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ABSTRACT

Since the initial successes of deep reinforcement learning on learning policies
purely by interacting with complex high-dimensional state representations and a
decade of extensive research, deep neural policies have been applied to a striking
variety of fields ranging from pharmaceuticals to foundation models. Yet, one of
the strongest assumptions of reinforcement learning is to expect to receive a reward
signal from the MDP. While this assumption comes in handy in certain fields, i.e.
automated financial markets, it does not naturally fit in many others where the
computational complexity of providing such a signal for the task at hand is larger
than in fact learning one. Thus, in this paper we focus on learning policies in MDPs
without this assumption, and study sequential decision making without having
access to information on rewards provided by the MDP. We introduce harmonic
learning, a training method in high-dimensional MDPs, and provide a theoretically
well-founded algorithm that significantly improves the sample complexity of deep
neural policies. The theoretical and empirical analysis reported in our paper
demonstrates that harmonic learning achieves substantial improvements in sample
efficient training while constructing more stable and resilient policies that can
generalize to uncertain environments.

1 INTRODUCTION

The capabilities and skills obtained via interacting with a given environment solely based on ob-
servations and receiving rewards upon taking actions in high-dimensional state observation MDPs
gained substantial acceleration with the recent advancements in deep reinforcement learning research
(Mnih et al., 2016; Kapturowski et al., 2023; Abel et al., 2023; Flennerhag et al., 2023). Currently,
from automated financial markets to solving complex games (Schrittwieser et al., 2020) to designing
algorithms (Fawzi et al., 2022; Mankowitz et al., 2023), several different fields from pharmaceuticals
(Popova et al., 2018; Korshunova et al., 2022) to self-operating vehicles and large language models
(Touvron et al., 2023) benefited from the advancements achieved in deep sequential decision making
algorithms that can learn functioning policies in high-dimensional observation MDPs. Yet, there is
still a concrete assumption in reinforcement learning that we do have access to the reward function of
the MDP. From bee foraging to human decision making the reward signal for natural intelligence is
complicated and a non-stationary function of manifold inputs (Doya & Sejnowski, 1994; Montague
et al., 1995; Schmajuk & Zanutto, 1997). Thus, towards targeting capabilities and skills that natural
intelligence can currently achieve we do have to consider and study the reward functions formed over
the centuries of evolution.

Analyzing the amount of experiences one has to obtain to function in a given environment is one
of the foundational questions that has been studied so far (Kearns & Singh, 1999; Kakade, 2003).
Recent studies argued that policies trained in the absence of a reward signal can in fact learn faster.
Orthogonal to these advances while the instabilities of deep neural networks under non-robust
directions has been discussed (Goodfellow et al., 2015), recent work also demonstrated that these
instabilities are currently also present in deep neural policies (Huang et al., 2017). Furthermore, even
more recent studies demonstrated that these non-robust directions can be semantically meaningful
changes to the environment (Korkmaz, 2024). Thus, in this paper we focus on the sample-efficiency
and robustness of the policies that can learn functioning strategies without the reward signal provided
by the MDP and ask the following questions:
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• How can we build agents that can learn neural policies with fewer interactions?
• What are the foundational building blocks towards constructing policies that can make

resilient and robust decisions in unstable and non-robust environments?
• How can we analyze and quantify the robustness of deep sequential decision making policies

with high-dimensional state observations spectrally?

Hence, to answer these questions in this paper we focus on analyzing the spectral properties of deep
inverse reinforcement learning, and make the following contributions:

• We introduce a theoretically well-founded algorithm called harmonic learning that improves
the sample complexity of deep sequential decision making algorithms, and learns policies
that are more stable and robust. We conduct experiments in the Arcade Learning Environ-
ment (ALE) with high dimensional state observation MDPs, and the experimental results
reported in our paper demonstrate that our harmonic learning algorithm, i.e. HAL, achieves
substantial sample-efficiency resulting in requiring up to 20× fewer samples while achieving
better performance.

• We propose a theoretically justified novel method to analyze deep neural policy robustness
in the frequency spectrum. We compare the vulnerabilities and volatilities of the state-of-
the-art imitation learning policy to the vanilla deep reinforcement learning policy in high
dimensional state representation MDPs. Our method reveals the spectral contrast between
the vanilla deep reinforcement learning policies and the state-of-the-art deep sequential
decision making policies that can learn without a reward function.

