.011 -230.772
coded 10/200 0.044 0.341 -223.748 -234.849
coded 10/300 0.045 0.349 -226.504 -238.647

Figure 4: Evaluation of generation in FMNIST. The figure at the left shows an example of ran-
domly generated, uncurated FMNIST images. The table at the right shows the quantitative results
on the evaluation of the Bit Error Rate (BER), Word Error Rate (WER), and log-likelihood (LL).

uncoded model. In other words, the uncoded variational family projects images into the wrong class
with high confidence. This indicates the uncertainty of the uncoded case is severely miscalibrated.

Coded models, on the other hand, improve semantic accuracy and present a larger entropy. This sug-
gests that i) the coded DVAE is aware that multiple latent vectors might be related to the image class
and ii) that the model posterior shows large uncertainties (high entropy) for certain images for which
the model has not properly identified the class. We illustrate this in Fig. 3, where we show some
images that were selected so that the MAP latent word from qη(m|x) induces class reconstruction
errors. We display the reconstruction of the 4 most probable latent vectors and their corresponding
probabilities. Observe that the uncoded model is confident no matter the reconstruction outcome
while, in the coded posterior, the uncertainty is much larger. These results are also observed for
MNIST, indicating that the posterior distribution in coded models exhibits a better uncertainty cali-
bration. Note also that the increase in the number of latent bits (from 8 to 10) does not result in an
excessive increase in the entropy despite the exponential growth of the number of vectors.

5.2 GENERATION

In this section, we evaluate the model for the image generation task. In Fig. 4, we show examples
of randomly generated images using different model configurations in FMNIST. Results for the rest
of the datasets are available in Appendices D, E, F, and G. These results are consistent with the ones
obtained in reconstruction since we can observe that the coded models can generate more detailed
and diverse images. Both uncoded and coded models generate more intricate and varied images
with increased information bits. However, if the number of latent vectors becomes too large for the
dataset’s complexity, not all words in the codebook are specialized during model training. This leads
to generation artifacts, images where different classes of objects are overlapped. A visual inspection
of Fig. 4 suggests these artifacts are more frequent in the uncoded case. Note that, since we are
dealing with discrete latent variables, we could simply detect and prune uninformative vectors.

Accuracy metrics in generation. The improved inference given by the repetition code can also be
tested by generating images using the generative model and counting errors using the MAP solution
of the variational distribution qη(m|x). The table included in Fig. 4 reports the BER and WER
for FMNIST. As expected, at the same number of latent bits, the coded models significantly reduce
both the BER and WER w.r.t. the uncoded case. Note also that the error rates grow with the number
of latent bits, which is expected due to the increased complexity of the inference process. We may
commit more errors by taking the MAP, but errors typically fall in consistent reconstructions (latent
words that also reconstruct the same type of image), as the results presented in Section 5.1 indicated.

Log-likelihood. We additionally estimated the log-likelihood (LL). Results for FMNIST with
different model configurations, estimated through importance sampling with 300 samples per obser-
vation, are presented in the table included in Fig. 4, please refer to Appendix K for further details.
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ORIGINAL

UNCODED 70

CODED 70/2100

UNCODED 100

CODED 100/3000

ORIGINAL

UNCODED 100

UNCODED 70

CODED 70/2100

CODED 100/3000

Figure 5: Reconstruction results for CIFAR10 (left) and Tiny ImageNet (right).

UNCODED 70

CODED 70/2100

UNCODED 100

CODED 100/3000

UNCODED 100

CODED 100/3000CODED 70/2100

UNCODED 70

Figure 6: Generation results for CIFAR10 (left) and Tiny ImageNet (right).

We observe that coded models consistently outperform their uncoded counterparts for both train and
test sets, aligning with the results previously presented. Thus, we can argue that the introduction of
repetition codes in the definition of the model allows for an improved inference and tighter posterior
approximation. We draw similar conclusions for other datasets.

We observe a general improvement in LL values as we increase the number of information bits, i.e.,
as we augment the latent dimensionality of the model and its flexibility. However, reducing the code
rate does not lead to an improvement in log-likelihood. We argue that this might indicate overfitting
of the decoder, as the LL deteriorates while reconstruction metrics improve. We must note that we
use feed-forward networks at the decoder’s input. However, this may not be appropriate for the
correlations we present in our coded words. We might overcome this overfitting tendency by using
an architecture that properly leverages these coded bits correlations.

5.3 ADDITIONAL RESULTS WITH CIFAR10 AND TINY IMAGENET

Since MNIST-like datasets are rather simple, it is difficult to assess the true gain in performance
resulting from the introduction of ECCs proposed in our model. This section presents additional re-
sults using CIFAR10 and Tiny ImageNet, which contain colored images with more intricate shapes,
patterns, and greater diversity than the previous datasets. We trained uncoded and coded models
using different configurations to gain intuition regarding the effect of introducing the ECC. For a
reference, in the case of the DVAE++ (Vahdat et al., 2018b), the authors needed 128 binary latent
variables to achieve state-of-the-art performance in generation and reconstruction for this dataset.
They employed a more intricate model than the one introduced in this study, featuring Boltzmann
Machine priors. In Fig. 5 we show examples of reconstruction using different configurations of the
model and in Fig. 6 we show examples of randomly generated images. Additional results are pro-
vided in Appendices F and G. The results are consistent with those presented in previous sections;
but in this case, the difference in performance is even more pronounced. We observe that the un-
coded DVAE cannot decouple spatial information from the images and project it in the latent space.
Nevertheless, the coded DVAE shows particular promise for learning low-dimensional discrete la-
tent representations in complex datasets. Note that we used a rather simple architecture as we want
to focus on the gain obtained only by introducing ECCs in the latent space.
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6 BEYOND REPETITION CODES

We have presented compelling proof-of-concept results that incorporating ECCs, like repetition
codes, into DVAEs can improve performance. We believe this opens a new path for designing
latent probabilistic models with discrete latent variables. Although a detailed analysis of the joint
design of ECC and encoder-decoder networks is beyond the scope of this work, we will outline key
properties that any ECCs must satisfy to be integrated within this framework.

• Scalable hard encoding
(
m→ c

)
. Our model requires hard encoding for generation once

the model is trained. This process should have linear complexity in M .
• Scalable soft encoding

(
p(m) → p(c)

)
. Soft encoding is required during training for

reparameterization. This process should also have linear complexity in M .
• Scalable soft decoding

(
p(c) → p(m)

)
. Our model employs soft-in soft-out (SISO)

decoding during inference. This process should again be linearly complex in M .
• Differentiability. Both encoding and decoding processes must be differentiable w.r.t the

inputs to enable gradient computation and backpropagation.

xi

z1 z2

c1 c2

m1 m2

Figure 7: Graphical
model of the hierarchical
coded DVAE.

Since Shannon’s seminal work (Shannon, 1948), researchers have devel-
oped effective ECC schemes that meet these properties, including state-
of-the-art ECCs such as Low Density Parity Check (LDPC) codes (Gal-
lager, 1962), or polar codes (Arikan, 2009). Efforts have also focused on
developing efficient SISO decoders, such as the sum-product algorithm
(Kschischang et al., 2001).

Inspired by polar codes (Arikan, 2009), we present a hierarchical coded
DVAE with two layers of latent bits. In this model, the latent bits m1

are encoded using a repetition code in the first layer, producing c1 and
z1. Simultaneously, the vector m2 is linearly combined with m1 using
modulo 2 operations

(
m1 ⊕m2

)
and then encoded using a repetition

code, yielding c2 and z2. Both soft vectors are concatenated and fed to
the decoder NN to generate x. The model provides stronger protection
for m1, as it appears in both branches of the generative model. Inference
follows a similar approach to the coded DVAE, incorporating the linear
combination of m1 and m2 used in the second branch. This hierarchical
structure allows the model to effectively separate high-level information
from finer details, as we show in the results presented in Appendix I.

