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Inductive Cognitive Diagnosis for Fast Student Learning
in Web-Based Online Intelligent Education Systems

Anonymous Author(s)

ABSTRACT
Cognitive diagnosis aims to gauge students’ mastery levels based
on their response logs. Serving as a pivotal module in web-based
online intelligent education systems (WOIESs), it plays an upstream
and fundamental role in downstream tasks like learning item rec-
ommendation and computerized adaptive testing. WOIESs are open
learning environments where numerous new students constantly
register and complete exercises. In WOIESs, efficient cognitive di-
agnosis is crucial to fast feedback and accelerating student learning.
However, the existing cognitive diagnosis methods always employ
intrinsically transductive student-specific embeddings, which be-
come slow and costly due to retraining when dealing with new
students who are unseen during training. To this end, this paper
proposes an inductive cognitive diagnosis model (ICDM) for fast
new students’ mastery levels inference in WOIESs. Specifically, in
ICDM, we propose a novel student-centered graph (SCG). Rather
than inferring mastery levels through updating student-specific em-
bedding, we derive the inductive mastery levels as the aggregated
outcomes of students’ neighbors in SCG. Namely, SCG enables
to shift the task from finding the most suitable student-specific
embedding that fits the response logs to finding the most suit-
able representations for different node types in SCG, and the latter
is more efficient since it no longer requires retraining. To obtain
this representation, ICDM consists of a construction-aggregation-
generation-transformation process to learn the final representation
of students, exercises and concepts. Extensive experiments across
real-world datasets show that, compared with the existing cogni-
tive diagnosis methods that are always transductive, ICDM is much
faster while maintains the competitive inference performance for
new students.

CCS CONCEPTS
• Applied computing → Education; • Computing methodolo-
gies →Machine learning.

KEYWORDS
Cognitive Diagnosis, Web-based Online Intelligent Education Sys-
tems, Inductive Learning

1 INTRODUCTION
With the proliferation of vast online learning resources and web-
based online intelligent educational systems (e.g., KhanAcademy.org,
junyiacademy.org), a growing number of students and learners in-
creasingly turn to the web as a primary medium for education.
Web-based online intelligent education systems (WOIDSs) [12, 33]
enhance personalized student learning through computer-assisted
methods, offering a wealth of educational resources (e.g., courses,
exercises). Cognitive diagnosis (CD), as the cornerstone of WOIDSs,
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Figure 1: Transductive and inductive scenarios in CD.

plays an upstream and fundamental role in them, affecting down-
stream modules such as computer adaptive testing [35], course rec-
ommendation [32] and learning path suggestions [15], etc. Specifi-
cally, by analyzing students’ historical response logs, CD endeavors
to infer students’ underlying mastery levels (Mas) and shed light
on attributes of exercises (e.g., difficulty, discrimination).

In recent years, a plenty of cognitive diagnosis models (CDMs)
have come to the fore, like item response theory (IRT) [8] and neural
cognitive diagnosis odel (NCDM) [25]. IRT employs a latent factor
to represent Mas, using a simple logistic function as the interaction
function (IF). NCDM replaces the traditionally IF with multi-layer
perceptrons (MLPs) and adopts concept-specific (i.e., set the em-
bedding dimension as the number of concepts) vectors to depict
Mas. As embedding-based methods continue to advance rapidly
and become mainstream, researchers are showing a growing pref-
erence for converting both students and exercises into vectorized
forms, further refining them with various techniques [6, 14, 17, 26].
Notably, most existing CDMs employ intrinsically transductive
student-specific embeddings and thus have to access the response
logs of all students during the training phase.

Existing WOIDSs are open learning environment where a vast
number of new students register and complete a multitude of ex-
ercises, as shown in the right part of Figure 1. It means that the
number of students is uncertain and cannot be pre-defined. In
WOIDSs, students expect to obtain immediate and timely feedback
on their diagnostic results (i.e., mastery levels), which can fast aid
in their self-improvement or assist teachers in providing tailored
advice. Unfortunately, most existing CDMs are transductive and
could struggle to provide such diagnostic results quickly due to
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their reliance on student-specific embedding and their neglect of
the identifying binary response patterns. These two factors indicate
that they need to be retrained to infer new students’ Mas, which is
time-consuming and unacceptable in practice. Thus, inductive cog-
nitive diagnosis is more suitable for WOIDSs under open learning
environment. In the inductive scenarios of CD, there is an urgent
need for efficient and interpretable approach capable of inferring the
Mas of new students without model retraining. For inductive cogni-
tive diagnosis, the only related work is incremental CD (ICD) [22]
which targets streaming log data in CD. In [22], it aims to update
the Mas at the next moment without retraining, which is different
from the goal of focusing on inferring new students’ Mas.

Actually, inductive cognitive diagnosis for fast inferring Mas
of newly registered students is non-trivial. In most cases, we only
have access to students’ response logs. It’s not feasible to establish
a connection between new and existing students based on their
background characteristics (e.g., learning environment, parents’
education level) to deduce the new students’ Mas. The sole infor-
mation at our disposal is the response logs from both new and
existing students. Moreover, current CDMs overlook the consis-
tency of Mas. Owing to the random initialization of parameters,
the Mas they infer often display inconsistency. That is, students
with identical response logs could exhibit varied Mas. This is un-
reasonable, as we lack knowledge about the students’ individual
background information.

To this end, this paper formally defines the inductive scenario in
CD and proposes an inductive cognitive diagnosis model (ICDM)
for fast new students’ mastery levels inference in WOIESs. To be
specific, in ICDMwe propose a novel student-centered graph (SCG).
Rather than inferring mastery levels through updating student-
specific embedding, we derive the inductive mastery levels as the
aggregated outcomes of students’ neighbors in SCG. That is to
say, SCG enables to shift the task from finding the most suitable
student-specific embedding that fits the response logs to finding
the most suitable representations for different node types in SCG,
and the latter is more efficient since it no longer requires retraining.
To achieve this representation, ICDM consists of a construction-
aggregation-generation-transformation (CAGT) process to learn
the final representation of students, exercises and concepts which
can be seamlessly integrated into various IFs. Moreover, we also
design a novel global-level IF to predict students’ performance on
exercises. Extensive experiments across real-world datasets show
that, comparedwith the existing CDMs that are always transductive,
ICDM is much faster while maintains the competitive inference
performance for new students.

The subsequent sections respectively recap the related work,
present the preliminaries, introduce the proposed ICDM, show the
empirical analysis and conclude the paper.

2 RELATEDWORK
Cognitive Diagnosis. CDMs are used to evaluate student profiles
by employing either latent factor models, such as IRT [16] and
multidimensional IRT (MIRT) [20], or models based on patterns of
concept mastery, such as deterministic input, noisy and gate model
(DINA) [3]. For instance, DINA, a typical example of CDMs, utilizes
binary independent variables to represent mastery states, where

0 indicates an unmastered state and 1 represents a mastered state.
Favored by recent deep learning techniques, researchers achieve
great success in large-scale interactions circumstances. NCDM [25]
employs MLPs as IF and represents mastery patterns as continuous
variables within the range of [0, 1]. Various approaches have been
employed to capture fruitful information in the response logs, such
as MLP-based [17, 26], graph attention network based [6], Bayesian
network based [14]. However, existing CDMs are tailored for the
transductive scenario in CD and cannot be directly applied to the
inductive scenario. The only related CDM is ICD [22] which targets
streaming log data. Its goal is to update the Mas at the next moment
without retraining. However, in WOIESs where new students often
generate vast amounts of response data, using such an approach
can become prohibitively costly due to frequent updates.

