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Abstract

Multi-person pose estimation and tracking have been actively researched by the
computer vision community due to their practical applicability. However, exist-
ing human pose estimation and tracking datasets have only been successful in
typical scenarios, such as those without motion blur or with well-lit conditions.
These RGB-based datasets are limited to learning under extreme motion blur sit-
uations or poor lighting conditions, making them inherently vulnerable to such
scenarios. As a promising solution, bio-inspired event cameras exhibit robustness
in extreme scenarios due to their high dynamic range and micro-second level
temporal resolution. Therefore, in this paper, we introduce a new hybrid dataset
encompassing both RGB and event data for human pose estimation and tracking
in two extreme scenarios: low-light and motion blur environments. The proposed
Event-guided Human Pose Estimation and Tracking in eXtreme Conditions (EHPT-
XC) dataset covers cases of motion blur caused by dynamic objects and low-light
conditions individually as well as both simultaneously. With EHPT-XC, we aim to
inspire researchers to tackle pose estimation and tracking in extreme conditions
by leveraging the advantageous of the event camera. Project pages are available at
https://github.com/Chohoonhee/EHPT-XC.

1 Introduction

Human pose estimation and tracking involve the identification and monitoring of human body parts
or significant joints. This task holds paramount importance in comprehending human activities and
analyzing movements across various domains, including rehabilitation, sports, augmented/virtual
reality, autonomous driving. Consequently, numerous datasets [10, 33, 11, 20, 30] have been
dedicated to studying human pose estimation and tracking for various applications. However, despite
the dynamic nature of human activity, most datasets assume that the subjects are well-groomed in
terms of motion and lighting conditions. Considering the reality of perceiving human motion, most
individuals move in a dynamic fashion. Moreover, human activity occurs across various times of the
day, exposing individuals to diverse lighting environments. This diversity is directly reflected in the
cameras acquiring the data. Ultimately, AI models should strive to predict human body movements
even in such varied environments.

To address this, we acquired human pose estimation and tracking dataset that tackle two extreme
cases that can occasionally arise when capturing images with cameras. Firstly, we obtained data
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including motion blur that may occur due to the movement of the subject or camera during the
exposure time. While videos from professional sports, captured by experts using high-end equipment
like gimbals, tend to be clean, videos taken by average users often exhibit blur caused by moving
subjects. Additionally, when the camera attempts to track human objects, motion blur caused by
the camera may also occur. Therefore, solving human pose estimation and tracking within motion
blur is crucial. Secondly, we acquired data captured in low-light environments to perform human
pose estimation and tracking under poor lighting conditions. The ability to analyze human actions
at low-light condition has been of continuous interest [22, 41, 17], prompting us to capture data in
conditions where very little light is present, allowing for scenarios people are barely visible. These
two extreme cases are closely related, as increasing the exposure time of the camera to compensate
for the low intensity in low-light environments can exacerbate motion blur. Addressing both cases
simultaneously is highly practical and reasonable, as they often occur together and solving them
together offers a comprehensive solution.

Performing accurate human pose estimation and tracking in these extreme conditions poses a sig-
nificant challenge. Especially when both situations are present, relying solely on standard cameras
may not provide sufficient information. Therefore, we augmented standard cameras with a auxiliary
sensor called an event camera [12, 44], also known as a neuromorphic camera. Event cameras mimic
the human eye by providing pixel-wise changes asynchronously in an on/off manner. These cameras
possess high dynamic range and high temporal resolution, ensuring sufficient data even in low-light
conditions and being immune to motion blur. Therefore, to tackle extreme conditions, we introduce
the Event-guided Human Pose Estimation and Tracking in eXtreme Conditions (EHPT-XC) dataset
and benchmark. To build the dataset, we constructed a multi-camera system to acquire high-resolution
RGB-Event paired data, enabling us to freely adjust camera settings for extreme conditions. Addi-
tionally, we captured diverse motions and scenarios through experimental participants and manually
labeled the acquired data accordingly. The contributions and unique aspects of EHPT-XC datasets
are as follows:
• Multi-human Pose Dataset with Neuromorphic Cameras. While existing datasets utilizing RGB

frames can be collected from various sources such as publicly available human-centric datasets and
data shared on platforms like YouTube and the web, data collection using event cameras presents a
challenge, particularly for human-centric datasets, as there are no readily available sources. We
gathered human data directly using a multi-camera system, making EHPT-XC the first multi-human
pose dataset utilizing neuromorphic cameras. Moreover, EHPT-XC provides track IDs, enabling its
utilization for multi-object tracking. While datasets for event-based single-object tracking [48, 38]
exist, EHPT-XC stands as the pioneering dataset for multi-object tracking using event cameras.

