
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEP-CONTROLLED DPO: LEVERAGING STEPWISE
ERRORS FOR ENHANCING MATHEMATICAL REASON-
ING OF LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Direct Preference Optimization (DPO) has proven effective at improving the per-
formance of large language models (LLMs) on downstream tasks such as reason-
ing and alignment. In this work, we propose Step-Controlled DPO (SCDPO), a
method for automatically providing stepwise error supervision by creating neg-
ative samples of mathematical reasoning rationales that start making errors at a
specified step. By applying these samples in DPO training, SCDPO can better
align the model to avoid reasoning errors and output accurate reasoning steps.
Qualitative analysis of the credit assignment of SCDPO and DPO demonstrates
the effectiveness of SCDPO at identifying errors in mathematical solutions. We
then apply SCDPO to an InternLM2-20B model, resulting in a 20B model that
achieves competitive scores of 88.5% on GSM8K and 58.1% on MATH, rivaling
all other open-source LLMs, showing the great potential of our method. The code,
models and data are released to inspire future work.

1 INTRODUCTION

Recently, Direct Preference Optimization (DPO; Rafailov et al. (2024b)) has emerged as a popular
choice for aligning large language models (LLMs) with relative feedback to improve the quality of
generated text. Prior works Christiano et al. (2023); Pal et al. (2024); Xu et al. (2024) have demon-
strated that reinforcement learning algorithms and DPO can improve the mathematical reasoning
abilities of LLMs, making the generated reasoning process more controllable. The final answer to a
mathematical problem serves as a natural way to judge the quality of the model’s response, since a
mathematical problem typically has a single correct answer. As a result, the responses producing the
correct final answers are desirable and can serve as the preferred samples, while the ones reaching
incorrect final answers are undesirable and can serve as the dispreferred samples.

However, solutions to a mathematical problem can be diverse, with many different reasoning paths
arriving at the correct final answer and many subtle ways to make mistakes. Determining the pre-
ferred and dispreferred responses based on the final answer is coarse and may be inadequate for
capturing the intricacies of the multi-step mathematical reasoning process. Previous studies intro-
duce process supervision Lightman et al. (2023), but it requires large amounts of meticulous and
expensive human annotation and only applies to traditional RL algorithms.

In this paper, we show how to automatically provide explicit stepwise preference supervision by
generating diverse dispreferred solutions that start making errors at a specific step. We propose Step-
Controlled DPO (SCDPO), an simple yet effective algorithm that introduces stepwise supervision
without necessitating extra human annotation. This approach starts with a model finetuned with
question-solution pairs and possessing initial math-solving capabilities, which is used to generate
solutions to a set of math problems. We choose the solutions whose final answers match those of
the ground truth. We take each of these correct solutions and start generating with the model via
modulating the hyperparameter of the model, i.e., increasing the temperature of the final softmax
function, from various intermediate steps of that solution, and retain the samples where the final
answer is incorrect. In this way, the steps before the intermediate step are the same as the original
correct solution, while the steps after are the ones with possible errors. During DPO training, the
correct solutions are the preferred samples, and they are paired with the wrong solutions generated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Demonstration and example of the step-controlled data generation process. a. Step-
controlled data generation. First, a solution reaching the correct final answers is collected, which we
denote as a(pre)

i . Then, erroneous solutions that reach incorrect final answers are generated, starting
from intermediate steps of a(pre)

i , creating dispreferred solutions a(dis-sc)
i1 , a(dis-sc)

i2 , and a(dis-sc)
i3 . These

dispreferred solutions share the steps before the intermediate steps with a(pre)
i . The temperature of the

newly generated steps gradually increases with each step to make the generation more erroneous.
b. An example of a pair of preferred and dispreferred solutions. The dispreferred solution starts
making errors after a particular intermediate step.

in this way, with the question and the steps before the intermediate step as the prompts. These step-
controlled training samples help models learn detailed reasoning abilities and are mixed with naive
DPO training data produced by only checking the final answer, which optimizes the general form of
the solution.

Our contributions are as follows:

• We introduce SCDPO, a method that automatically provides explicit stepwise supervision
to enhance mathematical abilities of LLMs.

• We conduct pilot experiments on chain-of-thought and code-integrated solutions, showing
that SCDPO can effectively improve mathematical problem-solving performance of three
different SFT models. We also conduct qualitative analysis of credit assignment of SCDPO.

• Using SCDPO, we finetune an InternLM2-20B model, which reaches 88.5% on
GSM8K Cobbe et al. (2021) and 58.1% on MATH Hendrycks et al. (2021), demonstrating
the great potential of our method.

2 STEP-CONTROLLED DPO PIPELINE

In this section, we introduce Step-Controlled DPO (SCDPO), a pipeline for automatically generating
preferred and dispreferred responses to math problems, with annotations of erroneous solving steps,
and using these responses in DPO training to enhance the mathematical reasoning abilities of LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our method consists of two stages: step-controlled data generation, and step-aware DPO training.
The two stages construct a feedback-alignment framework that is both effective and cost-efficient.

Initial Model. Our method starts with an initial model, denoted as πSFT, which has been finetuned
with question-solution pairs from math datasets such as GSM8K and MATH. When prompted with
a math problem q, πSFT is able to generate a step-by-step solution, denoted as a. a can be broken
down into a sequence of reasoning steps, for example, a = (t0, . . . , tm). Here, ti (i = 0, . . . ,m)
represents either a code reasoning step or a natural language reasoning step within a. For Chain-
of-Thought solutions, the reasoning steps are separated by “\n”. In code-integrated solutions, the
reasoning steps are separated by special tokens as described in Wang et al. (2023a).

2.1 STEP-CONTROLLED DATA GENERATION

The data we collect is in two parts: naive DPO data Dnaive and Step-Controlled DPO data DSC.