• Furthermore, we analyze the generalization capabilities, natural robustness and overfitting
of the state-action value function. Our analysis further demonstrates that harmonic learning
leads to policies that are substantially more robust and generalizable.

2 BACKGROUND AND PRELIMINARIES

2.1 PRELIMINARIES

A Markov Decision Process (MDP) is represented as a tuple ⟨S,A,P, r, γ, τ0⟩ of a set of states S , a set
of actionsA, transition probability distribution P(st+1|st, at), and a reward function r : S ×A → R,
discount factor γ, and initial state distribution τ0. The objective in reinforcement learning is to
learn a policy that will maximize the expected discounted cumulative rewards obtained by the policy
π : S → P(A). This objective can be achieved viaQ-learning that essentially learns aQ functionQ :
S×A → R that will assign values to each state-action (s, a) pair to reveal what would be the expected
cumulative discounted rewards obtained if the action a is taken in state s. The Q-function is learnt
via iterative Bellman update Q(st, at) = r(st, at, st+1) + γ

∑
st
P(st+1|st, at)maxaQ(st+1, a)

(Watkins, 1989). The value function is defined to be V(s) = maxaQ(s, a). Upon the construction of
the state-action value function the policy executes the action that maximizes the state-action value
function â = argmaxa∈AQ(s, a). In settings where the state or action space have high-dimensional
representations the state-action value function is approximated via a deep neural network.

θt+1 = θt + α(r(st, at, st+1) + γmax
a
Q(st+1, a; θt+1)−Q(st, a; θt))∇θtQ(st, a; θt)

For a given setting where the reward function is not present, the reward function can be estimated
from observing trajectories of a functioning policy, i.e. inverse reinforcement learning. The first study
that proposed this concept achieves this objective via linear programming (Ng & Russell, 2000).

max
∑
s∈Sρ

min
a∈A
{∆(Es′∼P(·|s,a1)V

π(s′)− Es′∼P(·|s,a)Vπ(s′))}

subject to |αi| ≤ 1 , i = 1, 2, . . . , d, where ∆(x) = x if x > 0 and ∆(x) = 2x otherwise. While
some studies focused on learning the reward function itself others focused on directly learning a
policy from demonstrations (Kostrikov et al., 2020). Quite recently, Garg et al. (2021) focused on
learning a state-action value function via solely observing the trajectories of a functioning policy
(inverse Q-learning), and maximizing the objective function J (θ) given by

E(s,a)∼ρE

[
ϕ
(
Qθ(s, a)− γEs′∼P(·|s,a)[Vθ(s′)]

)]
− E(s,a)∼µ

[
ϕ
(
Vθ(s)− γEs′∼P(·|s,a)[Vθ(s′)]

)]
2
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where ρE is the occupancy measure of the expert policy, and µ is any valid occupancy measure.
The method introduced in this paper achieves state-of-the-art performance in environments with
high-dimensional observations. Furthermore, the authors of this study argue that once the state-action
value function, i.e. Q(s, a), is learnt, the reward function, i.e. r(st, at, st+1), can be reconstructed
from this information. Furthermore, note that the inverseQ-learning algorithm can learn a functioning
policy and a reward function simultaneously; hence, throughout the paper the inverse Q-learning
algorithm will be referred to as an imitation learning and inverse reinforcement learning algorithm
interchangeably.

2.2 ROBUSTNESS AND DEEP REINFORCEMENT LEARNING

The adversarial vulnerabilities of deep reinforcement learning policies were initially discussed in
Huang et al. (2017). This study essentially introduces fast gradient sign method produced adversarial
perturbations (Goodfellow et al., 2015) in to the observation system of the deep reinforcement
learning policies. In this line of research some studies tried to further identify adversarial directions
(Korkmaz & Brown-Cohen, 2023), while others focused on solving the robustness problem via
training with these adversarial directions (Gleave et al., 2020; Pinto et al., 2017). However, recent
work demonstrates that the adversarial directions are shared across states, across MDPs and across
algorithms (Korkmaz, 2022). Moreover, the certified adversarially trained deep reinforcement learning
policies inherit the exact same adversarial directions with the vanilla trained deep reinforcement
learning policies. While there are some studies working on the diagnostic perspective of robustness
in deep reinforcement learning by using the Carlini & Wagner (2017) formulation, these studies
highlight that certified adversarial training shifts vulnerabilities towards a different band in the
frequency spectrum instead of eliminating these non-robust features (Korkmaz, 2024). In connection
to this, some studies focused on demonstrating the contrast between adversarial and natural directions
in terms of their perceptual similarities to the base state observations and the impact they can cause
on the policy performance (Korkmaz, 2023). This study demonstrates that the certified adversarial
training techniques significantly limit the generalization capabilities of the deep reinforcement
learning policies.

