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ABSTRACT

Direct Preference Optimization (DPO) has proven effective at improving the per-
formance of large language models (LLMs) on downstream tasks such as reason-
ing and alignment. In this work, we propose Step-Controlled DPO (SCDPO), a
method for automatically providing stepwise error supervision by creating neg-
ative samples of mathematical reasoning rationales that start making errors at a
specified step. By applying these samples in DPO training, SCDPO can better
align the model to avoid reasoning errors and output accurate reasoning steps.
Qualitative analysis of the credit assignment of SCDPO and DPO demonstrates
the effectiveness of SCDPO at identifying errors in mathematical solutions. We
then apply SCDPO to an InternLM2-20B model, resulting in a 20B model that
achieves competitive scores of 88.5% on GSM8K and 58.1% on MATH, rivaling
all other open-source LLMs, showing the great potential of our method. The code,
models and data are released to inspire future work.

1 INTRODUCTION

Recently, Direct Preference Optimization (DPO; Rafailov et al. (2024b)) has emerged as a popular
choice for aligning large language models (LLMs) with relative feedback to improve the quality of
generated text. Prior works Christiano et al. (2023); Pal et al. (2024); Xu et al. (2024) have demon-
strated that reinforcement learning algorithms and DPO can improve the mathematical reasoning
abilities of LLMs, making the generated reasoning process more controllable. The final answer to a
mathematical problem serves as a natural way to judge the quality of the model’s response, since a
mathematical problem typically has a single correct answer. As a result, the responses producing the
correct final answers are desirable and can serve as the preferred samples, while the ones reaching
incorrect final answers are undesirable and can serve as the dispreferred samples.

However, solutions to a mathematical problem can be diverse, with many different reasoning paths
arriving at the correct final answer and many subtle ways to make mistakes. Determining the pre-
ferred and dispreferred responses based on the final answer is coarse and may be inadequate for
capturing the intricacies of the multi-step mathematical reasoning process. Previous studies intro-
duce process supervision Lightman et al. (2023), but it requires large amounts of meticulous and
expensive human annotation and only applies to traditional RL algorithms.

In this paper, we show how to automatically provide explicit stepwise preference supervision by
generating diverse dispreferred solutions that start making errors at a specific step. We propose Step-
Controlled DPO (SCDPO), an simple yet effective algorithm that introduces stepwise supervision
without necessitating extra human annotation. This approach starts with a model finetuned with
question-solution pairs and possessing initial math-solving capabilities, which is used to generate
solutions to a set of math problems. We choose the solutions whose final answers match those of
the ground truth. We take each of these correct solutions and start generating with the model via
modulating the hyperparameter of the model, i.e., increasing the temperature of the final softmax
function, from various intermediate steps of that solution, and retain the samples where the final
answer is incorrect. In this way, the steps before the intermediate step are the same as the original
correct solution, while the steps after are the ones with possible errors. During DPO training, the
correct solutions are the preferred samples, and they are paired with the wrong solutions generated
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Figure 1: Demonstration and example of the step-controlled data generation process. a. Step-
controlled data generation. First, a solution reaching the correct final answers is collected, which we
denote as a(pre)

i . Then, erroneous solutions that reach incorrect final answers are generated, starting
from intermediate steps of a(pre)

i , creating dispreferred solutions a(dis-sc)
i1 , a(dis-sc)

i2 , and a(dis-sc)
i3 . These

dispreferred solutions share the steps before the intermediate steps with a(pre)
i . The temperature of the

newly generated steps gradually increases with each step to make the generation more erroneous.
b. An example of a pair of preferred and dispreferred solutions. The dispreferred solution starts
making errors after a particular intermediate step.

in this way, with the question and the steps before the intermediate step as the prompts. These step-
controlled training samples help models learn detailed reasoning abilities and are mixed with naive
DPO training data produced by only checking the final answer, which optimizes the general form of
the solution.

Our contributions are as follows:

• We introduce SCDPO, a method that automatically provides explicit stepwise supervision
to enhance mathematical abilities of LLMs.

• We conduct pilot experiments on chain-of-thought and code-integrated solutions, showing
that SCDPO can effectively improve mathematical problem-solving performance of three
different SFT models. We also conduct qualitative analysis of credit assignment of SCDPO.

• Using SCDPO, we finetune an InternLM2-20B model, which reaches 88.5% on
GSM8K Cobbe et al. (2021) and 58.1% on MATH Hendrycks et al. (2021), demonstrating
the great potential of our method.

2 STEP-CONTROLLED DPO PIPELINE

In this section, we introduce Step-Controlled DPO (SCDPO), a pipeline for automatically generating
preferred and dispreferred responses to math problems, with annotations of erroneous solving steps,
and using these responses in DPO training to enhance the mathematical reasoning abilities of LLMs.
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Our method consists of two stages: step-controlled data generation, and step-aware DPO training.
The two stages construct a feedback-alignment framework that is both effective and cost-efficient.