• Real-captured Data in Extreme Conditions. The EHPT-XC dataset aims to address scenarios
characterized by low-light conditions and significant motion blur. The absence of multi-human
pose estimation and tracking datasets in such conditions stems from the difficulty in directly
acquiring data and annotating it due to the challenges posed by degradation conditions. To tackle
this, we developed a multi-camera system consisting of a triplet camera configuration, where two
cameras capture RGB frames and the remaining one comprises an event camera. One of the RGB
cameras was configured to acquire data in low-light environments and/or motion blur by adjusting
its settings, while the other was set to capture sharp image under normal lighting conditions.

• Indoor/outdoor Environments and Various Scenarios. The EHPT-XC dataset comprises data
not only in general scenes but also in dynamic scenarios such as sports, encompassing a variety of
indoor and outdoor environments. This further emphasizes the motivation behind these low-light
and motion blur conditions. Additionally, we varied the number of people appearing in each
sequence to enhance the versatility of the dataset.

2 Related Works

2.1 Human Pose Estimation and Tracking Datasets in Low-light Conditions.

Several datasets [45, 23, 21, 40] have been proposed to facilitate perception in low-light environ-
ments. However, datasets related to human subjects are challenging to acquire and are not actively
publicized due to privacy issues. As shown in Table 1, there are only a few datasets related to human
pose estimation or tracking in low-light conditions, including ExLPose [17], WIHPD [41], and
M3FD [22]. Acquiring data in such extreme conditions exacerbates the difficulty of the annotation
process, resulting in an insufficient number of total images and annotations. For example, the MPII
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Table 1: Comparison with different datasets for multi-person pose estimation and multi-object
tracking. For each dataset we report the number of poses, boxes, as well as the availability of tracking
information, people per frame (ppF) for poses, scene type, modalities, and resolution. unk denotes
‘unknown’. We categorize the data based on the presence of extreme conditions such as low light and
motion blur. △ signifies that something exists, albeit to a small extent, but its intensity is not strong.

Dataset Total # Scenes # Poses # Boxes Track ppF Indoor + Modality Resolution Extreme Conditions
images ids poses Outdoor Low Light Motion Blur

MPII [3] 25K 491 40K 1-17 RGB 1280×720
Penn Action [50] 160K 2326 160K 160K 1 RGB 640×480 △

COCO [20] 200K 200K 250K 500K 1-20 RGB 640×480
MOT20 [9] 13K 8 1.65M RGB 1920×1080

PoseTrack21 [10] 66K 514 177K 429K 1-13 RGB 1280×720 △
ExLPose [17] 3K 251 15K 1-26 RGB 1920×1200

mRI [2] 160K 300 160K 160K 1 RGB+depth+mmWave+IMU 512×424
GoPose [26] 676k unk 676k 1 RGB+WiFi 1920×1080
MM-Fi [43] 320K 1080 320K 1 RGB+depth+LiDAR+mmWave+WiFi 1280×720

RELI11D [42] 239K 48 239K 1 RGB+IMU+LiDAR+Event 1280×800
JRDB-Pose [33] 28K 54 636K 2.8M 1-36 RGB+LiDAR 752×480

NTU RGB+D [28] 57K 17 57K 1 RGB+Depth 512×424
M3FD [22] 4K 8 34K RGB+IR 1024×768

WIHPD [41] 2K unk 7.3K 1-12 RGB+IR 1280×720
EHPT-XC (Ours) 16K 158 38K 38K 1-13 RGB+Event 1373×928

dataset [3], which was captured only in normal lighting conditions, contains 25K total images and
40K pose annotations. However, datasets like ExLPose and WIHPD, which include captures in
low-light environments, have significantly fewer total images, with 3K and 2K, respectively, and
pose annotations of 15K and 7.3K, respectively. On the other hand, the proposed EHPT-XC dataset
captures diverse scenes despite the extreme conditions, comprising 16K total images and 38K pose
annotations, making it comparable to other datasets. Additionally, we captured a dataset that includes
images with both reduced visibility, commonly observed in low-light environments, and motion
blur, distinguishing it from the ExLPose and WIHPD datasets. The inclusion of event data further
distinguishes it, providing richer information for human action understanding.