7 CONCLUSION

This paper presents the first proof-of-concept demonstration that safeguarding latent information
with ECCs within deep generative models holds promise for enhancing overall performance. By
integrating redundancy into the latent space, the variational family can effectively refine the infer-
ence network’s output according to the structure of the ECC. Our findings underscore the efficacy
of simple and efficient ECCs, like repetition codes, showcasing remarkable improvements over a
lightweight version of the DVAE introduced in Vahdat et al. (2018b).

Furthermore, our work reveals numerous avenues for future research. Firstly, investigating decoder
architectures capable of efficiently utilizing the correlations and structure introduced by the ECCs, in
contrast to the feed-forward networks employed in this study. We also contemplate exploring more
complex and robust coding schemes, conducting theoretical analyses aligned with Shannon’s chan-
nel capacity and mutual information concepts to determine the fundamental parameters of the ECC
needed to achieve reliable variational inference, exploring different modulations, and integrating
these concepts into state-of-the-art models based on discrete representations.

8 REPRODUCIBILITY STATEMENT

Our supplementary materials and appendices contain all the necessary information to facilitate re-
producibility. We provide the model’s source code along with examples for training and evaluation.
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Pseudo-codes outlining the training process are included in Appendices A, B, and M. Appendix C
describes the encoder and decoder architectures used for the experiments, and Appendix N outlines
the computational resources utilized for the experimental results. Furthermore, all experiments were
conducted using widely known public datasets.
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Appendices
The following Appendices offer further details on the model architecture, implementation, and ex-
perimental setup. They also include additional results on the FMNIST (Xiao et al., 2017), MNIST
(Deng, 2012), CIFAR10 (Krizhevsky et al., 2009), and Tiny ImageNet (Le & Yang, 2015) datasets,
along with comparisons to uncoded models trained with the IWAE objective (Burda et al., 2016), and
a description of the hierarchical coded DVAE. Given the length of the material, we have included a
Table of Contents for easier navigation.
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A UNCODED TRAINING ALGORITHM

The following pseudo-code describes the training process for the uncoded DVAE. It’s important to
note that the main difference from the training of the coded DVAE lies in the fact that the encoder
directly outputs quη(m|xi), which is used to sample z. Therefore, we skip the soft decoding and
coding steps.

Algorithm 1 Training the model with uncoded inference.

1: Input: training data xi.
2: repeat
3: quη(m|xi)← forward encoder gη(xi)
4: z ← sample from equation 5
5: pθ(x|z)← forward decoder fθ(z)
6: Compute ELBO according to equation 3
7: θ,η ← Update(ELBO)
8: until convergence

B CODED TRAINING ALGORITHM

The following pseudo-code describes the training process for the coded DVAE. Here, we utilize soft
decoding to leverage the added redundancy and retrieve the marginal posteriors of the information
bits m, correcting potential errors in quη(c|xi). We then apply the soft encoding technique to in-
corporate the structure of the code and sample z using the reparameterization trick as described in
equation 5.

Algorithm 2 Training the coded DVAE with repetition codes.
1: Input: training data xi, matrix G.
2: repeat
3: quη(c|xi)← forward encoder gη(xi)
4: qη(m|xi)← soft decoding by aggregating quη(c|xi) according to equation 10
5: qη(c|xi)← repeat posterior bit probabilities qη(m|xi) according to G
6: z ← sample from equation 5
7: pθ(x|z)← forward decoder fθ(z)
8: Compute ELBO according to equation 3
9: θ,η ← Update(ELBO)

10: until convergence

C ARCHITECTURE

In this section, we detail the architecture used to obtain the experimental results with FMNIST and
MNIST (28x28 gray-scale images). Note that across experiments we only modify the output layer of
the encoder and the input layer of the decoder to adapt to the different configurations of the model.
This modification leads to a minimal alteration in the total number of parameters. In Section J.2, we
conduct an ablation study on the number of trainable parameters to show that the enhancement in
performance is not attributed to the increased dimensionality introduced by redundancy.

For the additional CIFAR10 experiments, we change the input of the encoder and the output of the
decoder to process the 32x32 color images. For the Tiny ImageNet experiments, we do the same to
process 64x64 color images. The rest of the architecture remains unchanged.

These architectures are comprehensively described in the following subsections.

C.1 ENCODER

The encoder NN consists of 3 convolutional layers followed by two fully connected layers. We em-
ployed Leaky ReLU as the intermediate activation function and a Sigmoid as the output activation,
as the encoder outputs bit probabilities. The full architecture is detailed in Fig. 8.
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Figure 8: Block diagram of the encoder architecture for FMNIST and MNIST.

C.2 DECODER

The decoder architecture is inspired by the one proposed in Schuster & Krogh (2023). It is composed
of two fully connected layers, followed by transposed convolutional layers with residual connections
and Squeeze-and-Excitation (SE) layers (Hu et al., 2018). We employed Leaky ReLU as the inter-
mediate activation function and a Sigmoid as output activation, given that we consider datasets with
gray-scale images. The complete architecture is detailed in Fig. 9.
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Figure 9: Block diagram of the decoder architecture for FMNIST and MNIST.

D FMNIST RESULTS

In this section, we present supplementary results obtained with the FMNIST dataset.

D.1 TRAINING

We present the evolution of the ELBO and its terms throughout the training process. The models
were trained for 200 epochs using an Adam optimizer with a learning rate of 10−4, and a batch
size of 128. Fig. 10 displays the results for configurations with 5 information bits, Fig. 11 for 8
information bits, and Fig. 12 for 10 information bits. The colors in all plots represent the various
code rates.

Across all cases, coded models achieve superior bounds. The main differences in the ELBO come
from the different performances in reconstruction. As we have observed in the different experi-
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Figure 10: Evolution of the ELBO during training with 5 information bits on FMNIST.

Figure 11: Evolution of the ELBO during training with 8 information bits on FMNIST.

Figure 12: Evolution of the ELBO during training with 10 information bits on FMNIST.

ments, coded models are capable of generating more detailed images and accurate reconstructions.
Introducing the repetition code also leads to smaller KL values, indicating that the posterior latent
features are disentangled and less correlated.

We observe that, as we decrease the code rate, we obtain better bounds in general. Adding redun-
dancy does not increase the model’s flexibility, since the information bits determine the number of
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ORIGINAL UNCODED 5 UNCODED 10

CODED 8/240 CODED 10/300

UNCODED 8

CODED 5/100

Figure 13: Example of randomly generated, uncurated images using different model configurations.

Table 1: Evaluation of reconstruction performance in FMNIST.

Model PSNR
(train)

Acc
(train)

Conf. Acc.
(train)

PSNR
(test)

Acc
(test)

Conf. Acc.
(test)

uncoded 5 14.490 0.541 0.541 14.477 0.536 0.536
coded 5/50 16.375 0.656 0.702 16.241 0.647 0.700
coded 5/80 16.824 0.694 0.751 16.624 0.688 0.748
coded 5/100 17.001 0.708 0.760 16.702 0.700 0.757

uncoded 8 15.644 0.601 0.602 15.598 0.594 0.595
coded 8/80 17.877 0.769 0.842 17.318 0.750 0.816
coded 8/160 18.828 0.807 0.878 17.713 0.783 0.831
coded 8/240 19.345 0.831 0.921 17.861 0.799 0.893

uncoded 10 16.053 0.650 0.652 16.000 0.644 0.648
coded 10/100 18.827 0.813 0.885 17.694 0.790 0.850
coded 10/200 19.937 0.846 0.897 18.009 0.814 0.871
coded 10/300 20.529 0.855 0.907 18.111 0.817 0.870

latent vectors. However, the introduction of ECCs in the model allows for latent spaces that better
capture the structure of the images while employing the same number of latent vectors.

D.2 RECONSTRUCTION AND GENERATION

In this section, we augment the results presented in the main text, including outcomes obtained
with the training dataset in Table 1. We include again the results obtained in the test to facilitate
comparison. The results remain consistent across the two data partitions, and the analysis conducted
for the test set also applies to training data.