Initial Model. Our method starts with an initial model, denoted as πSFT, which has been finetuned
with question-solution pairs from math datasets such as GSM8K and MATH. When prompted with
a math problem q, πSFT is able to generate a step-by-step solution, denoted as a. a can be broken
down into a sequence of reasoning steps, for example, a = (t0, . . . , tm). Here, ti (i = 0, . . . ,m)
represents either a code reasoning step or a natural language reasoning step within a. For Chain-
of-Thought solutions, the reasoning steps are separated by “\n”. In code-integrated solutions, the
reasoning steps are separated by special tokens as described in Wang et al. (2023a).

2.1 STEP-CONTROLLED DATA GENERATION

The data we collect is in two parts: naive DPO data Dnaive and Step-Controlled DPO data DSC.

Generation of Dnaive. Dnaive contains pairs of preferred-dispreferred samples, used to optimize the
general form of the solution. To create Dnaive, we prompt πSFT with math questions in the training
sets of GSM8K and MATH. Each question is presented to πSFT multiple times and various solutions
are generated, with a temperature of 1. If a solution reaches the same final answer as the ground
truth, and no errors or adjustments occur at any of the reasoning steps (we detect these by looking
for strings like “error” or “apologies”), the solution is seen as preferred, while the solutions that
reach answers different from the ground truth are considered dispreferred. To find out the frequency
of incorrect solution process reaching the correct final answer, we randomly sampled 87 solutions
that reach correct final answers, and found that of the 369 reasoning steps in these solutions, only
2 contain errors, which is a very small percentage (about 0.5%). This demonstrates that, in most
cases, a correct final answer indicates correct intermediate steps. The solution generation of each
question stops when at least one preferred solution and one dispreferred solution are generated, or
the number of solutions generated reaches an upper limit of 100. We use questions from the training
sets of the GSM8K and MATH datasets for solution sampling, and repeated sampling ensures that
99.8% of the questions in the GSM8K training set and 91.8% of the questions in the MATH training
set yield at least one positive sample. The resulting data can be expressed as:

Dnaive = {(qi, a(pre)
i , a(dis)

i ) : i = 1, . . . , Nnaive} (1)

Here, qi denotes the ith question, while a(pre)
i and a(dis)

i represent the preferred and dispreferred
solution to the ith question.

Generation of DSC. In order to generate solutions with stepwise error information for DPO train-
ing, we propose a method to automatically generate training data with errors starting to occur at
a controlled step. The process is demonstrated in Fig. 1. We first take a preferred solution from
Dnaive, denoted as a(pre)

i = (t(pre)
0 , . . . , t(pre)

k , t(pre)
k+1, . . . , t

(pre)
mi ). Here, t(pre)

k is a random intermediate
step within a(pre)

i . As a(pre)
i is a correct solution, t(pre)

0 , . . . , t(pre)
mi can all be seen as correct steps.

As shown in Fig. 1 a, to create a solution with errors occurring after step k, we present πSFT with
sequence (qi, t

(pre)
0 , . . . , t(pre)

k ), and raise the temperature of the final softmax function to affect the
generation quality, increasing the occurrence of errors in the following steps. Raising the tem-
perature causes the model performance to become unstable and erroneous. We observe that when
the temperature is instantly raised and remains at a high value, the model can generate garbled
strings as errors accumulate, which does not represent any reasoning mistakes and contains no valu-
able information. To avoid this, we adopt a gradually increasing temperature, which initially starts
at 1.1, and increases by 0.05 with each generated step, until the generation ends or the tempera-
ture reaches 1.4. This setting empirically reduces the frequency of the occurrence of garbled text,
while increasing the error rate and diversity of generated errors. We generate the steps following
(qi, t

(pre)
0 , . . . , t(pre)

k ) multiple times, until one reaching an incorrect answer is generated. Appending
the generated steps to (t(pre)

0 , . . . , t(pre)
k ), we get a dispreferred solution with step-controlled error,

denoted as a(dis-sc)
ik = (t(pre)

0 , . . . , t(pre)
k , t(dis-sc)

k+1 , . . . , t(dis-sc)
ni

), where the sequence (t(dis-sc)
k+1 , . . . , t(dis-sc)

ni
)

is erroneous. An example is presented in Fig. 1 b. The resulting data can be expressed as:
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DSC = {(qi, a(pre)
i , a(dis-sc)

ik ) : i = 1, . . . , NSC} (2)

Here, qi denotes the ith question, while a(pre)
i is the preferred solution, and a(dis-sc)

ik is the dispreferred
solution with step-controlled error that occurs after t(pre)

k . NSC is the number of questions in DSC,
while mi is the index of the last step of a(pre)

i .