3 FOUNDATIONS FOR HARMONIC LEARNING

In this section we will introduce harmonic learning (HAL) and provide the foundations and the
theoretical analysis for the HAL algorithm. In particular, our algorithm is based on random basis
function elimination in a harmonic analytic basis of the state observations during training. Section 4
demonstrates that our theoretically well-founded harmonic learning algorithm results in up to 20×
improvement in sample-efficiency. Section 4.1 and 4.3 will further prove that harmonic learning not
only improves the sample complexity but further converges to an intrinsically more robust policy. The
theoretical analysis for these results lies in the fact that random harmonic analytic basis elimination
can be interpreted as a form of value function randomization, a well-established technique with
provable guarantees on sample-efficiency in the function approximation setting. Thus, in order to
provide a theoretical foundation for HAL, we connect randomized elimination of basis functions
to randomized least-squares value iteration (RLSVI), which provides provable regret bounds via
randomization of the learned value function. The setting for the provable regret bounds of RLSVI,
including many related follow-up studies (Ladosz et al., 2022; Agarwal et al., 2022), is in finite-
horizon, episodic MDPs with linear function approximation of the state-action value function. A
finite-horizon MDP with linear function approximation is represented by M = (S,A,P, r,H) where
S is the set of states, and A the actions. For each t ∈ {1, . . . ,H}, state s, and action a the transition
function Pt(· | s, a) gives the probability distribution over the next state, and the reward function
rt(s, a) outputs the immediate rewards. Let Φt : S×A → Rκ represent the feature map such that the
state-action value function is given by Qθt(s, a) = Φt(s, a)

⊤θt. The RLSVI algorithm proceeds in
episodes, where in the k-th episode value iteration is performed with a value function that is perturbed
by specifically chosen noise η. In particular, for each episode i ∈ {1, . . . , k − 1} let (sti, ati, rti) be
the state-action-reward tuple observed at time step t. For parameters λ > 0 and σ > 0, let θ̂t be the
parameter estimate for the value function computed via standard least squares value iteration:

θ̂t,k = argmin
θ

(
1

σ

k−1∑
i=1

(
Φt(sti, ati)

⊤θ − (r(sti, ati) + max
a

Φt(st+1 i, a)
⊤θt+1,k)

2 + λ ∥θ∥2
)

3
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Then define the regularized regression matrix

Ωt,k =
1

σ2

k−1∑
i=1

Φt(sti, ati)Φt(sti, ati)
⊤ + λI. (1)

The updated parameters of RLSVI are computed by sampling ηt,k ∼ N (0,Ω−1
t,k) and setting θt,k =

θ̂t,k + ηt,k. Intuitively, the Gaussian noise ηt,k added to the value function parameters is chosen to
have larger variance along directions where fewer feature vectors Φt(st, at) have been observed so
far, and lower variance along directions with many previously observed feature vectors. This has
the effect of directly injecting uncertainty into value estimates proportional to a natural posterior
distribution on the parameters. In particular, for any state-action pair (st, at) ∈ S×A the state-action
value under the random perturbation is given by

Qθt,k(st, at) = Φt(st, at)
⊤(θ̂t,k + ηt,k) = Φt(st, at)

⊤θ̂t,k +Φt(st, at)
⊤ηt,k

Qθt,k(st, at) = Qθ̂t,k
(st, at) + Φt(st, at)

⊤ηt,k. Observe that the value Φt(st, at)
⊤ηt,k has a Gaus-

sian distribution equal to N
(
0,Φt(st, at)

⊤Ω−1
t,kΦt(st, at)

)
. Therefore, the random perturbation to

each state-action value has variance inversely proportional to a measure of the confidence of the
current state-action value estimate. In the general function approximation setting, e.g. when using
deep neural networks, it is no longer possible to directly compute the correct noise level to perturb
the value estimates via an inversion of the feature covariance matrix. However, we will present an
alternative approach, i.e. harmonic learning, that transfers more easily to the general setting, while
simultaneously preserving the intuition that the variance should be higher at state-action pairs for
which the current Q-function estimate is less confident. To begin we introduce the notion of a stable
basis for the feature space of an MDP.
Definition 3.1 (ϵ-Stable Basis). Let M be a finite horizon MDP with linear function approximation
via feature map Φt : S ×A → Rκ and optimal state-action value functionQθ∗

t
. Let v1, . . . , vκ ∈ Rκ

be an orthonormal basis and let Φ̂t(s, a)i = Φ(s, a)⊤t vi, The set v1, . . . , vκ is an ϵ-stable basis for
M if for all s ∈ S, a ∈ A, and i ∈ {1, . . . , κ}∣∣∣∣ 1κΦt(s, a)