In all the cases, the coded models yield higher PSNR values than their uncoded counterparts, indi-
cating a superior performance in reconstruction. We observe a general improvement in PSNR as we
increase the number of information bits (i.e., as we augment the latent dimensionality of the model)
and decrease the code rate (i.e., as we introduce more redundancy).

As we discussed in the main text, the PSNR does not account for the semantic errors committed
by the model. Therefore, we additionally report the semantic accuracy and the confident semantic
accuracy. While the reconstruction accuracy is computed across the entire dataset partitions, for the
confident accuracy, we only consider those images projected into a latent vector with a probability
exceeding 0.4. We observe that coded models better capture the semantics of the images while
employing the same number of latent vectors, significantly outperforming the uncoded models in
terms of accuracy in all the cases.
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In Fig 13 we include additional examples of randomly generated images using different model con-
figurations. We observe that coded models can generate more detailed and diverse images than their
uncoded counterparts.

Figure 14: Evolution of the ELBO during training with 5 information bits on MNIST.

Figure 15: Evolution of the ELBO during training with 8 information bits on MNIST.

Figure 16: Evolution of the ELBO during training with 10 information bits on MNIST.
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E MNIST RESULTS

In this section, we report the results obtained with the MNIST dataset.

E.1 TRAINING

We present the evolution of the ELBO and its terms throughout the training process. The models
were trained for 100 epochs using an Adam optimizer with a learning rate of 10−4, and a batch
size of 128. Fig. 14 displays the results for configurations with 5 information bits, Fig. 15 for 8
information bits, and Fig. 16 for 10 information bits. The colors in all plots represent the various
code rates.

The results are consistent with the ones obtained for FMNIST. Across all the configurations, coded
models achieve superior bounds. The main differences in the ELBO come from the different perfor-
mances in reconstruction. As we have observed across the different experiments, coded models are
capable of better capturing the structure of the data, generating more detailed images and accurate
reconstructions.

We observe that, as we decrease the code rate, we obtain better bounds in general. Adding redun-
dancy does not increase the model’s flexibility, since the information bits determine the number of
latent vectors. However, the introduction of ECCs in the model allows for latent spaces that better
capture the structure of the images while employing the same number of latent vectors.

E.2 RECONSTRUCTION

We first evaluate the model’s performance in reconstructing data by examining its uncoded and
coded versions across different configurations, varying the number of information bits and code
rates. All the results obtained with MNIST are consistent with those presented in the main text for
FMNIST.

In Table 2 we quantify the quality of the reconstructions measuring the PSNR in both training and
test sets. In all the cases, coded models yield higher PSNR values, indicating a superior performance
in reconstruction. This improvement is also evident through visual inspection of Fig. 17, where
the coded models better capture the details in the images. As in FMNIST, we observe a general
improvement of the PSNR as we increase the number of information bits and decrease the code rate.

As we discussed in the main text, the PSNR does not account for the semantic errors committed
by the model. Therefore, we additionally evaluate the reconstruction accuracy, ensuring that the
model successfully reconstructs images within the same class as the original ones. We also provide a
confident reconstruction accuracy, for which we do not count errors when the MAP value of q(m|x)
is below 0.4. In light of the results, we argue that introducing ECCs in the model allows for latent
spaces that better capture the semantics of the images while employing the same number of latent
vectors, outperforming the uncoded models in all the cases.

ORIGINAL

UNCODED 5

UNCODED 8

UNCODED 10

CODED 5/100

CODED 8/240

CODED 10/300

Figure 17: Example of reconstructed test images obtained with different model configurations. Ob-
serve that more details are visualized as we increase bits in the latent space and decrease the coding
rate.
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Figure 18: Example of erroneous reconstructions in MNIST using the 4 most-probable words (a
posterior). The first column in each image shows the original input to the model, while the second
column displays the reconstructions. The a posteriori probability of the word used for reconstruction
is indicated in each row.

Table 2: Evaluation of reconstruction performance in MNIST.

Model PSNR
(train)

Acc
(train)

Conf. Acc.
(train)

PSNR
(test)

Acc
(test)

Conf. Acc.
(test) Entropy

uncoded 5 13.483 0.702 0.703 13.483 0.701 0.702 0.277
coded 5/50 14.983 0.887 0.923 14.888 0.887 0.920 2.073
coded 5/80 15.436 0.899 0.936 15.263 0.895 0.929 2.237
coded 5/100 15.590 0.905 0.931 15.352 0.898 0.924 2.382

uncoded 8 14.530 0.860 0.864 14.490 0.860 0.868 0.513
coded 8/80 16.878 0.937 0.964 16.042 0.912 0.947 3.105
coded 8/160 18.108 0.957 0.974 16.497 0.927 0.951 3.645
coded 8/240 19.984 0.967 0.978 16.688 0.936 0.957 3.881

uncoded 10 14.879 0.888 0.891 14.816 0.887 0.890 0.636
coded 10/100 17.584 0.945 0.972 16.795 0.928 0.968 4.080
coded 10/200 20.060 0.973 0.977 16.863 0.932 0.944 4.411
coded 10/300 21.083 0.979 0.984 17.114 0.941 0.945 4.810

We also report the average entropy of the variational posterior over the test set in Table 2. If we
analyze the entropy together with the semantic accuracy, we can argue that coded VAE is aware
that multiple vectors might be related to the same image class, and that the posterior shows larger
uncertainties for images for which the model has not properly identified the class. We illustrate this
argument in Fig. 18, where we show some images selected so that the MAP latent word of q(m|x)
induces class reconstruction errors. We show the reconstruction of the 4 most probable latent vectors
and their corresponding probabilities. Observe that the uncoded model is confident no matter the
reconstruction outcome, while in the coded posterior, the uncertainty is much larger.

Table 4 shows the log-likelihood values obtained for the MNIST dataset with various model con-
figurations. Coded models consistently outperform their uncoded counterparts for both the training
and test sets, consistent with the findings observed using the FMNIST dataset.

E.3 GENERATION

In this section, we evaluate the model in the image generation task. In Fig. 19, we show examples
of randomly generated images using different model configurations in MNIST. These results are
consistent with the ones obtained in reconstruction, and with the ones obtained for FMNIST, as we
observe that the coded models can generate more detailed and diverse images.

The improved inference provided by the repetition code can also be tested by generating images
using the generative model and counting errors using the MAP solution of the variational posterior
distribution. Table 3 reports the BER and WER for MNIST. Remarkably, for the same number of
latent bits, coded models reduce both the BER and WER w.r.t. the uncoded case. Note also that the
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ORIGINAL UNCODED 5 UNCODED 10

CODED 5/100 CODED 8/240

UNCODED 8

CODED 10/300

Figure 19: Example of randomly generated, uncurated images using different model configurations.

Table 3: Evaluation of the BER, WER in
MNIST.

Model BER WER

uncoded 5 0.002 0.008
coded 5/50 0.007 0.034
coded 5/80 0.004 0.021
coded 5/100 0.009 0.045

uncoded 8 0.015 0.071
coded 8/80 0.020 0.147
coded 8/160 0.021 0.160
coded 8/240 0.023 0.167

uncoded 10 0.057 0.373
coded 10/100 0.030 0.258
coded 10/200 0.034 0.282
coded 10/300 0.041 0.331

Table 4: Evaluation of the log-likelihood (LL)
in MNIST.

Model LL (train) LL (test)

uncoded 5 -149.049 -148.997
coded 5/50 -117.979 -119.094
coded 5/80 -114.911 -116.639

coded 5/100 -115.189 -117.200

uncoded 8 -127.079 -127.555
coded 8/80 -96.554 -104.692

coded 8/160 -96.014 -107.436
coded 8/240 -97.316 -111.312

uncoded 10 -120.594 -121.332
coded 10/100 -92.545 -99.373
coded 10/200 -86.072 -106.249
coded 10/300 -88.904 -110.799

error rates grow with the number of latent bits, but this is expected due to the increased complexity
of the inference process.