Generation of Dnaive. Dnaive contains pairs of preferred-dispreferred samples, used to optimize the
general form of the solution. To create Dnaive, we prompt πSFT with math questions in the training
sets of GSM8K and MATH. Each question is presented to πSFT multiple times and various solutions
are generated, with a temperature of 1. If a solution reaches the same final answer as the ground
truth, and no errors or adjustments occur at any of the reasoning steps (we detect these by looking
for strings like “error” or “apologies”), the solution is seen as preferred, while the solutions that
reach answers different from the ground truth are considered dispreferred. To find out the frequency
of incorrect solution process reaching the correct final answer, we randomly sampled 87 solutions
that reach correct final answers, and found that of the 369 reasoning steps in these solutions, only
2 contain errors, which is a very small percentage (about 0.5%). This demonstrates that, in most
cases, a correct final answer indicates correct intermediate steps. The solution generation of each
question stops when at least one preferred solution and one dispreferred solution are generated, or
the number of solutions generated reaches an upper limit of 100. We use questions from the training
sets of the GSM8K and MATH datasets for solution sampling, and repeated sampling ensures that
99.8% of the questions in the GSM8K training set and 91.8% of the questions in the MATH training
set yield at least one positive sample. The resulting data can be expressed as:

Dnaive = {(qi, a(pre)
i , a(dis)

i) : i = 1, . . . , Nnaive} (1)

Here, qi denotes the ith question, while a(pre)
i and a(dis)

i represent the preferred and dispreferred
solution to the ith question.

Generation of DSC. In order to generate solutions with stepwise error information for DPO train-
ing, we propose a method to automatically generate training data with errors starting to occur at
a controlled step. The process is demonstrated in Fig. 1. We first take a preferred solution from
Dnaive, denoted as a(pre)

i = (t(pre)
0 , . . . , t(pre)

k , t(pre)
k+1, . . . , t

(pre)
mi). Here, t(pre)

k is a random intermediate
step within a(pre)

i . As a(pre)
i is a correct solution, t(pre)

0 , . . . , t(pre)
mi can all be seen as correct steps.

As shown in Fig. 1 a, to create a solution with errors occurring after step k, we present πSFT with
sequence (qi, t

(pre)
0 , . . . , t(pre)

k), and raise the temperature of the final softmax function to affect the
generation quality, increasing the occurrence of errors in the following steps. Raising the tem-
perature causes the model performance to become unstable and erroneous. We observe that when
the temperature is instantly raised and remains at a high value, the model can generate garbled
strings as errors accumulate, which does not represent any reasoning mistakes and contains no valu-
able information. To avoid this, we adopt a gradually increasing temperature, which initially starts
at 1.1, and increases by 0.05 with each generated step, until the generation ends or the tempera-
ture reaches 1.4. This setting empirically reduces the frequency of the occurrence of garbled text,
while increasing the error rate and diversity of generated errors. We generate the steps following
(qi, t

(pre)
0 , . . . , t(pre)

k) multiple times, until one reaching an incorrect answer is generated. Appending
the generated steps to (t(pre)

0 , . . . , t(pre)
k), we get a dispreferred solution with step-controlled error,

denoted as a(dis-sc)
ik = (t(pre)

0 , . . . , t(pre)
k , t(dis-sc)

k+1 , . . . , t(dis-sc)
ni

), where the sequence (t(dis-sc)
k+1 , . . . , t(dis-sc)

ni
)

is erroneous. An example is presented in Fig. 1 b. The resulting data can be expressed as:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

DSC = {(qi, a(pre)
i , a(dis-sc)

ik) : i = 1, . . . , NSC} (2)

Here, qi denotes the ith question, while a(pre)
i is the preferred solution, and a(dis-sc)

ik is the dispreferred
solution with step-controlled error that occurs after t(pre)

k . NSC is the number of questions in DSC,
while mi is the index of the last step of a(pre)

i .

2.2 STEP-CONTROLLED DPO TRAINING

Having collected Dnaive and DSC, we apply them to DPO training. Dnaive serves to regulate the
general form of solutions, while DSC supervises the model’s reasoning on a step level. During DPO
training, samples in Dnaive and DSC are mixed together randomly, and the DPO loss is applied to
each sample. For samples from Dnaive, the loss is applied to all steps in the preferred and dispreferred
solutions, which can be written as:

Lnaive(πθ;πSFT)

= −E(qi,a
(pre)
i ,a(dis)

i)∼Dnaive
[log σ(β log

πθ(a
(pre)
i |qi)

πSFT(a
(pre)
i |qi)

− β log
πθ(a

(dis)
i |qi)

πSFT(a
(dis)
i |qi)

)] (3)

For a pair of preferred and dispreferred solutions in DSC where the erroneous steps are generated
starting from the kth step of the preferred solution, the preferred solution can be denoted as a(pre)

i , and
the dispreferred solution can be denoted as a(dis-sc)

ik . The first k reasoning steps are shared between the
pair of solutions. The erroneous steps after the kth step in a(dis-sc)

ik is denoted as (t(dis-sc)
k+1 , . . . , t(dis-sc)

ni
),

while the correct steps in a(pre)
i after the kth step is denoted as (t(pre)

k+1, . . . , t
(pre)
mi). SCDPO directly

contrast between the steps in a(pre)
i and a(dis-sc)

ik after the kth step, applying the DPO loss only on the
different steps.

LSC(πθ;πSFT) =

−E(qi,a
(pre)
i ,a(dis-sc)

ik)∼DSC
[log σ((

mi∑
j=k+1

β log
πθ(t

(pre)
j |qi, t<j)

πSFT(t
(pre)
j |qi, t<j)

)

−(

ni∑
j=k+1

β log
πθ(t

(dis-sc)
j |qi, t<j)

πSFT(t
(dis-sc)
j |qi, t<j)

))] (4)

Combining Lnaive and LSC, the final loss function of Step-Controlled DPO is as follows:

LSCDPO = Lnaive + LSC (5)

In this way, Lnaive optimizes the general form of the solution, while LSC focuses on detailed rea-
soning steps, thus improving the model’s accuracy in solving mathematical problems.

