
Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Sijia Zhang 1 Shuli Zeng 1 Shaoang Li 1 Feng Wu 1 Shaojie Tang 2 Xiang-Yang Li 1

Abstract
Many real-world applications, such as logistics,
routing, scheduling, and production planning, in-
volve dynamic systems that require continuous
updates to solutions for new Mixed Integer Linear
Programming (MILP) problems. These systems
often require rapid updates to their solutions to
accommodate slight modifications in constraints
or objectives introduced by evolving conditions.
While reoptimization techniques have been ex-
plored for Linear Programming (LP) and certain
specific MILP problems, their effectiveness in ad-
dressing general MILP is limited. In this work,
we propose a two-stage reoptimization framework
for efficiently identifying high-quality feasible so-
lutions. Specifically, we first utilize the histori-
cal solving process information to predict a high
confidence solution space for modified MILPs,
which is likely to contain high-quality solutions.
Building on the prediction results, we fix a part
of variables within the predicted intervals and
apply the Thompson Sampling algorithm to de-
termine which variables to fix. This is done by
updating the Beta distributions based on the solu-
tions obtained from the solver. Extensive exper-
iments across nine reoptimization datasets show
that our VP-OR outperforms the state-of-the-art
methods, achieving higher-quality solutions under
strict time limits.

1. Introduction
Traditional combinatorial optimization problems require
finding solutions for a single instance. However, many
real-world scenarios, such as system control (Marcucci &
Tedrake, 2020), railway scheduling (Zhang et al., 2020)

1School of Computer Science and Technology, University of
Science and Technology of China 2Department of Management
Science and Systems, State University of New York at Buffalo.
Correspondence to: Xiang-Yang Li <xiangyangli@ustc.edu.cn>,
Feng Wu <wufeng02@ustc.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

and production planning (Dunke & Nickel, 2023; Cedillo-
Robles et al., 2020), involve systems that change dynami-
cally over time. Thus, throughout the continuous operation
of such systems, it is required to compute solutions for
new Mixed Integer Linear Programming (MILP) problems,
which are similar to the previous instances but differ in some
parameters in specific model elements such as objective
functions, constraints, and variable bounds. Traditionally,
each of these new MILP instances is solved from scratch,
which overlooks the opportunity to leverage valuable infor-
mation from the previously solved instances. This approach
can be computationally expensive. Additionally, it is chal-
lenging to generate high-quality operational plans within a
short timeframe for time-critical applications.

Reoptimization techniques have been well-studied for the
LP case (John & Yıldırım, 2008) and heuristic algo-
rithms for some special MILP problems, e.g., the rail-
way planning problem (Blair, 1998), general assignment
problems (NAUSS, 1974) and other combinatorial prob-
lems (Libura, 1996; 1991; Sotskov et al., 1995). However,
these techniques have limited applicability to general MILPs.
The current reoptimization techniques for general MILP in-
stances (Ralphs & Güzelsoy, 2006; Ralphs et al., 2010;
Gamrath et al., 2015; Patel, 2024) can be divided into three
categories: (1) reuse of historical optimal solutions (2) reuse
of branch-and-bound trees (3) adjustment of parameters.
The limitations of their approach are twofold. Firstly, the
optimal solution from the original problem may no longer
be valid for the new problem. This is because the range
of variable values for the optimal solution can shift sig-
nificantly, even with small modifications to the problem’s
parameters (Guzelsoy, 2009). Secondly, reusing branching
strategies and adjusting parameters primarily saves time on
decision-making within the branch-and-bound algorithm
itself, such as selecting variables, generating heuristics, and
constructing cutting planes. However, this approach does
not reduce the overall size or complexity of the problem.

Recently, there has been an increased interest in end-to-end
problem solving that generate high-quality solutions for
MILPs (Nair et al., 2020; Han et al., 2023; Khalil et al.,
2022; Ye et al., 2023; 2024). Previously, Neural Diving
(ND) (Nair et al., 2020) is proposed to generate a Bernoulli
distribution for the solution values of binary variables. They
employ a selectivenet (Geifman & El-Yaniv, 2019) to learn

1

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Solution
Bipartite Graph

0.9

ub

lb

ub
lb

… …

……

…

…

Initial Variable Prediction

Marginal
Probabilities

Update α 、 β

Solver

Bin.

INT.

CONT.

Unsolved MILP

Solving ProcessHistorical MILP

Input
GNN Model

Large-scale MILP Iterative Online Refinement

Output

Probabilities
to Select

Vars.

Update α 、 β

Figure 1. Illustration of our proposed two-stage reoptimization framework. Our approach first predicts a marginal probability of each
binary variable and the feasible ranges of integer and continuous variables utilizing a graph neural network (GNN), and then employs the
Thompson Sampling algorithm to iteratively select the variable to apply the interval.

which variables’ predicted values to be fixed. The main
disadvantage of ND is that fixing variables can lead to low-
quality or infeasible solutions if the selectivenet fails to
identify variables with inaccurate predictions. To mitigate
the issue, current end-to-end methods (Han et al., 2023;
Ye et al., 2024; Huang et al., 2024) employ a Predict-and-
Search (PS) framework. They utilize large neighborhood
search (LNS) (Carchrae & Beck, 2009) to explore solutions
near the predicted values. These LNS-based approaches do
not differentiate between variables predicted with greater
accuracy. Instead, they predetermine the number of vari-
ables to search around (controlled by hyperparameters) and
uniformly apply uncertainty neighborhoods around these
binary variables. These methods are not directly suited for
reoptimization scenarios, which urgently require quickly ob-
taining high-quality feasible solutions (Marcucci & Tedrake,
2020; Zhang et al., 2020). For example, instances in the
’bnd 3’ dataset from the reoptimization competition (Bolu-
sani et al., 2023) cannot find a primal solution within 300
seconds using these methods.

In this paper, we primarily focus on finding primal solutions
for MILP problems with dynamic parameters. We propose
a two-stage reoptimization framework, which consists of
a Variable Prediction model and an Online Refinement
module (VP-OR). We find that over 26.6% integer and con-
tinuous variables cannot be accurately predicted if relying
solely on optimal solution values, as shown in Table 10. To
overcome this, we propose a method to predict the bounds
for these variables, leveraging historical branch-and-bound
processes from previously solved instances. Inspired by
the recent success for variable prediction (Han et al., 2023;
Huang et al., 2024), VP-OR employs graph neural networks
(GNNs) (Gori et al., 2005) to analyze changes in problem
structure and significantly improves the accuracy of variable
predictions. To meet time-critical demands, the online re-
finement module adopt a fixing strategy similar to ND (Nair
et al., 2020), achieving solving times at least 10 times shorter

per iteration compared to traditional LNS strategies, as
shown in Table 2. Different from ND and PS (Han et al.,
2023), we utilize Thompson Sampling (Thompson, 1997)
to differentiate between variables predicted with greater
accuracy. We fix a subset of variables to apply the predic-
tion intervals and iteratively improve the sampling based on
solution results from each round.

Empirically, we compare VP-OR against the leading reop-
timization method (Patel, 2024), two end-to-end machine
learning-based baselines (Nair et al., 2020; Han et al., 2023),
and the open-source solver SCIP (Bestuzheva et al., 2021)
across nine reoptimization datasets. The results indicate
that VP-OR outperforms the other methods in delivering
highly accurate solutions under strict time limits. In addi-
tion, we evaluate the performance over a longer duration,
revealing that VP-OR converges more rapidly, achieving
smaller primal gaps compared to the other methods.

2. Related work
Reoptimization for MILPs. Early methods (Ralphs &
Güzelsoy, 2006; Ralphs et al., 2010) were primarily based
on duality theory and focused on sequences of MILPs where
only the right-hand side changes. These approaches lever-
aged dual information obtained through primal algorithms
to enable “warm starting”, accelerating the resolution of
subsequent problems. Subsequent research (Gamrath et al.,
2015) extended these methods to handle broader scenarios,
incorporating techniques such as reusing branch-and-bound
trees. In these approaches, the modified problem is treated
as a subproblem of the base problem, or, if only the objective
function changes, the search can “continue” from the last
known search boundary. Specifically, these methods use the
leaf nodes of the base problem’s branch-and-bound tree as
starting points for solving the modified problem. Building
on this, more recent work (Patel, 2024) addressed even more
complex reoptimization scenarios, where, apart from the

2

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

objective function but also other parameters-such as variable
bounds, matrix coefficients, and constraint right-hand side
values-can undergo upward or downward perturbations. In
the approach, a series of past solutions is preserved, allow-
ing the method to reuse these solutions for the new problem.
They also explore the reuse of branching strategies and the
adjustment of parameters related to the cutting planes and
heuristic algorithms, fine-tuning the solver’s behavior to
better tackle the modified problem. They primarily relied
on heuristic adjustments, lacking the ability to predict the
changes in optimal solutions.

Prediction for integer variables. Many real-world scenar-
ios that rely on reoptimization techniques naturally involve
both integer and continuous variables. For example, pro-
duction quantities in manufacturing are integers (Cedillo-
Robles et al., 2020), while power levels in energy opti-
mization problems are continuous variables (Yokoyama
et al., 2002). Despite this, most existing end-to-end machine
learning-based methods (Han et al., 2023; Khalil et al., 2022;
Huang et al., 2024) primarily focus on predicting solutions
for binary variables. Neural Diving (Nair et al., 2020) (ND)
first proposed to represent integer variables in binary form
and predict each bit’s value. To address the issue of repre-
senting integer variables with excessively many bits, ND
considered the first few bits as the most significant during
the solving process and introduced a hyperparameter to con-
trol the maximum number of bits predicted for each variable.
Building on ND, Ye et al. (2024) introduced a generalized
confidence threshold method. However, predicting each
binary bit’s actual value can lead to inaccuracies, causing
overall prediction errors.