2.2 Human Pose Estimation and Tracking Datasets in Motion Blur.

The dynamic nature of human motion naturally introduces blur into acquired data, which differs
in distribution from clean and sharp images. Failure to account for this during the training process
can significantly degrade performance during inference. Existing works [53, 24, 25] have also
attempted human pose estimation on blurred images based on similar motivations. However, these
works have not used real-captured blurred images; instead, they synthesized blur by interpolating
high frame rate videos for training and evaluation due to annotation labels. As mentioned in recent
deblurring benchmarks [54, 27, 55, 16, 15], this synthesized blur differs from the actual process
of blur generation, leading to discrepancies in properties such as continuity and saturation. One
alternative approach is to acquire data during exposure time to capture real blur through motion and
perform annotation on these blurred frames. However, annotating accurate poses on images degraded
by such blur is extremely challenging and, in severe cases, may be impossible. To accurately annotate
poses on images generated through real blur processes, we constructed a multi-camera system with
synchronization, enabling precise pose annotation even in situations with intense blur. Our EHPT-XC
dataset is the first study to enable annotation on the real blur images corresponding to the sharp
ground truth, providing accurate human pose and track IDs even in blurred situations.

2.3 Event-based Multi-human Pose Estimation and Tracking Dataset.

Recently, various multi-sensor datasets [4, 18, 14, 1, 8, 52] have emerged for human pose estimation
across different edge cases. The EHPT-XC dataset, proposed for multi-human pose estimation and
tracking using event cameras, stands as the first of its kind. While there are no directly comparable
event-based datasets to our work, existing datasets with some degree of similarity include single
human pose estimation, such as [57, 5, 39], and single object tracking, such as [38, 31, 35, 47]. These
works primarily leverage the high temporal resolution property of the event modality to effectively
address tasks. This underscores the value of our multi-modal dataset and highlights our unique
challenge in venturing into the first work on multi-human pose estimation and tracking. Particularly,
benchmarking low-light and motion blur as extreme conditions effectively utilizing the event modality
sets our work apart.
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Figure 1: Our triplet camera system comprises two RGB cameras and one event camera, all aligned
using two beam splitters. One RGB camera is set to capture sharp frames with short exposure time in
a well-lit environment exclusively for annotation purposes, while the other RGB camera is configured
to capture low-light images through aperture adjustments or the use of ND filters or extend exposure
time for acquiring blurred frames. The event camera was adjusted to ensure the exact same amount
of light enters as with the low-light camera by applying the same ND filter and aperture settings.

3 Event-guided Human Pose Estimation and Tracking in eXtreme Conditions
(EHPT-XC) dataset

EHPT-XC encompasses RGB video frames from 158 diverse sequences, along with pixel-wise
aligned and temporally synchronized event streams, and annotations containing 38K 2D keypoints
and bounding boxes with track IDs. To ensure accurate annotation in extreme low-light and motion
blur environments, we designed a triplet camera system. This system enabled the simultaneous
acquisition of RGB frames degraded by low-light and/or blur alongside sharp RGB frames.

3.1 Triplet Camera System

To address the difficulty in marking accurate keypoints of human joints in images with strong motion
blur, where object boundaries and structures are hard to distinguish, as well as the challenge of
annotating in low-light environments where people are barely visible, we devise an approach using an
additional RGB camera serving as a reference for annotation alongside RGB and event pair cameras.
This additional RGB camera captures sharp and well-lit images, unlike the one recording blurred
and/or low-light images, and is used solely for annotation process.

Camera system with beam splitters. One of the issues when using multiple cameras to capture
the same scene is that each camera has different camera coordinates and image planes, making
pixel-wise alignment challenging. To address this, we utilize an optical device called a beam splitter
to divide incoming light into two identical beams, allowing two cameras to capture the same scene.
Specifically, as shown in Fig. 1, two RGB cameras (BFS-U3-16S2C-CS) and one event camera
(Prophesee EVK4) are aligned two 50/50 mirror beam splitters, resulting in a minimal baseline. Our
camera system aligns the axes of three cameras but there is still geometric misalignment due to the
remaining baseline. To deal with this, we correct the residual mismatching using homography-based
geometric alignment.