2.2 STEP-CONTROLLED DPO TRAINING

Having collected Dnaive and DSC, we apply them to DPO training. Dnaive serves to regulate the
general form of solutions, while DSC supervises the model’s reasoning on a step level. During DPO
training, samples in Dnaive and DSC are mixed together randomly, and the DPO loss is applied to
each sample. For samples from Dnaive, the loss is applied to all steps in the preferred and dispreferred
solutions, which can be written as:

Lnaive(πθ;πSFT)

= −E(qi,a
(pre)
i ,a(dis)

i )∼Dnaive
[log σ(β log

πθ(a
(pre)
i |qi)

πSFT(a
(pre)
i |qi)

− β log
πθ(a

(dis)
i |qi)

πSFT(a
(dis)
i |qi)

)] (3)

For a pair of preferred and dispreferred solutions in DSC where the erroneous steps are generated
starting from the kth step of the preferred solution, the preferred solution can be denoted as a(pre)

i , and
the dispreferred solution can be denoted as a(dis-sc)

ik . The first k reasoning steps are shared between the
pair of solutions. The erroneous steps after the kth step in a(dis-sc)

ik is denoted as (t(dis-sc)
k+1 , . . . , t(dis-sc)

ni
),

while the correct steps in a(pre)
i after the kth step is denoted as (t(pre)

k+1, . . . , t
(pre)
mi ). SCDPO directly

contrast between the steps in a(pre)
i and a(dis-sc)

ik after the kth step, applying the DPO loss only on the
different steps.

LSC(πθ;πSFT) =

−E(qi,a
(pre)
i ,a(dis-sc)

ik )∼DSC
[log σ((

mi∑
j=k+1

β log
πθ(t

(pre)
j |qi, t<j)

πSFT(t
(pre)
j |qi, t<j)

)

−(

ni∑
j=k+1

β log
πθ(t

(dis-sc)
j |qi, t<j)

πSFT(t
(dis-sc)
j |qi, t<j)

))] (4)

Combining Lnaive and LSC, the final loss function of Step-Controlled DPO is as follows:

LSCDPO = Lnaive + LSC (5)

In this way, Lnaive optimizes the general form of the solution, while LSC focuses on detailed rea-
soning steps, thus improving the model’s accuracy in solving mathematical problems.

3 THEORETICAL EXPLANATION OF STEP-CONTROLLED DPO

Theoretical Insight. In this section, we provide some theoretical insights into why SCDPO can
effectively enhance the reasoning ability of LLMs. As explained in Rafailov et al. (2024a), the DPO
loss can be cast into token-level MDP (Markov Decision Process; Puterman (1994)). Similarly,
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Figure 2: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlights the error – 4 less than a dozen is not 4 times
(12 - 4), while the credit assignment of DPO on the right fails to highlight it.

Figure 3: Credit assignment of part of a solution for a MATH problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlights the error – as the original question was
“Find the remainder when 8 · 1018 + 118 is divided by 9”, the remainders of the terms 8, 1018, and
118 should not be summed, while the credit assignment of DPO on the right fails to highlight the
error.

we can also interpret DPO as a step-level MDP. As presented in Eq. 4, β log
πθ(t

(pre)
j |qi,t<j)

πSFT(t
(pre)
j |qi,t<j)

and

β log
πθ(t

(dis-sc)
j |qi,t<j)

πSFT(t
(dis-sc)
j |qi,t<j)

represent the reward of a single preferred or dispreferred step. For naive DPO,

all steps in the preferred and dispreferred solutions have their rewards affecting the loss. However,
many steps in the dispreferred solution are actually correct, as the error often occurs in a later step.
Step-Controlled DPO reduces the range of steps, starting from the (k + 1)th step, from which the
dispreferred steps are more likely to be erroneous due to the raised sampling temperature. The focus
of the optimization is thus cast on the errored steps rather than the whole solution, letting the model
learn more detailed reasoning abilities.

Qualitative Evaluation of Credit Assignment of SCDPO. We perform qualitative evaluation of
credit assignment on two models trained with SCDPO and DPO respectively. For a sequence of
tokens x = (x0, . . . , xm), where xi is the ith token in the sequence, we denote all the tokens before
xi as si, written as si = (x0, . . . , xi−1). As introduced in recent research Rafailov et al. (2024a),
the DPO implicit reward can be expressed as follows:

r(si, xi) = β log π(xi|si)− β log πSFT(xi|si) (6)

Here r(si, xi) denotes the DPO implicit reward of token xi, which is the value we visualize as the
background color of the token. A darker color represents a higher reward value. As demonstrated
in Fig. 2 and Fig. 3, when presented with an incorrect reasoning step, SCDPO more accurately
identifies the incorrect tokens compared to DPO. Fig. 2 shows part of a solution for a GSM8K
question. In step 2, the solution incorrectly interprets “4 less than a dozen” as “4× (12− 4)”, when
it should have been “(12 − 4)”. The SCDPO model correctly highlights “4 × (12 − 4)”, while the
DPO does not. Fig. 3 shows part of a solution for a MATH question. The solution sums the terms
in the expression when two of the terms should have been multiplied. SCDPO correctly highlights
the incorrect solution, while DPO does not. These examples show that the stepwise supervision
provided in SCDPO results in a better token-level understanding of reasoning errors.
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Model Size English Chinese

