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ABSTRACT

Similarity analysis is commonly used to determine the size of the discrepancy
between two representations of a distribution pattern. In contrast to classical rep-
resentational similarity analysis, which identifies disparate types of representa-
tions based on their shared similarity structures in distance matrices, this article
proposes an online hypothesis testing procedure that will be able to determine
whether a representation’s difference from a constant is more significant than a
predefined margin for streaming data. As a basic reinforcement learning model,
two-armed bandits (TAB) are used to construct test statistics that update online.
To achieve the most efficient testing results, an optimal strategy is developed for
the TAB process. Asymptotic test statistics are discussed in theory, as are its corre-
sponding explicit density functions, which are more accumulated than the normal
distribution commonly applied in classical statistical analysis. Since the power of
the proposed representative similarity test (RST) method is higher than that of the
classical test, simulation studies support the validity of the proposed method.

1 INTRODUCTION

Similarity analysis has been widely used in some scientific fields, such as biological pharmacy aims
at checking the biosimilarity between an innovative biological product and a reference product that
share similar pharmacokinetic or pharmacodynamic profiles; transfer or meta learning transforms
similar information from the source domain to the target domain through similarity analysis; rep-
resentational similarity analysis (RSA) usually focuses on integrating disparate types of data based
on shared structure in their similarity (or distance) matrices. This article first considers a statistical
inference of similarity test with streaming data set continuously generated from different sources,
such as file data generated by mobile or web applications, online shopping data and telemetry data
from connected devices in the data center, etc. Such data should be processed incrementally using
stream processing techniques. Stream processing analyzes and performs actions on real-time data
through the use of continuous queries, which enables the applications to update and integrate the
processed information.

Recently, some literature explore the stream processing techniques for data mining by the tool of sta-
tistical inference. The popularly used methods among them includes aggregated estimating equation
(Lin & Xi, 2011), cumulatively updating estimating equation (Schifano et al., 2016) and renewable
estimator (Luo & Song, 2020). Furthermore, the diffusion approximation method to analyze the
exact dynamics of online regression was proposed by Fan et al. (2018). An online inference in high-
dimensional linear models with streaming data was developed by Han et al. (2021), Deshpande et al.
(2021) and Sun & Barbu (2021), specially the variable selection in high-dimensional linear model
based on the continuously updated statistics was argued by (Sun & Barbu, 2021). An novel inference
framework for high-dimensional generalized linear models by recursive online-score estimation was
developed by Shi et al. (2021). Stochastic gradient descent algorithm (SGD), as currently popular
stream processing technique, has been widely used in various fields of artificial intelligence as well
as a prototype of online learning algorithms (Chen et al., 2020; Zhu et al., 2021). And a variant of
the truncated SGD in online settings was proposed by Liu et al. (2022), Langford et al. (2009).

However, above stream processing techniques focus on online learning procedure to conduct sta-
tistical inference, but no consideration of similarity analysis. Meanwhile, all studies must use the
historical information to update the current estimation, which needs detailed deduction for the up-
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dated statistics in case of wrong convergence. This article admits this general challenge but turn to
open a novel and simple path. Specifically, we just obtain a sequence of estimators and summarize
the batch-specific estimators by simple average-based aggregation and additional strategy, which
tells us how to integrate all sequential estimators. The proposed strategic aggregation is essentially
motivated by the ”two armed bandit” (TAB) problem, as the prototype of a slot TAB machine (Bell-
man, 1956) with two arms L(left) and R(right), which behaves like two working models under two
treatment groups. Classical TAB is a special type of sequential random sampling-based clinical tri-
als (Feldman, 1962) where one would need to select one treatment from several treatments to be
used for the next patient based on the performances already observed. Popular bandit models in-
clude Bayesian bandit of bandit with the mathematical formulation (Bradt et al., 1956; Gittins et al.,
2011), the Markovian bandits (Gittins, 1979); Bayesian framework examples (Whittle, 1988); Fre-
quentist setup of bandits can refer to Robbins (1952), the extended frequentist examples contain but
not limited to the non-i.i.d. rewards (Perchet & Rigollet, 2013), the combinatorial bandit problem
(Chen et al., 2013), contextual multi-armed bandit (Chen et al., 2021), and upper-confidence-bound
strategy problem by Lai et al. (1985). All applications of bandit model in a wide range of areas
including clinical trials, biological modelling, data processing, internet, and machine learning, see
examples Thompson (1933); Sutton & Barto (2018); Lattimore & Szepesvári (2020); Slivkins et al.
(2019); And Jacko (2019) is based on the sequential dataset where researchers would need to se-
lect one treatment (or action) from several treatments to be used for the next patient based on the
performances already observed.

This article devises the similarity analysis by a test in (1) aiming to examine how far one target task
away from a goal (i.e., the constant c), which is meaningful in online learning for streaming data,
because if we have enough confidence to believe that the goal has been achieved, we can stop the task
in advance. We use models with interpretability, such as individual feature-based methods (linear
regression), supervised models (logistic regression), unsupervised models, which learn the similarity
of the representations and accordingly improve the interpretability of the subsequent algorithms. In
terms of algorithm, this work proposes strategic aggregation learning to summarize all sequential
estimators averagely by a strategy designed by TAB process, where we use the the estimator and its
opposite to denote the respective reward of arm L or arm R at each time, i.e, playing arm L(left) to
obtain the estimator and achieve its opposite form by playing arm R(right). The device of optimal
strategy can refer to Chen et al. (2022), because they propose a asymptotic distribution for the
strategically and averagely aggregated statistics and studied that the strategy must be goal-specific
under a statistical issue, such as estimation or hypothesis testing. Therefore, the task of this work is
the considered one-sided test and aims at explore an optimal strategy for the aggregated test statistic
to attain the most power or lowest type I error.

We list the main contributions and the merits as follows:

• This is the first consideration about the combination of knowledge-driven and data-driven
learning procedures based on a simple reinforcement learning model to construct the test
statistic.

• The proposed online learning is actually speedy, because we summarize the online updates
by the simple average-aggregation and a strategy without access to the historical data.

• The reconstructed representational similarity testing framework is general, because it in-
cludes all models of statistical learning.

• The developed representational similarity test statistic improves the testing power largely
than classical normal distribution-based test statistic.

2 METHODOLOGY

2.1 ONLINE REPRESENTATIONAL SIMILARITY TEST

This article considers a online RST problem for streaming data with a sequence of B data batches,
each arrives sequentially at time point b = 1, . . . , B and the corresponding batch-specific sample
size is nb. Denote the b-th data batch as Db = {Zbi, i = 1, . . . , nb}. Unlike the classical offline
studies, the total sample size N =

∑B
b=1 nb can grow to infinity as B increases and break the

constraint of data storage capacity. Therefore, it may not be feasible to store all the historical data
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up to each time point, instead, we aim to figure out a way to store the information in historical data
with an acceptable storage cost and be able to update the result according to the current arriving data
batch.