Inductive Matrix Completion for Collaborative Filtering.
Given that contemporary CDMs do not possess inductive learning
abilities, and factoring in that they are evaluated by predicting stu-
dent outcomes on new, unattempted exercises (similar to filling out
the ratingmatrix), and only having IDs as distinguishing features for
students, exercises and concepts, we turn to the methods of Induc-
tiveMatrix Completion for Collaborative Filtering [10, 19, 30, 31, 34]
to draw comparisons and encapsulate pertinent studies. Neverthe-
less, these approaches either demand significant computational
resources [10, 30], potentially hindering timely feedback for a vast
number of students in WOIDSs, or they may compromise on ac-
curacy [19, 34]. INMO [31], a state-of-the-art approach, presents a
model-agnostic inductive collaborative filtering methodology that
adeptly chooses template users and items grounded in thorough
theoretical analysis. However, INMO’s theory is constructed on the
premise that the IF is dot product-based, making it unsuitable for
the CD. This is because the IFs in CD need to adhere to a psycho-
metric assumption (i.e., monotonicity assumption). Hence, directly
applying methods from Inductive Matrix Completion for Collabo-
rative Filtering is impractical. Not only is it time-consuming, but
it also fails to capitalize on the intricate student-exercise-concept
relationships or adhere some assumptions inherent in CD.

3 PRELIMINARIES
This section first introduces the fundamental elements of cognitive
diagnosis. Subsequently, we formalize both the transductive and
inductive cognitive diagnosis tasks.

Cognitive Diagnosis Basis. Consider web-based online in-
telligent education systems (WOIDSs) which contain two sets:
𝐸 = {𝑒1, . . . , 𝑒𝑀 }, and 𝐶 = {𝑐1, . . . , 𝑐𝑍 }. They symbolize exercises
and knowledge concepts, with respective sizes of𝑀 and 𝑍 . Q repre-
sents the relationship between exercises and knowledge concepts,
which can be regarded as a binary matrix Q = (Q𝑖 𝑗 )𝑀×𝑍 , where
Q𝑖 𝑗 ∈ {0, 1} means whether 𝑒𝑖 relates to 𝑐 𝑗 or not. Here, we assume
that both the exercises and concepts are static, implying that their
quantities remain constant. Students in set 𝑆 = {𝑠1, . . . , }, driven
by unique interests and requirements, select exercises from 𝐸. The
results are documented as response logs. Specifically, these logs
can be illustrated as triplets 𝑇 = {(𝑠, 𝑒, 𝑟 ) |𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸, 𝑟𝑠𝑒 ∈ {0, 1}}.
𝑟𝑠𝑒 = 1 represents correct and 𝑟𝑠𝑒 = 0 represents wrong. In this
paper, we treat response logs as rating matrix R ∈ R |𝑆 |×𝑀 where
|𝑆 | denotes the size of set 𝑆 . It contains three categorical values (1
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means right, 0 means no interaction and −1 means wrong. Cogni-
tive Diagnosis is to infer Mas ∈ R |𝑆 |×𝑍 which denotes the latent
Mas of students on each knowledge concept based on R.

Transductive Cognitive Diagnosis. Current CDMs assess stu-
dent performance within a transductive scenario as shown in the
left part of Figure 1. Formally, given the students’ set |𝑆 |, a rat-
ing matrix R ∈ R |𝑆 |×𝑀 , a binary matrix Q, our goal is to infer
Mas ∈ R |𝑆 |×𝑍 , which denotes the latent Mas of all students.

Inductive Cognitive Diagnosis. The frequent registration and
participation of new students in the WOIDSs can be characterized
as an inductive scenario. As illustrated in the right part of Figure 1,
it expects the CDMs to accurately diagnose for newcomers without
retraining the models. Formally, given the existing students’ set 𝑆𝑂 ,
unseen students’ set 𝑆𝑈 where 𝑆𝑂 ∩ 𝑆𝑈 = ∅, 𝑆𝑂 ∪ 𝑆𝑈 = 𝑆, |𝑆𝑂 | =
𝑁𝑂 , |𝑆𝑈 | = 𝑁𝑈 , rating matrices R𝑂 ,R𝑈 and a binary matrixQ. The
goal is to inferMas𝑈 ∈ R𝑁𝑈 ×𝑍 , which denotes the latent Mas of
new students on each concept.

Exercise

Concepts

Students

...
Exercise

...

...

Related
Desired

Related

Right Wrong
Practice

(a) Student-centered graph (b) k-hops’ neighbors of a certain
student

Figure 2: The proposed student-centered graph (SCG).

4 METHODOLOGY: THE PROPOSED ICDM
This section begins by presenting the innovative student-centered
graph. Following that, we delve into the CAGT process, which
allows us to derive representations for students, exercises, and con-
cepts. Subsequently, the proposed global-level interactive function
(GLIF) is introduced. We conclude the section by discussing the
model’s training. Notably, the strength of ICDM lies in addressing
the inductive scenario in CD. Hence, all its underlying notions are
derived from this scenario. Nevertheless, we claim that ICDM is
versatile enough to be applied in the transductive scenario as well.
The framework of ICDM is shown in Figure 3.

Student-CenteredGraph.As illustrated in Figure 2(a), focusing
on students, the student-centered graph (SCG), denoted as G =

(V,U), comprises four types of nodes and edges. V = 𝑆 ∪ 𝐸𝑅 ∪
𝐸𝑊 ∪𝐶 involves students, exercises with right pattern, exercises
with wrong pattern and concepts, E involves interactions between
𝑆 and 𝐸𝑅 (i.e., “Right”), 𝑆 and 𝐸𝑊 (i.e., “Wrong”), 𝐸𝑅 and 𝐶 (i.e.,
“Related”), 𝐸𝑊 and𝐶 (i.e., “Related”), 𝑆 and𝐶 (i.e., “Desired”) which
will introduced later. For instance, if 𝑢𝑠𝑖 ,𝑟 𝑗 ∈ U, the 𝑖-th student
practice the 𝑗-th exercise right.

4.1 The CAGT Process
Construction. The sole features in CD is response logs and Q.
Evidently, it is essential to decompose these intricate logs into their
constituent elements: student, exercise with right pattern, exercise

with wrong pattern, and concept. We encode them with trainable
embeddings H𝑠 ∈ R𝑁𝑂×𝑑 ,H𝑟 ∈ R𝑀×𝑑 ,H𝑤 ∈ R𝑀×𝑑 ,H𝑐 ∈ R𝑍×𝑑 .
For instance, ℎ𝑠𝑖 ∈ R1×𝑑 denotes the row vector of 𝑖-th student.
Notably, we employ response-aware embeddings to capture the bi-
nary response patterns in exercises, patterns that were overlooked
by previous CDMs, in order to infer the new students’Mas. More-
over, based on the phenomenon that the exercises chosen by stu-
dents might potentially reveal their preferences for learning spe-
cific knowledge concepts, we construct the involvement matrix
I𝑂 ∈ R𝑁𝑂×𝑍 with Q and R𝑂 . For example, if student 𝑠1 practices
exercise 𝑒2 which is associated with concept 𝑐3, then the value of
I𝑂13 is set to 1. Finally, we construct the SCG G based on R𝑂 , I𝑂 and
Q. Specifically, if R𝑂