GSM8K MATH OCWhung-
arian

Mathe-
matics

SVA-
MP

Simul-
eq

APE-
210K

CMA-
TH

MGSM-
zh

Closed-Source Models

GPT-3.5 - 80.8 34.1 - 41 - - - - 73.8 -
GPT-4 - 93.6 53.6 30.1 92 - - - 84.2 89.3 -
GPT-4 Code Interpreter - 97.0 69.7 - - - - - - - -
GLM-4 1 - 91.8 49.0 - 75 - - - 93.5 89.0 -

Open-Source Models

Qwen2 7B 85.7 52.9 10.7 56 51.4 86.3 83.6 54.2 73.8 58.0
Math-Shepherd 7B 84.1 33.0 12.5 46 36.6 81.8 84.6 45.9 68.8 67.6
DeepSeekMath-RL 7B 86.7 58.8 22.1 55 57.4 86.7 69.6 71.9 87.6 78.4
SVPO 7B 81.7 59.5 34.2 - - - - - - -
InternLM2-Math 20B 80.7 54.3 12.9 66 41.1 83.4 55.6 64.3 69.0 58.4
MathGenie 20B 87.7 55.7 23.5 69 85.1 87.3 88.5 - - -
ChatGLM3-32B 32B 82.6 40.6 - 73 - - - 89.4 85.6 -
ToRA 34B 80.7 50.8 5.5 - 77.9 80.5 50.2 - 53.4 41.2
MAmmoTH 70B 76.9 41.8 - - 65.4 84.3 51.8 - - -
MathCoder 70B 83.9 45.1 - - 74.4 84.9 77.0 - - -

InternLM2-SFT 20B 86.4 55.8 21.6 71 84.0 86.9 91.2 77.1 88.4 74.8
InternLM2-SFT-DPO 20B 87.0 57.6 25.5 74 85.6 89.7 92.6 78.7 89.9 76.0
InternLM2-SFT-
DPO(d-e)

20B 88.2 57.5 24.5 73 86.3 88.9 91.1 78.8 89.3 76.0

InternLM2-SFT-SCDPO 20B 88.5 58.1 29.4 78 87.5 90.2 93.6 79.3 90.3 80.4

Table 1: Performance of open-source and closed-source models on seven English datasets,
GSM8K, MATH, OCW, hungarian, Mathematics, SVAMP and Simuleq, and three Chinese datasets,
APE210K, CMATH, and MGSM-zh. All results reported are based on greedy decoding. The best
models are marked in bold, and the second best models are underlined. Our 20B model trained on
SCDPO outperforms SFT and naive DPO on all 10 datasets, demonstrating performance rivaling all
other open-source models of similar scales.

4 EXPERIMENTS

In this section, we first train a 20B model using SCDPO, reaching a performance rivaling all other
models of similar scale. Then, we perform a comprehensive empirical comparison between SCDPO
and DPO on three kinds of Mistral-7B SFT models. We also present ablation studies to further
explain the design of increasing temperature during the generation of erroneous steps and combining
Dnaive with DSC during training.

4.1 20B MODEL TRAINED WITH SCDPO

Training Data. We collect solutions for questions in the training set of APE210K Zhao et al. (2020),
GSM8K and MATH from GPT-4 Code Interpreter. Combining 169K samples from APE210K, 34K
from GSM8K and 47K from MATH, we get an SFT dataset of 250K question-solution pairs. The
SCDPO and DPO training data is collected as described before in Sec. 2.1. During sampling, top-p
is set to 1 and top-k is set to -1 to consider all tokens. The training data for SCDPO contains 13K
samples from GSM8K, 46K samples from MATH, and 29K samples from APE210K.

Training Settings. We use InternLM2-20B Cai et al. (2024) as the foundation model, as it has
demonstrated high performance in previous works Lu et al. (2024); Cai et al. (2024), even surpassing
larger models such as Mixtral-8x7B Jiang et al. (2024) and Llama2-70B Touvron et al. (2023) in
some cases. In the SFT stage, we finetune the model with a learning rate of 1.0 × 10−5 for 3
epochs, with a context length of 2048 tokens. In DPO and SCDPO training, we use a learning rate

6
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Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Mistral-7B-Ours

SFT (Baseline) 76.8 43.2 21.7 52 69.8 81.3 73.9
SFT-continued 76.3 43.9 18.8 55 70.3 80.8 74.5
SFT+DPO 78.8 45.1 18.4 56 74.8 81.0 74.9
SFT+DPO(d-e) 79.0 45.7 18.0 59 74.4 79.2 73.2
SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0