⊤θ∗t − Φ̂t(s, a)iv
⊤
i θ

∗
t

∣∣∣∣ < ϵ

To gain an intuition for Definition 3.1, observe that for any orthonormal basis v1, . . . , vκ the feature
vector can be written as the linear combination

∑
i Φ̂t(s, a)ivi. Thus, the definition requires that

each component Φ̂t(s, a)ivi of the feature vector along direction vi contributes approximately a 1
κ

fraction of the optimal state action value Qθ∗
t
(s, a) = Φt(s, a)

⊤θ∗t . This property is analogous to the
uncertainty principle in harmonic analysis, which qualitatively states that signals which are localized
with respect to the standard basis must be more evenly spread out with respect to the harmonic
analytic basis. Given a stable basis, there is a natural measure of uncertainty for any estimate of the
state-action value function.
Definition 3.2 (Uncertainty of Parameters). Let v1, . . . , vκ be an ϵ-stable basis for M . For any
parameter estimate θt for the state-action values the uncertainty of θt for action a in state s is

Υθt(s, a) =
1

κ

∑
i

(
1

κ
Φt(s, a)

⊤θt − Φ̂t(s, a)iv
⊤
i θt

)2

.

Observe that for the optimal parameters θ∗ we have Υθ∗
t
(s, a) < ϵ2. In general, the uncertainty

measures how far the estimate θt deviates from having an equal contribution from the components of
the feature map Φt(s, a) along each of the basis vectors vi. Since the vectors vi form a stable-basis
(and thus the contribution in each component to the optimal state-action value should be equal), larger
values for the uncertainty implies that the
estimate θt is further from the optimum for
action a in state s. We now have all the
ingredients to introduce the foundations for
harmonic learning. Essentially, Algorithm 1
adds noise to the value function by removing
the component of the feature Φt(s, a) along
a randomly chosen stable-basis direction vi.

Algorithm 1 Stable-basis noise
1: Input: A stable basis v1, . . . , vκ for an MDP M .

An estimate θt for the state-action value function,
a state s, and action a.

2: Sample i uniformly at random from {1, . . . , κ}
3: Set Φ̃t(s, a) = Φt(s, a)− Φ̂t(s, a)ivi
4: Output the noisy state-action value Φ̃t(s, a)

⊤θt

4
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Proposition 3.3 (Stable-basis noise variance). Let v1, . . . , vκ be an ϵ-stable basis for M . For
parameter vector θt, let Q̃θt(s, a) be the state-action value estimate output by Algorithm 1. Let
η = Q̃θt(s, a)−Qθt(s, a). Then Var[η] = Υθt(s, a).

Proof. First observe that E[η] = E[Q̃θt(s, a)−Qθt(s, a)], and

E[η] = Ei

[
(Φt(s, a)− Φ̂t(s, a)ivi)

⊤θt − Φt(s, a)
⊤θt

]
= −Ei

[
Φ̂t(s, a)iv

⊤
i θt

]
= − 1

κ
Φt(s, a)

⊤θt

Therefore, the variance of the noise η is given by

Var[η] = E

[(
Q̃θt(s, a)−Qθt(s, a) +

1

κ
Φt(s, a)

⊤θt

)2
]

= Ei

[(
1

κ
Φt(s, a)

⊤θt − Φ̂t(s, a)iv
⊤
i θt

)2
]
= Υθt(s, a)

Random modification of the value function via Algorithm 1 is equivalent to adding noise η to
Qθt(s, a) where the variance of the noise η is exactly equal to the uncertainty Υθt(s, a). Thus, by
simply deleting the component of the feature vector along a randomly selected stable-basis vector,
one can add noise that has variance proportional to a natural uncertainty measure for the current
parameter estimate.