3. Preliminaries
Mixed integer linear programming(MILP). Given a set of
decision variables x ∈ Rn, the MILP problem is formulated
as follows:

min c⊤x,

s.t. Ax ≥ b, l ≤ x ≤ u,

x ∈ {0, 1}p × Zq × Rn−p−q,

(1)

where c ∈ Rn is the objective coefficients, A ∈ Rm×n is
the constraint coefficient matrix, b ∈ Rm is the right-hand
side vector, l,u ∈ Rn are the variable bounds.

Modified MILP problem. We consider scenarios similar
to the previous reoptimization work (Patel, 2024), involving
a series of MILP instances based on an MILP (historical
instance) taken from a specific application. Each subse-
quent instance (modified instance) is modified from the
previous one with random perturbations and rotations to
parameters such as the objective vector, constraints, and
variable bounds. The previous instances has been solved to

optimality. They provide not only the optimal solution but
also detailed records of intermediate computational steps,
such as selected branches and basis variables at each node’s
LP relaxation. These records can be strategically leveraged
in the reoptimization algorithm to accelerate the solving
process for the modified instances.

Bipartite graph for MILPs An MILP problem can be
effectively represented as a weighted bipartite graph G =
(V ∪ C,E) (Nair et al., 2020; Gasse et al., 2019). Each
vertex in V corresponds to a variable of the MILP, and
each vertex in C represents a constraint. An edge (vi, cj)
connects a variable vertex vi with a constraint vertex cj
if the variable is involved in the constraint. The edge set
E ∈ Rm×n×e represents the edge features, where m and n
denote the number of constraints and variables, respectively,
and e indicates the dimension of the edge attributes.

Online contextual thompson sampling. Thompson Sam-
pling is a heuristic strategy used in decision-making scenar-
ios like the multi-armed bandit (MAB) problem (Agrawal &
Goyal, 2012; Zhao, 2022). This method is used for choos-
ing actions according to their expected rewards, which are
continuously updated using Beta probability distributions
Beta(α, β) (Gupta & Nadarajah, 2004). The Beta distribu-
tion forms a family of continuous probability distributions
over the interval (0, 1). The probability density function
(pdf) of a Beta(α, β) distribution, where α > 0 and β > 0,
is given by: f(x;α, β) = Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1, where

Γ(·) is the Gamma function. The mean of the Beta(α, β)
distribution is α

α+β , and as the parameters α and β in-
crease, the distribution becomes more concentrated around
the mean. The beta distribution is useful for Bernoulli re-
wards because if the prior is a Beta(α, β) distribution, then
after observing a Bernoulli trial, the posterior distribution
is simply Beta(α + 1, β) or Beta(α, β + 1), depending
on whether the trial resulted in a success or failure, respec-
tively.

4. Methodology
In this section, we present the insights and details of our
VP-OR framework. We start by utilizing the historical infor-
mation to predict a feasible interval containing the modified
problem’s optimal solution in Section 4.1. Then, we em-
ploy the Thompson Sampling algorithm to refine the solving
space in Section 4.2. Figure 1 shows the overall procedure
of our VP-OR framework.

4.1. Initial variable prediction

4.1.1. GRAPH REPRESENTATION

The feature extraction process is divided into two parts: the
historical instance and the modified instance. For the modi-

3

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 1. Comparison of variable prediction accuracy for different datasets. This table presents the number of variables and mispredicted
variables across different types (binary, integer, and continuous) when using GNN-based predictions. Mispredicted variables represent
those whose predicted bounds or values differ from the optimal solution.

Var. num. bnd 1 bnd 2 bnd 3 mat 1 obj 1 obj 2 rhs 1 rhs 2 rhs 3

binary var. 2993.0 1457.0 1457.0 500.0 360.0 355.0 12510.0 500.0 500.0
mispredicted binary var. 8.2 6.7 4.5 37.4 5.6 0.2 64.3 0.0 0.0

integer var. 124.0 0.0 0.0 0.0 0.0 150.0 0.0 0.0 0.0
mispredicted integer var. 17.4 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0

continuous var. 0.0 301.0 301.0 302 0.0 240.0 250.0 500.0 500.0
mispredicted continuous var. 0.0 0.0 2.0 0.0 0.0 16.8 0.0 1.6 4.7

fied instance, we represent it using a classic bipartite graph
structure (Gasse et al., 2019). For the historical instance, we
aim to extract additional historical solving information to
predict how the optimal solution may change under small
perturbations in the MILP.

In MILP, integer variables are often relaxed to continuous
values to apply duality concepts. However, the dual problem
from the relaxed problem may not directly reflect the rela-
tionship between the optimal solution and constraints under
integer restrictions. We address this challenge by leveraging
a key property of branch-and-bound trees: the final leaf node
that yields the MILP optimal solution has the characteristic
that its LP relaxation solution is also an integer solution.
The leaf node represents a subproblem of the original MILP,
distinguished by the addition of a series of branching con-
straints. We include the feasible basic variables and dual
solutions of the leaf node as features, which are commonly
applied in LP sensitivity analysis (Higle & Wallace, 2003),
aiming to capture which variables and constraints are sen-
sitive to parameter changes. This approach significantly
improves the accuracy of binary variable predictions com-
pared to traditional end-to-end solving methods, which rely
solely on modeling the problem as a bipartite graph and
optimal solution values. In Appendix E.5, we present the
comparison results between the reuse of historical solving
information and the traditional vanilla bipartite graph pre-
dictions. The features used in the graph representation is
detailed in Table 5 in Appendix A.

4.1.2. GNN-BASED INITIAL VARIABLE PREDICTION

Classic end-to-end approaches (Khalil et al., 2022; Han
et al., 2023) are specifically designed for binary vari-
ables and predict a n-dimension vector (pθ(x1 =
1;M), . . . , pθ(xp = 1;M)) to represent the conditional
probability of p binary variables. However, these methods
can not work well in many real-world scenarios, which
mainly contain integer and continuous variables. For in-
stance, in the dataset named “vary matrix rhs bounds” in
the MIP Workshop 2023 Computational Competition (Bo-

lusani et al., 2023), there are 27,710 variables but only 400
binary variables.

Loss function. We use a categorical cross-entropy loss
function to train the GNN. For binary variables, the model
predicts probabilities that are directly compared with the
actual binary values to compute the optimal solution. In the
datasets, maximum integer values exceed 100,000, which
would require at least 18 bits for binary representation. Us-
ing a direct approach without these transformations results
in out-of-memory errors due to large output dimensions.
Therefore, for integer and continuous variables, they are
first represented as 8-bit binary numbers using the method
described in Appendix B, which involves using the binary
representation of the logarithmic value. The use of binary
representation and logarithmic transformation addresses
practical computational constraints. These binary repre-
sentations are then used as labels and compared with the
predicted probabilities.

Prediction confidence processing. We apply the confi-
dence threshold method (Yoon, 2022) to filter the predicted
probabilities and distinguish between confident and uncer-
tain predictions. For the binary digits with high confidence,
the binary digits are fixed to their predicted values. For un-
certain binary digits (i.e., those with probabilities between
0.1 and 0.9), we allow them to vary between 0 and 1. We
establish the upper and lower bounds of the predicted binary
encoding by setting the uncertain binary digit to its maxi-
mum value 1 for the upper bound and its minimum value 0
for the lower bound.

4.2. Iterative online refinement

4.2.1. OBSERVATION

We test the prediction accuracy of GNN-based models on a
variety of datasets, which were carefully selected to repre-
sent different types of parameters, including variable bounds,
objective function coefficients, matrix parameters, and right-
hand side constraints. Table 1 provides the number of vari-
ables and the mispredicted variables for each dataset. The

4

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 2. Comparison of the solving time (second) using variable fixing and large neighborhood search (LNS) methods, with different
percentages of variables (50% and 70%). For LNS methods, feasible solutions are searched around the predicted values for these variables.
For variable fixing methods, these variables are set to the predicted values.

Solving time bnd s1 bnd s2 bnd s3 mat s1 obj s1 obj s2 rhs s1 rhs s2 rhs s3

SCIP original solving time 356.09 314.35 574.72 541.78 570.69 200.10 546.40 68.67 90.24

LNS (50% binary variables) 328.50 146.38 427.19 111.54 123.71 306.21 287.91 59.85 77.08
LNS (70% binary variables) 335.51 265.82 307.43 497.24 703.86 307.78 247.45 81.27 80.08

Fix 50% variables (only binary) 17.61 13.44 77.83 0.60 65.61 5.71 9.99 29.00 25.13
Fix 70% variables (only binary) 4.92 6.46 32.94 0.38 4.22 3.08 5.42 13.78 12.41

Fix 50% variables (all) 3.87 2.76 7.42 0.57 49.65 0.24 2.71 3.97 8.73
Fix 70% variables (all) 0.71 2.44 4.02 0.37 1.04 0.23 0.47 3.53 4.18

results indicate that inaccuracies in predicted values are typ-
ically concentrated in a small subset of the variables. This
is especially evident with integer and continuous variables,
where less than 14% of the ranges deviate from the true
feasible regions.

