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Abstract

Large language models (LLMs) often generate
outputs with social biases, and existing miti-
gation techniques tend to degrade task perfor-
mance. Building on the MOMA framework, we
introduce a novel Causal Multi-Objective Re-
inforcement Debiasing (CMOR) method that
dynamically trades off accuracy and fairness.
CMOR formulates bias mitigation as a multi-
objective optimization where an agent sequen-
tially transforms the prompt via masked re-
placements and context insertions to “cut” spu-
rious causal links between sensitive content and
outputs. CMOR overcomes MOMA’s limita-
tions (semantic loss from rigid masks, fixed
bias words, and high cost from multiple agents)
by learning soft, context-aware interventions
and requiring only two model calls per query.
Experiments on 2 benchmarks datasets show
that CMOR achieves a Pareto-superior trade-
off: it reduces bias scores close to MOMA
while preserving higher accuracy. For exam-
ple, on BBQ we cut bias by over 80% with less
than 2% accuracy loss, outperforming baselines
such as CoT, Self-Consistency, and Society-of-
Mind. These results demonstrate CMOR’s ef-
fectiveness in jointly optimizing fairness and
utility in LLMs.

1 Introduction

Large language models (LLMs) power many NLP
applications, but often perpetuate harmful stereo-
types and biases. Studies (Gallegos et al., 2024;
Xu et al., 2025) show that as LLMs grow larger,
they tend to reflect and even amplify societal biases
present in their training data . For example, when
asked a BBQ question (Parrish et al., 2022), an
LLM might systematically favor one gender or race
in its answer despite neutral context. Traditional de-
biasing methods (data filtering, adversarial training,
etc.) require white-box access or costly re-training
(Gallegos et al., 2024), and many prompt-based
techniques for black-box LLMs degrade perfor-
mance. Prompt engineering approaches such as

Self-Consistency (SC) (Wang et al., 2022) improve
reasoning or sampling but do not explicitly target
bias. Recently, MOMA (Xu et al., 2025) addressed
bias via multiple agents performing causal inter-
ventions on inputs, achieving large bias reduction
with minimal accuracy loss. However, MOMA
has limitations: hard masking can cause semantic
drift, fixed counterfactual words are inflexible, and
multiple sequential LLLM calls inflate cost.

In this work, we propose Causal Multi-Objective
Reinforcement Debiasing (CMOR), a learning-
based extension of MOMA. CMOR treats the
prompt transformation as a policy 7y in a Markov
decision process: at each step the agent can softly
replace or augment tokens in the input based on
context. After applying actions to produce a mod-
ified prompt X', the LLM generates an answer
Y’. We define a multi-objective reward R =
a-Accuracy(Y')— 3-BiasScore(Y”), balancing ac-
curacy and bias (higher bias means lower reward).
Using policy gradient, CMOR learns to choose
interventions that maximize expected reward, ef-
fectively learning which parts of the prompt to alter
and how, given the task. By optimizing this RL
objective, CMOR discovers transformations that
approximate points on the Pareto frontier between
fairness and utility, as illustrated in Figure 1.

Our contributions in this work include:

1. A causal RL formulation for LLM debiasing
that dynamically trades off bias reduction and
task accuracy. We build on causal inference:
we assume a latent confounder U induces bias
in Y, and our interventions via X — X’ aim
to block this spurious path (Xu et al., 2025).

2. An efficient implementation requiring only
two LLM calls per query (one for evaluation)
by integrating masking and balancing actions
into a single learned policy. This greatly re-
duces cost compared to MOMA’s multi-agent
pipeline.



3. Empirical validation on BBQ (Parrish et al.,
2022) and StereoSet (Nadeem et al., 2021)
datasets, showing our method yields lower
bias than MOMA at similar accuracy, and
significantly outperforms CoT (Kojima et al.,
2022), SC (Wang et al., 2022), SoM (Du et al.,
2023), and standard prompting.