3 THEORETICAL EXPLANATION OF STEP-CONTROLLED DPO

Theoretical Insight. In this section, we provide some theoretical insights into why SCDPO can
effectively enhance the reasoning ability of LLMs. As explained in Rafailov et al. (2024a), the DPO
loss can be cast into token-level MDP (Markov Decision Process; Puterman (1994)). Similarly,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlights the error – 4 less than a dozen is not 4 times
(12 - 4), while the credit assignment of DPO on the right fails to highlight it.

Figure 3: Credit assignment of part of a solution for a MATH problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlights the error – as the original question was
“Find the remainder when 8 · 1018 + 118 is divided by 9”, the remainders of the terms 8, 1018, and
118 should not be summed, while the credit assignment of DPO on the right fails to highlight the
error.

we can also interpret DPO as a step-level MDP. As presented in Eq. 4, β log
πθ(t

(pre)
j |qi,t<j)

πSFT(t
(pre)
j |qi,t<j)

and

β log
πθ(t

(dis-sc)
j |qi,t<j)

πSFT(t
(dis-sc)
j |qi,t<j)

represent the reward of a single preferred or dispreferred step. For naive DPO,

all steps in the preferred and dispreferred solutions have their rewards affecting the loss. However,
many steps in the dispreferred solution are actually correct, as the error often occurs in a later step.
Step-Controlled DPO reduces the range of steps, starting from the (k + 1)th step, from which the
dispreferred steps are more likely to be erroneous due to the raised sampling temperature. The focus
of the optimization is thus cast on the errored steps rather than the whole solution, letting the model
learn more detailed reasoning abilities.

Qualitative Evaluation of Credit Assignment of SCDPO. We perform qualitative evaluation of
credit assignment on two models trained with SCDPO and DPO respectively. For a sequence of
tokens x = (x0, . . . , xm), where xi is the ith token in the sequence, we denote all the tokens before
xi as si, written as si = (x0, . . . , xi−1). As introduced in recent research Rafailov et al. (2024a),
the DPO implicit reward can be expressed as follows:

r(si, xi) = β log π(xi|si)− β log πSFT(xi|si) (6)

Here r(si, xi) denotes the DPO implicit reward of token xi, which is the value we visualize as the
background color of the token. A darker color represents a higher reward value. As demonstrated
in Fig. 2 and Fig. 3, when presented with an incorrect reasoning step, SCDPO more accurately
identifies the incorrect tokens compared to DPO. Fig. 2 shows part of a solution for a GSM8K
question. In step 2, the solution incorrectly interprets “4 less than a dozen” as “4× (12− 4)”, when
it should have been “(12 − 4)”. The SCDPO model correctly highlights “4 × (12 − 4)”, while the
DPO does not. Fig. 3 shows part of a solution for a MATH question. The solution sums the terms
in the expression when two of the terms should have been multiplied. SCDPO correctly highlights
the incorrect solution, while DPO does not. These examples show that the stepwise supervision
provided in SCDPO results in a better token-level understanding of reasoning errors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Model Size English Chinese

GSM8K MATH OCWhung-
arian

Mathe-
matics

SVA-
MP

Simul-
eq

APE-
210K

CMA-
TH

MGSM-
zh

Closed-Source Models

GPT-3.5 - 80.8 34.1 - 41 - - - - 73.8 -
GPT-4 - 93.6 53.6 30.1 92 - - - 84.2 89.3 -
GPT-4 Code Interpreter - 97.0 69.7 - - - - - - - -
GLM-4 1 - 91.8 49.0 - 75 - - - 93.5 89.0 -

Open-Source Models

Qwen2 7B 85.7 52.9 10.7 56 51.4 86.3 83.6 54.2 73.8 58.0
Math-Shepherd 7B 84.1 33.0 12.5 46 36.6 81.8 84.6 45.9 68.8 67.6
DeepSeekMath-RL 7B 86.7 58.8 22.1 55 57.4 86.7 69.6 71.9 87.6 78.4
SVPO 7B 81.7 59.5 34.2 - - - - - - -
InternLM2-Math 20B 80.7 54.3 12.9 66 41.1 83.4 55.6 64.3 69.0 58.4
MathGenie 20B 87.7 55.7 23.5 69 85.1 87.3 88.5 - - -
ChatGLM3-32B 32B 82.6 40.6 - 73 - - - 89.4 85.6 -
ToRA 34B 80.7 50.8 5.5 - 77.9 80.5 50.2 - 53.4 41.2
MAmmoTH 70B 76.9 41.8 - - 65.4 84.3 51.8 - - -
MathCoder 70B 83.9 45.1 - - 74.4 84.9 77.0 - - -

InternLM2-SFT 20B 86.4 55.8 21.6 71 84.0 86.9 91.2 77.1 88.4 74.8
InternLM2-SFT-DPO 20B 87.0 57.6 25.5 74 85.6 89.7 92.6 78.7 89.9 76.0
InternLM2-SFT-
DPO(d-e)

20B 88.2 57.5 24.5 73 86.3 88.9 91.1 78.8 89.3 76.0

InternLM2-SFT-SCDPO 20B 88.5 58.1 29.4 78 87.5 90.2 93.6 79.3 90.3 80.4

Table 1: Performance of open-source and closed-source models on seven English datasets,
GSM8K, MATH, OCW, hungarian, Mathematics, SVAMP and Simuleq, and three Chinese datasets,
APE210K, CMATH, and MGSM-zh. All results reported are based on greedy decoding. The best
models are marked in bold, and the second best models are underlined. Our 20B model trained on
SCDPO outperforms SFT and naive DPO on all 10 datasets, demonstrating performance rivaling all
other open-source models of similar scales.