MetaMath-Mistral-7B

SFT (Baseline) 77.7 28.2 12.5 33 33.9 80.0 68.5
SFT-continued 76.8 28.5 13.2 35 33.6 80.3 69.1
SFT+DPO 81.0 28.7 14.0 34 33.8 81.0 68.3
SFT+DPO(d-e) 81.4 29.0 14.7 38 34.3 80.9 70.6
SFT+DPO+SC 81.7 29.3 15.4 42 35.0 81.6 73.2

MathCoder-Mistral-7B

SFT (Baseline) 78.1 39.3 12.9 62 70.4 79.4 80.5
SFT-continued 78.2 40.3 12.5 65 71.2 77.3 80.7
SFT+DPO 79.2 42.9 14.3 65 74.9 85.4 81.3
SFT+DPO(d-e) 78.3 41.1 14.7 68 74.9 84.9 82.3
SFT+DPO+SC 80.4 43.4 15.7 70 75.4 85.4 83.1

Table 2: Effect of using Step-Controlled DPO (SCDPO) on three different SFT models: Mistral-7B-
Ours, MetaMath-Mistral-7B and MathCoder-Mistral-7B. “(d-e)” denote the DPO baseline using the
same amount of data as SCDPO. In all three cases, SCDPO outperforms the starting SFT model,
continue pretraining on correct samples, naive DPO, and naive DPO with equal amount of data.

Model GSM8K MATH

Mistral-7B-Ours-SFT 76.8 43.2
Mistral-7B-Ours-SCDPO (temperature=1.0) 78.6 45.9
Mistral-7B-Ours-SCDPO (temperature=1.3) 80.0 45.9
Mistral-7B-Ours-SCDPO (ascending temperature) 80.1 47.7

Table 3: Pilot experiments of using different temperatures when generating error steps. When tem-
perature equals 1.0, the errors are not diverse enough. When temperature equals 1.3, the model
generates unintelligible strings due to accumulated errors. The design of ascending temperature of-
fers more diversity while avoids generating meaningless errors, resulting in the best performance.

of 1.5 × 10−7 to train the SFT model for 2 epochs, with a context length of 1024 and β set to 0.1.
The models are trained on 16 NVIDIA A800 80GB GPUs with a batch size of 64.

Evaluation Datasets. Ten representative mathematical datasets are used in evaluating the models:
GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021), OCWCourses (OCW) Lewkowycz
et al. (2022), Hungarian National Exams (hungarian) Paster (2023), Mathematics Saxton et al.
(2019), SVAMP Patel et al. (2021), Simuleq Kushman et al. (2014), APE210K Zhao et al. (2020),
CMATH Wei et al. (2023b) and MGSM-zh Shi et al. (2023). The first seven datasets consist of En-
glish math questions, while the last three consist of Chinese math questions. The evaluation datasets
contain a wide range of problem types, covering mathematical problems from grade-school level
to college level, comprehensively evaluating the models’ mathematical reasoning abilities. We use
greedy decoding for all evaluations.

Baselines. We compare our 20B models with powerful closed-source models such as GPT-
3.5 (Brown et al., 2020), GPT-4 OpenAI et al. (2024), GPT-4 Code Interpreter OpenAI et al. (2024)
and GLM-4 2, as well as open-source models such as MARIO Liao et al. (2024), Qwen2 Yang et al.
(2024), Math-Shepherd Wang et al. (2024), SeaLLM-v2 Nguyen et al. (2024), DeepSeekMath-

2https://open.bigmodel.cn/dev/api#glm-4
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Figure 4: Accuracy of Mistral-7B-Ours (SFT) on GSM8K and MATH when temperature is set at
different values.

RL Shao et al. (2024), SVPO Chen et al. (2024), Skywork-13B-Math Yang et al. (2023a),
InternLM2-Math 3 Ying et al. (2024), MathGenie Lu et al. (2024), ChatGLM3-32B-RFT-DPO Xu
et al. (2024), Yi-Chat Yi (2023), ToRA Gou et al. (2024), MAmmoTH Yue et al. (2023), Math-
Coer Wang et al. (2023a) and WizardMath Luo et al. (2023).

Main Results. Tab. 1 displays our main results, as well as various closed-source and open-source
baselines. Our model achieves a score of 88.5% on GSM8K, 78 on hungarian, 87.5% on Mathemat-
ics, 90.2% on SVAMP, 93.6% on Simuleq, 90.3% on CMATH, and 80.4% on MGSM-zh, surpassing
all models with published parameters, and obtaining second-best scores among open-source models
on APE210K. Our model obtains a score of 58.1% on MATH, which is close to the best and second-
best open-source score of 59.5% and 58.8%. While our model rivals the performance of GPT-3.5
on GSM8K and MATH, and surpasses GPT-4 and GLM-4 on MATH, it still underperforms GPT-4
Code Interpreter on GSM8K and MATH, and GLM-4 on APE210K.

