
Agent Self-Assessment:
Determining Policy Quality Without Execution

Alexander Hans
Neuroinformatics and Cognitive Robotics Lab

Ilmenau University of Technology

Ilmenau, Germany

alexander.hans.ext@siemens.com

Siegmund Duell
Machine Learning Group

Berlin Institute of Technology

Berlin, Germany

duell.siegmund.ext@siemens.com

Steffen Udluft
Intelligent Systems and Control

Siemens AG, Corporate Technology

Munich, Germany

steffen.udluft@siemens.com

Abstract—With the development of data-efficient reinforce-
ment learning (RL) methods, a promising data-driven solution
for optimal control of complex technical systems has become
available. For the application of RL to a technical system, it is
usually required to evaluate a policy before actually applying
it to ensure it operates the system safely and within required
performance bounds. In benchmark applications one can use
the system dynamics directly to measure the policy quality. In
real applications, however, this might be too expensive or even
impossible. Being unable to evaluate the policy without using
the actual system hinders the application of RL to autonomous
controllers. As a first step toward agent self-assessment, we
deal with discrete MDPs in this paper. We propose to use the
value function along with its uncertainty to assess a policy’s
quality and show that, when dealing with an MDP estimated
from observations, the value function itself can be misleading.
We address this problem by determining the value function’s
uncertainty through uncertainty propagation and evaluate the
approach using a number of benchmark applications.

Index Terms—reinforcement learning, robustness, autonomous
agent, self-assessment, policy quality, Markov decision processes,
uncertainty propagation

I. Introduction

Reinforcement learning (RL) [1] is the machine learning

answer to the optimal control problem. In the last decades

RL algorithms have evolved to a viable alternative to classical

control approaches. Since they are data-driven, using actual

observations of the environment to be controlled, they are

also applicable to problems where an analytical description

of the system is unavailable or inaccurate. Moreover, they are

able to adapt the solution to changing characteristics of the

environment, which might be introduced by wear. Arguably

the most important step on the way of making RL applicable

to complex technical control tasks, e.g., combustion process

tuning [2] and gas turbine control [3], was the development of

data-efficient methods such as least-squares policy iteration

[4], tree-based [5] and neural [6] fitted Q-iteration (FQI),

neural rewards regression [7], or the recurrent control neural

network [8]. Data-efficiency is crucial as observations are

expensive because they are time-consuming to generate and

arbitrary exploration is usually not permitted. Most methods

attain data-efficiency through re-use of observation tuples

[9], which is easiest to do in batch-mode, where not every

observations is used immediately to update the policy currently

executed, but the full batch of all observations is used offline

to generate a new policy. For many technical control tasks

it is adequate to use batch-mode RL—observations of the

system from operation with previous controllers are often

available and the policy is not updated continuously but only

when a sufficient number of new observations leading to a

substantially different policy are available.

However, data-efficiency is not sufficient. In order to im-

plement RL for an autonomously working controller, more is

needed. First, a suitable algorithm must be selected. Many

algorithms are influenced by a number of parameters. So as a

second step, the parameters have to be tuned for the problem

at hand. Third, for algorithms employing approximators with

non-convex error functions and using stochastic optimization,

e.g., neural networks, it is often advisable to monitor the

learning process, tune parameters, and possibly re-run the

learning algorithm. When finally a policy is found, before

actually applying it to the real system, it must be evaluated to

ensure its quality. In benchmark applications, this evaluation

can easily be done using the environment itself. For a real-

world application, however, this is usually not possible, as

the policy might turn out to be insufficient, leading to an

undesirable decrease of performance or even damage the

system while being evaluated. As an alternative, one could

use a simulation, but therefore such a simulation must be

available and model the real system accurately enough to allow

conclusions about the policy’s performance on the real system.

Instead of actually executing the policy to evaluate it, we

are looking for methods to inspect a policy without requiring

execution. The obvious indicator of policy performance is the

value function. It should give the expected discounted future

reward when following that policy. However, if the knowledge

of the environment is limited, the estimates of the underlying

Markov decision process’s (MDP) parameters might lead to

wrong conclusions and thus a flawed value function that does

not reflect the true performance of the policy on the real MDP.