F CIFAR10 RESULTS

In this section, we provide additional results using the CIFAR10 dataset with different model con-
figurations.

F.1 TRAINING

We present the evolution of the ELBO and its terms throughout the training process. The models
were trained for 300 epochs using Adam optimizer with a learning rate of 10−4, and a batch size
of 128. Fig. 20 displays the results for configurations with 70 information bits, Fig. 21 for 100
information bits, and Fig. 22 for 130 information bits. The colors in all plots represent the various
code rates.

Across all the configurations, coded models achieve superior bounds. The main differences in the
ELBO come from the different performances in reconstruction. As we have observed across the dif-
ferent experiments, coded models are capable of better capturing the structure of the data, generating
more detailed images and accurate reconstructions.
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Figure 20: Evolution of the ELBO during training with 70 information bits on CIFAR10.

Figure 21: Evolution of the ELBO during training with 100 information bits on CIFAR10.

Figure 22: Evolution of the ELBO during training with 130 information bits on CIFAR10.

In the coded case, we do not observe significant differences in the obtained bounds as we increase
the number of information bits and reduce the code rate. However, the difference is notable if we
compare the coded and uncoded models. Adding redundancy does not increase the model’s flexi-
bility, since the information bits determine the number of latent vectors. However, the introduction
of ECCs in the model allows for latent spaces that better capture the structure of the images while
employing the same number of latent vectors.
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ORIGINAL

UNCODED 70

UNCODED 130

CODED 70/2100

UNCODED 100

CODED 100/3000

CODED 130/3900

Figure 23: Example of reconstructed test images obtained with different model configurations. Ob-
serve that more details are visualized as we increase bits in the latent space and introduce redun-
dancy.

ORIGINAL UNCODED 70

CODED 70/2100

UNCODED 100

CODED 100/3000

UNCODED 130

CODED 130/3900

Figure 24: Example of randomly generated, uncurated images using different model configurations.

It’s important to note that we are currently using feed-forward networks at the decoder’s input.
However, this approach may not be suitable for the correlations present in our coded words. Utiliz-
ing an architecture capable of effectively leveraging these correlations among the coded bits could
potentially enable us to better exploit the introduced redundancy.

F.2 RECONSTRUCTION AND GENERATION

We first evaluate the model’s performance in reconstructing data by examining its uncoded and
coded versions across different configurations, varying the number of information bits and code
rates.

In Table 5 we quantify the quality of the reconstructions measuring the PSNR in both training and
test sets. Coded models yield higher PSNR values in train, and similar values in test, although the
coded models with lower rates outperform the rest of the configurations. However, the improvement
in reconstruction is evident through visual inspection of Fig. 23, where the coded models better
capture the details in the images. We observe that the coded model yields images that better resemble
the structure of the dataset, while the uncoded DVAE cannot decouple spatial information from the
images and project it in the latent space.

We hypothesize that to adequately model complex images, transitioning to a hierarchical structure
may be necessary. This would allow for the explicit modeling of both global and local informa-
tion. However, despite employing this rather simple model, we observe that coded configurations
outperform their uncoded counterparts in capturing colors and textures.

We also evaluate the model in the image generation task. In Fig. 24, we show examples of randomly
generated images using different model configurations in CIFAR10. These results are consistent
with the ones obtained in reconstruction, as we observe that the coded models can generate more
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Table 5: Evaluation of reconstruction perfor-
mance in CIFAR10 with different model config-
urations.

Model PSNR (train) PSNR (test)

uncoded 70 17.985 17.596
coded 70/700 23.790 17.731

coded 70/1400 24.555 18.008
coded 70/2100 25.551 18.401

uncoded 100 18.509 18.334
coded 100/1000 24.754 18.229
coded 100/2000 24.866 18.927
coded 100/3000 25.646 18.920

uncoded 130 18.951 18.758
coded 130/1300 25.007 18.887
coded 130/2600 25.460 19.416
coded 130/3900 25.515 19.292

Table 6: Evaluation of the BER, WER, and
FID in CIFAR10 with different model con-
figurations.

Model BER WER FID

uncoded 70 0.162 1.000 177.524
coded 70/700 0.101 1.000 104.977

coded 70/1400 0.088 0.999 104.078
coded 70/2100 0.090 0.999 102.795

uncoded 100 0.182 1.000 172.063
coded 100/1000 0.123 1.000 107.887
coded 100/2000 0.114 1.000 101.182
coded 100/3000 0.138 1.000 107.287

uncoded 130 0.197 1.000 164.138
coded 130/1300 0.144 1.000 109.905
coded 130/2600 0.164 1.000 110.250
coded 130/3900 0.185 1.000 108.561

detailed and diverse images. Additionally, we obtained the Fréchet Inception Distance (FID) score
using the test set and 10k generated samples. For this, we used the implementation available at
https://github.com/mseitzer/pytorch-fid. We can observe that the coded models
significantly reduced the FID score in all the cases compared to their uncoded counterparts.For the
coded models, we do not observe a clear influence of the code rate on the quality of the generations.

G TINY IMAGENET RESULTS

In this section, we provide additional results using the Tiny ImageNet dataset with different model
configurations.

G.1 TRAINING

We present the evolution of the ELBO and its terms throughout the training process. The models
were trained for 300 epochs using an Adam optimizer with a learning rate of 10−4, and a batch size
of 128. Fig. 25 displays the results for configurations with 70 information bits, Fig. 26 for 100
information bits, and Fig. 27 for 130 information bits. The colors in all plots represent the various
code rates.

As in the rest of the datasets, coded models achieve superior bounds across all the configurations.
The main differences in the ELBO come from the different performances in reconstruction. As we
have observed across the different experiments, coded models are capable of better capturing the
structure of the data, generating more detailed images and accurate reconstructions.

In the coded case, we do not observe significant differences in the obtained bounds as we increase
the number of information bits and reduce the code rate. However, the difference is notable if we
compare the coded and uncoded models. Adding redundancy does not increase the model’s flexi-
bility, since the information bits determine the number of latent vectors. However, the introduction
of ECCs in the model allows for latent spaces that better capture the structure of the images while
employing the same number of latent vectors.

It’s important to note that we are currently using feed-forward networks at the decoder’s input.
However, this approach may not be suitable for the correlations present in our coded words. Utiliz-
ing an architecture capable of effectively leveraging these correlations among the coded bits could
potentially enable us to better exploit the introduced redundancy.
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Figure 25: Evolution of the ELBO during training for the configurations with 70 information bits.

Figure 26: Evolution of the ELBO during training for the configurations with 100 information bits.

Figure 27: Evolution of the ELBO during training for the configurations with 130 information bits.

G.2 RECONSTRUCTION AND GENERATION

We first evaluate the model’s performance in reconstructing data by examining its uncoded and
coded versions across different configurations, varying the number of information bits and code
rates.
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ORIGINAL

UNCODED 100

UNCODED 70

UNCODED 130

CODED 70/2100

CODED 100/3000

CODED 130/3900

Figure 28: Example of reconstructed test images obtained with different model configurations. Ob-
serve that more details are visualized as we increase the bits in the latent space and introduce redun-
dancy.

ORIGINAL UNCODED 100

CODED 100/3000 CODED 130/3900CODED 70/2100

UNCODED 70 UNCODED 130

Figure 29: Example of randomly generated, uncurated images using different model configurations.

In Table 7 we quantify the quality of the reconstructions measuring the PSNR in both training and
test sets. Coded models yield higher PSNR values in train, and similar values in test, although the
coded models with lower rates outperform the rest of the configurations. However, the improvement
in reconstruction is evident through visual inspection of Fig. 28, where the coded models better
capture the details in the images. We observe that the coded model yields images that better resemble
the structure of the dataset, while the uncoded DVAE cannot decouple spatial information from the
images and project it in the latent space.