Compared to InternLM2-SFT, InternLM2-SFT-SCDPO consistently increases the score on each of
the five datasets by approximately 2% to 3%. Compared to both InternLM2-SFT-DPO, which uses
the Dnaive part of InternLM2-SFT-SCDPO’s training data, and InternLM2-SFT-DPO(data-equal), which
uses about the same amount of training data as InternLM2-SFT-SCDPO, InternLM2-SFT-SCDPO
consistently achieves the best performance across all five datasets, highlighting the effectiveness of
SCDPO in enhancing mathematical problem-solving abilities.

4.2 COMPARISON USING DIFFERENT STARTING 7B MODELS

We validate the generalizability of SCDOP on three baseline SFT models: Mistral-7B-Ours,
MetaMath-Mistral-7B, and MathCoder-Mistral-7B. Mistral-7B-Ours is finetuned on the 34K
GSM8K samples and 47K MATH samples we collected from GPT-4. MetaMath-Mistral-7B is
downloaded from the MetaMath HuggingFace repository4. MathCoder-Mistral-7B is finetuned us-
ing the MathCodeInstruct dataset Wang et al. (2023a), downloaded from HuggingFace5. We collect
Dnaive and DSC as described in 2.1 using problems from GSM8K and MATH. We compare 4 methods
of aligning the starting SFT models: 1. Continue finetuning the starting SFT model using supervised

3https://github.com/InternLM/InternLM-Math
4https://huggingface.co/meta-math/MetaMath-Mistral-7B
5https://huggingface.co/datasets/MathLLMs/MathCodeInstruct
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Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Step-DPO 80.4 29.3 12.5 42 33.4 80.4 72.6
SCDPO (ours) 81.7 29.3 15.4 42 35.0 81.6 73.2

Table 4: Comparison between our method and Step-DPO on MetaMath-Mistral-7B.

finetuning with preferred solutions from Dnaive (SFT-continued). 2. Doing naive DPO training with
Dnaive (SFT+DPO). 3. Doing naive DPO training with the same amount of training pairs as the
SCDPO training, expanded from Dnaive (SFT+DPO(d-e)). 4. Doing SCDPO training with Dnaive and
DSC (SFT+DPO+SC).

The results are shown in Tab. 2. The purpose of SFT+DPO(d-e) is to rule out the possibility that
the performance gain of SCDPO is the effect of more training samples. SFT-continued shows no
obvious gains, likely due to the fact that the models has already been finetuned on many solutions
from GSM8K and MATH. As demonstrated in Tab 2, on all three SFT baseline models, SCDPO
shows superior performance compared to DPO. This can be attributed to SCDPO’s more detailed
supervision on the reasoning steps of the math solutions, demonstrating the effectiveness of our
method.

We also compare our method with Step-DPO Lai et al. (2024), a work concurrent with ours, which
uses GPT-4 to locate erroneous steps. As Step-DPO is in the Chain-of-Thought format, we train
MetaMath-Mistral-7B using the dataset and code of Step-DPO. As shown in Tab. 4, our method out-
performs Step-DPO on most datasets without relying on any stronger LLMs (e.g., GPT-4), demon-
strating the effectiveness of our approach.

4.3 ANALYSIS OF THE INCREASING TEMPERATURE DESIGN

We present the result of using different temperature during sampling of erroneous steps in Tab. 3.
Originally, we tried sampling for the incorrect solutions at the same temperature as the correct
solutions (1.0). However, we observed that generated error steps are less diverse than we hoped.
Also, as shown in Fig. 4, the accuracy decreases with the increase of temperature, as the generation
becomes less stable. We then tried raising the temperature to 1.3, and found that a notable part of
the generated solutions contains incomprehensible strings at later steps due to accumulated errors.
Finally, we settled on raising the temperature gradually, which enables more diversity while lowering
the frequency of generating unintelligible sentences. As shown in Tab. 3, this method also performs
best in the pilot experiments.

5 RELATED WORK

LLM for Mathematical Reasoning. Prior works have explored various methods to enhance math-
ematical reasoning abilities of LLMs. Prompting methods, such as Chain-of-Thought Wei et al.
(2023a), Tree-of-Thought Yao et al. (2023), PAL Gao et al. (2023), Program-of-Thought Chen
et al. (2023), and CSV Zhou et al. (2023), use carefully engineered prompts to bring out LLMs’
mathematical skills without changing their parameters. Other works optimize parameters of LLMs
for enhanced mathematical reasoning through either pretraining or finetuning. Llemma Azerbayev
et al. (2024), and MathPile Wang et al. (2023b) continue pretraining LLMs on large amounts of
math-related data, while RFT Yuan et al. (2023), Mammoth Yue et al. (2023), MathCoder Wang
et al. (2023a), WizardMath Luo et al. (2023), ToRA Gou et al. (2024), MetaMath Yu et al. (2024),
MathGLM Yang et al. (2023b), and MathGenie Lu et al. (2024) finetune pretrained models on
question-solution pairs. These methods effectively improves LLMs’ ability to solve challenging
mathematical problems, demonstrating impressive performance on mathematical benchmarks such
as GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021), etc. Our work builds upon models
that have undergone pretraining and finetuning, using DPO to further enhance their mathematical
abilities.