We will illustrate that problem and propose the usage of the

value function’s uncertainty as a remedy. The uncertainty can

be determined by uncertainty propagation, which in the context

of RL has previously been used for quality assurance [10], [11]

and exploration [12].

To the best of our knowledge, so far only few works related

�����������������	��	
���

���
�������

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

to the issue of self-assessment in RL exist. There are works

concerned with the selection of a suitable policy. Gabel and

Riedmiller [13] address the problem of policy degradation

in NFQ by calculating a sample of the optimal Q-function

tabularly and comparing that with the neural representation.

They conclude that the closer the match, the better the policy.

Migliavacca et al. [14] propose fitted policy search, a direct

policy search method that uses an FQI-like approach to evalu-

ate candidate policies. Instead of evaluating the policy on the

real system or a simulation, they use fitted policy evaluation to

determine the value function of the candidate policy using that

policy and a set of observations of the system. Surprisingly, the

resulting value function was sufficient to select good policies

in this application. According to our experience with neural

FQI, it is in general not possible to reliably reason about the

quality of a policy using solely a single value function.

As a first step, this paper deals with discrete MDPs. We

show that the naïve approach of comparing value functions

can fail and how the incorporation of uncertainty can help to

overcome this problem.

II. Preliminaries

In RL one is interested in finding a policy π : S �→ A that

moves an agent optimally in an environment assumed to be a

Markov decision process (MDP) M := (S , A, P,R) with a state

space S , a set of possible actions A, the system dynamics,

defined as probability distribution P : S × A × S �→ [0, 1],

which gives the probability of reaching state s′ by executing

action a in state s, and a reward function R : S × A × S �→ R,

which determines the reward expectation for a given transition.

Moving the agent optimally means maximizing the value

function

Vπ(s) = Es′
[
R(s, a, s′) + γVπ(s′)

]
(1)

=
∑

s′
P(s′|s, a)

[
R(s, a, s′) + γVπ(s′)

]
, (2)

where γ ∈ [0, 1] is the discount factor. Often a so-called Q-

function Qπ(s, a) is utilized that gives the expected discounted

reward when choosing action a in state s and afterward

following policy π. The Q-function for the optimal policy

Qπ
∗
= Q∗ is given by a solution of the Bellman optimality

equation [15]

Q∗(s, a) = Es′
[
R(s, a, s′) + γV∗(s′)

]
(3)

= Es′
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(4)

=
∑

s′
P(s′|s, a)

[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
. (5)

From Q∗ the optimal policy follows as π∗(s) =

arg maxa Q∗(s, a), where π∗ is a deterministic policy.

The Bellman equation can be used as an update equation

that allows finding the value function for a specific policy (Vπ)
or the optimal policy (V∗) using dynamic programming [15].

If the parameters of the MDP are not known, they can be

estimated from observations. This is the setting we deal with

in this paper.

When we talk about the performance of a policy, we are

referring to the mean reward the agent receives per step when

executing the policy, i.e., when evaluating a policy for n steps

and collecting immediate rewards rt, t = 1, 2, . . . , n, the mean

reward of that evaluation is r̄ = 1/n
∑n

t=1 rt.

III. Value Function Based Self-Assessment

If the true value function of a policy is available, the obvious

solution for self-assessment is the usage of the value function

as indicator of policy quality. The expected return of a policy

π is then given as

Jμ(π) =
∑
s∈S
μ0(s)Vπ(s), (6)

where μ0(s) is the probability of starting in s and Vπ the value

function of π. We found the mean value, i.e.,

J(π) = V̄π =
1

|S |
∑
s∈S

Vπ(s), (7)

to be a good alternative and use that for our experiments

(Sec. V). Given a set of policies, with J(π) it is possible to

select the best m policies. Likewise, the user can specify a

minimum required return Jmin. In an autonomous system a

new policy π is then only applied if J(π) ≥ Jmin.