The online RST problem in this article would like to evaluate how far one task away from the the
goal the experimenter aims at attaining. Let θ be the true parameter for the representation population
of the task, and c is a known constant denoting pre-specified goal, where the goal c is not smaller
than the true value θ. Then we consider the following RST:

H0 : c− θ ≥ d0 H1 : 0 < c− θ < d0 (1)

where d0 ≥ 0 is a given equivalence margin to determine the distance between the unknown θ
and the goal c. Certainly, the null hypothesis H0 is also equivalent to θ ≤ c − d0, but the reason
that we still use the translational form c − θ ≥ d0 is the technical consideration about the strategic
construction of the test statistic as shown in (2) and (3). The constructed RST is meaningful for the
task of streaming data, because we can stop the online learning procedure in advance if we have
enough confidence to accept a minimum equivalent margin d0 with a significant level α.

2.2 BANDIT INFERENCE LEARNING

Different from classical online learning concentrating on accumulating the historical information
into one statistics, bandit process as a simple model of reinforcement learning introduces a strategic
variable remembering historical information to decide how to integrate current estimation into the
previously summarize statistics, which designs a decision rule for online learning and brings a simple
and speed computation.

Specifically, let θ̂b be the unbiased estimator of θ based on the data set Db and we use the TAB
process to play the arm L to obtain the estimator (i.e., the reward) c− θ̂b or the arm R to achieve its
opposite θ̂b − c, which can been denoted by

Ẑξ
b =

{
ŴL

b = c− θ̂b, if ϑb = 1.

ŴR
b = θ̂b − c, if ϑb = 2.

(2)

Then the TAB process generates a sequence of statistics (i.e., the observed rewards) {Ẑξ
1 , · · · , Ẑ

ξ
B}

under the strategy ξ = {ϑ1, ϑ2, . . . , ϑB}, where ϑb is constructed as ϑb = 2 − I{T ξ
b−1 ≤ 0}

considered by Chen et al. (2022). The proposed bandit inference learning aggregates the statistics
{Ẑξ

1 , · · · , Ẑ
ξ
B} under the defined strategy ξ by the statistics T ξ

b (Chen et al., 2022):

T ξ
b =

1

B

b∑
l=1

Ẑξ
l +

1√
B

b∑
l=1

Ẑξ
l − µξ

l

σ̂l
, 1 ≤ b ≤ B. (3)

where µξ
l = I(ϑl = 1)(d0)+ I(ϑl = 2)(−d0) and σ̂2

l = 1
l

∑l
j=1 v̂ar(θ̂j) that is a valid estimator of

σ2 . T ξ
b can be regarded as a historical statistics determining the decision rule to construct the online

statistics under the strategy ξ. Intuitively, if T ξ
b−1 is positive (negative), TAB process applies the

arm R to generate a negative value with large probability and enforce the test statistic at next time
point b to be close to 0. Next we proceed to state how to update the above test statistic construction
sequentially with historical information properly stored in terms of summary statistics, which is
popularly used in current online learning (Schifano et al., 2016; Luo & Song, 2020). Considering
the structure of T ξ

b , we define two summary statistics Sb
1 and Sb

2:

Sb
1 =

b∑
l=1

Ẑξ
l = Sb−1

1 + Ẑξ
b , Sb

2 =

b∑
l=1

(
Ẑξ
l − µξ

l

)
/σ̂l = Sb−1

2 + (Ẑξ
b − µξ

b)/σ̂b. (4)

The online statistics T ξ
b is updated as follows:

T ξ
b =

1

B
Sb
1 +

1√
B
Sb−1
2 = T ξ

b−1 +
1

B

{
Ẑξ
b +

√
B(Ẑξ

b − µξ
b)

σ̂b

}
(5)
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Then our statistics T ξ
b can be constructed sequentially as follows. When a new data batch Db, b ≥ 2

arrives, we calculate the current reward Ẑξ
b and estimator σ̂b based on the current data set Db, so T ξ

b

can be updated by (5). The current strategy ϑb+1 = 2− I{T ξ
b ≤ 0} can be got too.

And then ϑb+1 determines the next reward Ẑξ
b+1 and the margin µξ

b+1 the null hypothesis used.
Therefore the proposed online strategic test statistic in (5) aligns with the classical online accumu-
lation framework, as it only requires the currently batch-specific estimator and the previously stored
statistics T ξ

b−1 to form the current statistics T ξ
b . Then our final test statistic is

T ξ
B =

1

B

B∑
l=1

Ẑξ
l +

1√
B

B∑
l=1

Ẑξ
l − µξ

l

σ̂l

and the proposed bandit inference learning for obtaining this final test statistic can be displayed as
follows:

Algorithm 1 Test Statistic T ξ
B of Bandit Inference Learning

Input: Sequential data Db (b = 1, . . . , B), d0, c.
Output: T ξ

B

1: Set T ξ
0 = 0

2: for b = 1, . . . , B do
3: Obtaining a estimator θ̂b using data set Db

4: Set reward function ŴL
b = c− θ̂b and ŴR

b = θ̂b − c

5: if T ξ
b−1 ≤ 0 then
Ẑξ
b = ŴL

b and µξ
b = d0. Update T ξ

b−1 to T ξ
b based on (5).

6: else
Ẑξ
b = ŴR

b and µξ
b = −d0. Update T ξ

b−1 to T ξ
b based on (5).

7: end if
8: end for
9: return T ξ

B

Next we use two practical examples to introduce the representational similarity test construction and
the proposed bandit inference learning procedure. The related simulation results of the two examples
are shown in the Appendix.

2.3 SOME EXAMPLES

Example 2.1 (Unsupervised learning) Based on this example, we can determine whether the distri-
bution of independent samples from the data stream is close to a constant. Suppose that the obser-
vation is {Ybi}, i = 1, . . . , nb, b = 1, . . . , B with distribution function F0. The testing problem can
be expressed as

H0 : F0(y)− c > d0 H1 : 0 < c− F0(y) < d0

given the time point b, b = 1, . . . , B, the natural estimators of F0 is given by θ̂b = F̂b(y) =∑nb

i=1 I(Ybi ≤ y)/nb and the variance can be estimated by σ̂b = F̂0(y)
(
1− F̂0(y)

)
/nb.

Example 2.2 (Supervised learning) Suppose that the observations arrive sequentially i.e. {Zbi},
i = 1, . . . , nb, b = 1, . . . , B at a time point b where Zbi = (Ybi,X

⊤
bi )

⊤. Ybi ∈ {0, 1} denotes the
response variable, Xbi ∈ Rp stands for the associated covariates. We consider the logistic regression
model:

P (Y = 1|X) = g(X⊤β) = exp(X⊤β)/{1 + exp(X⊤β)},

with β ∈ Rp. Then, we test the value P (Ybi = 1|Xbi = x) = g(x⊤β) (x is a constant when the
value is determined), i.e.