4 EXPERIMENTS

In this section, we first train a 20B model using SCDPO, reaching a performance rivaling all other
models of similar scale. Then, we perform a comprehensive empirical comparison between SCDPO
and DPO on three kinds of Mistral-7B SFT models. We also present ablation studies to further
explain the design of increasing temperature during the generation of erroneous steps and combining
Dnaive with DSC during training.

4.1 20B MODEL TRAINED WITH SCDPO

Training Data. We collect solutions for questions in the training set of APE210K Zhao et al. (2020),
GSM8K and MATH from GPT-4 Code Interpreter. Combining 169K samples from APE210K, 34K
from GSM8K and 47K from MATH, we get an SFT dataset of 250K question-solution pairs. The
SCDPO and DPO training data is collected as described before in Sec. 2.1. During sampling, top-p
is set to 1 and top-k is set to -1 to consider all tokens. The training data for SCDPO contains 13K
samples from GSM8K, 46K samples from MATH, and 29K samples from APE210K.

Training Settings. We use InternLM2-20B Cai et al. (2024) as the foundation model, as it has
demonstrated high performance in previous works Lu et al. (2024); Cai et al. (2024), even surpassing
larger models such as Mixtral-8x7B Jiang et al. (2024) and Llama2-70B Touvron et al. (2023) in
some cases. In the SFT stage, we finetune the model with a learning rate of 1.0 × 10−5 for 3
epochs, with a context length of 2048 tokens. In DPO and SCDPO training, we use a learning rate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Mistral-7B-Ours

SFT (Baseline) 76.8 43.2 21.7 52 69.8 81.3 73.9
SFT-continued 76.3 43.9 18.8 55 70.3 80.8 74.5
SFT+DPO 78.8 45.1 18.4 56 74.8 81.0 74.9
SFT+DPO(d-e) 79.0 45.7 18.0 59 74.4 79.2 73.2
SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0

MetaMath-Mistral-7B

SFT (Baseline) 77.7 28.2 12.5 33 33.9 80.0 68.5
SFT-continued 76.8 28.5 13.2 35 33.6 80.3 69.1
SFT+DPO 81.0 28.7 14.0 34 33.8 81.0 68.3
SFT+DPO(d-e) 81.4 29.0 14.7 38 34.3 80.9 70.6
SFT+DPO+SC 81.7 29.3 15.4 42 35.0 81.6 73.2

MathCoder-Mistral-7B

SFT (Baseline) 78.1 39.3 12.9 62 70.4 79.4 80.5
SFT-continued 78.2 40.3 12.5 65 71.2 77.3 80.7
SFT+DPO 79.2 42.9 14.3 65 74.9 85.4 81.3
SFT+DPO(d-e) 78.3 41.1 14.7 68 74.9 84.9 82.3
SFT+DPO+SC 80.4 43.4 15.7 70 75.4 85.4 83.1

Table 2: Effect of using Step-Controlled DPO (SCDPO) on three different SFT models: Mistral-7B-
Ours, MetaMath-Mistral-7B and MathCoder-Mistral-7B. “(d-e)” denote the DPO baseline using the
same amount of data as SCDPO. In all three cases, SCDPO outperforms the starting SFT model,
continue pretraining on correct samples, naive DPO, and naive DPO with equal amount of data.

Model GSM8K MATH

Mistral-7B-Ours-SFT 76.8 43.2
Mistral-7B-Ours-SCDPO (temperature=1.0) 78.6 45.9
Mistral-7B-Ours-SCDPO (temperature=1.3) 80.0 45.9
Mistral-7B-Ours-SCDPO (ascending temperature) 80.1 47.7

Table 3: Pilot experiments of using different temperatures when generating error steps. When tem-
perature equals 1.0, the errors are not diverse enough. When temperature equals 1.3, the model
generates unintelligible strings due to accumulated errors. The design of ascending temperature of-
fers more diversity while avoids generating meaningless errors, resulting in the best performance.

of 1.5 × 10−7 to train the SFT model for 2 epochs, with a context length of 1024 and β set to 0.1.
The models are trained on 16 NVIDIA A800 80GB GPUs with a batch size of 64.

Evaluation Datasets. Ten representative mathematical datasets are used in evaluating the models:
GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021), OCWCourses (OCW) Lewkowycz
et al. (2022), Hungarian National Exams (hungarian) Paster (2023), Mathematics Saxton et al.
(2019), SVAMP Patel et al. (2021), Simuleq Kushman et al. (2014), APE210K Zhao et al. (2020),
CMATH Wei et al. (2023b) and MGSM-zh Shi et al. (2023). The first seven datasets consist of En-
glish math questions, while the last three consist of Chinese math questions. The evaluation datasets
contain a wide range of problem types, covering mathematical problems from grade-school level
to college level, comprehensively evaluating the models’ mathematical reasoning abilities. We use
greedy decoding for all evaluations.

Baselines. We compare our 20B models with powerful closed-source models such as GPT-
3.5 (Brown et al., 2020), GPT-4 OpenAI et al. (2024), GPT-4 Code Interpreter OpenAI et al. (2024)
and GLM-4 2, as well as open-source models such as MARIO Liao et al. (2024), Qwen2 Yang et al.
(2024), Math-Shepherd Wang et al. (2024), SeaLLM-v2 Nguyen et al. (2024), DeepSeekMath-

2https://open.bigmodel.cn/dev/api#glm-4

7

https://open.bigmodel.cn/dev/api#glm-4

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.7
Temperature

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

GSM8K
MATH

Figure 4: Accuracy of Mistral-7B-Ours (SFT) on GSM8K and MATH when temperature is set at
different values.

RL Shao et al. (2024), SVPO Chen et al. (2024), Skywork-13B-Math Yang et al. (2023a),
InternLM2-Math 3 Ying et al. (2024), MathGenie Lu et al. (2024), ChatGLM3-32B-RFT-DPO Xu
et al. (2024), Yi-Chat Yi (2023), ToRA Gou et al. (2024), MAmmoTH Yue et al. (2023), Math-
Coer Wang et al. (2023a) and WizardMath Luo et al. (2023).