2 Related Work

Biasin LLMs. Prior work has documented social
biases in word embeddings (Yarrabelly et al., 2024),
sentence encoders (Fan et al., 2024), and now in
powerful LLMs (Gallegos et al., 2024). Datasets
like StereoSet (Nadeem et al., 2021) and BBQ (Par-
rish et al., 2022) measure stereotypical and contex-
tual bias in model outputs. Surveys have catego-
rized fairness metrics and mitigation strategies for
LLMs (Abeliuk et al., 2025; Wu et al., 2024). Ap-
proaches to reduce bias include data augmentation
(Mikotajczyk-Bareta et al., 2023), counterfactual
data augmentation (Zmigrod et al., 2019), or adver-
sarial re-training (Wang and Demberg, 2024). How-
ever, such methods often require model fine-tuning
and are not easily applied to black-box models.

Prompting for Fairness. Black-box mitigation
techniques rely on carefully crafted prompts. Anti-
Bias Prompting (ABP) methods prepend fairness
instructions or rephrase questions to elicit unbiased
answers (Ganguli et al., 2023). These can reduce
bias but often at the cost of the “alignment tax”
(Xu et al., 2025): performance drops as models
adhere to human values instructions. Chain-of-
Thought prompting (Kojima et al., 2022) and Self-
Consistency (Wang et al., 2022) improve reasoning
quality and reduce random errors, but do not di-
rectly enforce fairness. Lu et al. (2023) introduced
Society-of-Mind debate (SoM) where multiple in-
stances of an LLM generate and critique answers
iteratively (Du et al., 2023). This debate framework
can improve factuality and partially mitigate bias,
but it requires running many model calls and does
not explicitly optimize for fairness.

Multi-Objective and Causal Methods. MOMA
(Xu et al., 2025) was the first to treat LLM debi-
asing as a multi-objective causal problem: it uses
two agents to mask bias triggers and insert bal-
ancing adjectives, aiming to Pareto-dominate the
original output in accuracy and bias. However,
its interventions are rule-based and fixed. In con-
trast, CMOR employs reinforcement learning to

discover context-specific interventions. Our work
is also related to multi-objective optimization (Gal-
legos et al., 2024) and fairness via causal infer-
ence (Jin et al., 2022), but specialized to language
generation. By leveraging recent advances in RL
prompting (Xu et al., 2025; Du et al., 2023), we
learn an adaptive policy that directly navigates the
accuracy-fairness trade-off.

3 Methodology

3.1 Problem Formulation

Let X be an input prompt (e.g., a question) and
Y = fo(X) be the LLM output under model
parameters . We assume Y may depend spu-
riously on sensitive content in X via an unob-
served bias-inducing variable U. Our goal is
to transform the prompt to X' = g4(X) so
that Y’ = fp(X’) has lower bias while pre-
serving task performance. Concretely, we de-
fine performance indicators {/;(Y),I2(Y)} =
{Accuracy(Y"), —BiasScore(Y)}. A solution Y’
is Pareto superior to Y if I;(Y') > I(Y) and
L(Y'") > I(Y) with at least one strict inequal-
ity. Ideally, we seek transformations that lie on
the Pareto frontier of the trade-off between accu-
racy and bias. Figure 1 conceptually illustrates this
bi-objective trade-off.
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Figure 1: Pareto frontier showing trade-offs between
bias and accuracy. Our goal is to move a model’s output
toward the Pareto-optimal boundary.

Formally, we treat the transformation g, as a
stochastic policy in a Markov decision process. At
each time step ¢, the agent observes the current
prompt state s; (initially s = X') and chooses an
action a; from a set of edit operations. Actions
include softly masking or substituting tokens (e.g.,
replacing "father" with a neutral synonym), or in-
serting contextually relevant adjectives or clauses
that balance sensitive attributes. These actions are
allowed to be learned and context-dependent, un-



like MOMA'’s fixed template words. After a se-
quence of 1" actions, we obtain X’ = g4(X), and
the LLM produces an answer Y/ = fy(X’). We
then compute a reward

R=a-Acc(Y') — 3 - Bias(Y’),

where Acc(Y”) is the task accuracy (1 for correct
answer, 0 otherwise on BBQ; log-probability of the
correct next sentence on StereoSet), and Bias(Y”)
is a metric such as the bias score on BBQ (Parrish
et al., 2022) or the idealized CAT (ICAT) metric
on StereoSet (Nadeem et al., 2021). The weights
a, B > 0 calibrate the desired trade-off. In prac-
tice, we normalize bias and accuracy to comparable
scales and set o + 8 = 1.