Unfortunately, calculating the true value function requires

exact knowledge of the MDP’s state-transition probabilities

and reward function. Usually those have to be estimated

from observations. When dealing with stochastic MDPs, the

estimates can be flawed. As an example, consider the simple

two-state MDP illustrated in fig. 1. The optimal policy would

in state 1 execute action 1 to remain in that state and receive

a reward of 1, while in state 2 it would execute action 2 to go

to state 1. If, however, only a limited set of observations of

that MDP is available, e.g., generated by random exploration,

chances are that in state 2 only the self-transition giving a

reward of 2 was observed. When using the simple mean as re-

ward estimator, this would lead to an estimate of R̂(2, 1, 2) = 2.

A policy determined using those estimators would always go to

state 2 and execute action 1 there, assuming V̂π(2) = 2/(1−γ),
while the true value is Vπ(2) = −5/(1 − γ). When comparing

policies based on the value function, the bad policy would

appear better than the optimal one. The problem here is that

the estimators are used without considering their uncertainty.

Having observed the transition leading to a reward of −10

not even once implies only few observations of that state-

action pair in general, which in turn leads to a high uncertainty.

In this example the incorrect reward estimate leads to a bad

policy; incorrect estimates of transition probabilities can have

similar effects. Knowing the uncertainty σVπ, which stems

from both, transition probability and reward uncertainties, one

can reformulate equation (6) to

Jμu (π) =
∑

s

μ0(s)
[
Vπ(s) − ξσVπ(s)

]
. (8)

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

1 2

(2, 1, 0)

(2, 1, 0)

(1, 1, 1)
(1, 0.5, 2)
(1, 0.5,−10)

Fig. 1: Simple two-state MDP. In the description (a, b, c) of a

transition a is the action, b the probability for that transition

to occur, and c the reward.

ξ is a parameter weighting the uncertainty. Likewise, equa-

tion (7) becomes

Ju(π) =
1

|S |
∑

s

Vπ(s) − ξσVπ(s). (9)

We call the uncertainty incorporating value function

Vπ,ξu (s) = Vπ(s) − ξσVπ(s) quantile value function.

IV. Determining the Value Function’s Uncertainty

To get the value function’s uncertainty σV , we apply

uncertainty propagation to the Bellman equation.

A. Uncertainty Propagation

Uncertainty propagation (UP), also known as Gaussian error

propagation (see, e.g., [16]), is a common method in statistics

to propagate the uncertainty of measurements to the results.

It is based on a first-order Taylor expansion. Given a function

f (x) with f : RM �→ RN and the uncertainty of the function

arguments as covariance matrix Cov(x), the uncertainty of the

function values f (x) is determined as

Cov(f) = Cov(f , f) = DCov(x)DT. (10)

D is the Jacobian matrix of f w.r.t. x consisting of the partial

derivatives of f w.r.t. to each component of x, i.e., Di, j =
∂ fi
∂x j

.

When neglecting correlations of the arguments x as well as

correlations of the components of f (x), the argument’s covari-

ance matrix and the resulting covariance matrix Cov(f) are

diagonal. In this case, a simplified expression for determining

the uncertainty σ fi of values fi(x) can be used:

(σ fi)2 =
∑

j

(
Di, j

)2
(σx j)

2 (11)

=
∑

j

(
∂ fi
∂x j

)2
(σx j)

2. (12)

Here, (σ fi)2, i = 1, 2, . . . ,N corresponds to the diagonal

elements of Cov(f).

In the following, we will only use diagonal UP.

B. Applying UP

To determine the uncertainty of the value function, we apply

uncertainty propagation to the Bellman equation

Q(s, a) =
∑

s′
P(s′|s, a)

[
R(s, a, s′) + γV(s′)

]
, (13)

where V(s) = Q(s, π(s)) for policy evaluation, V(s) =

maxa Q(s, a) for value iteration [1]. The Bellman equation

naturally becomes an update equation when replacing the left

hand Q with Qk+1 and the right hand V with Vk. Iterating this

update equation, one arrives at the optimal Q-function Q∗ (or

Qπ for policy evaluation) for the given estimators P and R.