H0 : g(x⊤β)− c > d0 H1 : 0 < c− g(x⊤β) < d0.
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The natural estimators of g(x⊤β) is given by ĝ(x⊤β̂b) with the corresponding MLE estimators β̂b

based on the current bth data batch Db. Moreover, for the bth data batch, var(g(x⊤β̂b)) can be
approximated by {expx⊤β̂b}2/{1 + exp(x⊤β̂b)}4var(x⊤β̂b) with

var(x⊤β̂b) = x⊤

(
nb∑
i=1

{1− g(X⊤
bi β̂b)}2XbiX

⊤
bi

)−1

x.

3 THEORETICAL RESULTS

3.1 ASYMPTOTIC DISTRIBUTION UNDER THE NULL HYPOTHESIS

The design of T ξ
b in (3) combines the expressions of the large number law and classical central

limit theorem has been proved to be a key technique to explore the central limit theorem because
of the simultaneous consideration of location and scale. More details can refer to Peng (2008)
and Chen & Epstein (2022). Despite using the strategy-driven limit theorem in this paper, which
refers to Chen & Epstein (2022), it is not necessary to consider the center of symmetry of the
function. Additionally, we skillfully construct an opposite reward function based on randomness so
that the proposed strategy is incorporates the “knowledge” from the null hypothesis, which is that
the expectation of the left arm under our proposed strategy is greater than 0 when the null hypothesis
is true. We have applied it for online representative similarity test problem under streaming data.
This is the novelty of Theorem 3.1.

THEOREM 3.1 Let φ ∈ C(R) be the set of all continuous functions on R with finite limits at ±∞,
a even function and monotone on (0,∞). We have

lim
B→∞

{
E
[
φ
(
T ξ
B

)]
− E [φ (σdηB)]

}
= 0 (6)

and
αB =

√
B (d0 − (c− θ)) /σ − (c− θ) , (7)

σd =

√
1 + ((c− θ)− d0)

2
/σ2.

where ηB ∼ S (αB , 0). If Y ∼ S(κ, 0), Y has the density function

fκ(y) =
1√
2π

e−
(|y|−κ)2

2 − κe2κ|y|Φ(−|y| − κ).

According to Chen et al. (2022), the distribution of S(κ, 0) has the following conclusions:

(1) If κ < 0, the image of this distribution is more spike than the corresponding normal distribution.

(2) The distribution is similar to two normal distributions hand in hand under κ > 0.

(3) The distribution becomes the standard normal distribution with κ = 0. In particular, for any
b ∈ R, we have

lim
B→∞

P
(∣∣∣T ξ

B

∣∣∣ ≤ b
)
= lim

B→∞

[
Φ(αB +

b

σd
)− e

2αBb

σd Φ(αB − b

σd
)

]
. (8)

Specially, when c − θ = d0, we have limB→∞{E
[
φ(T ξ

B)
]
− E [φ(ηB)]} = 0, where ηB ∼

S(−d0, 0), which is spike with κ = −d0 < 0. For any 0 < α < 1/2, let zα/2 be critical value of

distribution S(−d0, 0) and satisfies limB→∞ P
(∣∣∣T ξ

B

∣∣∣ > zα/2

)
= α, then zα/2 can be calculated

from the following equation

Φ
(
zα/2 + d0

)
− e−2d0zα/2Φ

(
−zα/2 + d0

)
= 1− α (9)

where Φ denotes the distribution function of the standard normal distribution.

Under the hypothesis H0, i.e. c − θ ≥ d0, we conclude that the limit distribution of T ξ
B becomes

more spike than S(−d0, 0) and H0 will be rejected at the significance level α if the condition
(|T ξ

B | > zα/2) is satisfied.
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3.2 ASYMPTOTIC DISTRIBUTION UNDER THE ALTERNATIVE HYPOTHESIS

To check the power of the proposed test statistic, we consider the alternative hypothesis H1 with
c− θ < d0 in the following corollary. The proposed test statistic improves the testing power largely
than classical normal distribution-based test, which is theoretically examined and illustrated in the
Corollary 3.1 and intuitively showed in Figure 2.

COROLLARY 3.1 Under the same assumptions as Theorem 3.1, we have results:

Under the hypothesis H1 i.e. c − θ < d0, let d = c − θ below. For a fixed large enough B,
from (7), we know αB > 0 and the limit distribution of T ξ

B is a binormal distribution i.e. the
distribution is similar to two normal distributions hand in hand. The power of this test is given by
P (|T ξ

B | > zα/2 | H1), which can be approximately calculated by

1− γ1 = P (|T ξ
B | > zα/2 | H1) ≈ 1− Φ(

zα/2

σd
− αB) + e

2αBzα/2
σd Φ(−

zα/2

σd
− αB)

where
αB =

√
B(d0 − d)/σ − d, σd =

√
1 + (d− d0)2/σ2.

Figure 1: The blue line denotes the density plot of distribution S(−1, 0). The red line denotes the
induced distribution of test statistic T ξ

B with d0 = 1, d = 0.5, B = 9 and σ = 1 on the correctness
of alternative hypothesis H1 in Corollary 3.1.

According to the traditional method of hypothesis testing, one usually uses the strategy ξ′ =

{1, 1, 1, · · · } to obtain a sequence of data {Zξ′

1 , Zξ′

2 , · · · }. The test statistic is

Mξ′

B =
1√
B

B∑
l=1

(Zξ′

l − d0)

σ̂l

Given a significance level α > 0, the occurrence of Mξ′

B < −uα for large enough B will lead to the
rejection of H0 at the significance level α where Φ(uα) = 1− α(uα > 0). Denote d = c− θ, then
for a fixed large enough B, the distributions of Mξ′

B are similar to N (0, 1) + (d− d0)
√
B/σ, that

is,

1− γ2 = P (Mξ′

B < −uα | H1) ≈ Φ(
d0 − d

σ

√
B − uα)

Correspondingly, if H1 is true, the limit distribution of T ξ
B has two peak with the rejection region

(−∞,−zα/2) ∪ (zα/2,∞), inducing a larger power than the distribution of Mξ′

B . The following
simulation shows the property.
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Under different values of d0 with d = 0.5 and σ = 1, Figure 2 plots the approximated powers
of 1 − γ1 and 1 − γ2 corresponding to the proposed strategy test statistic and classical normal-
distribution based test statistic respectively, which confirms the power improvement.

(a) B = 10 (b) B = 30 (c) B = 60

Figure 2: The approximated power of the proposed test statistic T ξ
B and classical normal distribution

based test statistic Mξ′

B , i.e., 1− γ1 and 1− γ2 respectively, are shown above under different values
of d0 with d = 0.5 and σ = 1.

4 SIMULATION STUDIES

4.1 DATA GENERATION DESIGN

The paper contributes to the development of a generalized procedure, which can be applied to a
variety of complex models, for inferring statistical information from streaming data. In this section,
numerical experiments of linear regression model are conducted to check the similarity testing per-
formance of the proposed strategic statistics, as well as examining the correctness of the concluded
theoretical results and other arguments.