With this observation, it is reasonable to accelerate the
solving process for MILP problems by fixing variables
in the partial solution. To simplify the formulation, we
denote the constraint space of the modified instance as:
S = {x ∈ {0, 1}p × Zq × Rn−p−q : (A + ∆A)x ≥
(b + ∆b), (l + ∆l) ≤ x ≤ (u + ∆u)}. Specifically, the
sub-problem of an instance using the fixing strategy with
the predicted binary value x̃, the predicted lower bound l̃
and upper bound ũ can be formulated as:

min
x∈S(x̃,I)∩S

(c+∆c)⊤x (2)

where the learning-based constraint set S(x̃, I) is defined
as: S(x̃, I) = {x ∈ {0, 1}p × Zq × Rn−p−q : xi =
x̃i, i ∈ {1, 2, . . . , p} ∩ I, l̃j <= xj <= ũj , j ∈ {p+1, p+
2, . . . , n} ∩ I}, and x̃i represents the predicted probabil-
ity for binary variables xi, and l̃j and ũj are the predicted
lower and upper bounds for integer or continuous variables
xj . Here, I is a subset of {1, 2, . . . , n}, representing the set
of selected related variables in the constraint set. However,
for i ∈ I , if x̃i ̸= x∗

i or if l̃j > x∗
j or ũj < x∗

j , where x∗
i

denotes the optimal value of the variable xi in the modi-
fied problem, the fixing strategy may lead to suboptimal
solutions or even infeasible sub-problems. Identifying the
appropriate set I to avoid these inaccurate predictions is
challenging, particularly when handling large-scale prob-
lems where the search space is vast, and the number of
variables is substantial.

Interestingly, through a number of experimental tests, as
shown in the Table 2, we found that when fixing a portion of
the variables, the solution time of the problem can become
very short. For comparison, we included the solving times of
the default SCIP and those obtained by large neighborhood

search (LNS) methods. In cases where incorrect variable
fixing caused infeasibility, we randomly select variables
multiple times and compute the average time taken to find
feasible solutions across these selections. The results show
that we can increase the problem solving efficiency to 3-10
times by fixing only the binary variables when we add the
estimated integer and continuous variables. It motivates us
to choose variables based on the feedback of each solution,
and gradually update the initial values of predictions based
on the solution values of the binary variables.

4.2.2. ONLINE VARIABLE FIXING STRATEGY

Our approach is based on a simplifying assumption com-
monly used in prior work (Han et al., 2023) that treats each
variable as independent of others. This assumption enables
us to update the values of α and β separately for each vari-
able. During the initial presolve phase, we follow the ap-
proach of previous reoptimization work (Patel, 2024) by pro-
viding solutions from previous instances as hints to support
the “completesol” heuristic method, effectively leveraging
the historical solution as a warm start.

Problem statement. We model our problem as a stochastic
multi-armed bandit (MAB) problem (Zhao, 2022). In the
context of the solving process of MILP discussed, which
variables to be apply the predicted values is analogous to
an arm in a contextual MAB setup. At each round t, the
corresponding variable set are fixed to their predicted values,
which reduces the original problem to a subproblem. We
then solve this subproblem and obtain a reward rat ∈ {0, 1}.
If the solution obtained in this iteration improves upon all
previous solutions, we set rat

= 1; otherwise, rat
= 0.

The objective is to discover better solutions with as few
iterations as possible, approaching the optimal solution ef-
ficiently. This aligns with the typical MAB goal of maxi-
mizing the expected total reward over a time horizon T, i.e.,
E
[∑T

t=1 rat

]
, where at represents the arm played at time

t, and the expectation is taken over the random choices of

5

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 3. Number of solved problems within 10s time limit for each method across datasets.

Methods bnd 1 bnd 2 bnd 3 obj 1 obj 2 mat 1 rhs 1 rhs 2 rhs 3

SCIP 5/5 0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5

ND 0/5 0/5 0/5 5/5 5/5 0/5 0/5 0/5 0/5
PS 5/5 0/5 0/5 5/5 5/5 5/5 5/5 5/5 5/5

Re Tuning 5/5 3/5 3/5 5/5 5/5 5/5 5/5 5/5 5/5
VP-OR(Ours) 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5

at made by the algorithm.

We do not directly use the solution’s objective value as
the reward, as the reward may cause the model to favor
solutions that are “good but not optimal”, reducing the moti-
vation for exploration. By rewarding only when the current
solution is better than all previous ones, we can more clearly
distinguish which arms lead to true improvements.

We employ an iterative thompson sampling approach to re-
fine solutions. Following the results from each iteration, we
update the beta distributions of variables for the subsequent
round of optimization. For binary variables, the prior dis-
tribution is initialized as Beta(pi + 10−5, 1 − pi + 10−5),
where pi represents the marginal predicted probability of the
binary variable being fixed to 1. For integer and continuous
variables, the prior is set as Beta(1, 1). The value µ, sam-
pled from the Beta distribution, represents the probability of
achieving a better solution (i.e., obtaining r = 1) by fixing
binary variables to 1 or by imposing predicted bounds on
integer variables. We select the top a% of these variables
based on their µj values. The priors are updated according
to the solving values for the unselected variables and based
on whether the current solution improves for the selected
variables. In our algorithm, we aim to avoid being trapped
in local optima. To encourage exploration, no penalty is
given when the current solution performs worse than previ-
ous iterations. Details of our thompson sampling algorithm
are presented in Appendix C.

We propose the relaxation mechanism to address infeasible
instances, which is detailed in Appendix D. It divides the
fixed variables into ten groups and subsequently solves each
without these variable sets. When a feasible solution cannot
be found, we repeatedly apply the relaxation mechanism,
building upon previous relaxations. Each iteration of this
mechanism reduces the number of fixed variables. With
enough iterations, the variables causing conflicts with the
constraints are filtered out.

5. Experiments
Our experiments consist of three main parts: Experiment
1: Evaluate different methods on nine public reoptimization
datasets, focusing on whether they can quickly find feasible

solutions within the 10-second time limit. Experiment 2:
Assess the quality of the feasible solutions obtained within
the 10-second limit. Experiment 3: To provide a more
intuitive comparison of solution convergence speeds, we
plot the relative primal gap over time under a larger time
limit of 100 seconds.

5.1. Experimental setup

Benchmarks. We select 9 series of instances from the MIP
Computational Competition 2023 (Bolusani et al., 2023) to
evaluate our approach. Each series has 50 similar instances
with one or more components changing across instances.
These instances need SCIP to solve from 60 to 600 sec-
onds. Depending on the series, one of the following input
can vary: (1) objective function coefficients (obj 1, obj 2),
(2) variable bounds (bnd 1, bnd 2, bnd 3), (3) constraint
right-hand sides (rhs 1, rhs 2, rhs 3), (4) constraint coeffi-
cients (mat 1). Most of these series are based on instances
from the MIPLIB 2017 benchmark library (Gleixner et al.,
2021), which is a well-known and widely used collection
of benchmark problems in the field of MILP. They are fre-
quently maintained and updated to include a diverse set of
test problems sourced from various real-world applications
and industries. Some of other series are collected from
the real-world industrial use case and traditional problems.
They are highly relevant to real-world reoptimization sce-
narios. Due to limited space, please see Appendix E.1 for
details of these datasets.

Training. Each dataset contains 50 instances. To facilitate
the experiments, we pair the instances in groups of two,
resulting in 25 groups, including 20 groups in the training
set and 5 groups in the test set. The first instance in each
group serves as the historical instance, for which interme-
diate solving information required for feature extraction is
pre-recorded. The specific features are detailed in the Ap-
pendix A. All numerical results are reported for the test set.
To further increase the number of test samples, we generate
similar datasets using bnd 1 as a testing example, employ-
ing a method consistent with that published by the compe-
tition organizers. The results presented in Appendix E.8
are consistent with the tests shown in Table 4 of the main
text. The model was implemented in PyTorch (Paszke et al.,

6

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 4. Policy evaluation on the datasets, where “-” represents cases where the method could not find a feasible
solution. The best performance is marked in bold.

Methods bnd 1 bnd 2 bnd 3

gap abs gap rel wins gap abs gap rel wins gap abs gap rel wins

SCIP 1974.20 0.16 1/5 - - - - - -

ND - - - - - - - - -
PS 9665.20 0.81 0/5 - - - - - -

Re Tuning 1425.5 0.12 0/5 - - - - - -
VP-OR(Ours) 299.40 0.02 4/5 40.20 0.11 5/5 28.60 0.06 5/5

Methods mat 1 obj 1 obj 2

gap abs gap rel wins gap abs gap rel wins gap abs gap rel wins

SCIP 14.10 0.23 0/5 11.40 0.00 0/5 626.52 0.39 0/5

ND - - - 11.40 0.00 0/5 674.21 0.44 0/5
PS 14.10 0.23 0/5 13.40 0.00 0/5 266.10 0.21 0/5

Re Tuning 30.06 0.48 0/5 10.25 0.00 0/5 74.10 0.09 0/5
VP-OR(Ours) 10.09 0.16 5/5 3.28 0.00 5/5 0.64 0.00 5/5

Methods rhs 1 rhs 2 rhs 3

gap abs gap rel wins gap abs gap rel wins gap abs gap rel wins

SCIP 173.08 0.50 0/5 12.29 0.00 0/5 15.01 0.00 0/5

ND - - - - - - - - -
PS 67090.50 193.04 0/5 22.25 0.00 0/5 18.00 0.00 0/5

Re Tuning 6.40 0.02 0/5 2.24 0.00 0/5 0.40 0.00 0/5
VP-OR(Ours) 0.73 0.00 5/5 1.85 0.00 5/5 0.26 0.00 5/5

2019) and optimized using Adam (Kingma & Ba, 2014)
with training batch size of 16. The training process is con-
ducted on a single machine that contains eight GPU devices
(NVIDIA GeForce RTX 4090) and two AMD EPYC 7763
CPUs. Each instance uses only one GPU for both training
and inference.