3.1 GENERAL FUNCTION APPROXIMATION

It is now straightforward to extend both the definition of a stable basis and Algorithm 1 to the general
function approximation setting. In this setting we will assume that the state space S is a d-dimensional
vector space, the action space A is finite, and the optimal state-action value function Q∗(s, a) is a
general function on S ×A.
Definition 3.4 (General Function Approximation). Let M be an MDP and ϵ > 0. An ϵ-stable basis
for M is an orthonormal basis v1, . . . , vκ for S such that for all i,∣∣Q∗(s, a)−Q∗(s− (v⊤i s)vi, a)

∣∣ < 1

κ
Q∗(s, a) + ϵ.

Algorithm 1 can also be easily modified for the general function approximation setting by sampling a
random i, and replacing the state s with s̃ = s− (v⊤i s)vi i.e. by sampling a random i and deleting the
component of s along vi. The following proposition shows that in the general function approximation
setting, one can test for the presence of a stable basis by modifying states via Algorithm 1 and
measuring cumulative rewards.
Proposition 3.5. Let v1, . . . , vκ be an ϵ-stable basis for an MDP M . For a
state s let a∗(s) = argmaxaQ∗(s, a) be the argmax action. Assume that ϵ <
1
2

(
κ−1
κ Q

∗(s, a∗(s))− argmaxa̸=a∗(s)
κ+1
κ Q

∗(s, a)
)

for all s ∈ S. Let R∗ be the expected cu-
mulative rewards when following the argmax policy according to Q∗. Then if each state is modified
according to the general function approximation version of Algorithm 1 the expected cumulative
discounted rewards R obtained under the argmax policy satisfies R = R∗.

Proof. Under the general function approximation version of Algorithm 1 each state s encountered is
modified to s̃ = s− (v⊤i svi). By Definition 3.4 for the action a∗(s)

Q∗(s̃, a∗(s)) > Q∗(s, a∗(s))− 1

κ
Q∗(s, a∗(s))− ϵ =

κ− 1

κ
Q∗(s, a∗(s))− ϵ (2)

Similarly, by Definition 3.4, for any a ̸= argmaxaQ(s, a)

Q∗(s̃, a) <
κ+ 1

κ
Q∗(s, a) + ϵ ≤ argmax

a̸=a∗(s)

κ+ 1

κ
Q∗(s, a) + ϵ. (3)

Combining (2) and (3) with the assumption on ϵ implies that Q∗(s̃, a) < Q∗(s̃, a∗(s)) for all
a ̸= a∗(s). Thus the argmax action in each state under Algorithm 1 is equal to the argmax action
in the original unmodified state, implying that the distribution of the trajectory and the cumulative
rewards remain unchanged.

5
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Algorithm 2 HAL: Harmonic Learning
Input: Occupancy measure of the expert policy ρE , regularizer ϕ, κ dimension of the state
observations, µ experiences from replay buffer, learning rate αQ, actions a ∈ A, states s ∈ S,
initialize Qθ0 and stable basis frequency Ψ.
for t = 0 to N do

for s = s0 to sT do
Sample δ ∼ U(0, κ/2)
Fs(u, v) =

1

κ2

∑κ−1
m=0

∑κ−1
n=0 s(m,n)e−j2π((um+vn)/d)

Fs[δ, δ : κ− δ] = Fs[κ− δ, δ : κ− δ] = Fs[δ : κ− δ, δ] = Fs[δ : κ− δ, κ− δ] = Ψ

sspc(m,n) =
∑κ−1

u=0

∑κ−1
v=0 F(u, v)ej2π((um+vn)/κ)

Insert sspc to the buffer instead of s
Train Q function:
Ṽ(s) = E(s,a)∼µ[Vθt(s)]− γEs′∼P(·|s,a)[Vθt(s′)]
Z = ∇θt [EρE

ϕ(Qθt(s, a)− γEs′∼P(·|s,a)Vθt(s′))]
θt+1 ← θt + αQZ − αQ∇θt Ṽ(s)

end for
end for
Return: State-action value function QθN (s, a)

The Fourier basis is one of the natural choices for a stable basis. Naturally occurring observations
in the real world are highly non-sparse in the Fourier basis, and thus removing the component
along any Fourier basis vector is unlikely to cause a semantically meaningful change within the
observation. Thus, the optimal robust policy when learning from high-dimensional observations
should not have particularly large dependence on any one part of the Fourier basis corresponding to a
particular frequency. The empirical results of Section 4 further provides evidence that the Fourier
basis forms a stable basis for deep reinforcement learning policies trained with high-dimensional
state-observations. In particular Figure 5 demonstrates that removing each subset of elements of
the basis corresponding to one particular frequency has approximately equal impact on vanilla
trained policy performance. On the other hand inverse-Q learning, which uses fewer environment
interactions, has much larger variation in policy sensitivity across frequencies. Thus, the policy that is
trained with more interactions, and thus is closer to optimal, satisfies the conditions of Definition 3.1
with respect to the Fourier basis. Therefore, we can extend our method from Algorithm 1 to learning
from high-dimensional state observations by leveraging randomized removal of the elements of the
stable basis, i.e. removing components of the state-observation in the Fourier basis in order to induce
uncertainty in the value function to boost sample-efficiency.