Specifically, by the following simulations, we aim to test:

1.Whether the constructed statistics T ξ
B based streaming data can convergent in distribution to the

induced distribution;

2.Whether the proposed test statistics can enhance the testing power in any settings compared with
classical normal distribution-based test statistic (normal statistics (Kang & Kim, 2014)).

Example 4.1 In this example, we consider mean model with

Yi = θ + ϵi

where ϵi from normal distribution with zero mean and Eϵi
2 = σ2, so θ = E(Yi), i.e. c − θ =

c− E(Yi) and var(Yi) = σ2.

Next, we generate B group-specific samples (D1, D2, · · · , DB) under the policy ξ =

{ϑ1, ϑ2, . . . , ϑB} as ϑb = 2 − I{T ξ
b−1 ≤ 0}. And the b-th streaming data samples are denoted

as Db = {Ybi : i = 1, · · · , nb}.

Ẑξ
b =

{
ŴL

b = c−
∑nb

i=1 Ybi/nb, if ϑb = 1.

ŴR
b =

∑nb

i=1 Ybi/nb − c, if ϑb = 2.

Then we generate the test statistic T ξ
b by

T ξ
b =

1

B

b∑
l=1

Ẑξ
l +

1√
B

b∑
l=1

Ẑξ
l − µξ

l

σ̂l
, 1 ≤ b ≤ B,

where µξ
l = I (ϑl = 1) (d0)+I (ϑl = 2) (−d0) , σ̂

2
l =

∑nl

i=1(Yli− θ̂l)
2/nl, and θ̂l =

∑nl

i=1 Yli/nl.
Without loss of generality, in simulation we can use the same sample size across each data batch,
that is, nb ≡ n for b = 1, . . . , B.
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4.2 EVALUATION OF THE RESULTS

Next, we analyze the simulated results of Examples 4.1. With c − θ = d0, Figure 3 (a) elucidates
that the density plot of T ξ

B after 500 replicates nearly approaches that of the distribution S(−d0, 0),
implying the correctness of the deduced asymptotic distribution in Theorem 3.1 under different
settings of d0 = 1; with c − θ < d0, Figure 3 (b) elucidates that the limit distribution of T ξ

B is a
binormal distribution; with c − θ > d0, Figure 3 (c) elucidates that the limit distribution of T ξ

B is
more spike than the distribution S(−d0, 0). With c− θ = d0, Figure 4 elucidates how the empirical
distribution of the test statistic T ξ

B changes as the sample size of each data batch n increases, in terms
of the density plot of the asymptotic distribution consistently approaches the distribution S(−d0, 0).

Tables 1 reports the estimated proportions P (|T ξ
B | > zα/2) after 500 replicates under the considered

critical value zα/2 with significant level α = 0.05, which implies that: the estimated proportions
P (|T ξ

B | > zα/2) can consistently approach that critical value solved by the (9) at the selected sig-
nificant level α and it further shows proposed test statistic is distributed asymptotically with the
distribution S(−d0, 0);

(a) d0 = 1 (b) d0 = 1.1 (c) d0 = 0.99

Figure 3: The estimated density plot of the statistic T ξ
B after 500 replicates (the red line) and the

density plot of distribution S(−d0, 0) (the blue line) are shown above under different d0 in Example
4.1 with c = 0.5, θ = −0.5, n = 100, σ = 1. Specifically, in the plot (a), we have c − θ = d0,
B = 5000; in the plot (b), c− θ < d0, B = 25; in the plot (c), c− θ > d0, B = 5000.

(a) n = 20 (b) n = 50 (c) n = 200

Figure 4: The estimated density plot of the statistic T ξ
B after 500 replicates (the red line) and the

density plot of distribution S(−d0, 0) (the blue line) are shown above under different sample size n
in Example 4.1 with c = 0.5, θ = −0.5, d0 = c− θ = 1, σ = 1, B = 5000.
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Table 1: The null rejection ratio(or size) of testing statistic under 5% significance level in Example
4.1: The estimated propositions P (|T ξ

B | > zα/2) under 500 replications in Example 4.1 with B =
5000, c = 0.5.

n θ σ = 1 σ = 0.5

50
−0.5 0.052 0.058
−1 0.056 0.052
−1.5 0.058 0.066

100
−0.5 0.046 0.060
−1 0.056 0.064
−1.5 0.056 0.060

Then, we check the power performance of the proposed test statistic compared with normal statistic
(Kang & Kim, 2014) in Example 4.1. We consider three designs including various θ corresponding
to different alternative hypothesis H1 , distinct values of standard deviations of error σ, and various
sample size n, and present the simulated results of power performance in Figures 5.

We summarize the following conclusions:

1.Conditional on the alternative hypothesis H1 being true with d0 = 2, c = 1, n = 100 and σ = 1,
the estimated probability of rejecting H0 holds in large values along with various values of −θ under
the proposed test statistic in Figure 5 (a), whilst the normal statistic behaves worse along with value
between θ and c of H1 close to d0;

2.Figure 5 (b) shows a robust performance of proposed online strategy inference about the various
values of σ under hypothesis with c = 1, θ = −1 and n = 100;

3.Figure 5 (c) elucidates that the test statistic is still powerful in the small group with a little obser-
vations under hypothesis with c = 1, θ = −1 and σ = 0.5.

(a) −θ (b) σ (c) n

Figure 5: The power plots of the proposed test statistic T ξ
B (the blue line) and normal statistic (the

red line) in Example 4.1 are shown above under various expectation θ (a), distinct variance σ (b)
and various sample size n (c).

5 DISCUSSION

In this paper, we consider an representational similarity test for online learning and utilize the idea of
TAB model to construct an online updating test statistic. The best testing performance is attained by
making an optimal strategy by the TAB process. Our proposed method is shown to be more powerful
than existing methods based on normal distributed test statistic via theoretical results and numerical
experiments. Intuitively, we gain the statistical power by using a test statistic with more accumulated
density function. Our simulation study and real data analysis demonstrate that the proposed estima-
tor outperforms normal statistic (Kang & Kim, 2014) or other online-updated estimators in terms of
lower type I and II errors. The developed online-updating strategic test statistic and inferences are
applicable for all statistical models.
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A APPENDIX

The following numerical results show the simulated performance of the strategic test statistic in
unsupervised learning and supervised learning models, i.e. Example 2.1 and Example 2.2. Figures 6
and 7 display the images of the distribution of the proposed strategic test statistic T ξ

B under different
sample size compared with the truly induced distribution S(−d0, 0) in the Theorem 3.1, which
implies that the empirical distribution (red line) consistently approximate the population distribution
(blue line) of test statistic. Table 2 and 3 show the estimated significant level of the test statistic in
Examples 2.1 and Examples 2.2 under the true significance level 5%.