𝑖 𝑗
= 1, 𝑢𝑠𝑖 ,𝑟 𝑗 ∈ U; if R𝑂

𝑖 𝑗
= −1, 𝑢𝑠𝑖 ,𝑤𝑗

∈ U; if
Q𝑂
𝑗𝑧

= 1, 𝑢𝑟 𝑗 ,𝑐𝑧 ∈ U ∨ 𝑢𝑤𝑗 ,𝑐𝑧 ∈ U; if I𝑂
𝑖𝑧

= 1, 𝑢𝑠𝑖 ,𝑐𝑧 ∈ U.
Aggregation. As demonstrated in Figure 2(b), the k-hop neigh-

bors of a specific student convey rich information. For instance, the
one-hop neighbors directly characterize Bob in WOIDSs, while the
behaviors of the two-hop neighbors are somewhat similar to Bob’s.
They might have answered a particular exercise right or wrong.
Clearly, aggregating the information from neighbors is instrumen-
tal in more adeptly deducing Mas. Analogously, this holds true for
the attributes of exercises and concepts. During the Aggregation
phase, we aim to aggregate information from different types of
neighbors for each specific node type which can be expressed as

ℎ𝑘+1𝑠𝑖
(𝑅 → 𝑆) = AGG

(
Drop𝑘

{
ℎ𝑘𝑟 𝑗

��∀𝑗, if𝑢𝑠𝑖 ,𝑟 𝑗 ∈ U
})
,

ℎ𝑘+1𝑠𝑖
(𝑊 → 𝑆) = AGG

(
Drop𝑘

{
ℎ𝑘𝑤𝑗

��∀𝑗, if𝑢𝑠𝑖 ,𝑤𝑗
∈ U

})
,

ℎ𝑘+1𝑠𝑖
(𝐶 → 𝑆) = AGG

(
Drop𝑘

{
ℎ𝑘𝑐𝑧

��∀𝑧, if𝑢𝑠𝑖 ,𝑐𝑧 ∈ U
})
.

(1)

The term ℎ𝑘+1𝑠𝑖
(𝑅 → 𝑆), ℎ𝑘+1𝑠𝑖

(𝑊 → 𝑆), ℎ𝑘+1𝑠𝑖
(𝐶 → 𝑆) denotes the

aggregated outcome from exercises with right pattern, exercises
with wrong pattern and concepts at depth 𝑘 + 1 respectively. AGG
stands for the aggregator function, which consolidates the informa-
tion from the provided vectors of neighbors. Here, the aggregator
function can be of various types, such as mean aggregation [9]
or graph attention [1, 24] which will be analyzed in experiments.
Drop𝑘 signifies a layer-wise neighbor dropout, indicating that the
dropout probability, represented by 𝑝 , calculated as 𝑝 = 𝛼 + 𝛽𝑘 . As
𝑘 increases incrementally, the noise (i.e, guess or slip) introduced
during the propagation process amplifies, necessitating a larger
value for 𝑝 . Introducing dropout serves a dual purpose: it mitigates
the effects of the noise and boosts the model’s generalizability.

Finally, given that the significance of neighbors from k-hops
gradually diminishes as 𝑘 increases in CD, we employ a descending
accumulation method to integrate the aggregated outcomes from
different 𝑘 , which can be expressed as

ℎ𝑠𝑖 (𝑅 → 𝑆) =
𝐾∑︁
𝑘=0

1
𝑘 + 1

(ℎ𝑘𝑠𝑖 (𝑅 → 𝑆)) ,

ℎ𝑠𝑖 (𝑊 → 𝑆) =
𝐾∑︁
𝑘=0

1
𝑘 + 1

(ℎ𝑘𝑠𝑖 (𝑊 → 𝑆)) ,

ℎ𝑠𝑖 (𝐶 → 𝑆) =
𝐾∑︁
𝑘=0

1
𝑘 + 1

(ℎ𝑘𝑠𝑖 (𝐶 → 𝑆)) ,

(2)
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where 𝐾 represents the pre-defined maximum depth. Herein, we
just utilize the student as a instance. Through analogous compu-
tations, we can further deduce ℎ𝑟 𝑗 (𝑆 → 𝑅), ℎ𝑟 𝑗 (𝐶 → 𝑅), ℎ𝑤𝑗

(𝑆 →
𝑊 ), ℎ𝑤𝑗

(𝐶 →𝑊 ), ℎ𝑐𝑧 (𝑅 → 𝐶), ℎ𝑐𝑧 (𝑆 → 𝐶), and ℎ𝑐𝑧 (𝑊 → 𝐶).
Generation. The final representations of students, exercises

with right pattern, exercises with wrong pattern and concepts can
be generated from the results mentioned above.

ℎ𝑠𝑖 = GEN(ℎ𝑠𝑖 (𝑅 → 𝑆), ℎ𝑠𝑖 (𝑊 → 𝑆), ℎ𝑠𝑖 (𝐶 → 𝑆)) ,
ℎ𝑟 𝑗 = GEN(ℎ𝑟 𝑗 (𝑆 → 𝑅), ℎ𝑟 𝑗 (𝐶 → 𝑅)) ,
ℎ𝑤𝑗

= GEN(ℎ𝑤𝑗
(𝑆 →𝑊 ), ℎ𝑤𝑗

(𝐶 →𝑊 )) ,
ℎ𝑐𝑧 = GEN(ℎ𝑐𝑧 (𝑅 → 𝐶), ℎ𝑐𝑧 (𝑊 → 𝐶), ℎ𝑐𝑧 (𝑆 → 𝐶)) ,

(3)

where ℎ𝑠𝑖 denotes the generated final representation of 𝑖-th student.
GEN represents weighted generator, which we will elaborate on in
the subsequent text. Through this approach, we discern that the
representation of the 𝑖-th student is exclusively associated with its
k-hops’ neighbors, such as exercises with right patterns, exercises
with wrong patterns, and the concepts involved. Therefore, when a
new student registers and answers exercises in WOIDSs, we can
directly infer their Mas based on their performance in answering
the exercises and their desired concepts without retraining. Given
that different types of neighbor information can be perceived as
various views for a specific node (e.g., students), we opt to use a
data-driven approach [27] to fuse them together through aweighted
summation. Here, we use the student as an example. The weight
corresponding to ℎ𝑠𝑖 (𝑅 → 𝑆) can be computed as

𝑤𝑅 = a𝑠 tanh
(
ℎ𝑠𝑖 (𝑅 → 𝑆)W𝑔

𝑠 + b𝑔𝑠
)⊤

, (4)

where a𝑠 ∈ R1×𝑑 denotes attention vector, W𝑔
𝑠 ∈ R𝑑×𝑑 and b𝑔𝑠 ∈

R1×𝑑 are trainable parameters in the student representation gener-
ation phase. Based on Eq (4),𝑤𝑊 ,𝑤𝐶 can be computed, each repre-
senting the weight of the respective part. With the help of Softmax,
the normalized weight of ℎ𝑠𝑖 (𝑅 → 𝑆) is 𝑤̃𝑅 = 𝑒𝑤𝑅

𝑒𝑤𝑅 +𝑒𝑤𝑊 +𝑒𝑤𝐶
. Simi-

larly, we can derive 𝑤̃𝑊 , 𝑤̃𝐶 . Ultimately, the representation of 𝑖-th
student can be expressed as

ℎ𝑠𝑖 = 𝑤̃𝑅ℎ𝑠𝑖 (𝑅 → 𝑆) + 𝑤̃𝑊 ℎ𝑠𝑖 (𝑊 → 𝑆) + 𝑤̃𝐶ℎ𝑐𝑧 (𝐶 → 𝑆)) . (5)

Similarly, following the same procedure, we can derive ℎ𝑟 𝑗 , ℎ𝑤𝑗
, ℎ𝑐𝑧 .

Transformation. Many CDMs [6, 25, 26] are based on the
concept-specific pattern, indicating the number of dimensions equals

the number of knowledge concepts 𝑍 . We use simple yet effective
linear transformation to change the dimension from 𝑑 to 𝑍 .