4 HARMONIC LEARNING IN HIGH DIMENSIONAL MDPS

While Section 3 provides theoretical justification for our proposed training method in this section we
provide details into the harmonic learning algorithm. In particular, Algorithm 2 provides pseudocode
for the harmonic learning method. Note that visualizations of transformations of the elements of the
stable basis of state observations are also demonstrated in Figure 3. The experiments provided in
our paper are conducted in the Arcade Learning Environment (Bellemare et al., 2013). All of the
MDPs considered in our paper have high-dimensional state representations. The deep reinforcement
learning policies used in stable basis robustness analysis are trained via double-Q learning (van
Hasselt et al., 2016; van Hasselt, 2010). Natural robustness was measured with the same parameters
used in (Korkmaz, 2024). The experiments are conducted with 10 random runs. The standard error of
the mean is included in all of the results presented throughout the paper. All of the policies that are
trained without the reward signal from the MDP uses the exact same hyperparameters with inverse
Q-learning algorithm (Section 2.1) to provide consistent and transparent comparison where the batch
size 32, the network consists of 2 hidden layers with 64 units. See supplementary material for the
code, the hyperparameters and architecture details.

Table 1 reports the raw scores and human normalized scores for the inverse Q-learning algorithm
and the harmonic learning algorithm in Pong, Breakout, Seaquest, SpaceInvaders and BeamRider.
As Table 1 reports, the performance obtained by the harmonic learning over inverse Q-learning in

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1: State observations of the high-dimensional state representation MDPs and the spectral
properties and representations in BeamRider.

Table 1: Performance analysis results for harmonic learning and inverseQ-learning in Pong, Breakout,
Seaquest, SpaceInvaders and BeamRider. Table reports raw scores and human normalized scores for
harmonic learning and inverse Q-learning.

Performance Analysis Raw Scores Human Normalized Scores

Training Method Harmonic Learning Inverse Q-learning Harmonic Learning Inverse Q-learning

Pong 19.0±1.89736 8.0±5.3814 1.3233± 0.0199 0.9566±0.05672
Seaquest 906.0±53.2202 864.0±42.0285 0.04164±0.00083 0.03955±0.00066
SpaceInvader 609.0±14.5223 470.555±23.6812 0.3064±0.003052 0.2144±0.00497
BeamRider 1023.6±140.974 909.6±65.392 0.1219±0.0082 0.1008±0.0038
Breakout 228.8± 35.4606 108.9±29.7198 7.5448±0.37254 3.5614±0.3122

Breakout is 210%. Furthermore, intriguingly the harmonic learning algorithm can reach a score of
19.0 for Pong in only 50K environment interactions, where inverse-Q learning is unable to reach
this score even with 1 million environment interactions after convergence. Thus, harmonic learning
is not only sample-efficient but further simply converges to a substantially better policy as an end
product. Figure 5 reports robustness analysis results for harmonic learning and inverse Q-learning.
Intriguingly, these results demonstrate that the inverse Q-learning policies result in high-frequency
oscillations compared to deep neural policies trained via harmonic learning. The fact that deep neural
policies trained via harmonic learning obtain dampened oscillations on the robustness analysis, i.e. an
analysis that measures robustness via direct policy performance, demonstrates that harmonic learning,
on top of the sample efficiency it gains as demonstrated in Table 1, further learns more robust and
resilient policies.