Main Results. Tab. 1 displays our main results, as well as various closed-source and open-source
baselines. Our model achieves a score of 88.5% on GSM8K, 78 on hungarian, 87.5% on Mathemat-
ics, 90.2% on SVAMP, 93.6% on Simuleq, 90.3% on CMATH, and 80.4% on MGSM-zh, surpassing
all models with published parameters, and obtaining second-best scores among open-source models
on APE210K. Our model obtains a score of 58.1% on MATH, which is close to the best and second-
best open-source score of 59.5% and 58.8%. While our model rivals the performance of GPT-3.5
on GSM8K and MATH, and surpasses GPT-4 and GLM-4 on MATH, it still underperforms GPT-4
Code Interpreter on GSM8K and MATH, and GLM-4 on APE210K.

Compared to InternLM2-SFT, InternLM2-SFT-SCDPO consistently increases the score on each of
the five datasets by approximately 2% to 3%. Compared to both InternLM2-SFT-DPO, which uses
the Dnaive part of InternLM2-SFT-SCDPO’s training data, and InternLM2-SFT-DPO(data-equal), which
uses about the same amount of training data as InternLM2-SFT-SCDPO, InternLM2-SFT-SCDPO
consistently achieves the best performance across all five datasets, highlighting the effectiveness of
SCDPO in enhancing mathematical problem-solving abilities.

4.2 COMPARISON USING DIFFERENT STARTING 7B MODELS

We validate the generalizability of SCDOP on three baseline SFT models: Mistral-7B-Ours,
MetaMath-Mistral-7B, and MathCoder-Mistral-7B. Mistral-7B-Ours is finetuned on the 34K
GSM8K samples and 47K MATH samples we collected from GPT-4. MetaMath-Mistral-7B is
downloaded from the MetaMath HuggingFace repository4. MathCoder-Mistral-7B is finetuned us-
ing the MathCodeInstruct dataset Wang et al. (2023a), downloaded from HuggingFace5. We collect
Dnaive and DSC as described in 2.1 using problems from GSM8K and MATH. We compare 4 methods
of aligning the starting SFT models: 1. Continue finetuning the starting SFT model using supervised

3https://github.com/InternLM/InternLM-Math
4https://huggingface.co/meta-math/MetaMath-Mistral-7B
5https://huggingface.co/datasets/MathLLMs/MathCodeInstruct

8

https://github.com/InternLM/InternLM-Math
https://huggingface.co/meta-math/MetaMath-Mistral-7B
https://huggingface.co/datasets/MathLLMs/MathCodeInstruct

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method GSM8K MATH OCW hungarian Mathematics SVAMP Simuleq

Step-DPO 80.4 29.3 12.5 42 33.4 80.4 72.6
SCDPO (ours) 81.7 29.3 15.4 42 35.0 81.6 73.2

Table 4: Comparison between our method and Step-DPO on MetaMath-Mistral-7B.

finetuning with preferred solutions from Dnaive (SFT-continued). 2. Doing naive DPO training with
Dnaive (SFT+DPO). 3. Doing naive DPO training with the same amount of training pairs as the
SCDPO training, expanded from Dnaive (SFT+DPO(d-e)). 4. Doing SCDPO training with Dnaive and
DSC (SFT+DPO+SC).

The results are shown in Tab. 2. The purpose of SFT+DPO(d-e) is to rule out the possibility that
the performance gain of SCDPO is the effect of more training samples. SFT-continued shows no
obvious gains, likely due to the fact that the models has already been finetuned on many solutions
from GSM8K and MATH. As demonstrated in Tab 2, on all three SFT baseline models, SCDPO
shows superior performance compared to DPO. This can be attributed to SCDPO’s more detailed
supervision on the reasoning steps of the math solutions, demonstrating the effectiveness of our
method.

We also compare our method with Step-DPO Lai et al. (2024), a work concurrent with ours, which
uses GPT-4 to locate erroneous steps. As Step-DPO is in the Chain-of-Thought format, we train
MetaMath-Mistral-7B using the dataset and code of Step-DPO. As shown in Tab. 4, our method out-
performs Step-DPO on most datasets without relying on any stronger LLMs (e.g., GPT-4), demon-
strating the effectiveness of our approach.

4.3 ANALYSIS OF THE INCREASING TEMPERATURE DESIGN

We present the result of using different temperature during sampling of erroneous steps in Tab. 3.
Originally, we tried sampling for the incorrect solutions at the same temperature as the correct
solutions (1.0). However, we observed that generated error steps are less diverse than we hoped.
Also, as shown in Fig. 4, the accuracy decreases with the increase of temperature, as the generation
becomes less stable. We then tried raising the temperature to 1.3, and found that a notable part of
the generated solutions contains incomprehensible strings at later steps due to accumulated errors.
Finally, we settled on raising the temperature gradually, which enables more diversity while lowering
the frequency of generating unintelligible sentences. As shown in Tab. 3, this method also performs
best in the pilot experiments.

5 RELATED WORK

LLM for Mathematical Reasoning. Prior works have explored various methods to enhance math-
ematical reasoning abilities of LLMs. Prompting methods, such as Chain-of-Thought Wei et al.
(2023a), Tree-of-Thought Yao et al. (2023), PAL Gao et al. (2023), Program-of-Thought Chen
et al. (2023), and CSV Zhou et al. (2023), use carefully engineered prompts to bring out LLMs’
mathematical skills without changing their parameters. Other works optimize parameters of LLMs
for enhanced mathematical reasoning through either pretraining or finetuning. Llemma Azerbayev
et al. (2024), and MathPile Wang et al. (2023b) continue pretraining LLMs on large amounts of
math-related data, while RFT Yuan et al. (2023), Mammoth Yue et al. (2023), MathCoder Wang
et al. (2023a), WizardMath Luo et al. (2023), ToRA Gou et al. (2024), MetaMath Yu et al. (2024),
MathGLM Yang et al. (2023b), and MathGenie Lu et al. (2024) finetune pretrained models on
question-solution pairs. These methods effectively improves LLMs’ ability to solve challenging
mathematical problems, demonstrating impressive performance on mathematical benchmarks such
as GSM8K Cobbe et al. (2021), MATH Hendrycks et al. (2021), etc. Our work builds upon models
that have undergone pretraining and finetuning, using DPO to further enhance their mathematical
abilities.