Camera synchronization. Even if multiple cameras are geometrically aligned, another issue arises
from the fact that they can capture data at different time instances. To address this, precise time
synchronization among the multi-camera setup is required, and we accomplished this by designing
a micro-controller (ATmega) to serve as an external trigger for hardware-level synchronization of
three different cameras. The event and two RGB cameras are connected to the micro-controller via
a trigger cable, ensuring simultaneous transmission of signals. Recording software is then created
using the provided C++ SDK of each camera product to control them by receiving signals from the
microcontroller. Each camera synchronizes with the falling and rising edges of the trigger signals,
allowing for control of the RGB camera’s exposure time with synchronized signals. By using this
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Figure 2: Visualization of sample data with pose annotations. The 1st row shows degraded RGB
frames affected by motion blur and/or low-light conditions. The 2nd row displays event data captured
in the same environment. The 3rd row consists of reference RGB frames for annotation, time-
synchronized with the 1st row data and precisely aligned pixel-wise through a beam-splitter.

synchronization methods, we adjusted the exposure time: one camera used a short exposure time to
capture a sharp image, while the other camera was set to an exposure time 16 times longer than that
of the sharp image, resulting in both a blurred image and its corresponding sharp image.

3.2 Data Collection

To conduct our human subject study, we locally recruited participants and obtained signed consent
forms and privacy agreements regarding the data distribution reviewed by the institution before the
experiment. Additionally, prior to data acquisition, we reiterated the research objectives, procedures,
potential risks, and data distribution to participants, informing them of their ability to withdraw from
the experiment at any point. A total of 61 male and 21 female participants agreed to participate in
the experiment by signing the consent form. Natural and realistic scenarios were preselected and
presented to the participants, who then performed these scenarios as instructed. We acquired data
corresponding to these scenarios during the participants’ performance. Due to the acquisition of data
in diverse lighting conditions such as indoor and outdoor environments, we did not employ fixed
camera settings. Especially for low-light data, we adjusted the aperture of the camera lens and the
exposure time to reduce the incoming light in the camera shutters and adjusted the gain accordingly.

Choose the title

Well-lit (train)

92

Well-lit (test)

27

Low light (train)

345

Low light (test)

70

56

15

17

Choose the title

Outdoor (train)

Indoor (train)

Outdoor (test)

Indoor (test)

Distribution of the light conditions Distribution of the indoor/outdoor

Figure 3: Scene distribution over light conditions (low-
light/well-lit) and indoor/outdoor environments.

Low-light/well-lit and indoor/outdoor
distributions. The EHPT-XC aims to cap-
ture humans in various environments, in-
cluding challenging low-light conditions,
which can pose difficulties for pose estima-
tion. As depicted in Fig. 3, we have split
the dataset to ensure a balanced distribu-
tion of indoor/outdoor and low-light/well-
lit environments between the train and test
sets. Specifically, we have acquired data
in such a way that low-light environments
constitute a substantial portion of the over-
all dataset.

3.3 Data Annotation

For annotation, we utilized well-lit and sharp images as references, which were precisely geometrically
and temporally aligned with the blurred and/or low-light condition images. As depicted in Fig. 2,
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Figure 4: Statistics of EHPT-XC dataset. (a) The distribution of average channel intensity for each
sequence. (b) The distribution of motion distances for each keypoint category. We compare the
distribution with a recent pose estimation and tracking dataset [10].

estimating accurate key points in degraded images proved to be extremely challenging for annotators,
whereas it was straightforward in the reference well-lit and sharp images. For the high-quality
annotation of the EHPT-XC dataset, we engaged five annotators with ample experience in the field
of computer vision. Each annotator performed annotations for different sequences, and through a
cross-checking process, we enhanced the overall quality of the annotations. Following the previous
labeling format [19, 37], a total of 15,800 images were labeled with 14 human skeletal keypoints.

3.4 Data Statistics

Intensity distribution. As shown in Fig. 4 (a), we calculate the average intensity of RGB frames
in each scene. In fact, low-light environments have mean intensities distributed below 40, with
occasional instances in indoor settings where sunlight is absent, resulting in intensities close to 40.
However, upon actual inspection, these environments still provide sufficient visibility about humans.
Hence, in Fig. 3, they are classified as well-lit. Low-light environments were categorized only when
filters or aperture adjustments were deliberately applied to decrease the intensity. Furthermore, it can
be observed that aside from the division into low-light and well-lit categories, the EHPT-XC dataset
also exhibits a uniform distribution of overall intensity.