4.1 STABLE BASIS ROBUSTNESS ANALYSIS OF DEEP SEQUENTIAL DECISION MAKING

While Section 3 provides the foundations and the theoretical analysis for harmonic learning, Section
4 provides the empirical analysis of the harmonic learning algorithm in high-dimensional complex
MDPs. These results demonstrate that harmonic learning improves sample efficiency by up to 20×.
Yet, our objective was not only to improve sample complexity but further to construct policies that can
make robust and resilient decisions in uncertain non-stationary environments. In this section we will
introduce the techniques that quantify the volatilities in decision making. In particular, the objective
of Stable Basis Robustness Analysis (SBRA) is to quantify and measure the impact of the elements of
the stable basis on the policy performance. The stable basis in this analysis was set to the Fourier basis,
yet it is further possible to establish a different type of basis as stable, as long as the basis satisfies∣∣∣ 1κΦt(s, a)

⊤θ∗t − Φ̂t(s, a)iv
⊤
i θ

∗
t

∣∣∣ < ϵ. Upon the setting the δ-frequencies to Ψ the discrete Fourier
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transform is inverted and the observation of the deep neural policy consists of sspc as in Algorithm
3. Figure 3 provides the steps of the stable basis robustness analysis (SBRA) with variations of δ.

Figure 2: Stable Basis Robustness
Analysis (SBRA) results for the
deep reinforcement learning policy
and the state-of-the-art deep inverse
reinforcement learning policy.

For a state s ∈ S the discrete Fourier transform of the state s is

Fs(u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

s(m,n)e−j2π(um/M+vn/N )

The impact on the policy performance is measured by I =
(Scorebaseline − ScoreFs

)/(Scorebaseline), where ScoreFs
repre-

sents the score obtained by the deep neural policy when the state
observations are transformed as described in Algorithm 3, and
Scorebaseline represents the score obtained by the baseline pol-
icy without any modifications applied to the state observations.
Figure 2 reports results on the stable basis robustness analysis
of the deep reinforcement learning policy and the deep inverse
reinforcement learning policy as the randomized δ-frequencies
are transformed to Ψ. The results reported in Figure 2 demon-
strate that vanilla trained deep reinforcement learning policies are more robust than the policies trained
via deep inverse reinforcement learning. In particular, there is a high increase in the sensitivities
towards lower frequencies for the deep inverse reinforcement learning policy.

Baseline δ = 10

δ = 20 δ = 30

Figure 3: Stable Basis Robustness Anal-
ysis (SBRA) with variations of δ .

Algorithm 3 SBRA: Stable Basis Robustness Analysis
Input: State-action value function Q(s, a), actions a ∈ A,
states s ∈ S, stable basis robustness analysis frequency Ψ,
policy π(s, a), κ dimension of the state observations
Output: Impact on the policy performance
for δ = 0 to κ/2 do

for s = s0 to sT do
Fs(u, v) =

1

κ2

∑κ−1
m=0

∑κ−1
n=0 s(m,n)e−j2π((um+vn)/κ)

Fs[δ, δ : κ− δ] = Fs[κ− δ, δ : κ− δ] = Ψ
Fs[δ : κ− δ, δ] = Fs[δ : κ− δ, κ− δ] = Ψ

sspc(m,n) =
∑κ−1

u=0

∑κ−1
v=0 F(u, v)ej2π((um+vn)/κ)

â(s) = argmaxa∈AQ(sspc, a)
end for

end for
Return: Impact I

4.2 OVERFITTING OF STATE-ACTION VALUE FUNCTION IN INVERSE REINFORCEMENT
LEARNING

The results reported in this section demonstrate that inverse Q-learning assigns higher state-action
values than harmonic learning, even though the rewards obtained are lower compared to harmonic
learning. In particular, Figure 4 reports the state-action value of the action maximizing the state-
action value function in a given state for deep neural policies trained via harmonic learning and
inverse Q-learning policies. Table 2 reports the average total rewards obtained and the average
state-action values of the actions that maximize the state-action value function in a given state

Figure 4: State-action values for the deep neural policies trained via harmonic learning and inverse
Q-learning policies. Left: BeamRider. Center: Pong. Right: Breakout.
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Table 2: Average rewards obtained and average state-action values of the actions maximizing the
state-action value function in a given state (i.e. Es∼e(s),e∼ε(e)[maxaQ(s, a)]) for harmonic learning
and inverse Q-learning policies in Pong, Breakout, SpaceInvaders and BeamRider.
Q Analysis Es∼e(s),e∼ε(e)[maxaQ(s, a)] Average Rewards