Baselines. We compare our approach against four
baselines: the state-of-the-art open-source solver
SCIP (Bestuzheva et al., 2021), the leading reoptimization
method Re Tuning (Patel, 2024), which won first place
at the MIP Workshop 2023 competition (Bolusani et al.,
2023) and does not rely on machine learning, and two
GNN-based machine learning methods. In this paper, we
compare ND (Nair et al., 2020) and PS (Han et al., 2023)
as representative end-to-end approaches, both of which
have gained significant popularity in recent years. PS is
primarily based on the large neighborhood search (LNS)
method, while ND utilizes a variable-fixing strategy for
optimization. Please see Appendix E.2 for implementation
details of these baselines. To provide a more comprehensive
comparison with our approach, we also provide results
for SCIP using the historical solution as a warm-start
strategy in Appendix E.7. Due to the space limit, we

generate large-scale datasets IS and CA using the code from
Gasse et al. (Gasse et al., 2019) and provide the results in
Appendix E.10.

Evaluation metrics. For each instance, we first solve the
problem without a time limit and record the optimal solu-
tion’s objective value as OPT . Then, we apply a time limit
of 10 seconds for each method. The best objective value ob-
tained within the time limit is denoted as OBJ . We define
the following performance metrics: (1) Solve number: This
is the most fundamental metric, tracking the number of times
a method successfully finds a feasible integer solution within
the 10-second time limit. (2) Gap: We define the absolute
and relative primal gaps as: gap abs = |OBJ −OPT | and
gap rel = |OBJ−OPT |/(|OPT |+10−10), respectively,
and use them as performance metrics. Clearly, a smaller
primal gap indicates a stronger performance. (3) Wins: This
metric counts the number of instances where each method
achieved the closest solution to the optimal one within the
same time limit, relative to the total number of instances.

Throughout all experiments, we use SCIP 8.0.4 (Bestuzheva
et al., 2021) as the backend solver, which is widely used in
research of machine learning for combinatorial optimiza-

7

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

Figure 2. Performance comparisons in bnd 1, mat 1 and rhs 1, where the y-axis is average relative primal gap; each plot represents one
benchmark dataset.

tion (Chmiela et al., 2021; Khalil et al., 2022; Gasse et al.,
2019). We keep all the other SCIP parameters to default and
emphasize that all of the SCIP solver’s advanced features,
such as presolve and heuristics, are open.

5.2. Experimental results

In our experiments, we include only one parameter: the
percentage of fixed variables P . In this section, we present
the results for P = 0.7. Results for other values of P are
provided in Appendix E.3.

Experiment 1. The results in Table 3 show how each
method performs under the 10-second time constraint to
find a feasible solution, which reflects the real-world need
for quickly obtaining high-quality reoptimization solu-
tions (Marcucci & Tedrake, 2020; Zhang et al., 2020). We
observe that only our method, VP-OR successfully found
feasible solutions across all datasets within the time limit.
The reoptimization method, Re Tuning, also performed rel-
atively well compared to other methods. This improved
performance can be attributed to its use of warm-starting
with solutions from previous instances and parameter tuning
using historical solving information.

Experiment 2. We evaluate the quality of the best fea-
sible solutions found by different methods within the 10-
second time limit. The evaluation is conducted across vari-
ous datasets, with performance measured by absolute gap
(gap abs), relative gap (gap rel), and the number of wins
(wins), where wins indicate the number of instances for
which a method achieves the best solution. The results are
shown in Table 4, where “-” represents cases where the
method could not find a feasible solution. In terms of wins
and gap rel, VP-OR surpasses all baseline methods. VP-OR
performs exceptionally well in scenarios involving changes
to variable bounds, matrix coefficients, and constraint right-
hand sides. Specifically, in datasets where variable bounds
are altered (e.g., bnd 2, and bnd 3), VP-OR achieves the

average relative gap close to 0.1 in 10 seconds, while other
methods struggle to provide feasible solutions within 100
seconds. Additionally, Re Tuning outperforms both SCIP
and end-to-end prediction-based methods on most datasets.
ND and PS might be more suitable for problems that are not
time-sensitive and allow for longer solving times.

Experiment 3. To provide a more intuitive comparison of
solution convergence speeds, we plot the relative primal
gap over time with a larger time limit of 100 seconds in
Figure 2, highlighting how our approach converges com-
pared to other methods. We observe that VP-OR is more
suitable for scenarios that require rapidly obtaining high-
quality solutions in the short term. It converges quickly
to find high-quality feasible solutions in the early stages
of solving, but in the global scope, we also found that our
method may encounter the possibility of getting stuck at
suboptimal solutions. While Re Tuning and LNS also show
potential, it’s noteworthy that in certain cases, SCIP per-
forms even better than some of the optimization methods.
Due to space constraints, we only present the results from
three datasets in this section, with additional results pro-
vided in Appendix E.4.

6. Conclusion
This paper proposes VP-OR, a two-stage reoptimization
framework for MILPs with dynamic parameters. VP-OR
first trains a GNN model to predict the marginal probability
of each binary variable and the feasible ranges of integer
and continuous variables in the modified MILP instance.
Further, the Thompson Sampling algorithm is employed to
iteratively select which variables to apply the predicted in-
tervals. Experimental evaluations demonstrate that VP-OR
significantly improves the solution quality in the reoptimiza-
tion setting under very strict time limits over the baselines.
We anticipate and encourage further efforts to extend the
applicability of VP-OR in ultra-large-scale scenarios.

8

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Acknowledgements
The research is partially supported by China National
Natural Science Foundation with No. 62132018 , “Pio-
neer” and “Leading Goose” R&D Program of Zhejiang”,
2023C01029, the University Synergy Innovation Program
of Anhui Province with No. GXXT-2019-024.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning for combinatorial optimization. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Agrawal, S. and Goyal, N. Analysis of thompson sampling

for the multi-armed bandit problem. In Conference on
learning theory, pp. 39–1. JMLR Workshop and Confer-
ence Proceedings, 2012.

Angulo, G., Ahmed, S., and Dey, S. S. Improving the integer
l-shaped method. INFORMS Journal on Computing, 28
(3):483–499, 2016.

Baugh, C. R. and Wooley, B. A. A two’s complement paral-
lel array multiplication algorithm. IEEE Transactions on
computers, 100(12):1045–1047, 1973.

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela,
A., Donkiewicz, T., van Doornmalen, J., Eifler, L.,
Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L.,
Graczyk, C., Halbig, K., Hoen, A., Hojny, C., van der
Hulst, R., Koch, T., Lübbecke, M., Maher, S. J.,
Matter, F., Mühmer, E., Müller, B., Pfetsch, M. E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F.,
Shinano, Y., Sofranac, B., Turner, M., Vigerske, S.,
Wegscheider, F., Wellner, P., Weninger, D., and Witzig,
J. The SCIP Optimization Suite 8.0. Technical
report, Optimization Online, December 2021. URL
http://www.optimization-online.org/
DB_HTML/2021/12/8728.html.

Blair, C. Sensitivity analysis for knapsack problems: A
negative result. Discrete Applied Mathematics, 81(1-3):
133–139, 1998.

Bolusani, S., Besançon, M., Gleixner, A., Berthold, T.,
D’Ambrosio, C., Muñoz, G., Paat, J., and Thomopulos,
D. The MIP Workshop 2023 computational competition
on reoptimization, 2023. URL http://arxiv.org/
abs/2311.14834.

Carchrae, T. and Beck, J. C. Principles for the design of
large neighborhood search. Journal of Mathematical
Modelling and Algorithms, 8(3):245–270, 2009.

Cedillo-Robles, J. A., Smith, N. R., González-Ramirez,
R. G., Alonso-Stocker, J., Alonso-Stocker, J., and Askin,
R. G. A production planning milp optimization model for
a manufacturing company. In International Conference
of Production Research–Americas, pp. 85–96. Springer,
2020.

Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., and Pokutta,
S. Learning to schedule heuristics in branch and bound.
Advances in Neural Information Processing Systems, 34:
24235–24246, 2021.

Dunke, F. and Nickel, S. Exact reoptimisation under grad-
ual look-ahead for operational control in production and
logistics. International Journal of Systems Science: Op-
erations & Logistics, 10(1):2141590, 2023.

Gamrath, G., Hiller, B., and Witzig, J. Reoptimization tech-
niques for mip solvers. In Experimental Algorithms: 14th
International Symposium, SEA 2015, Paris, France, June
29–July 1, 2015, Proceedings 14, pp. 181–192. Springer,
2015.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. Advances in neural information
processing systems, 32, 2019.

Geifman, Y. and El-Yaniv, R. Selectivenet: A deep neural
network with an integrated reject option. In International
conference on machine learning, pp. 2151–2159. PMLR,
2019.

Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T.,
Bastubbe, M., Berthold, T., Christophel, P., Jarck, K.,
Koch, T., Linderoth, J., et al. Miplib 2017: data-driven
compilation of the 6th mixed-integer programming li-
brary. Mathematical Programming Computation, 13(3):
443–490, 2021.