Motion distribution. To analyze the motion distribution of the dataset, we calculate pixel displace-
ment for each keypoint between adjacent frames. As shown in Fig. 4 (b), we compare the motion
distribution with the recent multi-human pose estimation and tracking dataset, PoseTrack21 [10]. We
measure the distribution for the 14 keypoints among the 17 keypoints in PoseTrack21 for comparison.
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Figure 5: Motion magnitude distribution.

In PoseTrack21, most of the data are dis-
tributed within the range of 0 to 10 pixels
displacement, and there is minimal distri-
bution beyond 40 pixels, which could be
considered as large displacement. On the
other hand, our EHPT-XC dataset encom-
passes a diverse range of motion distribu-
tions, including a substantial representation
of large displacements, particularly those
exceeding 50 pixels. This highlights EHPT-
XC as a challenging dataset with a wide
range of motion distributions. Moreover,
it can be observed that motion is evenly
distributed, encompassing various displace-
ments for keypoints.

Blur intensity. The intensity of blur can
be determined by the magnitude of motion
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Figure 6: A baseline approach for multi-modal fusion. To achieve effective multi-modal fusion, we
propose splitting the event stream into two halves centered around the midpoint in time, enabling an
effective fusion with the image. Enc-E shares weights for both E0 and E1, and the two temporally-
aggregated multi-modal fusion modules also share weights with each other.

between two adjacent sharp frames. Blur can occur not only due to the movement of the target
object (i.e. humans), but also due to the ego motion of the camera. Therefore, to calculate blur
intensity, we need to obtain the displacement of each pixel between sharp frames rather than just the
keypoint displacement. To achieve this, we apply a pre-trained optical flow network [32] to sharp and
well-lit reference images, calculating pixel displacement for all pixels. Figure 5 illustrates the motion
magnitude of each image, calculated by averaging the displacement of all pixels. In the EHPT-XC
dataset, it can be observed that the blur intensity is uniformly distributed across the entire dataset.

4 Baseline for multi-modal fusion

Various approaches [29, 49] have been proposed for fusing RGB and event modalities, and how the
fusion between different modalities is performed significantly impacts the performance of the end
task. As shown in Fig. 6, to obtain high-quality representations even from degraded inputs, we split
each event into two segments at its midpoint of the exposure time and then fused them with RGB
data. Given an event voxel, E, we split the voxel into two parts, E0 and E1. Then, through separate
convolution-based encoders, we extract features F(E0) and F(E1). The two event features and one
RGB feature are fed into the proposed temporally-aggregated multi-modal fusion module, where they
undergo a process of being merged into a single representation. We apply this aggregation process
twice consecutively, resulting in a well-fused feature even with degraded information.

Temporally-aggregated Multi-modal Fusion. As shown in Fig. 7, all features are concatenated
and merged into a single query through a 1× 1 convolution. The merged feature then undergoes a
self-attention operation via an attention block. As shown in the right of Fig. 7, in the attention block,
we generate query, key, and value features, Q = WQ(query), K = WK(key), V = WV (value),
where W(·) is 1×1 convolution with a layer normalization. Utilizing these Q, K, and V, we compute
the attended feature as follows:

A(Q,K,V) = Softmax(
QTK

α
) ·V (1)

where α is the scaling factor of the attention matrix. To reduce computational costs, we calculate the
cross-covariance matrix of the attention following the method in [46]. As shown in the figure above,
while self-attention is being performed, we also apply cross-attention to two event voxels, split along
the temporal axis, to better fuse the modalities. All outputs are then passed through concatenation, a
1× 1 convolution block, and MLP layers to generate the final feature representation.
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Figure 7: The proposed temporally-aggregated multi-modal fusion. First, we combine the three
features and perform self-attention. Then, we apply cross-attention between each event and the
combined features. Finally, we aggregate the results using an MLP layer.

Table 2: Multi-person pose estimation baselines evaluated on the EHPT-XC dataset.