Method Harmonic Learning Inverse Q-learning Harmonic Learning Inverse Q-learning

SpaceInvader 0.001291±0.0001532 -0.000188±7.55×10−5 602.0±13.023056 528.5±18.9347
BeamRider -0.001739±4.34×10−5 -0.001808±2.17×10−5 1108.4± 158.10725 908.8±95.039865
Breakout 0.009761±6.25×10−5 0.01085±3.70×10−5 214.3±38.5888 39.0±6.1967
Pong -0.0007503±3.67×10−5 -0.000455±7.60×10−5 19.0±1.89736 8.0±5.3814

SBRA Contrast DCT Artifacts
Figure 5: Left: Robustness analysis with SBRA for harmonic learning and inverseQ-learning policies
in Breakout. Center: The impact results for natural robustness analysis with non-robust directions
intrinsic to the MDP for contrast in SpaceInvaders. Right: The impact results of natural perturbations
intrinsic to the MDP for discrete cosine transform artifacts in SpaceInvaders.

(i.e. Es∼e(s),e∼ε(e)[maxaQ(s, a)]) for harmonic learning and inverse Q-learning policies. The fact
that inverse Q-learning policies construct a state-action value function that assigns higher values
while the true rewards obtained are lower demonstrates that inverse Q-learning results in learning
overestimated state-action values. Hence, harmonic learning further targets the overfitting problem of
the state-action value function and results in lowering the overestimation bias in state-action values
compared to the baseline training methods.

4.3 NATURAL ROBUSTNESS AND GENERALIZATION

In this section we provide a detailed analysis on the robustness of deep sequential decision making
policies to distributional shift. In particular, recent work connected the relationship between adver-
sarial robustness and natural robustness in a given MDP in terms of the damage caused by these
natural directions in the deep neural policy landscape on the policy performance and the perceptual
similarity distances to the base state observations. In particular, the imperceptibility Psimilarity is
measured by, Psimilarity(s, s + ξ(s, π)) =

∑
l

1
HlWl

∑
h,w∥wl ⊙ (ŷlshw − ŷl(s+ξ(s,π))hw)∥

2
2 where

ŷls, ŷ
l
ŝ ∈ RWl×Hl×Cl represent the vector of activations in the convolutional layers with width Wl,

height Hl, Cl is the number of channels, and ξ(s, π) natural change function1. Note that Section 4.1
demonstrates in detail that policies that learn from observing an expert without having access to the
reward function are less robust compared to deep reinforcement learning policies. In many prominent
settings, e.g. large language models as in RLHF and self driving cars, constructing a reward function
is substantially more difficult than learning one from demonstrations, and achieving more sample
efficient and robust policies carries significant importance given both the safety and security concerns
that have been recently raised (Washington Post, 2023; New York Times, November 2023). Hence,
in this section we provide a comprehensive investigation on the robustness and Figure 5 reports
the performance profile results under these natural directions for harmonic learning and inverse
Q-learning policies. In particular, the results reported in Figure 5 demonstrate that harmonic learning
results in intrinsically more robust deep neural policies that can generalize to observations that have
not been seen before by the policy (i.e. points that are outside of the training environment). These
results once more demonstrate that harmonic learning not only results in learning sample-efficient
policies but also further learns policies that are both robust and generalizable.

1In connection with the contradistinction between adversarial and natural robustness, recently it has been
shown that standard reinforcement learning policies are more robust and can generalize better compared to
certified robust (i.e. adversarial) trained ones by the natural robustness framework (Korkmaz, 2023).
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5 CONCLUSION

In this paper we aim to seek answers for the following questions: (i) How can we make deep
sequential decision making policies that can learn from high-dimensional state observations more
robust and more sample efficient? (ii) What are the fundamental differences between learning via
exploration vs learning via observing experts that limit policies to robustly generalize to uncertain
environments?, (iii) Is it possible to simultaneously improve sample efficiency without sacrificing
robustness? To be able to address these questions we propose a theoretically well-founded training
algorithm that leverages the spectral perspective in deep sequential decision making. We conduct
extensive experiments in the Arcade Learning Environment and the empirical analysis demonstrates
that our proposed algorithm results in exceptional sample efficiency improvement. Moreover, we
propose a novel method that provides a comprehensive analysis of the robustness and instabilities of
deep neural policies. We provide further extensive investigation on the state-action value function
learned by the deep neural policies and demonstrate that prior methods suffer from overestimation
problems. Furthermore, we conduct a robustness analysis that investigates the response of the
deep sequential decision making policies to distributional shift. The results provided in our paper
demonstrate that the theoretically well-founded harmonic learning algorithm we introduce results in
exceptionally sample-efficient, and furthermore substantially robust and resilient deep neural policies.
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