Table 2: The null rejection ratio (or size) of testing statistic under 5% significance level in Example
2.1: The estimated propositions P

(∣∣∣T ξ
B

∣∣∣ > zα/2

)
under 500 replications in Example 2.1 with c =

0.5, B = 1000. F0(y) is normal distribution function with a mean of µ and a variance of σ0.

.

n µ σ0 = 2 σ0 = 1

50
0 0.053 0.055

−0.5 0.053 0.049
−1 0.067 0.067

100
0 0.053 0.051

−0.5 0.058 0.051
−1 0.047 0.057
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Table 3: The null rejection ratio (or size) of testing statistic under 5% significance level in Example
2.2: The estimated propositions P

(∣∣∣T ξ
B

∣∣∣ > zα/2

)
under 500 replications in Example 2.2 with c =

0.1, B = 1000, β = (µ, 2),x = (1, 1).

n µ β = (µ, 2)

800
1 0.050
1.2 0.048
1.4 0.058

1000
1 0.068
1.2 0.052
1.4 0.068

(a) n = 50 (b) n = 100 (c) n = 200

Figure 6: The estimated density plot of the statistic T ξ
B after 500 replicates (the red line) and the

density plot of distribution S(−d0, 0) (the blue line) are shown above under different sample size n
in Example 2.1 with c = 0.5, B = 1000, F0(x) is normal distribution function with a mean of −1.5
and a variance of 2.

(a) n = 500 (b) n = 800 (c) n = 1000

Figure 7: The estimated density plot of the statistic T ξ
B after 500 replicates (the red line) and the

density plot of distribution S(−d0, 0) (the blue line) are shown above under different sample size n
in Example 2.2 with c = 0.1, B = 1000.

Proof of Theorem 3.1: Let {Bs}s≥0 be the standard Brownian motion on (Ω,F , P ) and (F∗
s )s≥0

be the natural filtration generated by {Bs}s≥0. For any integer m ≥ 1, let Cm
b (R) denote the set of

functions on R that have bounded derivatives up to order m. Let φ ∈ C3
b (R) be a even function, for

any α ∈ R, β > 0 and t ∈ [0, 1), we define H1(x) = φ(x), and

Ht(x) =

∫
R
φ(z)qα,β(t, x, z)dz (10)
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where

qα,β(t, x, z) =
1

β
√
2π(1− t)

e
− (x−z)2−2αβ(1−t)(|z|−|x|)+α2β2(1−t)2

2(1−t)β2 −α

β
e

2α|z|
β Φ

(
− |z|+ |x|
β
√
1− t

− α
√
1− t

)
.

Here the dependence of Ht on φ, α, β and c is not explicitly noted for simplicity. It is clear from the
definition that

H0(0) = E[φ(βη)]

where η ∼ B(α, 0) is a spike distribution. The following lemma lists some analytic properties of the
family {Ht(x)}t∈[0,1].

Lemma 1.1. Let the number of dots on top of a function denote the same order derivatives with
respect to x.

(1) For each fixed t,Ht(x) ∈ C2
b (R). In addition, the first and second order derivatives of Ht(x) are

uniformly bounded for all 0 ≤ t ≤ 1 and x.

(2) The family
{
Ḧt(x)

}
t∈[0,1]

is uniformly Lipschitz, i.e., there exists a constant L, independent

with t, such that ∣∣∣Ḧt (x1)− Ḧt (x2)
∣∣∣ ≤ L |x1 − x2| , x1, x2 ∈ R.

(3) Ht(x) is an even function. Furthermore, if for any x ∈ R,

sgn(φ̇(x)) = ± sgn(x),

then

sgn
(
Ḣt(x)

)
= ± sgn(x), x ∈ R

(4) If sgn(φ̇(x)) = ± sgn(x) for all x ∈ R, then

lim
n→∞

n∑
m=1

sup
x∈R

∣∣∣∣Hm−1
n

(x)−Hm
n
(x)∓ α

n
|Ḣm

n
(x)| − β2

2n
Ḧm

n
(x)

∣∣∣∣ = 0.

Proof: We prove the lemma in numerical order.

(1) For t = 1, H1(x) ≡ φ(x) and the result is trivial. Next we assume that 0 ≤ t < 1. Since φ is an
even function, with the definition of Ht(x), it follows by direct calculation that

Ḣt(x) =

∫ ∞

0

sgn(x)

β
√

2π(1− t)
φ̇(z)e

− (z−αβ(1−t)−|x|)2

2(1−t)β2

[
1− e

− 2|x|z
(1−t)β2

]
dz (11)

Ḧt(x) =

∫ ∞

0

1

β
√
2π(1− t)

φ̈(z)e
− (z−αβ(1−t)−|x|)2

2(1−t)β2

[
1 + e

− 2|x|z
(1−t)β2

]
dz

+

∫ ∞

0

2α

β2
√

2π(1− t)
φ̇(z)e

− (z+αβ(1−t)+|x|)2

2(1−t)β2 e
2αz
β dz

=

∫ ∞

0

1

β
√
2π(1− t)

φ̈(z)e
− (z−αβ(1−t)−|x|)2

2(1−t)β2

[
1 + e

− 2|x|z
(1−t)β2

]
dz

+

∫ ∞

0

2α

β2
√

2π(1− t)
φ̇(z)e

− (z−αβ(1−t)+|x|)2

2(1−t)β2 e−
2α|x|

β dz

Since φ ∈ C3
b (R), we conclude that Ht(x) ∈ C2

b (R), and the first and second order derivatives of
Ht(x) are uniformly bounded for all t and x.
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(2) For x < 0, we have
...
Ht(x) =

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−αβ(1−t)+x)2

2(1−t)β2

[
e

2xz
(1−t)β2 − 1

]
dz

+

∫ ∞

0

4α

β3
√
2π(1− t)

[αφ̇(z) + βφ̈(z)]e
− (z+αβ(1−t)−x)2

2(1−t)β2 e
2αz
β dz

=

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−αβ(1−t)+x)2

2(1−t)β2

[
e

2xz
(1−t)β2 − 1

]
dz

+

∫ ∞

0

4α

β3
√
2π(1− t)

[αφ̇(z) + βφ̈(z)]e
− (z−αβ(1−t)−x)2

2(1−t)β2 e
2αx
β dz.