Modality Method mAP@0.5:0.95 mAP@0.5 mAP@0.75 mAR@0.5:0.95 mAR@0.5 mAR@0.75

RGB
HigherHRNet [7] 22.7 31.8 23.3 67.0 85.8 70.0

DEKR [13] 25.1 34.8 26.5 63.8 85.5 66.9
CID [34] 24.0 33.1 24.5 65.9 87.7 67.9

Event
HigherHRNet [7] 32.1 37.8 33.6 83.8 95.5 86.8

DEKR [13] 33.1 39.4 34.6 84.0 96.6 87.6
CID [34] 31.1 38.1 32.6 85.6 97.0 88.8

RGB
+ Event

[29]

HigherHRNet [4] 33.8 39.0 34.3 84.4 94.6 85.9
DEKR [9] 36.9 41.0 37.2 87.7 95.8 88.9
CID [25] 33.7 39.3 34.5 88.0 98.2 90.2

RGB
+ Event
(Ours)

HigherHRNet [4] 34.3 39.7 34.8 86.0 97.0 87.6
DEKR [9] 37.3 42.0 37.5 87.8 97.1 88.9
CID [25] 34.5 40.9 36.0 84.7 98.0 88.4

5 Evaluation and Benchmarks

5.1 Multi-Person Pose Estimation

Metrics. Our evaluation strategy follows the well-established MSCOCO [20] and CrowdPose [19]
metrics. We assess performance using average precision (AP) and average recall (AR). The Object
Keypoint Similarity (OKS) serves a similar purpose to Intersection over Union (IoU) in the context
of adopting Average Precision (AP) and Average Recall (AR) for keypoint detection. Our primary
metrics are mAP and mAR, which are computed by averaging over multiple OKS values (.50:.05:.95).

Benchmark. We train and evaluate all methods using our images, event data, and annotations. We
evaluate three main methodologies: one that utilizes only the RGB modality, another that relies
solely on the event modality, and a third that integrates both RGB and event data in a multi-modality
framework. To leverage the event modality, we utilized the widely used event representation, the
voxel grid [56], setting the bin size to 10. For each modality, we adopt the same methods, but for the
multi-modality (RGB+Event) approach, we apply three fusion methods: 1) Concatenation of input
modalities. 2) Existing fusion method [29] between RGB and events. 3) Our newly proposed base
fusion method (Fig. 6). We evaluate several recent state-of-the-art (SOTA) methods for multi-person
pose estimation models. Specifically, we evaluate three recent bottom-up models: DEKR [13],
CID [34], and HigherHRNet [7]. We remove redundant poses from the stitched annotation set by
employing non-maximum suppression (NMS) on the predicted bounding boxes.

Table 2 presents the results of pose estimation, categorized by modality and method. Among methods,
DEKR [13] achieves the best performance in terms of mAP metric, while HigherHRNet [7] achieves
the best performance in terms of mAR metric. When examining the results of multi-modality
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Figure 8: Qualitative results of multi-person pose estimation on the EHPT-XC dataset. The 1st
and 2nd rows represent the results of DEKR [13], while the 3rd and 4th rows depict the results of
HigherHRNet [7]. The ground-truth keypoints are visualized on a sharp and clean reference image
used for annotations. The 2nd row presents low-light conditions with significant level of motion blur.

approaches combining RGB and event data, it’s evident that performance improves across all metrics
compared to using only the RGB approach. One particularly interesting observation is the significant
improvement in overall performance, especially in the mAR metric, when using multi-modality
approaches. This improvement suggests that the results obtained solely from RGB often fail to
accurately estimate the positions of human keypoints due to motion blur and low-light conditions.
In contrast, when RGB and event data are used together, even in scenarios with motion blur and
low-light conditions, the positions of human joint keypoints are estimated more accurately.

Figure 8 provides a clearer representation of the performance difference between the multi-modality
approaches using event data and the RGB-only method. Specifically, examining the 2nd result of
the DEKR experiment, the scene presents an extremely challenging situation due to both low-light
conditions and significant motion blur. Consequently, RGB-based methods tend to misinterpret the
scene often leading to numerous false positive predictions where multiple humans are incorrectly
identified. On the other hand, when incorporating event data, such scene misinterpretations are
reduced, and keypoints are predicted accurately at the human positions. Similarly, in various
challenging conditions such as severe blurring and low-light environments, multi-modal approaches
demonstrate superior performance.