ℎ𝑠𝑖 = ℎ𝑠𝑖W
𝑡
𝑠 + 𝑏𝑡𝑠 , ℎ𝑒 𝑗 = (ℎ𝑟 𝑗 ⊙ ℎ𝑤𝑗

)W𝑡
𝑒 + 𝑏𝑡𝑒 , ℎ𝑐𝑧 = ℎ𝑐𝑧W

𝑡
𝑐 + 𝑏𝑡𝑐 , (6)

where ⊙meansHadamard product,W𝑡
𝑠 ,W𝑡

𝑒 ,W𝑡
𝑐 ∈ R𝑑×𝑍 , 𝑏𝑡𝑠 , 𝑏𝑡𝑒 , 𝑏𝑡𝑐 ∈

R1×𝑍 are trainable parameters in the transformation phase. Finally,
we obtained the representation of students ℎ𝑠𝑖 , exercises ℎ𝑒 𝑗 , and
concepts ℎ𝑐𝑧 . The remaining question is how to derive the Mas and
exercises’ difficulty levels, and how to predict the performance of
students on the exercises.

4.2 Interaction Functions
Interaction Functions (IFs) are devised to predict the likelihood of
students correctly answering exercises, which can be formulated as

𝑦𝑖 𝑗 = 𝜎 (F ((Mas𝑠𝑖 − Diff𝑒 𝑗 ) ⊙ Q𝑒 𝑗 )) , (7)

where 𝑦𝑖 𝑗 ∈ [0, 1] represents the prediction outcome of 𝑖-th student
practice 𝑗-th exercise, 𝜎 typically employs the Sigmoid, Mas𝑠𝑖 ∈
R1×𝑍 denotes the inferred Mas of 𝑖-th student, Diff𝑒 𝑗 ∈ R1×𝑍 de-
notes the inferred difficulty of 𝑗-th exercise. Q𝑒 𝑗 ∈ R1×𝑍 signifies
the concepts associated with the 𝑗-th exercise. ICDM is versatile
and adaptable to various IFs. For instance, it is compatible with
traditional IFs like MIRT that utilizes the logistic function for F (·),
where Mas𝑠𝑖 ≡ ℎ𝑠𝑖 ,Diff𝑒 𝑗 ≡ ℎ𝑒 𝑗 . Additionally, ICDM can also sup-
port recent approaches like NCDM [25], which employs MLPs for
F (·) , whereMas𝑠𝑖 ≡ ℎ𝑠𝑖 ,Diff𝑒 𝑗 ≡ ℎ𝑒 𝑗 , all the while ensuring the
weights remain non-negative to uphold the monotonicity assump-
tion. However, in practical learning environments, when assessing
whether a student can solve a particular exercise, we frequently
base our judgment on the difficulty of other exercises they have
tackled previously or Mas of students who have attempted the same
exercise (i.e., global-level information). Obviously, previous IFs have
neglected this aspect.

Global-Level Interaction Function. The global-level informa-
tion can be effectively captured by introducing layers of Graph
Convolutional Network (GCN). Specifically, we adopt the propaga-
tion rule from LightGCN [11] due to its proven efficacy in scenarios
dominated by ID-features. To facilitate this, we construct a bipartite
graph G𝑠𝑒 = (V𝑠𝑒 , E𝑠𝑒 ) whereV𝑠𝑒 = 𝑆 ∪ 𝐸 and E𝑠𝑒 involve all ob-
served interactions between students and exercises. The proposed
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GLIF can be expressed as

Con𝑒 𝑗 =
1

|RC𝑒 𝑗 |
∑︁

𝑐𝑧 ∈RC𝑒𝑗

ℎ𝑐𝑧 ,

Mas𝑠𝑖 =
1
2
(h𝑠𝑖 +

∑︁
𝑒 𝑗 ∈N𝑠𝑖

1√︃��N𝑠𝑖 �� ��N𝑒 𝑗 ��h𝑒 𝑗 ) ⊙ Con𝑒 𝑗 ,

Diff𝑒 𝑗 =
1
2
(h𝑒 𝑗 +

∑︁
𝑠𝑖 ∈N𝑒𝑗

1√︃��N𝑒 𝑗 �� ��N𝑠𝑖 ��h𝑠𝑖 ) ⊙ Con𝑒 𝑗 ,

(8)

where Con𝑒 𝑗 ∈ R1×𝑑 denotes the average related concepts’ in-
formation of the 𝑗-th exercise, RC𝑒 𝑗 represents the set of related
concepts for the 𝑗-th exercise. N𝑠𝑖 denotes the neighbors of the
𝑖-th student in G𝑠𝑒 , N𝑒 𝑗 denotes the neighbors of the 𝑗-th exercise
in G𝑠𝑒 . In the end, akin to NCDM, we employ MLPs for F (·) and
use the ReLU to ensure non-negative weights, thereby fulfilling the
monotonicity assumption. The prediction is calculated as Eq (7).

4.3 Model Training
In the CD task, the main loss function utilized is the binary cross-
entropy loss. This computes the discrepancy between the model’s
predicted outcomes and the actual response scores within a mini-
batch. Additionally, we employ regularization term Ω(·) to mitigate
overfitting. The whole loss function can be formulated as

LBCE = −
|𝑇 |∑︁

𝑖, 𝑗,𝑟𝑖 𝑗 ∈𝑇
𝑟𝑖 𝑗 log𝑦𝑖 𝑗 + (1 − 𝑟𝑖 𝑗 ) log(1 − 𝑦𝑖 𝑗 ) ,

H(0) = 𝐻𝑠 ⊕ 𝐻𝑟 ⊕ 𝐻𝑤 ⊕ 𝐻𝑐 ,L = LBCE + 𝜆regΩ(H(0) ) ,

(9)

where 𝜆reg is a hyperparameter to control the weight of regu-
larzation loss in L. H(0) ∈ R(𝑁𝑂+2𝑀+𝑍 )×𝑑 , ⊕ is a concatena-
tion operator. The code is supplied in the supplementary material.
Ω(H(0) ) = ∥H(0) ∥2,2

𝑁𝑂+𝑀 , where ∥H(0) ∥2,2 =
∑
𝑢

∑
𝑣 |H

(0)
𝑢𝑣 |2 is an entry-

wise matrix norm. We analyze the time complexity of ICDM, and
the details are presented in Appendix A.

5 EXPERIMENTS
In this section, we first delineate four real-world datasets and eval-
uation metrics. Then through comprehensive experiments, we aim
to manifest the preeminence of ICDM in both transductive and in-
ductive scenarios. To ensure reproducibility and robustness, all
experiments are conducted ten times. Our code is available at
https://anonymous.4open.science/r/ICDM.

Table 1: Statistics of real-world datasets for experiments.