For x > 0, we have
...
Ht(x) =

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−αβ(1−t)−x)2

2(1−t)β2

[
1− e

− 2xz
(1−t)β2

]
dz

−
∫ ∞

0

4α

β3
√

2π(1− t)
[βφ̈(z) + αφ̇(z)]e

− (z+αβ(1−t)+x)2

2(1−t)β2 e
2αz
β dz

=

∫ ∞

0

1

β
√
2π(1− t)

...
φ (z)e

− (z−αβ(1−t)−x)2

2(1−t)β2

[
1− e

− 2xz
(1−t)β2

]
dz

−
∫ ∞

0

4α

β3
√

2π(1− t)
[βφ̈(z) + αφ̇(z)]e

− (z−αβ(1−t)+x)2

2(1−t)β2 e−
2αx
β dz

Since φ ∈ C3
b (R), it follows that

...
Ht(x) is uniformly bounded for all t and x ̸= 0. For x = 0, the

third order left and right derivatives of Ht(x) can be shown to exist and are also bounded uniformly
in t. Thus by the mean value theorem one can find a constant L, independent with t, such that for
any x1, x2 ∈ R, ∣∣∣Ḧt (x1)− Ḧt (x2)

∣∣∣ ≤ L |x1 − x2| .

(3) It follows by direct calculation that for any x ∈ R,

Ht(x) =

∫
R
φ(z)qα,β(t, x, z)dz =

∫
R
φ(z)qα,β(t,−x,−z)dz

=

∫
R
φ(z)qα,β(t,−x, z)dz

= Ht(−x)

That is Ht is an even function. By (11) we have that for any x ∈ R,

sgn
(
Ḣt(x)

)
= ± sgn(x) when sgn(φ̇(x)) = ± sgn(x)

(4) We only prove the case sgn(φ̇(x)) = sgn(x). The other case follows by similar arguments. For
any (t, x) ∈ [0, 1]× R, let {Y t,x

s }s∈[t,1] denote the solution of the SDE{
dY t,x

s = α sgn (Y t,x
s ) ds+ dBs, s ∈ [t, 1]

Y t,x
t = x

Although the drift coefficient is discontinuous, this equation does have a unique strong solution
(Mel’nikov, 1979). Fortunately, {Y t,x

s }s∈[t,1] has an explicit probability density function, which
can be denoted by

qα(t, x; s, z) =
1√

2π(s− t)
e−

(x−z)2−2α(s−t)(|z|−|x|)+α2(s−t)2

2(s−t) −αe2α|z|
∫ ∞

|x|+|z|+α(s−t)

1√
2π(s− t)

e−
u2

2(s−t) du

Then the basic function Ht can also be denoted by

Ht(x) = E
[
φ
(
βY

t, xβ
1

)]
. (12)
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Follows from the Markov property of (Y t,x
s ), we have for any h ∈ [0, 1− t],

Ht(x) = E
[
φ
(
βY

t, xβ
1

)]
= E

[
E
[
φ
(
βY

t, xβ
1

)
| F∗

t+h

]]
= E

[
Ht+h

(
βY

t, xβ
t+h

)]
.

Applying the Markov property and (12), we have for any 1 ≤ m ≤ n,

Hm−1
n

(x) = E

[
Hm

n

(
βY

m−1
n , xβ

m
n

)]
.

By Itô’s formula, we have

Hm
n

(
βY

m−1
n , xβ

m
n

)
= Hm

n
(x)+

∫ m
n

m−1
n

Ḣm
n

(
βY

m−1
n , xβ

s

)
βdY

m−1
n , xβ

s +
β2

2

∫ m
n

m−1
n

Ḧm
n

(
Y

m−1
n ,x

s

)
ds.

This combined with (3) implies that

Hm−1
n

(x)

=E

[
Hm

n
(x) +

∫ m
n

m−1
n

Ḣm
n

(
βY

m−1
n , xβ

s

)
βdY

m−1
n , xβ

s +
β2

2

∫ m
n

m−1
n

Ḧm
n

(
βY

m−1
n , xβ

s

)
ds

]

=E

[
Hm

n
(x) +

∫ m
n

m−1
n

αḢm
n

(
βY

m−1
n , xβ

s

)
sgn

(
βY

m−1
n , xβ

s

)
ds+

β2

2

∫ m
n

m−1
n

Ḧm
n

(
βY

m−1
n , xβ

s

)
ds

]

=E

[
Hm

n
(x) +

∫ m
n

m−1
n

α

∣∣∣∣Ḣm
n

(
βY

m−1
n , xβ

s

)∣∣∣∣ ds+ β2

2

∫ m
n

m−1
n

Ḧm
n

(
βY

m−1
n , xβ

s

)
ds

]

Taking the supremum over x, we obtain
n∑

m=1

sup
x∈R

∣∣∣Hm−1
n

(x)−Hm
n
(x)− α

n

∣∣∣ Ḣm
n
(x)

∣∣∣∣−β2

2n
Ḧm

n
(x)

∣∣∣∣
≤

n∑
m=1

sup
x∈R

E

[∫ m
n

m−1
n

|α|
∣∣∣∣Ḣm

n

(
βY

m−1
n , xβ

s

)
− Ḣm

n
(x)

∣∣∣∣ ds
+
1

2

∫ m
n

m−1
n

∣∣∣∣Ḧm
n

(
βY

m−1
n , xβ

s

)
− Ḧm

n
(x)

∣∣∣∣ ds
]

≤
n∑

m=1

sup
x∈R

C

n
E

 sup
s∈[m−1

n ,mn ]

∣∣∣∣βY m−1
n , xβ

s − x

∣∣∣∣


≤
n∑

m=1

Cβ

n
E

 |α|
n

+ sup
s∈[m−1

n ,mn ]

∣∣∣Bs −Bm−1
n

∣∣∣


≤ Cβ

(
|α|
n

+
1√
n

)
where C is a constant depending only on α,L and the bound of Ḧt(x). This concludes the proof of
the lemma.

Lemma 1.2. Let φ ∈ C3
b (R) be an even function, and {Ht(x)}t∈[0,1] be defined as in Lemma 1.1.

Define functions {Lm,B(x)}Bm=1 and
{
L̂m,B(x)

}B

m=1
by

Lm,B(x) = Hm
B
(x) +

d

B

∣∣∣Ḣm
B
(x)
∣∣∣+ 1

2B
Ḧm

B
(x), x ∈ R, (13)

L̂m,B(x) = Hm
B
(x)− d

B

∣∣∣Ḣm
B
(x)
∣∣∣+ 1

2B
Ḧm

B
(x), x ∈ R. (14)
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Under the assumption that µ1 − µ0 = d > d0, let {ξ : B ≥ 1} be the strategies defined by section
3, then the followings hold.

(1) If sgn(φ̇(x)) = − sgn(x) for all x ∈ R, then

lim
B→∞

B∑
m=1

∣∣∣E [Hm
B

(
T ξ
m,B

)]
− E

[
Lm,B

(
T ξ
m−1,B

)]∣∣∣ = 0,

(2) If sgn(φ̇(x)) = sgn(x) for all x ∈ R, then

lim
B→∞

B∑
m=1

∣∣∣E [Hm
B

(
T ξ
m,B

)]
− E

[
L̂m,B

(
T ξ
m−1,B

)]∣∣∣ = 0

Proof: Since the proofs of (1) and (2) are similar, we only give the proof of (1). For any ξ ∈ Θ, T ∈
N+and 1 ≤ m ≤ B, set

Γ(m,B, ξ) = Hm
B

(
T ξ
m−1,B

)
+ Ḣm

T

(
T ξ
m−1,B

)(Zξ
m

B
+

Z̄ξ
m√
B

)
+ Ḧm

B

(
T ξ
m−1

) (Z̄ξ
m

)2
2B

where Z̄ξ
m =

(
Zξ
m − µξ

i

)
/σ̂f . Now we prove (1) in two steps.