The Bellman update equation can be regarded as a function

mapping arguments P, R, and Qk to Qk+1. When applying

diagonal UP (equation (12)), we get

(σQm(s, a))2 :=
∑

s′
(dQQ)2(σVm−1(s′))2 +

∑
s′

(dQP)2(σP(s′|s, a))2 +

∑
s′

(dQR)2(σR(s, a, s′))2, (14)

dQQ = γP(s′|s, a),

dQP = R(s, a, s′) + γVm−1(s′),
dQR = P(s′|s, a),

where σP and σR are the uncertainties of the respective

estimator.

The resulting algorithm is called the diagonal approxima-
tion of uncertainty incorporating policy iteration (DUIPI) [11]

and is summarized in Alg. 1.

Algorithm 1: Diagonal Approximation of Uncertainty

Incorporating Policy Iteration

Input: P, σP, R, σR, γ
Result: Q, σQ
begin

k ← 0

∀(s, a) : Q0(s, a)← 0, σQ0(s, a)← 0

while desired precision not reached do
// update Q
for ∀(s, a) ∈ S × A do

Qk+1(s, a)←∑
s′ P(s′|s, a)

[
R(s, a, s′) + γmaxa′ Qk(s′, a′)

]
end
// update σQ
for all (s, a) ∈ S × A do
σQk+1(s, a)← ∑s′

[
γP(s′|s, a)σVk(s′)

]2
+[

R(s, a, s′) + γVk(s′)σPk(s′|s, a)
]2
+

[P(s′|s, a)σR(s, a, s′)]2

end
k ← k + 1

end
return Qk,

√
σQk

end

C. Bayesian Estimators and Uncertainty

UP for the Bellman iteration can be combined with any suit-

able estimator. A popular choice is the frequentist estimator,

using relative frequency for the transition probabilities and

the sample mean for the reward expectation. In this paper,

however, we choose a Bayesian approach for the transition

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

probabilities, because this way the uncertainties are properly

accessible.

Assuming all transitions from different state-action pairs

to be independent of each other and the rewards, we can

model the transitions as multinomial distributions. We assume

the Dirichlet distribution as a prior over the parameter space

P(sk |si, a j) for each (si, a j) ∈ S × A, with density

Pr(P(s1|si, a j), . . . , P(s|S ||si, a j))αi j1,...,αi j|S | =

Γ(αi j)∏|S |
k=1
Γ(αi jk)

|S |∏
k=1

P(sk |si, a j)
αi jk−1, (15)

αi j =
∑|S |

k=1
αi jk, which is a conjugate prior with posterior

parameters αd
i jk = αi jk+n(si, a j, sk), αd

i j =
∑|S |

k=1
αd

i jk. n(si, a j, sk)

denotes the number of observed transitions from state si with

action a j to state sk. Since we have no prior knowledge about

the distribution of particular transitions, we set αi jk = α
equally for all distributions. We choose the expectation of

the posterior distribution as the estimator, i.e., P̂(sk |si, a j) =

αd
i jk/α

d
i j. The uncertainty of P̂ then is

(σP̂(sk |si, s j))
2 =
αd

i jk(αd
i, j − αd

i jk)

(αd
i j)

2(αd
i j + 1)

. (16)

As estimator for the reward expectation, the mean of all

observed reward samples of a transition (si, a j, sk) is used. As

uncertainties of that estimator, we set

(σR̂(si, a j, sk))2 =

⎧⎪⎪⎨⎪⎪⎩
var(R̂(si,a j,sk))

n(si,a j,sk)−1
, if n(si, a j, sk) > 1

R2
max, otherwise.

(17)

Rmax is the maximum reward.

Alg. 2 summarizes the estimation of the transition probabil-

ities and the reward expectations together with their respective

uncertainties. Plugging those into Alg. 1, we can determine the

Q-function with its uncertainty, from which the value function

follows trivially as V∗(s) = maxa Q∗(s, a) for policy iteration

and Vπ(s) = Qπ(s, π(s)) for policy evaluation of π.