Improving Mathematical Reasoning Using Relative Feedback. Reinforcement learning from hu-
man (or AI) feedback Christiano et al. (2023); Bai et al. (2022) as well as several direct alignment
methods Rafailov et al. (2024b); Azar et al. (2023); Zhao et al. (2023); Pal et al. (2024); Ethayarajh

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

et al. (2024); Liu et al. (2024) have proven effective on various downstream tasks. Our method
make use of DPO Rafailov et al. (2024b), introducing a novel way to construct the DPO training
data for better enhancement of mathematical abilities of LLMs. Previous works using reinforcement
learning or direct alignment methods for improving mathematical reasoning utilize either outcome
supervision or process supervision. Outcome supervision such as Shao et al. (2024) is simple and
use the outcome of a solution as supervision signal. Lightman et al. (2023) found that process su-
pervision offers better performance than outcome supervision, but needs expert and detailed human
or AI annotation, which is difficult to acquire. Math-Shepherd Wang et al. (2023a) and Process
Reward Synthesizing Jiao et al. (2024) estimate process rewards with multiple decoding rationales
at each step, and train a reward model with the synthesized rewards. Other works such as Xie et al.
(2024), Yuan et al. (2024) and Chen et al. (2024) use tree structure to provide fine-grained super-
vision, often relying on a critique model to decide the correctness of reasoning steps. Concurrent
works such as Setlur et al. (2024) and Lai et al. (2024) rely on GPT-4 to synthesize data. Step-
DPO (Lai et al., 2024) uses GPT-4 for erroneous step localization, which is less cost-effective. In
comparison, our method uses increasing temperature to start generating erroneous steps from inter-
mediate steps of a correct solution, and directly contrast erroneous steps with correct steps, offering
a simpler, more cost-effective alternative with high performance, without relying on any stronger
LLMs (e.g. GPT-4).

6 LIMITATIONS AND FUTURE WORK

Our work contains the following limitations, and we leave them for future work. Firstly, our work is
conducted on purely linguistic models, which struggle to solve mathematical problems requiring an
understanding of images. Secondly, due to the stepwise attribute of SCDPO, it is not very effective
on solution formats consisting of pure code. It only works on solutions consisting of natural language
chain of thought or interleaved natural language and code. A method to properly enhance pure code
solutions needs to be derived, which we leave for future work. Thirdly, as with all language models,
our models can potentially generate hallucinations or produce misleading solutions, which can have
a negative effect. Finally, while the data construction method distributionally narrow down the steps
likely to be erroneous, it does not indicate the exact step the error occurs, a problem inherent with
synthetic process supervision methods. Additionally, our work focuses on mathematical problem-
solving, without discussing other reasoning tasks such as code generation, theorem proving, etc. We
plan to explore them in future works.

7 CONCLUSION

In this work, we propose Step-Controlled DPO (SCDPO), a method to automatically introduce step-
wise error supervision to the process of DPO training by generating dispreferred samples that start
making errors at a specified step. SCDPO effectively enhances the mathematical reasoning abilities
of LLMs. The 20B model trained with SCDPO on both English and Chinese data achieves high
scores on 10 representative mathematical datasets, consistently outperforming naive DPO, demon-
strating the effectiveness of our method.

REFERENCES

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences, 2023. URL https://arxiv.org/abs/2310.12036.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Al-
bert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics, 2024. URL https://arxiv.org/abs/2310.10631.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-
son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-
Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse,

10

https://arxiv.org/abs/2310.12036
https://arxiv.org/abs/2310.10631

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mer-
cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna
Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario
Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai:
Harmlessness from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan Song,
Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu Wang,
Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong Xiong,
Chao Xu, Ruiliang Xu, Hang Yan, Yirong Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang, Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo
Zhang, Songyang Zhang, Wenjian Zhang, Wenwei Zhang, Xingcheng Zhang, Xinyue Zhang,
Hui Zhao, Qian Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou, Jingming Zhuo, Yicheng
Zou, Xipeng Qiu, Yu Qiao, and Dahua Lin. Internlm2 technical report, 2024. URL https:
//arxiv.org/abs/2403.17297.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Step-level value preference optimization
for mathematical reasoning, 2024. URL https://arxiv.org/abs/2406.10858.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences, 2023. URL https://arxiv.org/abs/
1706.03741.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto:
Model alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/
2402.01306.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models, 2023. URL https://arxiv.org/
abs/2211.10435.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving, 2024.
URL https://arxiv.org/abs/2309.17452.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le

11

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2406.10858
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/1706.03741
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2211.10435
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2103.03874

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F. Chen, and Shafiq Joty. Learning planning-
based reasoning by trajectories collection and process reward synthesizing, 2024. URL https:
//arxiv.org/abs/2402.00658.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning to automatically
solve algebra word problems. In Kristina Toutanova and Hua Wu (eds.), Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 271–281, Baltimore, Maryland, June 2014. Association for Computational Linguistics. doi:
10.3115/v1/P14-1026. URL https://aclanthology.org/P14-1026.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms, 2024. URL https://arxiv.
org/abs/2406.18629.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
guage models, 2022. URL https://arxiv.org/abs/2206.14858.

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai Fan. Mario: Math reasoning with code
interpreter output – a reproducible pipeline, 2024. URL https://arxiv.org/abs/2401.
08190.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J. Liu, and Jialu
Liu. Statistical rejection sampling improves preference optimization, 2024. URL https://
arxiv.org/abs/2309.06657.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhanc-
ing mathematical reasoning of llms, 2024. URL https://arxiv.org/abs/2402.16352.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathemati-
cal reasoning for large language models via reinforced evol-instruct, 2023. URL https:
//arxiv.org/abs/2308.09583.

Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Zhiqiang Hu, Chenhui Shen,
Yew Ken Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue
Deng, Sen Yang, Chaoqun Liu, Hang Zhang, and Lidong Bing. Seallms – large language models
for southeast asia, 2024. URL https://arxiv.org/abs/2312.00738.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan

12

https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://aclanthology.org/P14-1026
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2401.08190
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2309.06657
https://arxiv.org/abs/2309.06657
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2308.09583
https://arxiv.org/abs/2312.00738

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White.
Smaug: Fixing failure modes of preference optimisation with dpo-positive, 2024. URL https:
//arxiv.org/abs/2402.13228.

Keiran Paster. Testing language models on a held-out high school national finals
exam. https://huggingface.co/datasets/keirp/hungarian_national_hs_
finals_exam, 2023.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems?, 2021. URL https://arxiv.org/abs/2103.07191.

Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. In
Wiley Series in Probability and Statistics, 1994. URL https://api.semanticscholar.
org/CorpusID:260799408.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language model is
secretly a q-function, 2024a. URL https://arxiv.org/abs/2404.12358.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024b. URL https://arxiv.org/abs/2305.18290.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical rea-
soning abilities of neural models, 2019. URL https://arxiv.org/abs/1904.01557.

13

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://arxiv.org/abs/2103.07191
https://api.semanticscholar.org/CorpusID:260799408
https://api.semanticscholar.org/CorpusID:260799408
https://arxiv.org/abs/2404.12358
https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/1904.01557

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Amrith Setlur, Saurabh Garg, Xinyang Geng, Naman Garg, Virginia Smith, and Aviral Kumar. Rl
on incorrect synthetic data scales the efficiency of llm math reasoning by eight-fold, 2024. URL
https://arxiv.org/abs/2406.14532.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=fR3wGCk-IXp.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for en-
hanced mathematical reasoning, 2023a. URL https://arxiv.org/abs/2310.03731.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.
URL https://arxiv.org/abs/2312.08935.

Zengzhi Wang, Rui Xia, and Pengfei Liu. Generative ai for math: Part i – mathpile: A billion-token-
scale pretraining corpus for math, 2023b. URL https://arxiv.org/abs/2312.17120.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023a. URL https://arxiv.org/abs/2201.11903.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and Bin Wang. Cmath: Can your language model
pass chinese elementary school math test?, 2023b. URL https://arxiv.org/abs/2306.
16636.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi,
and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning,
2024. URL https://arxiv.org/abs/2405.00451.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan
Zeng, Zhengxiao Du, Wenyi Zhao, Jie Tang, and Yuxiao Dong. Chatglm-math: Improving math
problem-solving in large language models with a self-critique pipeline, 2024. URL https:
//arxiv.org/abs/2404.02893.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,

14

https://arxiv.org/abs/2406.14532
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://openreview.net/pdf?id=fR3wGCk-IXp
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.17120
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2306.16636
https://arxiv.org/abs/2306.16636
https://arxiv.org/abs/2405.00451
https://arxiv.org/abs/2404.02893
https://arxiv.org/abs/2404.02893

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan,
Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, and
Rui Hu. Skymath: Technical report, 2023a.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie
Tang. Gpt can solve mathematical problems without a calculator, 2023b. URL https://
arxiv.org/abs/2309.03241.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Yi. A series of large language models trained from scratch by developers at 01-ai. https://
github.com/01-ai/Yi, 2023.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024. URL https://arxiv.org/abs/2402.06332.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models, 2024. URL https://arxiv.org/abs/2309.12284.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and
Maosong Sun. Advancing llm reasoning generalists with preference trees, 2024. URL https:
//arxiv.org/abs/2404.02078.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023. URL https://arxiv.org/abs/2308.01825.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning, 2023. URL
https://arxiv.org/abs/2309.05653.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and Jingming Liu. Ape210k: A large-scale
and template-rich dataset of math word problems, 2020. URL https://arxiv.org/abs/
2009.11506.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J. Liu. Slic-hf:
Sequence likelihood calibration with human feedback, 2023. URL https://arxiv.org/
abs/2305.10425.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, and Hongsheng Li. Solving challenging math word problems using
gpt-4 code interpreter with code-based self-verification, 2023. URL https://arxiv.org/
abs/2308.07921.

15

https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2309.03241
https://arxiv.org/abs/2305.10601
https://github.com/01-ai/Yi
https://github.com/01-ai/Yi
https://arxiv.org/abs/2402.06332
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2404.02078
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2009.11506
https://arxiv.org/abs/2009.11506
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2305.10425
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2308.07921

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Data GSM8K MATH

DSC 79.0% 46.2%
Dnaive + DSC 80.1% 47.7%

Table 5: Ablation study of using and not using Dnaive during training. The starting SFT model is
Mistral-7B-Ours.

A CREDIT ASSIGNMENT ANALYSIS EXAMPLES

In this section, we present several other credit assignment analysis examples, comparing SCDPO
to DPO. Fig. 6, Fig. 7 and Fig. 8 show examples of part of the solutions of questions taken from
GSM8K and MATH datasets, colored with the DPO implicit reward of each token (darker is higher).
As demonstrated in the examples, SCDPO is better than DPO at identifying the errors in the reason-
ing steps.

B ABLATION STUDY OF DNAIVE AND DSC

To demonstrate the necessity of combining Dnaive and DSC, we conduct experiment of using only
DSC in DPO training. The results are presented in Tab. 5. As demonstrated in the table, combining
Dnaive and DSC results in better performance than only using DSC during DPO training. This is likely
because Dnaive helps regulate the general format of the generated solutions.