We hypothesize that to adequately model complex images, transitioning to a hierarchical structure
may be necessary. This would allow for the explicit modeling of both global and local informa-
tion. However, despite employing this rather simple model, we observe that coded configurations
outperform their uncoded counterparts in capturing colors and textures.

We also evaluate the model in the image generation task. In Fig. 29, we show examples of
randomly generated images using different model configurations in Tiny ImageNet. These re-
sults are consistent with the ones obtained in reconstruction, as we observe that the coded mod-
els can generate more detailed and diverse images. Additionally, we obtained the FID score us-
ing the test set and 10k generated samples. For this, we used the implementation available at
https://github.com/mseitzer/pytorch-fid. We can observe that the coded models
significantly reduced the FID score in all the cases compared to their uncoded counterparts.

For the coded models, we do not observe a clear influence of the code rate on the quality of the
generations in CIFAR-10. However, in Tiny ImageNet, smaller code rates produce worse FID scores.
We hypothesize that this may be due to the presence of artifacts in the generated images. Our
experiments indicate that coded models with lower rates attempt to model fine details in images,
which can lead to artifacts in generation.
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Table 7: Evaluation of reconstruction perfor-
mance in Tiny ImageNet with different model
configurations.

Model PSNR (train) PSNR (test)

uncoded 70 15.598 15.402
coded 70/700 18.156 15.158

coded 70/1400 18.396 15.419
coded 70/2100 18.228 15.789

uncoded 100 16.012 15.774
coded 100/1000 18.298 15.677
coded 100/2000 18.647 15.892
coded 100/3000 18.729 16.167

uncoded 130 16.278 16.009
coded 130/1300 18.719 15.901
coded 130/2600 18.818 16.329
coded 130/3900 19.020 16.288

Table 8: Evaluation of the BER, WER, and
FID in Tiny ImageNet with different model
configurations.

Model BER WER FID

uncoded 70 0.143 1.000 265.474
coded 70/700 0.096 0.998 171.993

coded 70/1400 0.104 1.000 170.496
coded 70/2100 0.096 0.998 176.245

uncoded 100 0.164 1.000 234.358
coded 100/1000 0.099 1.000 153.743
coded 100/2000 0.097 1.000 162.889
coded 100/3000 0.098 1.000 163.049

uncoded 130 0.200 1.000 219.003
coded 130/1300 0.129 1.000 165.064
coded 130/2600 0.114 1.000 164.759
coded 130/3900 0.128 1.000 170.603

H IWAE RESULTS

One could draw a parallel between the coded DVAE with repetition codes and the well-known IWAE
(Burda et al., 2016), but the two approaches are fundamentally different. In the IWAE, independent
samples are drawn from the variational posterior and propagated independently through the gener-
ative model to obtain a tighter variational bound on the marginal log-likelihood. In our method, we
jointly propagate the output of the ECC encoder through the generative model, obtaining a single
prediction and exploiting the introduced known correlations in the variational approximation of the
posterior. In the case of repetition codes, the ECC encoder outputs are repeated bits, or repeated
probabilities in the case of soft encoding. However, our approach extends beyond repetition codes,
opening a new field for improved inference in discrete latent variable models.

In this work, we specifically utilize the redundancy introduced by the repetition code to correct
potential errors made by the encoder through a soft decoding approach, leading to a more accurate
approximation of p(m|x) and an improved proposal for sampling. The results obtained in the
coded DVAE case cannot be achieved by training the uncoded DVAE with the IWAE objective. The
following results compare the uncoded IWAE model with the coded DVAE trained on FMNIST.
While the uncoded model shows slight performance gains with an increasing number of IWAE
samples (which improves the evidence lower bound), it still underperforms compared to the coded
model. Furthermore, when using 20 and 30 IWAE samples, the metrics slightly declined compared
to using 10 samples, likely due to overfitting, as we applied a common early stopping point.

Table 9: Comparison of the metrics obtained with our method and the uncoded DVAE trained with
the IWAE objective.

Model BER WER Entropy Acc. Conf. Acc. PSNR

uncoded 8 0.089 0.384 0.467 0.594 0.595 15.598
uncoded 8 IWAE 10 samples 0.063 0.372 1.309 0.617 0.640 14.282
uncoded 8 IWAE 20 samples 0.075 0.447 1.391 0.634 0.651 14.237
uncoded 8 IWAE 30 samples 0.074 0.438 1.564 0.619 0.641 13.757

coded 8/80 0.021 0.144 2.905 0.750 0.816 17.318
coded 8/160 0.027 0.189 3.637 0.783 0.831 17.713
coded 8/240 0.037 0.231 4.000 0.799 0.893 17.861
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Figure 30: Evolution of the ELBO and the IWAE objectives for various configurations. Observe that
the IWAE provides a tighter bound than the ELBO in the uncoded setting. However, coded models
obtain even better bounds using the same number of samples/repetitions.

I HIERARCHICAL CODED DVAE RESULTS

Inspired by polar codes (Arikan, 2009), we present a hierarchical coded DVAE with two layers
of latent bits, as illustrated in Figure 31. In this model, the latent bits m1 are encoded using a
repetition code in the first layer, producing c1 and z1. Concurrently, the bits in the second layer,
m2, are linearly combined with m1 following m1,2 = m1 ⊕m2, considering a binary field or
Galois field. The resulting vector is then encoded with another repetition code to produce c2, which
is subsequently modulated into z2. Finally, both z1 and z2 are concatenated and passed through
the decoder network to generate x. The model provides stronger protection for m1, as it appears in
both branches of the generative model. Inference follows a similar approach to the one employed in
the coded DVAE, incorporating the linear combination of m1 and m2 used in the second branch.

xi

z1 z2

c1 c2

m1 m2

Figure 31: Graphical model of the hierarchical Coded VAE with two layers.

We adopt the same variational family as used in the standard Coded VAE; however, in this case, we
incorporate both hierarchical levels, leading to

qη(m, z|x) = qη(m1|x)qη(m2|x)p(z1|c1)p(z2|c2), (12)

where qη(m1|x) is calculated following the same approach as in the coded DVAE with repetition
codes, computing the all-are-zero and all-are-ones products of probabilities of the bits in c1 that
are copies of the same message bit. The posterior qη(m2|x) considering both the encoder’s output
and the inferred posterior distribution qη(m1|x). Note that in this case, the decoder outputs the
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probabilities for both c1 and c2, with c2 being the encoded version of the linear combination m1,2 =
m1 ⊕m2. Consequently, we first obtain qη(m1,2|x) following the same approach as in the coded
DVAE with repetition codes, and determine qη(m2|x) as

qη(m2|x) =
M∏
u=1

Ber(pu), (13)

pu = qη(m1,2,u = 1|x)qη(m1,u = 0|x) + qη(m1,2,u = 0|x)qη(m1,u = 1|x). (14)

After obtaining qη(m1|x) and qη(m2|x), we recalculate the posterior bit probabilities for the linear
combination q′η(m1,2|x) as

q′η(m1,2|x) =
M∏
u=1

Ber(qu), (15)

qu = qη(m1,u = 1|x)qη(m2,u = 0|x) + qη(m1,u = 0|x)qη(m2,u = 1|x). (16)

Next, we apply the soft encoding approach to incorporate the repetition code structure at both lev-
els of the hierarchy.The posterior probabilities qη(m1|x) are repeated to obtain qη(c1|x), and the
posterior probabilities qη(m1,2|x) are repeated to produce qη(c2|x). Utilizing the reparameteriza-
tion trick from Eq. 5, we sample z1 and z2, concatenate them to form z, and pass this through the
decoder to generate pθ(x|z). The model is trained by maximizing the ELBO, given by

ELBO = Eqη(m,z|x) log pθ(x|z)−DKL

(
qη(m1|x)||p(m1)

)
−DKL

(
qη(m2|x)||p(m2)

)
, (17)

where both p(m1) and p(m2) are assumed to be independent Bernoulli distributions with bit prob-
abilities of 0.5, consistent with the other scenarios.