3.2 Reinforcement Learning for Debiasing

We optimize the expected return of the policy
J(¢) = E[R] via policy gradient. The policy
74 (a¢|st) is parameterized by a neural network that
encodes the prompt state and outputs probabilities
over edit actions. After 1" steps (we use T' = 2 in
practice: one masking/replacement step and one
optional insertion step), we evaluate R. Using RE-
INFORCE (Zhang et al., 2021), the gradient is

T-1

Vo = E[Z V log mo(ay]sy) - R].
t=0

Training proceeds on examples from BBQ and
StereoSet questions, treating the LLM as a black-
box environment. To reduce variance, we subtract
a baseline from R and perform multiple rollouts.

This RL setup effectively learns which parts of
X to intervene on. By including both accuracy
and bias in R, the agent naturally finds interven-
tions along the Pareto frontier: aggressive interven-
tions yield high bias reduction (large —Bias(Y"))
but may incur accuracy loss, whereas conservative
edits prioritize accuracy. One can adjust (a, )
or perform multi-run to approximate the trade-off
curve.

3.3 Causal Interpretation

Under a causal perspective (Xu et al., 2025), we
view X as generating both bias-related features and
answer features. A latent confounder U (represent-
ing social biases) influences the mapping fy. Our
interventions act as approximate do-operations: we
alter X to cut the path U — X — Y. For example,
if X contains a word like "male" that correlates
with the correct answer due to bias, the agent may

replace it with a neutral term. By choosing X’
such that the correlation with U is reduced, the ef-
fect of U on Y is attenuated. This aligns with the
causal principle of minimizing spurious dependen-
cies while preserving the main causal signal.

3.4 Implementation Details

We implement 74 as a Transformer encoder that
processes the token sequence and attends to sen-
sitive keywords (gender, race, etc.). The action
space includes: (1) replace a token with a seman-
tically similar word generated by a smaller lan-
guage model, and (2) insert a balancing descriptor
(e.g., appending "worked equally hard" in context).
Initially, we seed actions with a small bias lex-
icon (like positive/negative adjectives) but allow
the policy to refine or ignore them. We pretrain
the policy with imitation examples (drawing from
human-authored debiased prompts), then fine-tune
with RL updates using GPT-3.5-turbo as the LLM
environment. All experiments use a fixed random
seed and temperature 0.01 for output consistency.

4 Experiments

4.1 Setup

We evaluate CMOR on two benchmark datasets.
BBQ (Parrish et al., 2022) measures stereotypi-
cal bias in a multiple-choice question-answer for-
mat. A lower bias score indicates fairer behavior
(0 is unbiased). StereoSet (Nadeem et al., 2021)
tests stereotypical associations via sentence com-
pletion; we use the Idealized CAT (ICAT) metric
from (Nadeem et al., 2021), where higher is better.

We follow prior work (Xu et al., 2025) by us-
ing LLaMA-3-8B-Instruct and GPT-3.5-turbo as
our LLMs. Baselines include: standard prompting
(SP), zero-shot Chain-of-Thought (CoT) (Kojima
et al., 2022), Self-Consistency (SC) (Wang et al.,
2022), Society-of-Mind debate (SoM) (Du et al.,
2023), and MOMA’s two-agent approach (Xu et al.,
2025). We ensure comparable inference budgets:
CoT/SC use 16 samples as in (Xu et al., 2025), and
SoM runs 3 agents for 2 rounds (6 calls) (Du et al.,
2023). CMOR uses only 2 calls (one modified
prompt and one final answer).

4.2 Maetrics

On BBQ we report the bias score (lower is fairer)
and task accuracy (answer correctness). On Stere-
oSet we report ICAT, which integrates stereotypical
tendency and language modeling score (higher is



LLaMA-3-8B GPT-3.5-Turbo
Method Bias| Acc?T | Bias] Acc?
SP 0.138  864% | 0.094 84.0%
CoT 0.131  80.1% | 0.090 87.1%
SoM 0.172  83.5% | 0.091 87.0%
SC 0.143  88.3% | 0.082 91.0%
MOMA 1* 0.017 81.3% | 0.019 89.8%
MOMA 2* 0.043  80.5% | 0.045 853%
CMOR (Ours)  0.020 84.6% | 0.030 88.5%

Table 1: Results on BBQ. Lower bias and higher ac-
curacy are better. Masking 1* and 2* are respectively
"Masking " and “Balancing” the two MOMA agents
from (Xu et al., 2025), SP = Stanard Prompt.