Gori, M., Monfardini, G., and Scarselli, F. A new model for
learning in graph domains. In Proceedings. 2005 IEEE
international joint conference on neural networks, 2005.,
volume 2, pp. 729–734. IEEE, 2005.

Gupta, A. K. and Nadarajah, S. Handbook of beta distribu-
tion and its applications. CRC press, 2004.

Guzelsoy, M. Dual methods in mixed integer linear pro-
gramming. Lehigh University PhD, 2009.

Han, Q., Yang, L., Chen, Q., Zhou, X., Zhang, D., Wang,
A., Sun, R., and Luo, X. A gnn-guided predict-and-
search framework for mixed-integer linear programming.
In The Eleventh International Conference on Learning
Representations, 2023.

9

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://arxiv.org/abs/2311.14834
http://arxiv.org/abs/2311.14834

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Higle, J. L. and Wallace, S. W. Sensitivity analysis and
uncertainty in linear programming. Interfaces, 33(4):
53–60, 2003.

Huang, T., Ferber, A. M., Zharmagambetov, A., Tian, Y.,
and Dilkina, B. Contrastive predict-and-search for mixed
integer linear programs. In Forty-first International Con-
ference on Machine Learning, 2024.

Jiménez-Cordero, A., Morales, J. M., and Pineda, S. Warm-
starting constraint generation for mixed-integer optimiza-
tion: A machine learning approach. Knowledge-Based
Systems, 253:109570, 2022.

John, E. and Yıldırım, E. A. Implementation of warm-start
strategies in interior-point methods for linear program-
ming in fixed dimension. Computational Optimization
and Applications, 41(2):151–183, 2008.

Khalil, E. B., Morris, C., and Lodi, A. Mip-gnn: A data-
driven framework for guiding combinatorial solvers. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 10219–10227, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Libura, M. Sensitivity analysis for minimum hamiltonian
path and traveling salesman problems. Discrete Applied
Mathematics, 30(2-3):197–211, 1991.

Libura, M. Optimality conditions and sensitivity analysis
for combinatorial optimization problems. Control and
cybernetics, 25:1165–1180, 1996.

Marcucci, T. and Tedrake, R. Warm start of mixed-integer
programs for model predictive control of hybrid systems.
IEEE Transactions on Automatic Control, 66(6):2433–
2448, 2020.

Nair, V., Bartunov, S., Gimeno, F., Von Glehn, I., Li-
chocki, P., Lobov, I., O’Donoghue, B., Sonnerat, N.,
Tjandraatmadja, C., Wang, P., et al. Solving mixed in-
teger programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

NAUSS, R. M. PARAMETRIC INTEGER PROGRAMMING.
University of California, Los Angeles, 1974.

Ntaimo, L. Disjunctive decomposition for two-stage stochas-
tic mixed-binary programs with random recourse. Opera-
tions research, 58(1):229–243, 2010.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Patel, K. K. Progressively strengthening and tuning mip
solvers for reoptimization. Mathematical Programming
Computation, pp. 1–29, 2024.

Ralphs, T. and Güzelsoy, M. Duality and warm starting in
integer programming. In The proceedings of the 2006
NSF design, service, and manufacturing grantees and
research conference, 2006.

Ralphs, T., Güzelsoy, M., and Mahajan, A. Sym-
phony 5.2. 3 user’s manual. Online: www. coin-or.
org/download/binary/SYMPHONY, 2010.

Sotskov, Y. N., Leontev, V. K., and Gordeev, E. N. Some con-
cepts of stability analysis in combinatorial optimization.
Discrete Applied Mathematics, 58(2):169–190, 1995.

Tanner, M. W. and Ntaimo, L. Iis branch-and-cut for joint
chance-constrained stochastic programs and application
to optimal vaccine allocation. European Journal of Oper-
ational Research, 207(1):290–296, 2010.

Thompson, M. Theory of sample surveys, volume 74. CRC
Press, 1997.

Ye, H., Xu, H., Wang, H., Wang, C., and Jiang, Y.
Gnn&gbdt-guided fast optimizing framework for large-
scale integer programming. In International Conference
on Machine Learning, pp. 39864–39878. PMLR, 2023.

Ye, H., Xu, H., and Wang, H. Light-milpopt: Solving large-
scale mixed integer linear programs with lightweight op-
timizer and small-scale training dataset. In The Twelfth
International Conference on Learning Representations,
2024.

Yokoyama, R., Hasegawa, Y., and Ito, K. A milp decompo-
sition approach to large scale optimization in structural
design of energy supply systems. Energy Conversion and
Management, 43(6):771–790, 2002.

Yoon, T. Confidence threshold neural diving. arXiv preprint
arXiv:2202.07506, 2022.

Zhang, Y., Zhong, Q., Yin, Y., Yan, X., and Peng, Q. A fast
approach for reoptimization of railway train platforming
in case of train delays. Journal of advanced transporta-
tion, 2020(1):5609524, 2020.

Zhao, Q. Multi-armed bandits: Theory and applications to
online learning in networks. Springer Nature, 2022.

10

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

A. More details of graph features.
The feature extraction process is split into two parts: the historical instance and modified instance. For the historical instance,
we extract a richer set of graph features, including intermediate solving information. For the modified instance, we focus on
structural information as Gasse et al. (2019). A list of the features used in our graph representation of the historical instance
is detailed in Table 5.

Table 5. Description of the constraint, variable and edge features in our graph representation of the historical instance.

Category Feature Description

variable vertex

lb Original lower bound.

ub Original upper bound.

objective coeff Objective coefficient.

var type Type (binary, integer and
continuous) as a one-hot encoding.

leaf lb Lower bound of the leaf node which
contains the optimal solution.

leaf ub Upper bound of the leaf node which
contains the optimal solution.

depth Depth of the leaf node.

estimate Estimate value of the leaf node.

isBasic var If the variable is a basic variable in
the LP relax of the leaf node.

optvalue Variable value in the optimal
solution.

constraint edge coef Constraint coefficient.

constraint vertex

rhs Right-hand side of the constraint.

cons type Constraint type feature (eq, geq) as
a one-hot encoding.

isBasic cons If the constraint is a basic vector in
the LP relax of the leaf node.

B. More details of logarithmic transformation
To reduce the dimensionality of integer variables, we apply a logarithmic transformation before converting the integer
values into binary representations. This is suitable for our problem because we only focus on the prediction interval to
reduce problem scales but do not need to predict an accurate value for continuous and integer variables. In this process,
the integer values can potentially be negative. While two’s complement is typically used to represent negative numbers in
binary form (Baugh & Wooley, 1973), it is less intuitive for tasks that involve magnitude interpretation, such as logarithmic
transformations. Instead, we introduce a sign bit s ∈ {0, 1} to separately capture the sign of the variable, making the
magnitude and sign easier to handle. Specifically, we record the optimal value vi of the variable xi in the historical instance,
we calculate its logarithmic scale and binary sign bit s as follows:

b(vi) = bin (⌊log2(|vi|+ 1)⌋) , s =

{
0 if vi ≤ 10−5,

1 otherwise.

11

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

where the vector b(vi) represents the binary representation of the logarithmic value of vi, prefixed by the sign bit s, and
bin(·) denotes the binary conversion.

C. More details of thompson sampling algorithm

Algorithm 1 Overall thompson sampling framework.
Input:
Predicted marginal probabilities pi for binary variables xi,
Predicted bounds for continuous/integer variables xj .
Initialize prior distributions:
αi, βi ∼ Beta(pi + 10−5, 1− pi + 10−5) for binary variables,
αj , βj ∼ Beta(1, 1) for continuous/integer variables.
for each time step t = 1, 2, . . . do

Sample µi ∼ Beta(αi, βi) for all binary variables xi

Sample µj ∼ Beta(αj , βj) for all continuous/integer variables xj

Select Variables:
Rank and select the top a% for binary and continuous/integer variables
Fix Selected Variables:
For binary variables, fix values using Bernoulli distribution with probability µi

For continuous/integer variables, apply predicted bounds
Solve subproblem with selected variable values to obtain solution xt and objective zt
Update Parameters:
if zt is better than the best objective value z∗ from previous iterations then

Update values of α, β for variables (detailed in Algorithm 2
z∗ ← zt

end if
if solution becomes infeasible then

Apply relaxation mechanism (detailed in Algorithm 3
end if

end for

The Parameter update process algorithm is designed to update the parameters of the pior distributions for binary and
continuous/integer variables based on the outcomes of the current solution. The goal is to refine these parameters to
improve the performance of the Thompson Sampling approach in subsequent iterations. We adjust our fixing strategy
using the Beta distribution parameters, α and β. The mean of the Beta(α, β) distribution is α

α+β . As these parameters
increase, the distribution becomes more concentrated around the mean. With a prior of Beta(α, β), the posterior updates to
Beta(α+ 1, β) or Beta(α, β + 1).

In each iteration, we fix a percentage a% of the variables. When we find a better solution, we update the Beta distribution
for the remaining 1-a% of unfixed variables based on this new solution. We also compare the current strategy to the one
from the previous round that gave the best solution. If a variable was fixed before but left unfixed in the current iteration, it
indicates the previous strategy limited the solution quality. We update the Beta distributions for these variables to reflect this.
In the next round, we resample the fixing strategy using these updated Beta distributions.