Datasets FrcSub EdNet-1 Assist17 NeurIPS20

#Students 536 1776 1709 2840
#Exercises 20 11925 3162 6000
#knowledge Concepts 8 189 102 268
#Response Logs 10,720 616,193 390,311 214,328
Sparsity 1.0 0.029 0.072 0.012
Average Correct Rate 0.530 0.662 0.815 0.631
Q Density 2.80 2.25 1.22 4.14

5.1 Experimental Settings
Datasets Description. The experiments are conducted using four
real-world datasets: FrcSub, EdNet-1, Assist17, and NeurIPS20. Frc-
Sub [4, 21] consists of middle school students’ scores on fraction
subtraction objective problems. EdNet-1 [2] is the dataset of all
student-system interactions collected over 2 years by Santa, a multi-
platform AI web-based tutoring service with more than 780K users
in Korea. The Assist17 datasets is provided by the ASSISTment web-
based online tutoring platforms [5] and are widely used for cogni-
tive diagnosis tasks [25]. The NeurIPS20 dataset is derived from a
competition called The NeurIPS 2020 Education Challenge [28]. It
contains students’ response logs to mathematics questions over two
school years (2018-2020) from Eedi, a leading educational platform
which millions of students interact with daily around the globe.
For more detailed statistics on these four datasets, please refer to
Table 1. Notably, “Sparsity” refers to the sparsity of the dataset,
which is calculated as |𝑇 |

|𝑆 | |𝐸 | . “Average Correct Rate” represents the
average score of students on exercises, and “Q Density” indicates
the average number of knowledge concepts per exercise.

Evaluation Metrics. To assess the efficacy of ICDM, we utilize
both score prediction and interpretability metrics. This approach
offers a holistic evaluation from both the predictive accuracy and
interpretability standpoints.

Score Prediction Metrics: Evaluating the efficacy of CDMs poses
difficulties owing to the absence of the true Mas. A prevalent
workaround is to appraise these models based on their capabil-
ity to predict students’ scores on exercises in the test data. In line
with prior CDM studies [25], in the transductive scenario shown
in Figure 4(a), we partition the data into train and test data and
assess our model’s performance on the test data using classification
and regression metrics such as AUC, Accuracy (ACC), and RMSE.
The test size is set to 0.2, following the previous researches [14, 25].
Crurcially, we build the SCG solely based on the train data. In the
inductive setting depicted in Figure 4(b), we retain the test data
intact and partition the training data by students at a ratio 𝑝𝑛 = 0.2.
In this approach, we can obtain two sets of students: 𝑆𝑂 and 𝑆𝑈 .
Furthermore, we construct the SCG using only the training data
from 𝑆𝑂 . We then use the training data from 𝑆𝑈 to infer Mas𝑈 .
Ultimately, accuracy is computed only by the prediction of 𝑆𝑈
performance on test data exercises, denoted as ACC†.

InterpretabilityMetric: Diagnostic results are highly interpretable
hold significant importance in CD. In this regard, we employ the
degree of agreement (DOA), which is consistent with the approach
used in [14, 25]. The underlying intuition here is that, if 𝑠𝑎 has a
greater accuracy in answering exercises related to 𝑐𝑘 than student
𝑠𝑏 , then the probability of 𝑠𝑎 mastering 𝑐𝑘 should be greater than
that of 𝑠𝑏 . Namely,Mas𝑠𝑎,𝑐𝑘 > Mas𝑠𝑏 ,𝑐𝑘 . DOA is defined as Eq. (10)

DOA𝑘 =

∑
𝑎,𝑏∈𝑆

𝛿

(
Mas𝑠𝑎,𝑐𝑘 ,Mas𝑠𝑏 ,𝑐𝑘

) ∑𝑀
𝑗=1 Q𝑗𝑘∧𝜑 ( 𝑗,𝑎,𝑏)∧𝛿 (𝑟𝑎𝑗 ,𝑟𝑏 𝑗 )∑𝑀
𝑗=1 Q𝑗𝑘∧𝜑 ( 𝑗,𝑎,𝑏)∧𝐼 (𝑟𝑎𝑗 ≠𝑟𝑏 𝑗 )

𝑍
, (10)

where 𝑍 =
∑
𝑎,𝑏∈𝑆 𝛿 (Mas𝑠𝑎,𝑐𝑘 ,Mas𝑠𝑏 ,𝑐𝑘 ), Q𝑗𝑘 indicates exercise

𝑒 𝑗 ’s relevance to concept 𝑐𝑘 , 𝜑 ( 𝑗, 𝑎, 𝑏) checks if both students 𝑠𝑎
and 𝑠𝑏 answered 𝑒 𝑗 , 𝑟𝑎𝑗 represents the response of 𝑠𝑎 to 𝑒 𝑗 , and
𝐼 (𝑟𝑎𝑗 ≠ 𝑟𝑏 𝑗 ) verifies if their responses are different, 𝛿 (𝑟𝑎𝑗 , 𝑟𝑏 𝑗 ) is
1 for a right response by 𝑠𝑎 and a wrong response by 𝑠𝑏 , and 0
otherwise. Consistent with [14], we compute the average DOA for
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Figure 4: Different evaluations between transductive CD and
inductive CD: (a) Transductive CD. (b) Inductive CD.

all concepts in FrcSub and the top 10 concepts with the highest
number of response logs in EdNet-1, Assist17, NeurIPS20 and refer
to it as DOA@10. In the transductive scenario, both DOA and
DOA@10 are computed for all students 𝑆 , while in the inductive
scenario, they are specifically calculated for new students 𝑆𝑈 .

Hyperparameter Settings. For parameter initialization, we
employ the Xavier [7], and for optimization purposes, Adam [13]
is adopted. The embedding size is set as 64. The batch size is set
as 1024 for EdNet-1, 16 for FrcSub and 128 for other datasets. The
k-hops 𝑘 is tuned from the range {1, 2, 3, 4}. To regulate the im-
pact of the regularization term, we adjust 𝜆reg within the range
{10−4, 10−3, . . . , 1}. We set the dropout parameters 𝛼 as 0.1, 𝛽 as
0.2. Details regarding the experiment can be found in Appendix B.
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Figure 5: Interpretability and running time results.

5.2 Transductive Cognitive Diagnosis
Baselines and State-of-the-Art Methods. We compare ICDM
against various leading baselines and state-of-the-arts Methods in
CD, utilizing the hyperparameter settings and IFs as described in
their respective original publications.

• DINA [3] is a traditional CDM which utilize discrete mastery
pattern (0 or 1) to model Mas.

• MIRT [20] is a representative model of latent factor CDMs,
which uses multidimensional 𝜽 to model Mas.

• NCDM [25] is a recent deep-learning based CDM which utilize
MLPs to replace the traditional manually designed IFs.

• RCD [6] leverages GAT to explore the relations among students,
exercises and knowledge concepts. Here, to ensure a fair compari-
son, we solely utilize the student-exercise-concept component of
RCD, excluding the dependency on knowledge concepts.

• KSCD [17] also delves into the implicit relationships among
knowledge concepts and employs a concept-augmented IF.

• KANCD [26] is an enhanced version of NCDM, delving into
the implicit relationships among concepts to tackle the knowledge
coverage issue.

To further demonstrate the versatility of ICDM in accommo-
dating various IFs, we not only employ the proposed GLIF but
also utilize the traditional MIRT and the classic deep-learniong
based IF (i.e., NCDM). These variations are denoted as ICDM-MIRT,
ICDM-NCDM, and ICDM-GLIF, respectively.

Results. The comparison results are listed in Table 2 and Fig-
ure 5(a). When comparing interpretability performance, we par-
ticularly opt for KSCD, KANCD, and RCD as baselines. This is
because MIRT doesn’t support DOA computation due to its la-
tent mastery pattern, while DINA demonstrates subpar prediction
performance. Moreover, NCDM has shown a lackluster DOA as
highlighted in [26]. We can conclude the following observations:

• ICDM-MIRT and ICDM-NCDM outperform MIRT and NCDM,
highlighting the significant impact of ICDM. Moreover, with the ad-
vantage of ICDM, the traditional IF MIRT demonstrates competitive
predictive performance and the best interpretability performance.

• Despite ICDM-GLIF being primarily tailored for the inductive
scenario in CD, it consistently outperforms the current state-of-
the-art CDMs in prediction accuracy. Moreover, it demonstrates
commendable interpretability performance across all four datasets.