C ANALYSIS OF GENERATED ERRORS

In this section, we provide quantitative analysis of the erroneous steps generated. We observed seven
main kinds of errors: value misusage, condition misinterpretation, coding error, commonsense error,
math concept or understanding error, math calculation error, unintelligible strings. The errors are
explained as follows:

• Value misusage: misusing values in places where another value should have been used.
• Condition misinterpretation: incorrectly interpreting the meaning or indications of condi-

tions.
• Coding error: making mistakes in code snippets that causes errors.
• Common sense error: misunderstanding of common sense.
• Math concept or understanding error: incorrect recollection or understanding of math con-

cepts.
• Math calculation error: mistakes when making mathematical calculations.
• Unintelligible strings: generation of unintelligible strings that does not represent meaning-

ful reasoning errors.

We randomly sampled 100 incorrect solutions in the training data of SCDPO, and counted the num-
ber of each type of error. The result is presented in Fig. 5. As demonstrated in the chart, the
reasoning errors generated is diverse, distributed evenly among the different types. Only 4% of the
incorrect solutions contain unintelligible strings, demonstrating that the design of gradually increas-
ing temperature can mostly avoid the occurance of meaningless errors.

D ERROR RATE OF INTERMEDIATE STEPS WHEN THE FINAL ANSWER IS
CORRECT

In this section, we discuss the error rate of intermediate steps in solutions that reaches the correct
final answer. As we mentioned in the main paper, we randomly sampled 87 solutions that reach
correct final answer, and of the 369 reasoning steps in these solutions, only 2 contain errors, which
is a very small percentage (about 0.5%). The 2 erroneous steps are in a question whose answer is to

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

value misusage

14.0%

condition misinterpretation

21.0%
coding error

15.0%

common sense error

16.0%

math concept or understanding error

14.0%
math calculation error

16.0%

unintelligible strings4.0%

Figure 5: Percentage of each type of error in the 100 examples we sampled.

Figure 6: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is
the credit assignment of SCDPO, which correctly highlighted the error – the number of damaged
magazines (which is 4) should not be first added to and then extracted from “total magazines”, while
the credit assignment of DPO on the right fails to highlight it.

ask for “the number of real solutions”. The possible answers to this question is very limited, which
facilitates incorrect reasoning steps to happen to reach a correct final answer. We observe that this
kind of question is rare in the GSM8K and MATH datasets we chose to perform SCDPO on, so
in most cases a correct final answer indicates that the reasoning steps leading to it is highly likely
to be correct. We also removed solutions that contain apologies or error messages, so there are no
incorrect steps that are later revised in the correct solutions we retained. As a result, the steps before
the generated erroneous steps in SCDPO training data are correct with a high confidence.

E DISTRIBUTION OF ERROR GENERATION STARTING POINTS AND ACTUAL
ERROR STEP INDEX

We sampled 100 SCDPO rejected solutions and manually inspected them. While not all errors occur
at the beginning of the generation of erroneous steps, most of them occur early in the generation, as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Credit assignment of part of a solution for a GSM8K problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlighted the error – Mitchell has 30 pencils, and
Antonio has 6 less pencils than Michell, which is 30− 6, so the introduction of x is not needed, and
x+ (x+ 6) = 30 is incorrect, while the credit assignment of DPO on the right fails to highlight it.

Figure 8: Credit assignment of part of a solution for a MATH problem. Each token is colored
corresponding to the DPO implicit reward as expressed in Eq. 6 (darker is higher). The left is the
credit assignment of SCDPO, which correctly highlighted the error – 101 cannot be written as 5k
where k = 20, while the credit assignment of DPO on the right fails to highlight the error.

the earlier steps often make decisions that have a large influence on the correctness of the solution.
We present the distribution of the step index where the first actual error occurs in the 100 SCDPO
rejected solutions, as well as the distribution of the index of the step where generation of erroneous
steps begins. As shown in Tab. 6, the two distributions are closely related, demonstrating that the
index of the starting point of error generation have a strong effect on the step index of the actual
error. The step index of the actual error is often close to the starting point of the error generation.

We also manipulate the distribution of the step index where error generation begins. Specifically,
we train the Mistral-7B-SFT model with SCDPO data where the starting index was either less than
or equal to 4, or greater than 4. As shown in Tab. 7, limiting the error starting point index decreases
performance compared to not imposing any such limitation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Step Index 2 3 4 5 6 7 8 9 10 11 12 13 14

Actual Error Distr. 17 21 20 12 8 9 5 3 0 4 1 0 0
Starting Point Distr. 32.8 23.1 15.3 11.4 6.97 4.72 2.53 1.70 0.77 0.44 0.16 0.08 0.01

Table 6: The distribution of the actual error starting step index in 100 randomly sampled SCDPO
rejected solutions and the distribution of the starting point of the error generation of the SCDPO
rejected solutions.

Data GSM8K MATH OCW Hungarian Mathematics SVAMP Simuleq

SFT+DPO+SC 80.1 47.7 22.4 61 76.5 82.3 79.0
SFT+DPO+SC (k ≤ 4) 80.7 46.7 17.7 53 74.7 82.0 79.2
SFT+DPO+SC (k > 4) 79.6 46.4 17.3 59 74.1 82.3 78.6

Table 7: Comparison of performance on various datasets using different ranges of error generation
starting point during training. “k” is the index of the starting step of error generation. Limiting the
starting index slightly affects performance compared to using the full range of indices.

19

	Introduction
	Step-Controlled DPO Pipeline
	Step-Controlled Data Generation
	Step-Controlled DPO Training

	Theoretical Explanation of Step-Controlled DPO
	Experiments
	20B Model trained with SCDPO
	Comparison using Different Starting 7B Models
	Analysis of the Increasing Temperature Design

	Related Work
	Limitations and Future Work
	Conclusion
	Credit Assignment Analysis Examples
	Ablation Study of Dnaive and DSC
	Analysis of Generated Errors
	Error Rate of Intermediate Steps When the Final Answer is Correct
	Distribution of Error Generation Starting Points and Actual Error Step Index