Update α, β for binary variables. For binary variables xi, i ∈ {1, 2, . . . , p}, we rank variables based on min(µi, 1− µi),
selecting the lowest a%, and sample fixed values from the Bernoulli distribution with probability µi. At each iteration t, the
priors for unselected binary variables are updated based on their observed outcomes: For unselected binary variables, we set
αi = αi + 1 when xi = 1, and set βi = βi + 1 when xi = 0. For selected binary variables, if the current solution xt is
better than the previous best x∗

t−1 , compare the set of selected variables at with the previously best set a∗t−1 . For variables
where the current value is 1 but was 0 in a∗t−1 (or was not selected), we set αi = αi + 1. If the current value is 0 , and it was
1 in a∗t−1 (or was not selected), we set βi = βi + 1.

Update α, β for integer and continuous variables. For integer and continuous variables, we select the top a% of these
variables based on their µj values and apply the predicted upper and lower bounds. The priors for continuous/integer
variables are updated as follows: For unselected variables, if the variable’s actual value in the solution falls within the

12

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

predicted bounds, we set αj = αj +1. If it does not satisfy the predicted bounds, we set βj = βj +1. For selected variables,
when the current solution xt is better than the previous best x∗

t−1 (i.e., rt = 1), we compare the set of selected variables at
and the previously best set a∗t−1. If xj was unselected in at but was selected in a∗t−1, we set βj = βj + 1. In contrast, if a
variable xj was selected in at but not in a∗t−1, no immediate conclusion about its benefit can be drawn, since the objective is
to rule out incorrect bound predictions.

Algorithm 2 The parameter update process algorithm.
Input: Current solution xt, Best solution x∗ from previous iterations, Best objective value z∗

if zt is better than z∗ then
Set rt = 1
Update the best solution x∗

t = xt

Update priors for binary variables i:
for each unselected binary variable i do

if xi = 1 then
αi ← αi + 1

else
βi ← βi + 1

end if
end for
for each selected binary variable i do

if xi = 1 and x∗ = 0 then
αi ← αi + 1

else if xi = 0 and x∗ = 1 then
βi ← βi + 1

end if
end for
Update priors for continuous/integer variables j:
for each unselected continuous/integer variable j do

if xj violates predicted bounds then
βj ← βj + 1

else
αj ← αj + 1

end if
end for
for each selected continuous/integer variable j do

if xj wasn’t selected in the previous best solution x∗
t−1 then

βj ← βj + 1
end if

end for
else

Set rt = 0
end if

D. More details of relaxation mechanism
When faced with infeasible instances, it typically indicates that some variable predictions are incorrect, resulting in
conflicts with constraints. Our relaxation mechanism addresses this by dividing the conflicting variables into G groups and
subsequently solving each without these variable sets. We choose G = 10 in our evaluation.

To further determine the variables’ feasible ranges, the upper and lower bounds are converted back into their corresponding
integer forms, denoted as kub and klb. For positive variables (s = 1), we represent the variable’s value of the optimal solution
in the form 2k +m, where k ≥ 0, 0 ≤ m ≤ 2k − 1. From the inequality k < ⌊log2(|vi|+ 1)⌋ ≤ k+ 1, the predicted range
for the variable lies between 2klb − 1 and 2kub+1. For negative variables (s = 0), the ranges are symmetrically calculated,
spanning from −2kub+1 to −2klb + 1. For continuous variables, we first round them to the nearest integer and then process

13

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

them similarly to integer variables.

When a feasible solution cannot be found, we repeatedly apply the relaxation mechanism, building upon previous relaxations.
Each iteration of this mechanism reduces the number of fixed variables. Therefore, theoretically, with enough iterations, we
can ensure that the variables causing conflicts with the constraints are filtered out. However, in practice, it usually takes only
a few iterations to obtain a feasible solution. For example, in the case of bnd 1, there are errors for only 8 for 2993 binary
variables. By splitting these 8 erroneous variables into 10 groups, at least one group will inevitably exclude the erroneous
variables. Of course, when the number of erroneous variables is greater, this is not guaranteed, but it is important to note
that some variables, even if mispredicted, do not affect the ability to find a feasible solution due to their limited impact on
solution sensitivity. We can easily filter out some variables that are highly sensitive to solution quality for each group.

Algorithm 3 Relaxation Mechanism
if solution becomes infeasible then

Divide fixed variables into G groups.
for each group g = 1, 2, . . . , G do

Relax fixed variables in group g back to their original bounds.
Solve the subproblem with these relaxed constraints.
if feasible solution found then

Proceed to the next iteration.
end if

end for
end if

E. More details of experiments
E.1. Datasets

We selected the datasets based on two key considerations: first, the varying components within the instances, and second,
the number of different variable types (integer, binary, continuous) present in each dataset. We aim for our evaluation to
cover a wide range of variable types and varying components as comprehensively as possible.

The varying components of nine datasets are summarized in Table 6.

Table 6. The varying components of datasets.

Datasets Varying component

LO UP OBJ LHS RHS MAT

bnd 1 ✓
bnd 2 ✓ ✓
bnd 3 ✓ ✓

mat 1 ✓

obj 1 ✓
obj 2 ✓

rhs 1 ✓ ✓
rhs 2 ✓
rhs 3 ✓

The details of each dataset is as follows:

bnd 1: This dataset is from “bnd s1” in the MIP Computational Competition 2023 (Bolusani et al., 2023). The instance is
based on the instance rococoC10-001000 from the MIPLIB 2017 benchmark library (Gleixner et al., 2021). The instances
were generated by perturbing the upper bounds of general integer variables selected via a discrete uniform distribution up to
±100% of the bound value.

14

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

bnd 2: This dataset is from “bnd s2” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
based on the instance csched007 from the MIPLIB 2017 benchmark library (Gleixner et al., 2021). The instances were
generated via random fixings of 15% to 25% of the binary variables selected via a discrete uniform distribution w.r.t. the
original instance.

bnd 3: This dataset is from “bnd s3” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
also based on the instance csched007 from the MIPLIB 2017 benchmark library (Gleixner et al., 2021). The instances were
generated via random fixings of 5% to 20% of the binary variables selected via a discrete uniform distribution w.r.t. the
original instance. These instances are relatively harder to solve as compared to the instances in bnd 2.

mat 1: This dataset is from “mat s1” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
based on the optimal vaccine allocation problem (Tanner & Ntaimo, 2010) and generated with varying constraint coefficients
in the inequality constraints.

obj 1: This dataset is from “obj s1” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
based on the stochastic multiple binary knapsack problem (Angulo et al., 2016). The problem is modeled as a two-stage
stochastic MILP and one-third of the objective vector varying across instances.

obj 2: This dataset is from “obj s2” in the MIP Computational Competition 2023 (Bolusani et al., 2023). The instances are
based on the instance ci-s4 from the MIPLIB 2017 benchmark library (Gleixner et al., 2021) with random perturbations and
random rotations of the objective vector.

rhs 1: This dataset is from “rhs s1” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
based on the stochastic server location problem (Ntaimo, 2010). The instances is generated by the given dataset, and only
the right-hand side vector of equality constraints varying across instances.

rhs 2: This dataset is from “rhs s2” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is
based on a synthetic MILP and the associated dataset (Jiménez-Cordero et al., 2022). The instances are generated by taking
a convex combination of two different RHS vectors.

rhs 3: This dataset is from “rhs s4” in the MIP Computational Competition 2023 (Bolusani et al., 2023). This series is also
based on the synthetic MILP (Jiménez-Cordero et al., 2022). The instances are generated by taking a convex combination of
two different RHS vectors(different than the ones used for generating rhs 2).

E.2. Implementation details of the baselines

All baselines that provided open-source implementations, including PS and Re Tuning, were tested using their official code.
Since ND did not provide open-source code, we reproduced their method to the best of our ability based on their paper (Nair
et al., 2020) and fine-tuned the parameters accordingly.

SCIP. We use SCIP 8.0.4 (Bestuzheva et al., 2021), which is the state-of-the art open source solver. We keep all the other
SCIP parameters to default and emphasize that all of the SCIP solver’s advanced features, such as presolve and heuristics,
are open.

Re Tuning. Re Tuning is a state-of-the-art heuristic reoptimization framework (Patel, 2024), which does not utilize machine
learning models. This framework, developed for the MIP 2023 workshop’s computational competition (Bolusani et al.,
2023), earned the first prize. It is primarily based on reusing historical branches and fine-tuning SCIP’s parameters for
more effective reoptimization. Our investigation revealed that Re Tuning adjusts its configurations based on the previous
instances it solves. Specifically, it may disable modules such as presolving or generating cutting planes for subsequent
instances. While these adjustments have been shown to potentially improve overall solving time on certain datasets, they
inevitably make it more challenging to find high-quality feasible solutions quickly in the early stages. To address this, we
ensured these modules remained enabled for all instances, striving to achieve the best possible results with their code.

Predict-and-Search(PS). PS is an end-to-end machine learning-based approach (Han et al., 2023) which employs large
neighborhood search (LNS) combined with GNN predictions. In practice, we do not know how many variables may be
predicted incorrectly, and selecting an appropriate radius δ for the neighborhood in LNS can be time-consuming. To better
demonstrate the performance of the PS method, we select the radius δ based on the average number of binary prediction
errors observed during our preliminary tests, as shown in Table 1.