V. Experiments

To evaluate the possibilities of determining policy quality

using either the standard value function or the quantile value

function, we conducted a number of experiments using the

archery [10], wet-chicken [17], and trap [18] benchmark

domains.1

A. Setup

For each domain, we generated a number of policies and

tried to select the best m policies without additional informa-

tion, i.e., without running the policy on the real MDP or a

simulation. Likewise, no additional observations were used.

To assess the selection quality, we evaluated each policy on

the real MDP and determined its performance (mean reward

per step) as a measure of its true quality.

1Source code allowing to reproduce the experimental results is available at
http://ahans.de/publications/adprl2011

Algorithm 2: Estimation of transition probabilities and

rewards
Input: transition counts n, sum of rewards r, sum of

squared rewards r2, α
Result: P̂, σP̂, R̂, σR̂
begin

for all (s, a) ∈ S × A do
nsa ← ∑s′ n(s, a, s′)
α0 ← nsa + |S |α
for all s′ ∈ S do
αi ← α + n(s, a, s′)
P̂(s′|s, a)← αi/α0

σP̂(s′|s, a)← (αi(α0 − αi)/(α
2
0(α0 + 1))

if nsa > 1 and n(s, a, s′) > 0 then
R̂(s, a, s′)← r(s, a, s′)/n(s, a, s′)
σR̂(s, a, s′)←
(r2(s,a,s′)/n(s,a,s′)−r(s,a,s′)/n(s,a,s′))2

nsa−1

else
R̂(s, a, s′)← 0

σR̂(s, a, s′)← r2
max

end
end

end
return P̂,

√
σP̂, R̂,

√
σR̂

end

In particular, for each experiment we did the following:

1) Generate N observations using random exploration, esti-

mate the MDP from the observations, use dynamic pro-

gramming (policy iteration) [1] to determine the optimal

policy πi for the estimated MDP, and finally evaluate

the policy 100 times for 1,000 steps each to determine

its performance ri. This is repeated 25 times, resulting

in policies π1,2,...,25, value functions and uncertainties

(V, σV)1,2,...,25, and true performances r1,2,...,25.

2) Use J(π) and Ju(π) to create ranking vectors gJ and gJu

of the policies. E.g., gJ
1

gives the index of the best policy

according to J(π), gJ
25

the worst.

3) From the true performances ri and the rankings gJ

and gJu create vectors lJ and lJu containing the mean

performance of the best m policies, m = 1, 2, . . . , 25,

i.e., lJ =
(
rgJ

1
, 1

2

∑2
i=1 rgJ

i
, . . . , 1

m
∑m

i=1 rgJ
i
, . . . , 1

25

∑25
i=1 rgJ

i

)
.

Obviously, lJ
25
= lJu

25
gives the mean performance of all

25 policies.

4) Steps 1–3 are repeated 400 times, allowing to generate

vectors l̄J and l̄Ju containing the mean of the individual

lJ and lJu vectors and σl̄J and σl̄Ju containing the

uncertainty of the mean (standard error).

Note that while we generated the policies and their value

functions and according uncertainty in one step, one could as

well use a given policy and set of observations to generate the

value function and uncertainty (policy evaluation).

We set the discount factor γ = 0.975. For all experiments we

used the Bayesian estimator with α = 0.01 for the transition

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

0.06 0.17 0.28 0.17 0.06

0.17 0.28 0.39 0.28 0.17

0.28 0.39 0.5 0.39 0.28

0.17 0.28 0.39 0.28 0.17

0.06 0.17 0.28 0.17 0.06

Fig. 2: Visualization of the archery benchmark showing the

25 states with their hitting probabilities.

probabilities and the sample mean to estimate the reward

(Sec. IV-C). As weighting of the uncertainty we used a value

of ξ = 3.

The figures in this section show the mean rewards given a

number of selected best policies (vectors l̄J and l̄Ju). E.g., the

very left point gives the mean performance of the best selected

policy, the very right point gives the mean performance over

all policies, i.e., the performance expectation when selecting

a policy randomly. For each experiment, the 10,000 policies

were divided into 400 distinct sets of 25 policies each, a

ranking was performed for each of those sets of 25 policies.