Step 1: for any ξ ∈ Θ, we have

lim
B→∞

B∑
m=1

∣∣∣E [Hm
B

(
T ξ
m,B

)]
− E[Γ(m,T, ξ)]

∣∣∣ = 0. (15)

In fact, by (1) and (2) of Lemma 1.1, there exists a constant C > 0 such that

sup
t∈[0,1]

sup
x∈R

∣∣∣Ḧt(x)
∣∣∣ ≤ C, sup

t∈[0,1]

sup
x,y∈R,x ̸=y

∣∣∣Ḧt(x)− Ḧt(y)
∣∣∣

|x− y|
≤ C.

It follows from Taylor’s expansion that for any ε > 0, there exists δ > 0 (depends only on C and ε),
such that for any x, y ∈ R, and t ∈ [0, 1],∣∣∣∣Ht(x+ y)−Ht(x)− Ḣt(x)y −

1

2
Ḧt(x)y

2

∣∣∣∣ ≤ εI{|y|<δ} + C|y|2I{|y|≥δ}. (16)

For any 1 ≤ m ≤ B, taking

x = T ξ
m−1,B , y = Zξ

mB + Z̄ξ
m/

√
B

in (16), we obtain
B∑

m=1

E
[∣∣∣Hm

B

(
T ξ
m,B

)
− Γ(m,B, ξ)

∣∣∣]

≤ ε+
C

2

B∑
m=1

E

[∣∣∣∣Zξ
m

B

∣∣∣∣2 + 2

∣∣∣∣Zξ
m

B

∣∣∣∣ ∣∣∣∣ Z̄ξ
m√
B

∣∣∣∣
]

≤ ε+
3C

2

B∑
m=1

E

[∣∣∣∣Zξ
m

B

∣∣∣∣2 + 2

∣∣∣∣Zξ
m

B

∣∣∣∣ ∣∣∣∣ Z̄ξ
m√
B

∣∣∣∣
]

+C

B∑
m=1

E

[∣∣∣∣ Z̄ξ
m√
B

∣∣∣∣2 I{∣∣∣∣Z
ξ
m
B +

Z̄
ξ
m√
B

∣∣∣∣≥δ

}
]

=: ε+∆1
B +∆2

B
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For each m ≥ 1, we define the σ-field

Hm = σ
{
WL

1 ,WR
1 , · · · ,WL

m,WR
m

}
and set

H0 = {∅,Ω}

then we have

E
[∣∣Zξ

m

∣∣2] = E
[∣∣wL

m

∣∣2 I{ϑm=1} +
∣∣wR

m

∣∣2 I{ϑm=2}

]
= E

[
I{ϑm=1}E

[∣∣WL
m

∣∣2 | D,Hm−1

]
+ I{ϑm=2}E

[∣∣WR
m

∣∣2 | D,Hm−1

]]
= E

[
(µ̂1 − µ̂0)

2
+ σ̂2

f

]
,

and

E
[∣∣Z̄ξ

m

∣∣2] = E
[
E
[∣∣Z̄ξ

m

∣∣2 | D,Hm−1

]]
= 1

As a result, we conclude that

∆1
B =

3C

2

B∑
m=1

E

[∣∣∣∣Zξ
m

B

∣∣∣∣2 + 2

∣∣∣∣Zξ
m

B

∣∣∣∣ ∣∣∣∣ Z̄ξ
m√
B

∣∣∣∣
]

=
3C

2B
E
[
(µ̂1 − µ̂0)

2
+ σ̂2

f

]
+

3C√
B
E
[∣∣Zξ

m

∣∣ ∣∣Z̄ξ
m

∣∣]
≤ 3C

2B
E
[
(µ̂1 − µ̂0)

2
+ σ̂2

f

]
+

3C√
B
E
[∣∣Zξ

m

∣∣2] 1
2

=
3C

2B
E
[
(µ̂1 − µ̂0)

2
+ σ̂2

f

]
+

3C√
B
E
[
(µ̂1 − µ̂0)

2
+ σ̂2

f

] 1
2

→ 0, as n,B → ∞

On the other hand, we have

∆2
B = C

B∑
m=1

E

[∣∣∣∣ Z̄ξ
m√
B

∣∣∣∣2 I{∣∣∣∣Z
ξ
m
B +

Z
ξ
m√
B

∣∣∣∣≥δ

}
]

≤ 2CE

[∣∣∣∣WL
1 − µ̂1 + µ̂0

σ̂f

∣∣∣∣2 I
∣∣∣∣WL

1
B +

WL
1 −µ̂1+µ̂0√

σ̄σ̂f

∣∣∣∣≥δ

]

→ 0, as n,B → ∞.

Then we complete the proof of (15).

Step 2: for the strategy ξ given in section 2.2, we have

lim
B→∞

B∑
m=1

∣∣∣E [Γ (m,B, ξ)]− E
[
Lm,B

(
T ξ
m−1

)]∣∣∣ = 0.

Note that

E
[
Zξ
m | D,Hm−1

]
= I{ϑm=1} (µ̂1 − µ̂0) + I{ϑm=2} (µ̂0 − µ̂1)

E
[(
Z̄ξ
m

)2 | D,Hm−1

]
= 1
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then we have
B∑

m=1

∣∣∣E [Γ (m,B, ξ)]− E
[
Lm,B

(
T ξ
m−1

)]∣∣∣
=

B∑
m=1

| E
[
E
[
Γ (m,B, ξ)− Lm,B

(
T ξ
m−1

)
| D,Hm−1

]]]
|

=
1

B

B∑
m=1

∣∣∣E [Ḣm
B

(
T ξ
m−1

) (
I{ϑm=1} (µ̂1 − µ̂0) + I{ϑm=2} (µ̂0 − µ̂1)

)
− d

∣∣∣Ḣm
B

(
T ξ
m−1

)∣∣∣]∣∣∣
=

1

B

B∑
m=1

∣∣∣E [(µ̂1 − µ̂0 − d)
∣∣∣Ḣm

B

(
T ξ
m−1

)∣∣∣]∣∣∣
≤CE [|µ̂1 − µ̂0 − d|] → 0, as n → ∞

Lemma 1.3. Let φ ∈ C3
b (R) be an even function, and {Ht(x)}t∈[0,1] be defined as in (10). Define

functions
{
L∗
m,B(x)

}B
m=1

and
{
L̂∗
m,B(x)

}B

m=1
by

L∗
m,B(x) = Hm

B
(x) +

d̂+
√
B
(
d̂− d0

)
/σ̂f

B

∣∣∣Ḣm
B
(x)
∣∣∣+ σ̂2

f +
(
d̂− d0

)2
2Bσ̂2

f

Ḧm
B
(x), x ∈ R,

L̂∗
m,B(x) = Hm

B
(x)−

d̂+
√
B
(
d̂− d0

)
/σ̂f

B

∣∣∣Ḣm
B
(x)
∣∣∣+ σ̂2

f +
(
d̂− d0

)2
2Bσ̂2

f

Ḧm
B
(x), x ∈ R.