Neural Diving(ND). Another notable method we compared against is Neural Diving (ND) framework with Selective

15

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Net (Nair et al., 2020), which is also based on a variable-fixing strategy. Since ND focuses on fixing variables to accelerate
the solving process, it serves as a relevant baseline to evaluate alongside our approach.

E.3. More results with different parameters

In this section, we present a comprehensive evaluation of policy performance across various synthetic and real-world
datasets, using different time and fix parameters. Each table below illustrates the impact of varying these parameters on the
performance metrics, namely the absolute and relative gaps. The methods examined include SCIP, Re Tuning, ND, and PS,
alongside our proposed method, VP-OR, under different time constraints and fixed parameter ratios.

Table 7 illustrates the performance of various methods under different boundary conditions (bnd 1, bnd 2, bnd 3). After
reoptimizing with adjusted boundary parameters, the VP-OR method consistently shows lower absolute and relative gaps
compared to SCIP and other comparative methods under different time constraints (T=10 and T=20).

Table 7. Policy evaluation on the synthetic and real-world datasets with different time and fix parameters. We
report the arithmetic mean of gap abs and gap rel.

Methods bnd 1 bnd 2 bnd 3

gap abs gap rel gap abs gap rel gap abs gap rel

SCIP (T=10.0) 1974.20 0.16 - - - -
Re Tuning (T=10.0) 1425.5 0.12 - - - -

ND (T=10.0, P=0.5) - - - - - -
PS (T=10.0, P=0.5) 9439.60 0.79 - - - -
VP-OR(Ours) (T=10.0, P=0.5) 279.20 0.02 40.20 0.11 31.20 0.09

ND (T=10.0, P=0.6) - - - - - -
PS (T=10.0, P=0.6) 9439.60 0.79 - - - -
VP-OR(Ours) (T=10.0, P=0.6) 528.80 0.04 39.40 0.11 37.40 0.11

ND (T=10.0, P=0.7) - - - - - -
PS (T=10.0, P=0.7) 9665.20 0.81 - - - -
VP-OR(Ours) (T=10.0, P=0.7) 299.40 0.02 40.20 0.11 28.60 0.06

ND (T=10.0, P=0.8) - - - - - -
PS (T=10.0, P=0.8) 1216.80 0.10 - - - -
VP-OR(Ours) (T=10.0, P=0.8) 973.80 0.08 38.80 0.11 34.80 0.10

SCIP (T=20.0) 921.00 0.08 - - - -
Re Tuning (T=20.0) 402.25 0.03 26.0 0.06 - -

ND (T=20.0, P=0.5) - - - - - -
PS (T=20.0, P=0.5) 2483.00 0.20 - - - -
VP-OR(Ours) (T=20.0, P=0.5) 313.20 0.03 48.60 0.14 33.80 0.10

ND (T=20.0, P=0.6) - - - - - -
PS (T=20.0, P=0.6) 2408.00 0.19 - - - -
VP-OR(Ours) (T=20.0, P=0.6) 264.60 0.02 40.40 0.12 37.40 0.11

ND (T=20.0, P=0.7) - - - - - -
PS (T=20.0, P=0.7) 2627.40 0.21 - - - -
VP-OR(Ours) (T=20.0, P=0.7) 299.40 0.02 39.80 0.11 23.40 0.07

ND (T=20.0, P=0.8) - - - - - -
PS (T=20.0, P=0.8) 1007.20 0.08 - - - -
VP-OR(Ours) (T=20.0, P=0.8) 1409.40 0.12 41.40 0.12 23.40 0.07

16

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 8 evaluates performance under different matrix and objective function settings (mat 1, obj 1, obj 2). With these
adjustments, the VP-OR method maintains significant suppression of gap abs and gap rel, particularly excelling in objective
function cases (obj 1 and obj 2).

Table 8. Policy evaluation on the synthetic and real-world datasets with different time and fix parameters. We
report the arithmetic mean of gap abs and gap rel.

Methods mat 1 obj 1 obj 2

gap abs gap rel gap abs gap rel gap abs gap rel

SCIP (T=10.0) 14.10 0.23 11.40 0.00 626.52 0.39
Re Tuning (T=10.0) 30.06 0.48 10.25 0.00 74.10 0.09

ND (T=10.0, P=0.5) - - 11.40 0.00 634.70 0.39
PS (T=10.0, P=0.5) 14.10 0.23 13.40 0.00 387.89 0.51
VP-OR(Ours) (T=10.0, P=0.5) 9.09 0.15 - - 7783.94 1.53

ND (T=10.0, P=0.6) - - 11.40 0.00 634.70 0.39
PS (T=10.0, P=0.6) 14.10 0.23 13.40 0.00 397.53 0.51
VP-OR(Ours) (T=10.0, P=0.6) 11.62 0.19 - - 6854.66 0.75

ND (T=10.0, P=0.7) - - 11.40 0.00 674.21 0.44
PS (T=10.0, P=0.7) 14.10 0.23 13.40 0.00 397.53 0.51
VP-OR(Ours) (T=10.0, P=0.7) 10.09 0.16 3.28 0.00 329.99 0.06

ND (T=10.0, P=0.8) - - 11.40 0.00 - -
PS (T=10.0, P=0.8) 14.10 0.23 13.40 0.00 702.68 0.41
VP-OR(Ours) (T=10.0, P=0.8) 11.77 0.19 338.60 0.04 8287.57 3.01

SCIP (T=20.0) 11.66 0.19 10.40 0.00 285.99 0.14
Re Tuning (T=20.0) 18637.00 0.42 8.25 0.00 1.61 0.01

ND (T=20.0, P=0.5) - - 10.40 0.00 285.99 0.14
PS (T=20.0, P=0.5) 13.17 0.21 13.40 0.00 243.40 0.30
VP-OR(Ours) (T=20.0, P=0.5) 7.69 0.12 - - 6855.85 0.75

ND (T=20.0, P=0.6) - - 10.40 0.00 268.18 0.13
PS (T=20.0, P=0.6) 13.17 0.21 13.40 0.00 243.40 0.30
VP-OR(Ours) (T=20.0, P=0.6) 9.94 0.16 19.40 0.00 6058.61 0.50

ND (T=20.0, P=0.7) - - 10.40 0.00 285.99 0.14
PS (T=20.0, P=0.7) 13.17 0.21 13.40 0.00 239.79 0.28
VP-OR(Ours) (T=20.0, P=0.7) 10.09 0.16 3.28 0.00 12.85 0.01

ND (T=20.0, P=0.8) - - 10.40 0.00 - -
PS (T=20.0, P=0.8) 13.17 0.21 13.40 0.00 202.44 0.16
VP-OR(Ours) (T=20.0, P=0.8) 11.61 0.19 142.40 0.02 12.85 0.01

17

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 9 shows the response of each method when adjusting the parameters on the right-hand side of constraints (rhs 1, rhs 2,
rhs 3). In these scenarios, the VP-OR method achieves gaps close to zero.

Table 9. Policy evaluation on the synthetic and real-world datasets with different time and fix parameters. We
report the arithmetic mean of gap abs and gap rel.

Methods rhs 1 rhs 2 rhs 3

gap abs gap rel gap abs gap rel gap abs gap rel

SCIP (T=10.0) 173.08 0.50 12.29 0.00 16.77 0.00
Re Tuning (T=10.0) 6.40 0.02 2.24 0.00 0.40 0.00

ND (T=10.0, P=0.5) - - - - - -
PS (T=10.0, P=0.5) 57558.07 165.41 13.23 0.00 12.46 0.00
VP-OR(Ours) (T=10.0, P=0.5) 0.27 0.00 1.85 0.00 0.26 0.00

ND (T=10.0, P=0.6) - - - - - -
PS (T=10.0, P=0.6) 62046.33 177.93 13.23 0.00 12.46 0.00
VP-OR(Ours) (T=10.0, P=0.6) 0.50 0.00 1.85 0.00 0.26 0.00

ND (T=10.0, P=0.7) - - - - - -
PS (T=10.0, P=0.7) 67090.50 193.04 22.25 0.00 17.98 0.00
VP-OR(Ours) (T=10.0, P=0.7) 0.73 0.00 1.85 0.00 0.26 0.00

ND (T=10.0, P=0.8) - - - - - -
PS (T=10.0, P=0.8) 66978.45 192.33 15.35 0.00 16.29 0.00
VP-OR(Ours) (T=10.0, P=0.8) 0.71 0.00 1.85 0.00 0.26 0.00

SCIP (T=20.0) 173.08 0.50 5.54 0.00 7.22 0.00
Re Tuning (T=20.0) 2.85 0.01 0.00 0.00 0.00 0.00

ND (T=20.0, P=0.5) - - - - - -
PS (T=20.0, P=0.5) 38275.26 109.85 5.54 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.5) 0.39 0.00 1.85 0.00 0.26 0.00

ND (T=20.0, P=0.6) - - - - - -
PS (T=20.0, P=0.6) 38275.26 109.85 5.47 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.6) 0.26 0.00 1.85 0.00 0.26 0.00

ND (T=20.0, P=0.7) - - - - - -
PS (T=20.0, P=0.7) 65141.18 187.43 4.42 0.00 5.97 0.00
VP-OR(Ours) (T=20.0, P=0.7) 0.29 0.00 1.85 0.00 0.26 0.00

ND (T=20.0, P=0.8) - - - - - -
PS (T=20.0, P=0.8) 54004.10 155.03 3.30 0.00 2.16 0.00
VP-OR(Ours) (T=20.0, P=0.8) 0.40 0.00 1.85 0.00 0.26 0.00

18

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

E.4. More results of the relative gap

In the main text, we presented results for the datasets bnd 1, mat 1, and rhs 1. Here, we extend our analysis by providing
additional results for the remaining datasets. This section focuses on performance comparisons in terms of the average
relative gap gap rel.