Therefore, each point in a figure is the average of 400 values.

B. Archery

In the archery benchmark [10], the state space represents

an archer’s target (fig. 2). Starting in the target’s middle,

the archer has the possibility to move the arrowhead in all

four directions and to shoot the arrow. The exploration was

performed randomly with short episodes of 25 transitions. The

arrowhead’s moves are stochastic (probability 0.25 of moving

in another direction) as well as the event of making a hit

after shooting the arrow. The highest probability for a hit is

with the arrowhead in the target’s middle. Every exploration

episode starts in the middle as well. The border is explored

quite rarely, such that a hit there can misleadingly cause the

respective estimator to indicate a high reward and thus the

agent to finally shoot from this place.

We performed experiments according to the general setup

using various numbers of random exploration observations.

Results for a representative selection of numbers of observa-

tions are given in fig. 3.

When estimating an MDP from 300 observations, the stan-

dard value function does help in selecting a policy performing

better than average. When selecting only the presumably best

policy from a set of 25 policies, the mean performance of the

policies applied to the real problem is 0.43, while random

selection gives policies with a mean performance of 0.39.

However, when considering the uncertainty for the selection as

well, the performance of the policies selected as best increases

to 0.48. When using 500 observations, the gain achievable

with standard value function based policy selection further

decreases, while the selection quality of the quantile value

function remains constant. This is because of the increasing

number of misleading observations at the border of the target.

Although the probability of hitting the target from a specific

border state is quite small, since there are many border states,

observing a hit from one of the border states is quite likely,

leading to the assumption that shooting from this state the

probability of hitting the target is high. This assumption leads

to policies that move to such a border state and always shoot

from there. With 1,000 and 2,000 observations, the problem

becomes even more pronounced—selecting a policy based

only on the standard value function leads to the selection

of badly performing policies, as those are the ones with

massively overestimated value functions. This is expected

in domains exhibiting the “border-phenomenon” [10], where

most observations are focused in a favorable area of the state

space. The border is only explored rarely but relatively large;

it is therefore likely to observe a positive reward by chance.

With increasing dimensionality of the state space, the border

increases.

To illustrate the overestimation, fig. 4 shows histograms of

the estimated mean values for different true policy qualities

(exemplary for 2,000 observations). In the left column the

standard value functions are depicted, the right column shows

the histograms of the quantile values. The top row contains

values for the best policies (mean reward greater than 0.4),

the second and third row intermediate policies, the bottom

row shows bad policies (mean reward less than 0.2). While

the value function itself does not allow the selection of good

policies (all histograms lie in the same range), the quantile

value function reflects the true value more clearly (histograms

move from lower to larger values with increasing true policy

performance).

C. Wet-Chicken

In the wet-chicken benchmark [17] a canoeist paddles on a

one-dimensional river with length l = 20 and flow velocity v =
1. At position x = l of the river there is a waterfall. Starting at

position x = 0, the canoeist has to try to get as near as possible

to the waterfall without falling down. If he falls down, he has

to restart at position x = 0. The reward increases linearly with

the proximity to the waterfall and is given by r = x. The

canoeist has the possibility to drift (x− 0+ v = x+ 1), to hold

the position (x−1+v = x), or to paddle back (x−2+v = x−1).

River turbulences of size s = 2.5 cause the state transitions to

be stochastic. Thus, after having applied the canoeist’s action

to his position (also considering the flow of the river), the new

position is finally given by x′ = x + n, where n ∈ [−s, s] is a

uniformly distributed random value.

Here an exploration run consists of one continuous trajec-

tory. Due to the stochasticity of the turbulences, there are

situations when the canoeist is very near the waterfall without

falling down. Although the probability of falling down from

a point like this is high, limited observations can cause the

estimator to misleadingly indicate a high probability of not

falling down. Since the reward close to the waterfall is high,

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

1 5 10 15 20 25
0.35

0.4

0.45

0.5

number of selected policies

m
ea

n
p
er

fo
rm

an
ce

300 observations

1 5 10 15 20 25

number of selected policies

500 observations

1 5 10 15 20 25

number of selected policies

1000 observations

1 5 10 15 20 25

number of selected policies

2000 observations

Fig. 3: Results of experiments using the archery benchmark. Shown are the performance of policies ranked either using J(π)
(black) or Ju(π) (gray). The very left point in each plot shows the expected performance of the policy ranked best, the very

right point gives the mean performance of all policies.