Improving Mathematical Reasoning Using Relative Feedback. Reinforcement learning from hu-
man (or AI) feedback Christiano et al. (2023); Bai et al. (2022) as well as several direct alignment
methods Rafailov et al. (2024b); Azar et al. (2023); Zhao et al. (2023); Pal et al. (2024); Ethayarajh
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et al. (2024); Liu et al. (2024) have proven effective on various downstream tasks. Our method
make use of DPO Rafailov et al. (2024b), introducing a novel way to construct the DPO training
data for better enhancement of mathematical abilities of LLMs. Previous works using reinforcement
learning or direct alignment methods for improving mathematical reasoning utilize either outcome
supervision or process supervision. Outcome supervision such as Shao et al. (2024) is simple and
use the outcome of a solution as supervision signal. Lightman et al. (2023) found that process su-
pervision offers better performance than outcome supervision, but needs expert and detailed human
or AI annotation, which is difficult to acquire. Math-Shepherd Wang et al. (2023a) and Process
Reward Synthesizing Jiao et al. (2024) estimate process rewards with multiple decoding rationales
at each step, and train a reward model with the synthesized rewards. Other works such as Xie et al.
(2024), Yuan et al. (2024) and Chen et al. (2024) use tree structure to provide fine-grained super-
vision, often relying on a critique model to decide the correctness of reasoning steps. Concurrent
works such as Setlur et al. (2024) and Lai et al. (2024) rely on GPT-4 to synthesize data. Step-
DPO (Lai et al., 2024) uses GPT-4 for erroneous step localization, which is less cost-effective. In
comparison, our method uses increasing temperature to start generating erroneous steps from inter-
mediate steps of a correct solution, and directly contrast erroneous steps with correct steps, offering
a simpler, more cost-effective alternative with high performance, without relying on any stronger
LLMs (e.g. GPT-4).

6 LIMITATIONS AND FUTURE WORK

Our work contains the following limitations, and we leave them for future work. Firstly, our work is
conducted on purely linguistic models, which struggle to solve mathematical problems requiring an
understanding of images. Secondly, due to the stepwise attribute of SCDPO, it is not very effective
on solution formats consisting of pure code. It only works on solutions consisting of natural language
chain of thought or interleaved natural language and code. A method to properly enhance pure code
solutions needs to be derived, which we leave for future work. Thirdly, as with all language models,
our models can potentially generate hallucinations or produce misleading solutions, which can have
a negative effect. Finally, while the data construction method distributionally narrow down the steps
likely to be erroneous, it does not indicate the exact step the error occurs, a problem inherent with
synthetic process supervision methods. Additionally, our work focuses on mathematical problem-
solving, without discussing other reasoning tasks such as code generation, theorem proving, etc. We
plan to explore them in future works.

7 CONCLUSION

In this work, we propose Step-Controlled DPO (SCDPO), a method to automatically introduce step-
wise error supervision to the process of DPO training by generating dispreferred samples that start
making errors at a specified step. SCDPO effectively enhances the mathematical reasoning abilities
of LLMs. The 20B model trained with SCDPO on both English and Chinese data achieves high
scores on 10 representative mathematical datasets, consistently outperforming naive DPO, demon-
strating the effectiveness of our method.
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Data GSM8K MATH

DSC 79.0% 46.2%
Dnaive + DSC 80.1% 47.7%

Table 5: Ablation study of using and not using Dnaive during training. The starting SFT model is
Mistral-7B-Ours.

A CREDIT ASSIGNMENT ANALYSIS EXAMPLES

In this section, we present several other credit assignment analysis examples, comparing SCDPO
to DPO. Fig. 6, Fig. 7 and Fig. 8 show examples of part of the solutions of questions taken from
GSM8K and MATH datasets, colored with the DPO implicit reward of each token (darker is higher).
As demonstrated in the examples, SCDPO is better than DPO at identifying the errors in the reason-
ing steps.

B ABLATION STUDY OF DNAIVE AND DSC

To demonstrate the necessity of combining Dnaive and DSC, we conduct experiment of using only
DSC in DPO training. The results are presented in Tab. 5. As demonstrated in the table, combining
Dnaive and DSC results in better performance than only using DSC during DPO training. This is likely
because Dnaive helps regulate the general format of the generated solutions.