We obtained results on the FMNIST dataset using a model with 5 information bits per branch and
repetition rates of R = 1/10 and R = 1/20. In this case, we applied the same code rate to
both branches, although varying code rates could be used to control the level of protection at each
hierarchy level. Tables 10 and 11 present the metrics obtained for the different configurations.
Specifically, Table 10 shows the overall metrics obtained with this structure, and Table 11 compares
the error metrics across the two hierarchy levels. As expected, m2 shows poorer error metrics
compared to m1, since the model provides more redundancy to m1 incorporating it in both branches.
Although the overall metrics and generation quality are somewhat similar to those of the coded
DVAE with 10 information bits (see tables in Figures 2 and 4), the introduced hierarchy results in a
more interpretable latent space. In this setup, m1 captures global features (such as clothing types in
the FMNIST dataset), while m2 controls individual features, as we can observe in Figure 32, where
we show examples of the model’s generative outputs for fixed m1 and random samples of m2.

Table 10: Comparison of the obtained metrics for the coded DVAE with polar codes with different
configurations, which we refer to as ’hierarchical coded DVAE’.

Model BER WER Acc Conf. Acc PSNR

hier. 5/50 0.099 0.400 0.753 0.800 17.130
hier. 5/100 0.050 0.330 0.784 0.870 17.513

Table 11: Comparison of the obtained error metrics in the different hierarchy levels.

Model BER m1 WER m1 BER m2 WER m2

hier. 5/50 0.079 0.259 0.119 0.362
hier. 5/100 0.026 0.110 0.075 0.287
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m1= [0 1 0 0 1] m1= [0 1 0 1 1] m1= [1 1 1 0 1]

m1= [1 1 0 0 0] m1= [1 1 1 1 1] m1= [1 0 0 0 1]

(a)

m1= [1 0 1 1 0] m1= [1 1 1 0 0] m1= [0 1 1 0 1]

m1= [0 0 1 1 1] m1= [1 1 1 1 1] m1= [0 0 1 0 0]

(b)

Figure 32: Examples of generated images using the hierarchical coded DVAE with (a) a 5/50 rep-
etition code in each branch, and (b) a 5/100 repetition code in each branch. In all the examples
provided, m1 was fixed while m2 was randomly sampled.

J ABLATION STUDY

In this section, we conduct ablation studies on the hyperparameter β of the model, responsible for
regulating the decay of exponentials in the smoothing transformation, as well as on the number of
trainable parameters in the models.

J.1 ABLATION STUDY ON THE HYPERPARAMETER β

Across all experiments, we have consistently configured the hyperparameter β, which controls the
decay of exponentials in the smoothing transformation, to a value of 15. To illustrate its impact on
the overall performance of the model, we conducted an ablation study on the value of this hyperpa-
rameter for both uncoded and coded cases.

The smoothing distribution employed for the reparameterization trick consists of two overlapping
exponentials. The hyperparameter β functions as a temperature term, regulating the decay of the
distributions and, consequently, influencing the degree of overlapping. A lower β value results in
more overlapped tails, while a higher value leads to less overlapped distributions. A priori, we would
like these distributions to be separated, allowing us to retrieve the true value of the bit and effectively
use the latent structure of the model.

J.1.1 CODED MODEL

We first evaluate the influence of the parameter β in coded models. We take as a reference the coded
model with 8 information bits and a rate R = 1/30, and train it using β = 5, 10, 15, 20. We assess
the performance of the model in reconstruction and generation tasks. We observe the model is fairly
robust, achieving similar performance across configurations in most metrics.

In Fig. 33 we show examples of reconstructed images using the different configurations to assess
reconstruction through visual examination, and Table 12 contains the associated reconstruction met-
rics. All the configurations achieve similar performances, although the models trained with β = 10
and β = 15 seem to be the best configurations for this scenario. Larger values may result in unstable
training and inferior performance.

Next, we evaluate the model in the image generation task. Fig. 34 contains examples of randomly
generated images using the different configurations. Table 13 reports the obtained BER and WER,
and Table 14 the estimated log-likelihood of the different values of β. The model trained with
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ORIGINAL

5

10

15

20

Figure 33: Example of reconstructed images obtained with different values of β using the coded
model with an 8/240 code.

ORIGINAL 10

15 20

5

Figure 34: Example of randomly generated, uncurated images with different values of β using the
coded model with an 8/240 code.

Table 12: Evaluation of reconstruction performance in FMNIST with different values of β using the
coded model with an 8/240 code.

Model PSNR
(train)

Acc
(train)

Conf. Acc.
(train)

PSNR
(test)

Acc
(test)

Conf. Acc.
(test) Entropy

5 18.344 0.791 0.895 17.614 0.766 0.849 4.025
10 19.106 0.822 0.904 17.737 0.793 0.872 4.023
15 19.345 0.831 0.921 17.861 0.799 0.893 4.000
20 18.797 0.809 0.887 17.837 0.787 0.877 3.810

Table 13: Evaluation of the BER and WER
in FMNIST with different values of β using
the coded model with an 8/240 code.

Beta BER WER

5 0.150 0.726
10 0.080 0.480
15 0.037 0.231
20 0.065 0.399

Table 14: Evaluation of the log-likelihood
(LL) in FMNIST with different values of β
using the coded model with an 8/240 code.

Beta LL (train) LL (test)

5 -228.448 -234.629
10 -229.379 -237.495
15 -231.679 -238.459
20 -229.627 -235.927

β = 15 stands out in terms of error metrics, although achieves similar log-likelihood values as the
model trained with β = 10. Again, these two configurations appear to be the most suitable in this
scenario.
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J.1.2 UNCODED MODEL

We first evaluate the influence of the parameter β in uncoded models. We take as a reference the
coded model with 8 information bits and train it using β = 5, 10, 15, 20. We assess the performance
of the model in reconstruction and generation tasks. We observe that the uncoded model is also
robust, achieving similar performance across configurations.

ORIGINAL

5

10

15

20

Figure 35: Example of reconstructed images obtained with different values of β using an uncoded
model 8 information bits.

ORIGINAL 10

15 20

5

Figure 36: Example of randomly generated, uncurated images with different values of β using an
uncoded model 8 information bits.

Table 15: Evaluation of reconstruction performance in FMNIST with different values of β using an
uncoded model 8 information bits.

Model PSNR
(train)

Acc
(train)

Conf. Acc.
(train)

PSNR
(test)

Acc
(test)

Conf. Acc.
(test) Entropy

5 14.239 0.503 0.501 14.237 0.503 0.491 0.231
10 15.624 0.606 0.603 15.571 0.598 0.598 0.357
15 15.644 0.601 0.602 15.598 0.594 0.595 0.467
20 13.717 0.464 0.466 13.743 0.460 0.462 0.383

In Fig. 35 we show examples of reconstructed images using the different configurations to assess
reconstruction through visual examination, and Table 15 contains the associated reconstruction met-
rics. All the configurations achieve similar performances, although the models trained with β = 10
and β = 15 seem to be the best configurations for this scenario. Larger values may result in unstable
training and inferior performance, as we can clearly observe in this case.

Next, we evaluate the model in the image generation task. Fig. 36 contains examples of randomly
generated images using the different configurations. Table 16 reports the obtained BER and WER,
and Table 17 the estimated log-likelihood of the different values of β. The models trained with
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Table 16: Evaluation of the BER and WER
in FMNIST with different values of β using
an uncoded model 8 information bits.

Beta BER WER

5 0.203 0.852
10 0.086 0.384
15 0.089 0.384
20 0.278 0.939

Table 17: Evaluation of the log-likelihood
(LL) in FMNIST with different values of β
using an uncoded model 8 information bits.

Model LL (train) LL (test)

5 -256.431 -257.983
10 -247.507 -249.460
15 -247.964 -249.880
20 -272.460 -273.554

β = 15 and β = 10 clearly outperform the other two in this task, generating more diverse and
detailed images, and obtaining better error metrics and log-likelihood values.