5.3 Inductive Cognitive Diagnosis
Baselines and Compared Methods.We conduct a comparison
of ICDM against other baselines and utilize the hyperparameter
settings and IFs described in their respective original publications.

• Random: It predicts students’ scores based on a uniform distri-
bution ranging from 0 to 1.

• KANCD-Mean: We incorporate the postprocessing mean strat-
egy from IMCGAE into KANCD, as the original KANCD was de-
signed solely for the transductive scenario. It assigns the embedding
of new students to the average of the old students.

• KANCD-Closest: For each new student in 𝑆𝑈 , we assign their
embedding based on the most similar student in 𝑆𝑂 , who is selected
based on the similarity of response logs.

• IMCGAE [19]: It utilizes a graph autoencoder combined with
a postprocessing strategy tailored for inductive rating prediction.
We select IMCGAE as the representative because INMO cannot
be applied in CD, and the performance of IMCGAE in [19, 31] is
superior to previous methods like IGMC [34], IDCF [30]. We modify
it accordingly to suit the inductive CD task.

• KANCD-Re: By integrating the train data of 𝑆𝑈 into the train-
ing phase, we retrain KANCD.

• ICDM-Re: By incorporating the train data of 𝑆𝑈 into the train-
ing phase, we retrain ICDM.

We chose to compare with KANCD because it exhibits outstand-
ing performance in the transductive scenario. To further demon-
strate the performance of ICDM, we compare with ICDM-Re and
KANCD-Re. These represent the performance of ICDM and KANCD
after retraining, evaluating their performance on the test data of
𝑆𝑈 . These can be seen as an upper bound for the inductive sce-
nario. The aggregator of ICDM is selected as the mean operator
due to its high efficiency and outstanding performance, which will
be demonstrated in subsequent sections.
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Table 2: Overall prediction performance in transductive scenario. In each column, an entry with the best mean value is marked
in bold and underline for the runner-up. The standard deviation is not shown in the table since it is very low (less than 0.001).

Datasets FrcSub EdNet-1 Assist17 NeurIPS20

Algo. AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE

DINA 0.6623 0.5547 0.5436 0.5305 0.4245 0.5651 0.6777 0.5339 0.4726 0.6324 0.4372 0.5805
MIRT 0.8609 0.7890 0.3903 0.6668 0.6733 0.4679 0.8804 0.8594 0.3138 0.6849 0.6570 0.4889
NCDM 0.7756 0.5264 0.4994 0.7419 0.7082 0.4362 0.8727 0.8491 0.3201 0.7775 0.7178 0.4302
RCD 0.8601 0.7848 0.4058 0.7719 0.7333 0.4214 0.8926 0.8663 0.3051 0.7713 0.7156 0.4313
KSCD 0.8956 0.8227 0.3573 0.7476 0.6961 0.4347 0.8950 0.8653 0.3048 0.7699 0.7135 0.4326
KANCD 0.9031 0.8386 0.3515 0.7553 0.7226 0.4287 0.8900 0.8621 0.3082 0.7662 0.7150 0.4315

ICDM-MIRT 0.8934 0.8195 0.3606 0.7523 0.7226 0.4294 0.8960 0.8682 0.3031 0.7712 0.7175 0.4308
ICDM-NCDM 0.9026 0.8331 0.3517 0.7535 0.7217 0.4297 0.8911 0.8635 0.3067 0.7794 0.7232 0.4278
ICDM-GLIF 0.9053 0.8397 0.3496 0.7565 0.7234 0.4284 0.8979 0.8705 0.3013 0.7796 0.7233 0.4276

Table 3: Overall prediction performance in inductive scenario. The symbol “*” indicates the retraining results. Details are as
same as Table 2.

MIRT NCDM GLIF
Dataset Metric Random KANCD-Mean KANCD-Closest KANCD-Re* IMCGAE ICDM ICDM-Re IMCGAE ICDM ICDM-Re IMCGAE ICDM ICDM-Re*

FrcSub ACC† 0.5083 0.6234 0.7329 0.8325* 0.6130 0.7373 0.8221 0.5988 0.7193 0.8346 0.6130 0.7188 0.8352*
DOA \ 0.4882 0.6145 0.8058* 0.5128 0.8220 0.8819 0.5133 0.6662 0.7086 0.5128 0.7140 0.8127*

EdNet-1 ACC† 0.5009 0.6229 0.6951 0.7259* 0.6989 0.7013 0.7270 0.6797 0.6994 0.7238 0.7026 0.7036 0.7263*
DOA \ 0.5523 0.5149 0.6466* 0.5097 0.6018 0.6690 0.5412 0.5900 0.6315 0.5890 0.6033 0.6545*

Assist17 ACC† 0.4993 0.8486 0.8413 0.8633* 0.8499 0.8552 0.8677 0.8241 0.8576 0.8623 0.8598 0.8620 0.8691*
DOA \ 0.4906 0.5520 0.6375* 0.6136 0.6215 0.6758 0.5529 0.5915 0.6287 0.6506 0.5349 0.5823*

NeurIPS20 ACC† 0.5001 0.6445 0.5951 0.7169* 0.6451 0.6568 0.7161 0.6408 0.6552 0.7195 0.6572 0.6567 0.7199*
DOA \ 0.5159 0.5560 0.7258* 0.5623 0.5957 0.7443 0.5183 0.5444 0.6375 0.5437 0.5478 0.6492*

Table 4: Overall prediction performance of ablation study in
inductive scenario for EdNet-1. Details are as same as Table 2.

Dataset EdNet-1

IF MIRT NCDM GLIF

Metric ACC DOA ACC DOA ACC DOA

ICDM-w.o.C 0.7012 0.5913 0.6980 0.5739 0.7032 0.6012

ICDM-w.o.drop 0.7005 0.5958 0.6994 0.5757 0.7008 0.6003

ICDM-w.o.tf 0.6885 0.5154 0.6916 0.5460 0.6906 0.5326

ICDM 0.7013 0.6018 0.6994 0.5900 0.7036 0.6033

Results. The comparison results are listed in Table 3. We can
conclude the following key observations:

• Transductive CDMs with a simple postprocessing mean strat-
egy perform better than RANDOM. However, they still don’t pro-
duce satisfactory results and fall significantly short compared to the
outcomes achieved after time-consuming retraining. This indicates
that the inductive scenario in CD is not a trivial task, and merely
using previous transductive CDMs is not feasible.

• ICDM consistently outperforms the IMCGAE on almost all
datasets regardless of the IF used. This demonstrates that ICDM is
more effective than IMCGAE under the inductive scenario in CD.

• ICDM-Re outperforms KANCD-Re inmost cases, further demon-
strating the superior performance of ICDM. We are pleasantly sur-
prised to find that, for instance, the accuracy of ICDM-GLIF can
reach up to 86.06% for FrcSub, 96.87% for EdNet-1, 96.74% for As-
sist17, and 91.22% for nips20 after retraining ICDM. This is ample
evidence to prove the efficacy of ICDM to provide immediate feed-
back for new students in WOIDSs.

Inference Time Comparison. In WOIDSs, ICDM’s ability to
circumvent the constant need for retraining CDMs is highly ad-
vantageous. Here, we show the speed at which ICDM infers the
Mas of new students on EdNet-1, compared with the difference of
transductive CDMs that infer via retraining. As illustrated in Fig-
ure 5(b), retraining transductive CDMs requires significantly more
time, which evidently cannot meet the rapid feedback demands for
new students in WOIDSs. Conversely, ICDM efficiently derives the
Mastery Level (Mas) of 355 new students with 112,535 response logs
in the EdNet-1 in 26ms, while retaining 96.87% ACC of retraining.
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Figure 6: Prediction performance and consistency results.