5.2 Multi-Person Pose Tracking

Metrics. To evaluate the pose tracking results for multiple persons, we used common evaluation
metrics frequently employed in multi-object tracking, namely MOTA, IDF1, FP, IDSW, and FN. For
MOTA, it provides an overall evaluation of FP, FN, and IDSW metrics, making it the most important
performance indicator in multi-object tracking. Additionally, IDF1 is a metric used to assess the
performance of multi-object tracking systems, focusing on the accuracy of identity matching for
objects over time. It evaluates how effectively the tracker maintains the correct identities of objects
throughout the tracking sequence. FP are incorrect identifications of non-existent objects, IDSW are
errors where the system changes the identity of a tracked object, and FN are failures to detect existing
objects. We consider MOTA as the primary metric, as done in previous benchmarks [10].

Benchmark. We evaluate recent state-of-the-art methodologies, ByteTrack [51], Unitrack [36],
and OC-SORT [6]. These methods fall under the category of tracking-by-detection, using object
detection results estimated through pose estimation methods to perform multi-object tracking. For
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Table 3: Multi-person pose tracking baselines on the EHPT-XC dataset.
Modality Pose Estimation Tracking MOTA↑ IDF1↑ FP↓ IDSW↓ FN↓

RGB DEKR [13]
ByteTrack [51] 33.19 18.73 328 316 4643
UniTrack [36] 25.60 8.56 90 159 5611
OC-SORT [6] 23.25 15.08 67 127 5880

RGB
+

Event
DEKR [13]

ByteTrack [51] 47.37 (+14.18) 20.46 461 405 3299
UniTrack [36] 46.82 (+21.22) 7.93 205 374 3630
OC-SORT [6] 42.34 (+19.09) 22.72 193 207 4163

pose estimation, we adopt DEKR [13], which demonstrated satisfactory performance in both RGB
and RGB+event modality approaches. To utilize both RGB and event data together, we adopted the
concatenation method.

Table 3 presents the results of multi-person pose tracking, applying various tracking methods for
RGB and RGB+event modalities. OC-SORT was proposed to handle occlusions by associating over
long time steps. However, we believe that the relatively poor performance of OC-SORT is attributed
to the significant motion displacement in the EHPT-XC dataset, where distant frames often fail to
provide valuable information for current frame tracking. ByteTrack demonstrates robust operation by
incorporating even low-confidence predicted bounding boxes into tracklets, thus addressing common
challenges in extreme environments. When comparing the results across modalities, an interesting
observation is that in extreme cases with low-light and motion blur, using only RGB data leads to
relatively low false positive (FP), but significantly higher false negative (FN). When only using RGB
data, objects are frequently overlooked or undetected, resulting in a higher false negative rate. On
the other hand, integrating event data reduces the occurrence of missed detection, although it may
introduce problems with false positives. Even considering such cases, it’s evident that incorporating
event data leads to a significant improvement in the overall performance of tracking, as assessed by
the MOTA metric.

6 Conclusion and Future Work

In this paper, we establish Event-guided Human Pose Estimation and Tracking in eXtreme Conditions
(EHPT-XC) dataset, which is the first multi-human pose and tracking dataset with real captured
extreme motion blur and low-light conditions with the real events and frames. To leverage the benefits
of event cameras, which are well-suited for such extreme environments, we customize a triplet
camera system to acquire multi-modal data. Thanks to the triplet camera system, we were able to
acquire clean and sharp RGB frames that are pixel-wise aligned and time-synchronized, enabling
precise annotation. We benchmark recent state-of-the-art multi-person pose estimation and tracking
methods on the EHPT-XC dataset, showcasing the advantages, particularly in extreme environments,
of utilizing the event modality. We expect that EHPT-XC will pave the way for further exploration in
understanding human actions in extreme scenarios.

Limitation and future work. In this work, we propose a simple multi-modal fusion baselines.
However, for tasks such as human pose estimation, more sophisticated modality fusion methods may
be more effective. We plan to explore these fusion methods in future work.

Social impact. The proposed EHPT-XC dataset aims to estimate human pose even in RGB images
degraded by motion blur and/or low-light conditions, and its main applications are targeted at rehabil-
itation and sports. In particular, since such degraded images do not contain personal identification
information, inferring poses from these images can reduce emerging privacy issues. Moreover, the
event camera we adopted as part of our multi-modal approach is well-known for its privacy-preserving
characteristics, making it highly suitable for this purpose. However, we are aware that it can be
misused for its intended purpose (e.g., pedestrian surveillance at night), and in case of misuse, we
reserve our right to withdraw permission for users to use the dataset at any point.
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