J.2 ABLATION STUDY ON THE NUMBER OF TRAINABLE PARAMETERS

A consistent architecture was employed across all experiments, which is detailed in Section C. How-
ever, since the introduction of the code alters the dimensionality of the latent space, it is necessary to
adjust the encoder’s output and the decoder’s input. This results in an augmentation of the trainable
parameters in the coded cases compared to their uncoded counterparts.

Given that a higher number of parameters usually results in better performance, we conducted an
ablation study on the model’s trainable parameters to confirm that the improved performance in-
troduced by the coded models is not due to this factor. We adjusted the hidden dimensions of the
encoder and decoder architectures to ensure both configurations (coded and uncoded) have roughly
the same number of trainable parameters. We have conducted the ablation study using the uncoded
model with 8 bits and the coded 8/240 model trained on FMNIST.

We adjusted the encoder’s last hidden dimension and the decoder’s first hidden dimension to equalize
the parameter count between the uncoded and coded models. This adjustment was straightforward
since the last layers of the encoder and the first layers of the decoder are feed-forward layers. We
kept the latent dimension of the model unchanged, ensuring that the modification solely pertained
to the neural network architecture.

Table 18: Parameter count.

Model # encoder parameters # decoder parameters

uncoded 8 6,592,008 19,341,185
uncoded 8 adjusted 6,717,538 19,581,035

coded 8/240 6,711,024 19,578,753
coded 8/240 adjusted 6,583,174 19,332,871

J.2.1 EVALUATION

This section provides an empirical evaluation of the models trained with the adjusted parameter
count, demonstrating that the enhanced performance observed in coded models does not result from
an augmented number of trainable parameters. We found that the performance of the original and
adjusted models is very similar, meaning that the conclusions drawn in the main text hold even in
this scenario.

We first evaluate the reconstruction performance, measuring the PSNR and reconstruction accuracy
in both train and test sets, which are included in Table 19. Then, we assess generation measuring the
BER and WER, reported in Table 20. Finally, we compute the log-likelihood for train and test sets,
shown in Table 21.

In terms of reconstruction, both the original and adjusted models exhibit very similar performance,
observed in both reconstruction quality and accuracy. However, the adjusted models show slightly
inferior results than the original ones. For the coded model, this might be attributed to reduced
flexibility when decreasing the number of parameters. As for the uncoded model, the increased
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ORIGINAL

UNCODED 8

CODED 8/240

UNCODED 8 adj.

CODED 8/240 adj.

Figure 37: Example of reconstructed images obtained with different configurations.

ORIGINAL UNCODED 8 adj.

CODED 8/240 CODED 8/240 adj.

UNCODED 8

Figure 38: Example of randomly generated, uncurated images using different model configurations.

Table 19: Evaluation of reconstruction performance in FMNIST with the adjusted parameter count.

Model PSNR
(train)

Acc
(train)

Conf. Acc.
(train)

PSNR
(test)

Acc
(test)

Conf. Acc.
(test) Entropy

uncoded 8 15.644 0.601 0.602 15.598 0.594 0.595 0.659
uncoded 8 adj. 15.530 0.586 0.586 15.491 0.581 0.580 0.449
coded 8/240 19.345 0.831 0.921 17.861 0.799 0.893 4.609

coded 8/240 adj. 19.383 0.828 0.883 17.771 0.792 0.828 3.952

Table 20: Evaluation of the BER and WER in
FMNIST with the adjusted parameter count.

Model BER WER

uncoded 8 0.089 0.384
uncoded 8 adj. 0.125 0.561
coded 8/240 0.037 0.231

coded 8/240 adj. 0.064 0.399

Table 21: Evaluation of the log-likelihood (LL)
in FMNIST with the adjusted parameter count.

Model LL (train) LL (test)

uncoded 8 -247.964 -249.880
uncoded 8 adj. -250.543 -252.408
coded 8/240 -231.679 -238.459

coded 8/240 adj. -229.283 -238.302

complexity while maintaining the same low-dimensional latent vector may not provide enough ex-
pressiveness to leverage the added flexibility in the architecture, potentially causing the observed
decrease in performance. We observe the same behavior when we evaluate the BER and WER.

Analyzing the results, especially the log-likelihood values shown in Table 21, we can argue that
increasing the flexibility in the architecture does not necessarily lead to improved performance in
this scenario. The coded models exhibit similar performance with both the original and adjusted
parameter counts, consistently outperforming the uncoded models. These results indicate that the
performance enhancement is attributed to the introduction of ECCs in the latent space, rather than
differences in the architecture required to handle the introduced redundancy.
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K EVALUATING LOG-LIKELIHOOD USING THE SOFT-ENCODING MODEL

The reparameterization trick introduced in equation 5 requires that bits are independent, a condi-
tion not met in c once the code’s structure is introduced. To address this issue, during training, we
employ a soft encoding strategy. We assume the bits in c are independent and equally distributed
according to qη(m|x). Therefore, instead of directly repeating sampled bits in m to obtain c fol-
lowing c = mTG, we repeat the posterior probabilities for the copies of the same bit and sample z
using the reparameterization trick in equation 5. Remark that, despite the soft encoding assumption
during training, the generative results in Fig. 4, 6, 13, 19, 24, 24, and 29 are obtained through hard
encoding. Namely, we sampled an information word m and obtained c by repeating its bits.

While the hard-encoding images are visually appealing, to evaluate the coded DVAE LL for a given
image x, we have to leverage the soft-encoding model since it is unrealistic for a sample from
the soft-encoding model to produce equally repeated bits. In the soft-coded model, we sample bit
probabilities from a prior distribution that we model through the product of M independent Beta
distributions, and we use a proposal distribution model similar to the Vamp-prior in Tomczak &
Welling (2018). Namely, a mixture model with components given by q(m|x) for different training
points.

In the main text and Section J, we report the log-likelihood values for different model configurations
trained on the FMNIST dataset. Table 4 presents the results obtained for the MNIST dataset. Due
to their simplicity, these datasets do not require high-dimensional latent spaces, and competitive
results can be achieved with just 8 or 10 information bits. However, for more complex datasets
like CIFAR10 or Tiny ImageNet, high-dimensional latent spaces are necessary to capture spatial
information, colors, and textures. For these high-dimensional datasets, we were unable to obtain
valid log-likelihood estimates because the number of samples needed for importance sampling to
converge was too large. However, given the difference in the level of detail in the reconstructed and
generated images between coded and uncoded models (see Sections F and G), coded models are
expected to better approximate the true marginal likelihood of the data.

L CONNECTION TO PREVIOUS WORK ON VAES AS SOURCE CODING
METHODS

Effective learning of low-dimensional discrete latent representations is a technically challenging
problem. In this work, we propose a novel method to improve inference in discrete VAEs within a
fully probabilistic framework, introducing a new perspective on the inference problem. While VAEs
have been analyzed in the literature using rate-distortion (RD) theory (Chen et al., 2022; Townsend
et al., 2019; Van Den Oord et al., 2017), our approach stems from a different perspective, that is
indeed compatible with all those works.

While VAEs are often viewed as lossy compression models (e.g. VAEs as source coding methods),
our contribution is best understood from a generative perspective. We conceptualize the process of
inference via as decoding the latent variable from the observed data. We sample a vector m, generate
an image x, and seek to minimize the error rate in recovering m from x. Achieving this requires
the variational approximation q(m|x) to closely align with the true posterior. Estimating m from
x thus involves approximating the true posterior p(m|x) with q(m|x). We show that introducing
redundancy in generation reduces error rates in estimating m, leading to better approximations of
the latent posterior distribution. This improvement is reflected in the enhanced performance of our
model, as demonstrated in our experimental results.