Ablation Study. To showcase the contributions of each compo-
nent in ICDM, we conduct an ablation study on ICDM, which is
divided into the following three versions. ICDM-w.o.-C: This ver-
sion removes the potential "desired" relationship between students
and concepts in the SCG. ICDM-w.o.-Drop: This version removes
the layer-wise neighbor dropout in the CAGT process. ICDM-w.o.-
tf: This version removes the transformation phase within the CAGT
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process. Specifically, the embeddings’ dimension is set to 𝑍 . Due to
space limitations, we only present the ablation study on the EdNet-1.
Ablation studies on other datasets can be found in Appendix B. As
shown in Table 4, ICDM surpasses other versions in both prediction
and interpretability performance. This suggests that these compo-
nents, when combined, enhance ICDM. When each component is
removed individually, either the prediction performance decreases
or the interpretability performance suffers, indicating that each
component plays a crucial role.

The Effect of 𝑝𝑛 . In real educational scenarios, there might
be a large influx of students practicing in WOIDSs within a short
period (e.g., large-scale unified online exams), which means a high
𝑝𝑛 . Therefore, it is necessary to evaluate the relationship between
the model’s performance and 𝑝𝑛 . Due to space limitations, we only
present the outcome of EdNet-1, other datasets can be found in
Appendix C. In Figure 6(a), ICDM exhibits a higher ACC† om-
pared to IMCGAE, especially as 𝑝𝑛 increases. This demonstrates
the robustness of ICDM in handling larger batches of new students,
underscoring its superiority in inductive scenarios for WIODSs.

5.4 Analysis of Diagnosis Results (i.e., Mas)
The Distrubution of Students’ Mas. Indeed, students can natu-
rally be grouped into categories based on their performance, such
as those with low and high correct rates. This classification re-
flects intrinsic differences in their Mas. We employ t-SNE [23], a
renowned dimensionality reduction method, to map theMas onto
a two-dimensional plane. By shading the scatter plot according to
the corresponding correct rates, with deeper shades of blue indi-
cating higher correct rates, we achieve a visual representation of
the students’ Mas distribution. From Figure 7(a) and Figure 7(b), it
is clear that ICDM-GLIF clusters all students 𝑆 with high accuracy
rates more cohesively than KANCD. Moreover, ICDM-GLIF-Ind
denotes the version of ICDM infer Mas of new students 𝑆𝑈 with-
out retraining. As depicted in Figure 7(c), the inferred Mas of new
students is plausible, as new students with similar correct rates
(colored in green) cluster closely with older students (colored in
blue) of comparable rates.

(a) KANCD (b) ICDM-GLIF (c) ICDM-GLIF-Ind

Figure 7: Visualizations of inferred Mas on FrcSub dataset.

The Consistency of Mas. Previous CDMs overlook the con-
sistency of inferred Mas. There are instances where two students
have very similar or even identical response logs, yet their Mas
differ. This is unfair for both students and can adversely affect other
recommendation algorithms within WOIDSs. To uncover this phe-
nomenon, we introduce a metric termed “Inconsistency". Firstly,
for each student 𝑠𝑖 , we utilize cosine similarity to select another
student 𝑠 𝑗 whose response logs are the most similar to 𝑠𝑖 which is

calculated as 𝑠 𝑗 = argmax𝑠 𝑗 ∈𝑆\𝑠𝑖 Cosine(R𝑖 ,R𝑗 ). Then, we calcu-
late “Inconsistency" as 1

𝑍
1
𝑁

∑𝑁
𝑖=1 ∥Mas𝑠𝑖 −Mas𝑠 𝑗 ∥1. As depicted

in Figure 6(b), we have chosen KANCD and KSCD for comparison
because they represent the most recent CDMs that exhibit competi-
tive performance. It is evident that the inconsistency of ICDM-GLIF
is significantly lower than that of KANCD and KSCD. This indicates
that ICDM-GLIF’s inferred Mas exhibits higher consistency, making
it more suitable for downstream algorithms in WOIDSs.

5.5 Hyperparameters Analysis
The Effect of Different Aggregators.We conduct experiments to
demonstrate the impact of different aggregators on ICDM-GLIF, as
illustrated in Figure 8(a). Using GATV2 resulted in out-of-memory
for the last three datasets, hence it is not displayed in the figure.
The mean and pool aggregators surpasse other attention-based
aggregators (e.g., GAT, GATV2). This can be attributed to the fact
that CD’s features are solely based on IDs. Employing complex non-
linear transformations like attention might not lead to performance
improvement and could even result in a decline, as also mentioned
in [11, 29]. The mean operator is recommended as it exhibits stable
and relatively good performance across all four datasets.
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Figure 8: Hyperparameters analysis results.

The Effect of 𝑘 . 𝑘 determines the receptive field size of ICDM-
GLIF in the SCG. As shown in Figure 8(b), as 𝑘 increases, ACC
also increases, but the computational time grows correspondingly.
The relationship between computation time and 𝑘 will be shown
in Appendix D. High computational time is contrary to our inten-
tion of providing immediate diagnostic results for new students in
WOIDSs. We recommend using 𝑘 = 3 or 𝑘 = 4, which offers decent
performance in a relatively shorter time.

The Effect of 𝑑 . 𝑑 controls the dimension of the embedding. As
shown in Figure 8(c), the preferable choices for 𝑑 are 64 or 128 due
to their stable performance across all four datasets.

6 CONCLUSION
This paper proposes an inductive cognitive diagnosis model (ICDM)
for fast new students’ mastery levels inference in WOIESs. ICDM
mainly focuses on handling inductive scenario in CD which can
provide immediate feedback for new students. A construction-
aggregation-generation-transformation process is introduced to ex-
tract features effectively from the newly proposed student-centered
graph. ICDM still has some limitations. It cannot infer the difficulty
or discrimination of new incoming exercises. We look forward
to finding a solution that can address this issue reasonably and
effectively which is also of vital importance to WOIDSs.
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APPENDIX
The appendix is organized as follows:

• Appendix A analyzes the ICDM’s time complexity and com-
pares it with RCD.

• Appendix B presents the detailed settings of compared base-
lines and other details about experiments.

• Appendix C further supplements the analysis with additional
details regarding the hyperparameter analysis.

A TIME COMPLEXITY ANALYSIS
In this section, we present a detailed time complexity analysis of our
proposed model ICDM. We compare our time complexity with that
of RCD, as RCD is the only CDM based on Graph Neural Networks.