0

500

1,000 r > 0.45

0

500

1,000 r > 0.45

0

400

800
0.35 < r ≤ 0.45

0

400

800
0.35 < r ≤ 0.45

0

100

200 0.2 < r ≤ 0.35

0

100

200 0.2 < r ≤ 0.35

5 10 15 20 25 30
0

20

40

J(π)

r ≤ 0.2

−5 0 5 10 15 20
0

20

40

Ju(π)

r ≤ 0.2

Fig. 4: Histograms of J(π) and Ju(π) for different true policy performances for the experiment using the archery benchmark

with 2,000 observations. The left column shows J(π) (ignoring uncertainty), the right column shows Ju(π) values considering

the uncertainty. The policies are ordered by true performance with the best policies in the top row (r > 0.45), intermediate

policies in the second and third rows, and the worst policies in the fourth row (r ≤ 0.2).

a policy generated using those estimators would try to reach a

point near the waterfall, expecting to stay there without falling

down and to receive a high reward.

Fig. 5 shows the results for different numbers of observa-

tions. In the wet-chicken domain the policy selection using

the value function systematically selects bad policies. In this

setting it is better to pick a policy randomly than choosing the

one with the best value function. E.g., for 2,000 observations

most policies are near-optimal, but the over-optimistic value

function of some policies leads to the selection of bad policies.

When considering the uncertainty (with the quantile value

function), the situation changes, since the overestimated values

are affected by a high uncertainty.

D. Trap

The trap domain [18] is a maze containing 18 states and four

possible actions. The agent must collect flags and deliver them

to the goal. For each flag delivered the agent receives a reward.

However, the maze also contains a trap state. Entering the trap

state results in a large negative reward. With probability 0.8
the agent’s action has the desired effect, with probability 0.2
the agent moves in perpendicular direction (chosen randomly

with equal probability). See fig. 7 for an illustration.

The results from this domain are shown in fig. 6. For

300 and 500 observations we see the same effects as with

the other domains—while the value function based approach

systematically selects bad policies, considering the uncertainty

of the value function as well it is possible to overcome this

problem and select good policies. However, for 1,000 and

2,000 observations in the setting chosen here with ξ = 3 also

the uncertainty aware approach tends to systematically select

bad policies, albeit not as extreme as the value function only

approach. Setting ξ to a higher value would help here, but

could lead to a dominance of the uncertainty for cases with

fewer observations.

The optimal policy for this domain tries to stay away from

the trap state. After collecting the flag, it goes back to the

start state, then two fields down, and finally two fields right

to deliver the flag. If an observation set does not contain the

event of entering the trap state accidentally from the state left

of it, the resulting policy will try to take the shortest path from

the flag state to the goal, closely passing the trap state. Since

the path is shorter, the corresponding estimated value function

will misleadingly contain larger values than those of a more

defensive (and in fact better) policy.

VI. Conclusion

In this paper, we made a first attempt at comparing policies

without executing them on the real MDP. We showed that the

value function can be misleading and largely overestimate the

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

1 5 10 15 20 25
12

13

14

15

number of selected policies

m
ea

n
p
er

fo
rm

an
ce

300 observations

1 5 10 15 20 25

number of selected policies

500 observations

1 5 10 15 20 25

number of selected policies

1000 observations

1 5 10 15 20 25

number of selected policies

2000 observations

Fig. 5: Performance of ranked policies for the wet-chicken benchmark. The ranking using the standard value function is marked

black, the ranking according to the quantile value function gray.