VQ-VAEs (Van Den Oord et al., 2017) are notable for effectively learning compressed discrete
representations of data, and we believe it can be beneficial to highlight key differences between
VQ-VAEs and our approach. A primary distinction lies in the latent space’s structure and dimen-
sionality. In image modeling, VQ-VAEs typically employ a latent matrix where indices correspond
to codewords in a codebook. This design allows different codewords to capture specific patches of
the original image, improving reconstruction and generation (the latter through an autoregressive
prior on the latent representations). However, this matrix representation complicates interpretability,
as each data point is represented by a grid of embeddings. In contrast, our method encodes the entire
image into the latent space, rather than splitting it into patches. Another important difference is that
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VQ-VAEs is based on a non-probabilistic encoder, where the output is mapped to the nearest latent
code based on a distance metric. This deterministic mapping limits the model’s ability to quantify
uncertainty in the latent space. In contrast, our method uses a fully probabilistic framework that en-
ables uncertainty quantification in the latent representations. Moreover, all operations in our method
are differentiable, enabling seamless computation and backpropagation of gradients, allowing for an
end-to-end training of the model. This also lets us use the reparameterization trick introduced in the
DVAE++ (Vahdat et al., 2018b), which we found to be more stable than continuous relaxations like
the Gumbel-Softmax, used in VQ-VAEs with stochastic quantization (Williams et al., 2020).

In RD theory, the focus is on compression within the latent space, typically analyzed from an
encoder/decoder and reconstruction (distortion) perspective. RD theory sets theoretical limits on
achievable compression rates and describes how practical models may diverge from these limits.
Using RD practical compression methods, Townsend et al. (2019) demonstrates how asymmetric
numeral systems (ANS) can be integrated with a VAE to improve its compression rate by jointly
encoding sequences of data points, bringing performance closer to RD theoretical limits. Similarly,
Chen et al. (2022) shows that a complex prior distribution in a VAE using an autoregressive invertible
flow narrows the gap between the approximate posterior and the true posterior, thereby enhancing
the overall performance of the VAE. We note that even using an independent prior, the hierarchical
code structure outlined in Section 6 naturally decouples information across different latent spaces at
various conceptual levels. Specifically, the most relevant information (class label) is encoded by the
most protected latent space, while the other space captures fine-grained features. This effect is not
straightforward to enforce through direct design of a more complex prior.

Instead, our method complements these efforts by introducing redundancy in the generative pathway
to enhance variational inference, resulting in more accurate approximations of the latent posterior.
Importantly, even when using a complex prior distribution, ECCs can still be leveraged to improve
variational inference and boost overall model performance. In this paper, we demonstrate that our
approach yields more robust models even with a simple, fixed independent prior, as evidenced by
improved log-likelihood, generation quality, and reconstruction metrics. Moreover, in Section 6,
we show that integrating a hierarchical ECC with the same independent prior leads to even greater
performance gains.

M VARIATIONAL INFERENCE AT CODEWORD LEVEL

Here, we present an alternative variational family that is valid for any ECC, including random codes.
We assume that we have a deterministic mapping of the form c = C(m). We assume a variational
family of the form

qη(c, z|x) = qη(c|x)p(z|c), (18)

qη(c|x) ∝ p(c)quη(c|x), (19)

quη(c|x) =
M/R∏
j=1

Ber(gj,η(x)), (20)

where gη(x) represents the output of the encoder with a parameter set denoted as η. Note that
quη(c|x) corresponds to the uncoded posterior, which we subsequently constrain using the prior dis-
tribution p(c) over the code words to obtain the coded posterior qη(c|x). Then, the coded posterior
distribution can be defined as a categorical distribution over the set of code words C(m), which is
given by

qη(c|x) = Cat
([ 1

W
quη(c1|x), . . . ,

1

W
quη(c2M |x)

])
=

1

W

∏
ci∈C(m)

M/R∏
j=1

gj,η(x)
ci,j (1− gj,η(x))

(1−ci,j),
(21)

where W =
∑

ci∈C(m) q
u
η(ci|x) is a constant for normalization.
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Inference is done by maximizing the ELBO, which can be expressed as

ELBO =

∫
qη(c, z|x) log

(
pθ(x, z, c)

qη(c, z|x)

)
dcdz

= Eqη(c,z|x) log

(
pθ(x|z)p(z|c)p(c)
qη(c|x)p(z|c)

)
= Eqη(c,z|x) log pθ(x|z)−DKL

(
qη(c|x)||p(c)

)
.

(22)

In this case, due to the inability to compute the KL Divergence in closed form, we approximate it
via Monte Carlo, sampling from the categorical distribution qη(c|x). The reconstruction term also
needs to be approximated via Monte Carlo. Since the use of channel coding introduces structural
dependencies among the components of the vectors c, we can no longer assume their independence.
Consequently, the formulation of the smoothing transformation as independent mixtures introduced
in the DVAE is no longer applicable. Hence, this approach involves sampling c′ from the categorical
distribution qη(c|x) and subsequently applying the transformation over the sampled word. Thus,
we obtain a smooth transformation for each sample c′ using the inverse CDFs of p(zj |cj = 0) and
p(zj |cj = 1), which are given by

F−1
p(zj |c′

j=0)(ρ) = −
1

β
log
(
1− ρ(1− e−β)

)
, (23)

F−1
p(zj |c′

j=1)(ρ) =
1

β
log
(
ρ(1− e−β) + e−β

)
+ 1. (24)

These are differentiable functions that convert samples ρ from a uniform distribution U(0, 1) into a
sample from qη(z, c = c′|x) following

qη(z, c = c′|x) =

=

M/R∏
j=1

[
F−1
p(zj |c′

j=1)(ρ)
c′j + F−1

p(zj |c′
j=0)(ρ)

(1−c′j)
]
.

(25)

Thus, we can apply the reparameterization trick to obtain samples from the latent variable z and
optimize the reconstruction term of the ELBO with respect to the parameters θ of the decoder.

The KL Divergence term is approximated via Monte Carlo, drawing samples from qη(c|x). As
it is not possible to backpropagate through discrete variables, we approximate the gradients with
respect to the parameters of the encoder using the REINFORCE leave-one-out estimator Salimans
& Knowles (2014); Kool et al. (2019), given by

ĝLOO =

=
1

S − 1

[
S∑

s=1

fη
(
z(s), c(s)

)
▽η log qη

(
c(s)|x

)
− fη

S∑
s=1

▽η log qη
(
c(s)|x

)]
,

(26)

where

fη(z
(s), c(s)) = log

(
qη(c

(s)|x)
pθ(x|z(s))p(c(s))

)
, (27)

fη =
1

S

S∑
s=1

fη(z
(s), c(s)). (28)

Defining a distribution over the codebook can seem intuitive, but scalability becomes challenging as
the size of the codebook increases. The reason is that the posterior distribution must be evaluated for
all codewords during both inference and test time. However, it can still provide a bound, enabling
the utilization of more complex codes with theoretical guarantees that can outperform the previously
proposed repetition codes.
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Algorithm 3 Training the model with inference at codeword level.

1: Input: training data xi, codebook.
2: repeat
3: quη(c|xi)← forward encoder gη(xi)
4: qη(c|xi)← evaluate quη(c|xi) over the codebook and normalize
5: c̃← sample from qη(c|xi)
6: z ← modulate c̃
7: pθ(x|z)← forward decoder fθ(z)
8: Compute ELBO according to equation 22
9: Compute encoder’s gradients according to equation 26

10: θ,η ← Update(ELBO)
11: until convergence

N COMPUTATIONAL RESOURCES

All the experiments in this paper were conducted on a single GPU. Depending on availability, we
used either a Titan X Pascal with 10GB of RAM, a Nvidia GeForce GTX with 10GB of RAM, or a
Nvidia GeForce RTX 4090 with 24GB of RAM. Since training times varied significantly based on
the hardware used, we were unable to provide comparable training times.
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Figure 39: Graphic representation of the coded DVAE, illustrating both the generative and inference
paths.
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P HIERARCHICAL CODED DVAE SCHEME
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Figure 40: Graphic representation of the hierarchical coded DVAE, illustrating both the generative
and inference paths.
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