Time Complexity Analysis of ICDM. In ICDM, we construct
a student-centered graph (SCG) G with four node and edge types
based on R𝑂 , I𝑂 and Q. We choose the mean operator as the aggre-
gator in the CAGT process for illustration purposes. Given that we
do not employ the non-linear activation and feature transformation
usually found in GNNs, the time complexity can be straightfor-
wardly computed as𝑂 (2(∥Q𝐵 ∥0 + ∥R𝑂

𝐵
∥0 + ∥I𝑂

𝐵
∥0)𝑘𝑑 + 5𝑑2 + 3𝑍𝑑)

for the CAGT process, where 𝐵 denotes the pre-defined batch size
and Q𝐵 refers to the entries in Q that are related to the students,
exercises, and concepts present in that batch. Similarly, R𝑂

𝐵
and I𝑂

𝐵

follow the same logic. ∥Q𝐵 ∥0, ∥R𝑂𝐵 ∥0, ∥I
𝑂
𝐵
∥0 represents non-zero

number ofQ𝐵,R𝑂𝐵 , I
𝑂
𝐵
respectively.𝑘 represents the k-hops.𝑑 stands

for the size of the embeddings, 𝑍 denotes the number of knowledge
concepts. The most time-consuming part is the aggregation step
which takes𝑂 (2(∥Q𝐵 ∥0+∥R𝑂𝐵 ∥0+∥I

𝑂
𝐵
∥0)𝑘𝑑).𝐿 denotes the number

of GAT layers.
Time Complexity Analysis of RCD. In RCD, an exercise-

concept graph is constructed using Q and a student-exercise graph
is formed using R. Given that RCD employs the graph attention net-
work, which necessitates the computation of attention coefficients
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Figure 9: Performance under different 𝑘 .

between every pair of connected nodes, its time complexity be-
longs to 𝑂 (2(∥R∥0 + ||Q| |0)𝐿𝑍 2). Herein, 𝑍 represents the number
of concepts (𝑑 ≪ 𝑍 ).

ICDM evidently takes less time compared to RCD due to two
main reasons. First, in each batch during training, we only need
to extract the relevant part from the constructed graph to perform
graph convolution, while RCD needs to perform graph convolution
on the entire graph. Second, in the CAGT process, the transforma-
tion phase reduces the embedding dimension to 𝑑 , where 𝑑 is much
smaller than 𝑍 .

B EXPERIMENTAL DETAILS
Implementation Details This section delineates the detailed set-
tings when comparing our method with the baselines and state-of-
the-art methods in both transductive scenario and inductive sce-
nario. All experiments are run on a Linux server with two 3.00GHz
Intel Xeon Gold 6354 CPUs and one RTX3090 GPU. All the models
are implemented by PyTorch [18].

Transductive Scenario. In the following section, we will elabo-
rate on some details regarding the utilization of compared methods.

• DINA [3] is a representative CDM which models the mastery
pattern with discrete variables (0 or 1).

• MIRT [20] is a representative model of latent factor CDMs,
which uses multidimensional 𝜽 to model the latent abilities. We set
the latent dimension as 16 which is the same as [25]

• NCDM [25] is a deep learning based CDM which uses MLPs to
replace the traditional interaction function (i.e., logistic function).
We adopt the default parameters which are reported in that paper.

• RCD [6] leverages GNN to explore the relations among stu-
dents, exercises and knowledge concepts. Here, to ensure a fair
comparison, we solely utilize the student-exercise-concept compo-
nent of RCD, excluding the dependency on knowledge concepts.

• KANCD [26] improves NCDM by exploring the implicit as-
sociation among knowledge concepts to address the problem of
knowledge coverage. Here, we adopt the default parameters which
are reported in that paper.

• KSCD [17] also explores the implicit association among knowl-
edge concepts and leverages a knowledge-enhanced interaction
function. Due to the absence of open-source code online, we have
independently replicated KSCD.

The implementation of DINA, MIRT, NCDM and KANCD comes
from the public repository https://github.com/bigdata-ustc/EduCDM.
For RCD, we adopt the implementation from the authors in https:
//github.com/bigdata-ustc/RCD.

Inductive Scenario. IMCGAE [19] utilizes a graph autoencoder
combined with a postprocessing strategy tailored for inductive
rating prediction. We select IMCGAE as the representative because
INMO cannot be applied in CD, and the performance of IMCGAE
in [19, 31] is superior to previousmethods like IGMC [34], IDCF [30].
We modify it accordingly to suit the inductive CD task. Specifically,
we construct the necessary student-exercise bipartite graph for
IMCGAE and replace its initial bilinear decoder with IFs in CD.
The implementation of IMCGAE [19] comes from the version of
https://github.com/WuYunfan/igcn_cf/.
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Table 5: Overall performance of ablation study in inductive scenario for the remaining datasets. Details are the same as Table 2.

Dataset FrcSub Assist17 NeurIPS20

IF MIRT NCDM GLIF MIRT NCDM GLIF MIRT NCDM GLIF

Metric ACC DOA ACC DOA ACC DOA ACC DOA ACC DOA ACC DOA ACC DOA ACC DOA ACC DOA

ICDM-w.o.C 0.7359 0.8060 0.7189 0.6623 0.6998 0.6813 0.8542 0.6060 0.8556 0.5904 0.8589 0.5633 0.6584 0.6222 0.6520 0.5528 0.6518 0.5401

ICDM-w.o.drop 0.7370 0.8029 0.7168 0.6565 0.7158 0.7011 0.8547 0.5953 0.8576 0.5777 0.8618 0.5416 0.6551 0.5905 0.6513 0.5534 0.6535 0.5471

ICDM-w.o.tf 0.6574 0.6469 0.6482 0.6134 0.6648 0.6593 0.8495 0.4958 0.8464 0.5910 0.8520 0.5653 0.6561 0.5673 0.6280 0.5224 0.6462 0.5405

ICDM 0.7373 0.8220 0.7193 0.6662 0.7188 0.7140 0.8552 0.6215 0.8576 0.5915 0.8620 0.5349 0.6568 0.5957 0.6552 0.5444 0.6567 0.5478

Ablation Study. To showcase the contributions of each compo-
nent in ICDM, we conducted an ablation study on ICDM, which is
divided into the following three versions:

• ICDM-w.o.-C: This version removes the potential "desired"
relationship between students and concepts in the SCG.

• ICDM-w.o.-Drop: This version removes the layer-wise neigh-
bor dropout in the CAGT process.

• ICDM-w.o.-tf: This version removes the transformation phase
within the CAGT process. Specifically, the embeddings’ dimension
is set to 𝑍 .

As illustrated in Table 5, ICDM outperforms other versions in
terms of both prediction and interpretability performance. This
indicates that the amalgamation of these components amplifies the
efficacy of ICDM.When components are individually omitted, there
is a noted decrease in either predictive accuracy or interpretability
performance, showcasing the pivotal role each element holds in
the cohesive functionality of the model. Notably, the ICDM-w.o.-
tf version exhibits the most substantial decline in performance,
emphasizing the significance of the transformation phase within
the CAGT process.

The Effect of 𝑝𝑛 . In Figure 9, ICDM consistently demonstrates
superior performance over IMCGAE across various IFs and on all
four datasets. This superiority becomes more pronounced as 𝑝𝑛
grows. Such results underscore the robustness of ICDM, especially
when handling increasing numbers of new students, further un-
derscoring its potency and dominance in inductive settings within
WOIDSs.

C HYPERPARAMETER ANALYSIS
Relationship of 𝑘 and Computational Time. The computa-
tional time includes both training time and inference time. Training
time significantly influences the efficiency of model retraining in
WOIDSs. A shorter training time allows for more frequent model
updates, facilitating a more accurate and timely estimation of the
Mas of new students. As depicted in Figure 10, the training time dra-
matically increases with the growth of 𝑘 . This shows a significant
escalation in computational costs as 𝑘 becomes larger, indicating a
trade-off between the choice of 𝑘 and the computational efficiency
of the model.

The inference time significantly affects the speed at which ICDM
can deduce theMas of new students. A shorter inference time allows
for quicker evaluations, enabling the model to promptly provide
feedback or adapt learning pathways based on the inferred Mas of
the students. This efficiency is crucial in educational settings where
immediate feedback and adaptability are essential for enhancing the
learning experience and outcomes of new students. As illustrated

in Figure 11, there is a clear trend showing that as 𝑘 increases, the
inference time also rises rapidly.
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Figure 10: Relationship of 𝑘 and training time.
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Figure 11: Relationship of 𝑘 and inference time.
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