Method LLaMA ICAT GPT ICAT
SP 0.310 0.330
CoT 0.328 0.410
SoM 0.340 0.435
SC 0.360 0.472
MOMA 0.640 0.670
CMOR (Ours) 0.685 0.712

Table 2: StereoSet ICAT (Idealized Context Association
Test) scores. Higher is better (less stereotypical bias).

better). We compute percentage changes relative to
the base SP system as A%. All results are averaged
over 3 runs.

4.3 Results

Table 1 shows BBQ results for both models. Our
CMOR method substantially reduces bias while
largely preserving accuracy. For example, on
LLaMA-8B, SP has bias 0.138 and 86.4% accu-
racy. CMOR achieves bias 0.020 (-85% relative)
with 84.6% accuracy (only -1.8%). This outper-
forms CoT, SC, and SoM, which either drop less
bias or sacrifice more accuracy. Notably, MOMA’s
masking agent achieved bias 0.017 (even lower)
but at the cost of 5.8% accuracy drop, whereas
CMOR trades a hair of extra bias for much less
accuracy loss. Similar trends hold on GPT-3.5 (Ta-
ble 1 right): CMOR yields 0.030 bias and 88.5%
acc, versus SP 0.094 and 84.0%.

Table 2 reports StereoSet ICAT. Higher ICAT
means less stereotype. Our method again attains
top trade-off: for LLaMA, SP gets 0.310 ICAT,
MOMA 0.640, and CMOR further improves to
0.685. On GPT, CMOR reaches 0.712 vs 0.670 for
MOMA and 0.330 for SP. This shows CMOR not
only lowers bias but also enhances consistency of
predictions under minority contexts.

Analysis. CMOR’s learned policy tends to mask
or reword only strongly bias-correlated words,
avoiding unnecessary information loss. For in-

stance, in BBQ questions mentioning occupations
and gender, CMOR learned to replace gendered ref-
erences with neutral terms only when needed. The
balancing insertions are chosen adaptively based
on context, unlike fixed adjective lists. This results
in smoother modifications and fewer hallucinations.
Ablation experiments (omitted for brevity) confirm
that both the masking and inserting actions con-
tribute to performance, and that the multi-objective
reward is key: setting 5 = 0 (ignoring bias) col-
lapses to standard prompting, while o« = 0 (ignor-
ing accuracy) over-corrects and hurts performance.

5 Conclusion

We introduced CMOR, a new multi-objective rein-
forcement learning approach for debiasing LL.Ms.
By framing bias mitigation as a causal interven-
tion problem and learning a policy to transform
prompts, CMOR effectively improves the fairness-
accuracy trade-off. Our method generalizes the
MOMA framework by replacing hand-engineered
edits with learned soft interventions, and by opti-
mizing an explicit bias-accuracy reward. Empirical
results on BBQ and StereoSet demonstrate that
CMOR significantly reduces social bias with mini-
mal impact on task accuracy, outperforming prior
prompting techniques. Future work could extend
CMOR to other bias domains and explore learned
interventions for more complex prompting strate-
gies.

6 Limitations

Despite its strengths, CMOR has limitations. Its
reliance on downstream metrics like accuracy and
bias scores ties its effectiveness to the granularity
and reliability of benchmarks such as BBQ and
StereoSet, which may miss nuanced or context-
specific biases. This can lead to overfitting to
dataset artifacts and reduced generalizability.

While CMOR is more efficient than MOMA,
training the intervention policy still incurs over-
head due to rollout and evaluation costs. In low-
resource or high-cost settings, this can be a bot-
tleneck. Future work could explore richer edit
operations, human-in-the-loop feedback, or task-
adaptive policies to improve robustness and effi-
ciency.
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