1 5 10 15 20 25
−0.3

−0.15

0

0.15

number of selected policies

m
ea

n
p
er

fo
rm

an
ce

300 observations

1 5 10 15 20 25

number of selected policies

500 observations

1 5 10 15 20 25

number of selected policies

1000 observations

1 5 10 15 20 25

number of selected policies

2000 observations

Fig. 6: Performance of ranked policies for the trap domain. Again, the result of the standard value function based ranking is

marked black, the ranking also incorporating the uncertainty is marked gray.

S F

T

G

Fig. 7: Illustration of the trap domain. Starting in state S the

agent must collect the flag from state F and deliver it to the

goal state G while avoiding the trap state T.

quality of the policy. To address this problem, we used uncer-

tainty propagation to determine the uncertainty of the value

function as well. Considering the uncertainty to determine

the quantile value function it becomes possible to much more

reliably distinguish between good and bad policies. Although

the discrete MDP setting we considered here is rarely relevant

in practice—instead of estimating MDPs and corresponding

optimal policies from a number of distinct observation sets and

then selecting from those policies, one would use all available

observations to estimate a single MDP—for continuous state

(and action) MDPs it is an important issue. Future work will

deal with adapting the ideas to continuous MDPs.

References

[1] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[2] V. Stephan, K. Debes, H.-M. Gross, F. Wintrich, and H. Wintrich, “A
new control scheme for combustion processes using reinforcement learn-
ing based on neural networks,” International Journal of Computational
Intelligence and Applications, 2001.

[3] A. Schaefer, D. Schneegass, V. Sterzing, and S. Udluft, “A neural
reinforcement learning approach to gas turbine control,” in Proc. of the
20th International Joint Conference on Neural Networks, 2007.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, 2003.

[5] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, 2005.

[6] M. Riedmiller, “Neural fitted Q-iteration – first experiences with a data
efficient neural reinforcement learning method,” in Proc. of the 16th
European Conference on Machine Learning, 2005.

[7] D. Schneegass, S. Udluft, and T. Martinetz, “Neural rewards regression
for near-optimal policy identification in Markovian and partial observ-
able environments,” in Proc. of the European Symposium on Artificial
Neural Networks, 2007.

[8] A. M. Schaefer, S. Udluft, and H.-G. Zimmermann, “A recurrent control
neural network for data efficient reinforcement learning,” in Proc. of the
IEEE International Symposium on Approximate Dynamic Programming
and Reinforcement Learning, 2007.

[9] S. Kalyanakrishnan and P. Stone, “Batch reinforcement learning in a
complex domain,” in Proc. of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems, 2007.

[10] D. Schneegass, S. Udluft, and T. Martinetz, “Uncertainty propagation
for quality assurance in reinforcement learning,” in Proc. of the Inter-
national Joint Conference on Neural Networks, 2008.

[11] A. Hans and S. Udluft, “Efficient uncertainty propagation for rein-
forcement learning with limited data,” in Proc. of the International
Conference on Artificial Neural Networks, 2009.

[12] ——, “Uncertainty propagation for efficient exploration in reinforcement
learning,” in Proc. of the 19th European Conference on Artificial
Intelligence, 2010.

[13] T. Gabel and M. Riedmiller, “Reducing policy degradation in neuro-
dynamic programming,” in Proc. of the European Symposium on Artifi-
cial Neural Networks, 2006.

[14] M. Migliavacca, A. Precorino, M. Pirotta, M. Restelli, and A. Bonarini,
“Fitted policy search: Direct policy search using a batch reinforcement
learning approach,” in Proc. of the 3rd International Workshop on Evo-
lutionary and Reinforcement Learning for Autonomous Robot Systems,
2010.

[15] R. E. Bellman, Dynamic Programming. Princeton University Press,
1957.

[16] G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Intro-
duction. World Scientific Publishing, 2003.

[17] V. Tresp, “The wet game of chicken,” Siemens AG, CT IC 4, Technical
Report, 1994.

[18] R. Dearden, N. Friedman, and D. Andre, “Model based Bayesian explo-
ration,” in Proc. of the Conf. on Uncertainty in Artificial Intelligence,
1999.

in: Proc. 2011 IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL 2011), pp. 84-90, IEEE 2011