Let {ξ : T ≥ 1} be the strategies defined by section 2.2, then the followings hold.

(1) If sgn(φ̇(x)) = − sgn(x) for all x ∈ R, then

lim
B→∞

B∑
m=1

∣∣∣E [Hm
B

(
T ξ
m

)]
− E

[
L∗
m,B

(
T ξ
m−1

)]∣∣∣ = 0

(2) If sgn(φ̇(x)) = sgn(x) for all x ∈ R, then

lim
B→∞

B∑
m=1

∣∣∣E [Hm
B

(
T ξ
m

)]
− E

[
L̂∗
m,B

(
T ξ
m−1

)]∣∣∣ = 0

Proof: Since the proofs of (1) and (2) are similar, we only give the proof of (1). We continue use the
notations in the proof of Lemma 1.2. With the result of (15), which still holds under the assumption
that µ1 − µ0 = d < d0, we only need to show

E [Γ (m,B, ξ)] = E
[
L∗
m,B

(
T ξ
m−1

)]
, for any 1 ≤ m ≤ B

Under the hypothesis µ1 − µ0 = d < d0, we have

E
[
Zξ
m | D,Hm−1

]
= I{ϑm=1}d̂+ I{ϑm=2}d̂

E
[(
Z̄ξ
m

)2 | D,Hm−1

]
= 1 +

(
d̂− d0

)2
σ̂2
f

then we obtain

E [Γ (m,B, ξ)]− E
[
L∗
m,B

(
T ξ
m−1

)]
=E

[
Hm

B

(
T ξ
m−1

)
+ Ḣm

B

(
T ξ
m−1

)(Zξ,n
m

B
+

Z̄ξ
m√
B

)
+

1

2
Ḧm

B

(
T ξ
m−1

)( Z̄ξ
m√
B

)2
]

− E

Hm
B

(
T ξ
m−1

)
+

d̂+
√
B
(
d̂− d0

)
/σ̂f

B

∣∣∣Ḣm
B

(
T ξ
m−1

)∣∣∣+ σ̂2
f +

(
d̂− d0

)2
2Bσ̈2

f

(
Ḧm

B

(
T ξ
m−1

))
=0.
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Proof of Theorem 3.1: We only give the proof of part (a) here. Part (b) can be obtained similarly.

Let φ ∈ C(R) be an even function. The result is clear if φ is globally constant. Thus we assume
that φ is not a constant function. We only give the proof for the case that φ is decreasing on (0,∞),
when φ is increasing on (0,∞) it can be proved similarly. Assume that φ is decreasing on (0,∞).
For any h > 0, define the function φh by

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy.

By the Approximation Lemma in Feller (2008), we have that

lim
h→0

sup
x∈R

|φ(x)− φh(x)| = 0. (17)

It follows from direct calculation that

φh(x) =

∫ ∞

−∞

1√
2π

φ(x+ hy)e−
y2

2 dy

=

∫ ∞

−∞

1√
2π

φ(−x− hy)e−
y2

2 dy

=

∫ ∞

−∞

1√
2π

φ(−x+ hy)e−
y2

2 dy

= φh(−x)

Thus φh is also an even function. In addition, we have

φ̇h(x) =

∫ ∞

−∞

1√
2πh3

φ(x+ y)ye−
y2

2h2 dy

=

∫ ∞

0

1√
2πh3

φ(y + x)ye−
y2

2h2 dy +

∫ 0

−∞

1√
2πh3

φ(y + x)ye−
y2

2h2 dy

=

∫ ∞

0

1√
2πh3

(φ(y + x)− φ(y − x))ye−
y2

2h2 dy

Since φ is decreasing on (0,∞), it follows that

sgn (φ̇h(x)) = − sgn(x)

In the remaining proof of this theorem, we continue to use {Ht(x)}t∈[0,1] to denote the functions

defined in (10) with φh in place of φ and α = −d0, β = 1 there. Let {Lm,B(x)}Tm=1 be functions
defined in (13) with {Ht(x)}t∈[0,1] here. Let η ∼ B(−d, 0) be a spike distribution,

by direct calculation we obtain

E
[
φh

(
T ξ
B

)]
− E [φh(η)]

=E
[
H1

(
T ξ
B

)]
−H0(0)

=

B∑
m=1

{
E
[
Hm

B

(
T ξ
m,B

)]
− E

[
Hm−1

B

(
T ξ
m−1

)]}
=

B∑
m=1

{
E
[
Hm

B

(
T ξ
m,B

)]
− E

[
Lm,B

(
T ξ
m−1,B

)]}
+

B∑
m=1

{
E
[
Lm,B

(
T ξ
m−1,B

)]
− E

[
Hm−1

B

(
T ξ
m−1,B

)]}
=I1B,n + I2B,n.
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An application of Lemma 1.2 implies that
∣∣I1B,n

∣∣→ 0 as n → ∞ and B → ∞. It follows from (4)
in Lemma Lemma 7.1 that∣∣I2B,n

∣∣ ≤ B∑
m=1

E
[∣∣∣Lm,B

(
T ξ
m−1,B

)
−Hm−1

B

(
T ξ
m−1,B

)∣∣∣]
≤

B∑
m=1

sup
x∈R

∣∣∣Lm,B(x)−Hm−1
B

(x)
∣∣∣

=

B∑
m=1

sup
x∈R

∣∣∣∣Hm−1
B

(x)−Hm
B
(x)− d

T

∣∣∣∣ Ḣm
B
(x)

∣∣∣∣− 1

2B
Ḧm

B
(x)

∣∣∣∣
→ 0, as B → ∞

which implies that
lim
h→0

lim
B→∞

∣∣∣E [φh

(
T ξ
B

)]
− E [φh(η)]

∣∣∣ = 0. (18)

Putting together (17) and (18), we have

lim
B→∞

∣∣∣E [φ(T ξ
B

)]
− E[φ(η)]

∣∣∣
≤ lim

h→0
lim

B→∞

∣∣∣E [φ(T ξ
B

)]
− E

[
φh

(
T ξ
B

)]∣∣∣
+ lim

h→0
lim

B→∞

∣∣∣E [φh

(
T ξ
B

)]
− E [φh(η)]

∣∣∣
+ lim

h→0
|E [φh(η)]− E[φ(η)]|

=0.

Then we complete the proof.
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