C ANALYSIS OF GENERATED ERRORS

In this section, we provide quantitative analysis of the erroneous steps generated. We observed seven
main kinds of errors: value misusage, condition misinterpretation, coding error, commonsense error,
math concept or understanding error, math calculation error, unintelligible strings. The errors are
explained as follows:

• Value misusage: misusing values in places where another value should have been used.
• Condition misinterpretation: incorrectly interpreting the meaning or indications of condi-

tions.
• Coding error: making mistakes in code snippets that causes errors.
• Common sense error: misunderstanding of common sense.
• Math concept or understanding error: incorrect recollection or understanding of math con-

cepts.
• Math calculation error: mistakes when making mathematical calculations.
• Unintelligible strings: generation of unintelligible strings that does not represent meaning-

ful reasoning errors.

We randomly sampled 100 incorrect solutions in the training data of SCDPO, and counted the num-
ber of each type of error. The result is presented in Fig. 5. As demonstrated in the chart, the
reasoning errors generated is diverse, distributed evenly among the different types. Only 4% of the
incorrect solutions contain unintelligible strings, demonstrating that the design of gradually increas-
ing temperature can mostly avoid the occurance of meaningless errors.

D ERROR RATE OF INTERMEDIATE STEPS WHEN THE FINAL ANSWER IS
CORRECT

In this section, we discuss the error rate of intermediate steps in solutions that reaches the correct
final answer. As we mentioned in the main paper, we randomly sampled 87 solutions that reach
correct final answer, and of the 369 reasoning steps in these solutions, only 2 contain errors, which
is a very small percentage (about 0.5%). The 2 erroneous steps are in a question whose answer is to
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value misusage

14.0%

condition misinterpretation

21.0%
coding error

15.0%

common sense error

16.0%

math concept or understanding error

14.0%
math calculation error

16.0%

unintelligible strings4.0%

Figure 5: Percentage of each type of error in the 100 examples we sampled.

Figure 6: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is
the credit assignment of SCDPO, which correctly highlighted the error – the number of damaged
magazines (which is 4) should not be first added to and then extracted from “total magazines”, while
the credit assignment of DPO on the right fails to highlight it.

ask for “the number of real solutions”. The possible answers to this question is very limited, which
facilitates incorrect reasoning steps to happen to reach a correct final answer. We observe that this
kind of question is rare in the GSM8K and MATH datasets we chose to perform SCDPO on, so
in most cases a correct final answer indicates that the reasoning steps leading to it is highly likely
to be correct. We also removed solutions that contain apologies or error messages, so there are no
incorrect steps that are later revised in the correct solutions we retained. As a result, the steps before
the generated erroneous steps in SCDPO training data are correct with a high confidence.

E DISTRIBUTION OF ERROR GENERATION STARTING POINTS AND ACTUAL
ERROR STEP INDEX

We sampled 100 SCDPO rejected solutions and manually inspected them. While not all errors occur
at the beginning of the generation of erroneous steps, most of them occur early in the generation, as
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Figure 7: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlighted the error – Mitchell has 30 pencils, and
Antonio has 6 less pencils than Michell, which is 30− 6, so the introduction of x is not needed, and
x+ (x+ 6) = 30 is incorrect, while the credit assignment of DPO on the right fails to highlight it.

Figure 8: Credit assignment of part of a solution for a MATH problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlighted the error – 101 cannot be written as 5k
where k = 20, while the credit assignment of DPO on the right fails to highlight the error.

the earlier steps often make decisions that have a large influence on the correctness of the solution.
We present the distribution of the step index where the first actual error occurs in the 100 SCDPO
rejected solutions, as well as the distribution of the index of the step where generation of erroneous
steps begins. As shown in Tab. 6, the two distributions are closely related, demonstrating that the
index of the starting point of error generation have a strong effect on the step index of the actual
error. The step index of the actual error is often close to the starting point of the error generation.

We also manipulate the distribution of the step index where error generation begins. Specifically,
we train the Mistral-7B-SFT model with SCDPO data where the starting index was either less than
or equal to 4, or greater than 4. As shown in Tab. 7, limiting the error starting point index decreases
performance compared to not imposing any such limitation.
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Step Index 2 3 4 5 6 7 8 9 10 11 12 13 14

Actual Error Distr. 17 21 20 12 8 9 5 3 0 4 1 0 0
Starting Point Distr. 32.8 23.1 15.3 11.4 6.97 4.72 2.53 1.70 0.77 0.44 0.16 0.08 0.01

Table 6: The distribution of the actual error starting step index in 100 randomly sampled SCDPO
rejected solutions and the distribution of the starting point of the error generation of the SCDPO
rejected solutions.

Data GSM8K MATH OCW Hungarian Mathematics SVAMP Simuleq

SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0
SFT+DPO+SC (k ≤ 4) 80.7 46.7 17.7 53 74.7 82.0 79.2
SFT+DPO+SC (k > 4) 79.6 46.4 17.3 59 74.1 82.3 78.6

Table 7: Comparison of performance on various datasets using different ranges of error generation
starting point during training. “k” is the index of the starting step of error generation. Limiting the
starting index slightly affects performance compared to using the full range of indices.
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