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

Figure 3. Performance comparisons in bnd 2, bnd 3 and obj 1, where the y-axis is average relative primal gap; each plot represents one
benchmark dataset.

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

0 20 40 60 80 100
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 g
ap

_r
el

Re_Tuning
SCIP
PS
VP-OR(Ours)

Figure 4. Performance comparisons in obj 2, rhs 2 and rhs 3, where the y-axis is average relative primal gap; each plot represents one
benchmark dataset.

E.5. Ablation study of prediction.

The table below demonstrates the predictive performance of both traditional Graph Neural Networks (GNN) and our
approach in a reoptimization context(Re GNN):

E.6. Computational complexity analysis

The primary computational complexity of VP-OR arises from the Thompson Sampling process. In the sampling phase of
Thompson Sampling, we sample the probability p for binary variables and select a certain percentage (a%) of variables
based on the value of min(p, 1− p) by sorting them. For integer and continuous variables, we sample to determine whether
they should be fixed and select the top a% of variables based on this criterion. This step has a time complexity of O(nlogn),
where n is the number of variables.

In the parameter update phase of Thompson Sampling, we update the parameters for each variable once. This step has a
time complexity of O(n). We tested the sampling time and parameter update time for each dataset, as presented in Table 11.

19

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 10. Predictive performance of traditional Graph Neural Networks (GNN) and our prediction method in a reoptimization con-
text(Re GNN).

bnd 1 bnd 2 bnd 3

Total binary var. 1457.0 1457.0 1457.0
mispredicted binary var. (GNN) 163.0 45.1 42.2
mispredicted binary var. (Re GNN) 8.2 6.7 4.5

Total integer var. 124.0 0.0 0.0
mispredicted integer var. (GNN) 33.4 0.0 0.0
mispredicted integer var. (Re GNN) 17.4 0.0 0.0

Total continuous var. 0.0 301.0 301.0
mispredicted continuous var. (GNN) 0.0 140.2 121.0
mispredicted continuous var. (Re GNN) 0.0 0.0 2.0

Table 11. Variable Numbers, Sampling Time(Time s), and Parameter Update Time(Time u) for Different Datasets

bnd 1 bnd 2 bnd 3 mat 1 obj 1 obj 2 rhs 1 rhs 2 rhs 3

Var. num 3117 1758 1758 802 360 745 12760 1000 1000
Time s (s) 0.008 0.005 0.003 0.013 0.002 0.016 0.102 0.002 0.002
Time u (s) 0.002 0.001 0.000 0.009 0.001 0.010 0.070 0.001 0.001

E.7. Results for the impact of initial hints

We provided the initial solution as a hint for the “completesol” heuristic method during the presolve phase, effectively
employing the historical solution as a warm start(WS). We observe that SCIP has improvements in the quality of feasible
solutions under these conditions. The results are shown in Table 12, where “-” indicates cases where the method could not
find a feasible solution within the designated time limit.

Table 12. Performance Comparison Across SCIP, SCIP(WS) and VP-OR. We report the arithmetic mean of the metric gap rel.

Method bnd 1 bnd 2 bnd 3 mat 1 obj 1 obj 2 rhs 1 rhs 2 rhs 3

SCIP 0.16 - - 0.23 0.00 0.39 0.50 0.00 0.00
SCIP(WS) 0.10 - - 0.22 0.00 0.12 0.50 0.00 0.00
VP-OR(Ours) 0.02 0.11 0.06 0.16 0.00 0.06 0.00 0.00 0.00

E.8. More results for expanded test samples

The publicly available dataset from the MIP Workshop 2023 Computational Competition on Reoptimization (Bolusani et al.,
2023) is limited in size, providing only 50 examples per task. To further increase the number of test samples, we attempt to
generate similar datasets for testing by using a method consistent with the one published by the competition organizers. This
step proves to be very time-consuming because random perturbations in the parameters often result in infeasible problems.
During the dataset generation process, we repeatedly generate instances randomly until we find one that is feasible. Using
the bnd 1 dataset as an example, we generate 100 additional instances. The results presented in Table 13 are consistent with
our previous tests.

E.9. More results for end-to-end methods

Several end-to-end methods have been developed specifically for large-scale problems, such as GNN&GBDT (Ye et al.,
2023) and Light-MILPopt (Ye et al., 2024). We conduct an experiment on the latest approach, Light-MILPopt. We observe
that Light-MILPopt uses a variable fixing strategy, initially fixing k% of the variables based on predicted values (using the
default setting k=20 as per the authors’ code). However, in a reoptimization context, fixing these variables often led to

20

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 13. Policy evaluation on the bnd 1 dataset with 100 samples. We provide the metrics Average Relative Gap (gap rel) and Average
Absolute Gap (gap abs).

Method gap rel gap abs

SCIP 0.20 2354.2
PS 1.13 13213.0
VP-OR(Ours) 0.01 167.3

infeasibility in most instances. This is mainly because the model inaccurately predicts some variables, even when considered
high-confidence. Consequently, we test the results with the variable fixing module disabled. The final experimental results
present the number of instances that can find feasible solutions within a 10-second time limit in Table 14. Although this
method is not specifically designed for reoptimization scenarios, which often demand rapid responses to slight changes in
parameters with time-critical requirements for solutions, it does show some improvement over SCIP on more challenging
datasets like bnd 2 and bnd 3.

Table 14. Number of Instances Finding Feasible Solutions within 10 Seconds.

Method bnd 1 bnd 2 bnd 3

SCIP 5/5 0/5 0/5

Light-MILPopt 0/5 0/5 0/5
Light-MILPopt (without fix strategy) 5/5 1/5 1/5

VP-OR (Ours) 5/5 5/5 5/5

We provide the average relative gap (gap rel) for comparison in Table 15, where “-” represents cases where the method
could not find a feasible solution within the time limit.

Table 15. Average Relative Gap (gap rel).

bnd 1 bnd 2 bnd 3

SCIP 0.16 - -

Light-MILPopt - - -
Light-MILPopt (without fix strategy) 0.22 - -

VP-OR (Ours) 0.02 0.11 0.06

E.10. Large-scale MILP experiments

We expand our experiments to include large-scale MILP experiments with more instances (200 for training and 100 for
testing) and add a comparison with the ML-guided LNS method of Huang et al. (ConPas) (Huang et al., 2024). The results
are reported for both Gurobi and SCIP. We generate large-scale datasets IS and CA using the code from Gasse et al. (Gasse
et al., 2019), consistent with those used by Han et al. The Gurobi and SCIP solvers could not reach an optimal solution
within 3600 seconds for these instances. We run Gurobi for 3600 seconds to record the incumbent solution. For evaluation,
we impose a 30-second time limit and update the incumbent solution if a better one is found. Fig. 16 and Fig. 17 shows that
VP-OR achieves more significant acceleration than PS (Han et al., 2023) and ConPas (Huang et al., 2024) during the early
stages of solving on both Gurobi and SCIP.

E.11. Ablation experiments

We conduct an ablation experiment in Fig. 18 using Re-GNN for initial solution prediction in LNS and traditional GNN with
the Thompson Sampling (TS) algorithm. We report the average gap rel, where “-” means no feasible solution was found.

21

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Table 16. Average absolute gap (gap abs), relative gap (gap rel) and the number of each method that achieves the closest solution to the
optimal one within the 30-second time limit (Wins) of the CA dataset.

gap abs gap rel Wins

SCIP 24068.27 0.19 0/100
Gurobi 3754.16 0.03 0/100

PS+SCIP 20182.91 0.19 0/100
PS+Gurobi 3754.16 0.03 0/100

ConPaS+SCIP 8506.52 0.07 0/100
ConPaS+Gurobi 2526.28 0.02 0/100

VP-OR+SCIP(Ours) 0.00 0.00 12/100
VP-OR+Gurobi(Ours) 0.00 0.00 88/100

Table 17. Average absolute gap (gap abs), relative gap (gap rel) and the number of each method that achieves the closest solution to the
optimal one within the 30-second time limit (Wins) of the IS dataset.

gap abs gap rel Wins

SCIP 104.92 0.05 0/100
Gurobi 133.07 0.06 0/100

PS+SCIP 104.57 0.05 0/100
PS+Gurobi 117.62 0.06 0/100

ConPaS+SCIP 30.25 0.01 0/100
ConPaS+Gurobi 24.66 0.01 0/100

VP-OR+SCIP(Ours) 9.57 0.00 33/100
VP-OR+Gurobi(Ours) 0.97 0.00 67/100

22

Don’t Restart, Just Reuse: Reoptimizing MILPs with Dynamic Parameters

Re-GNN improves performance over traditional GNN in the LNS framework. The method combining traditional GNN with
TS also quickly finds feasible solutions. The combined approach, VP-OR, achieves the best results across all datasets.

Table 18. Average absolute gap (gap abs) within the 10-second time limit of the datasets, where “-” means no feasible solution was found.

bnd 1 bnd 2 bnd 3 mat 1 obj 1 obj 2 rhs 1 rhs 2 rhs 3
GNN+LNS(PS) 0.81 - - 0.23 0.00 0.51 193.04 0.00 0.00
Re-GNN+LNS 0.16 - - 0.23 0.00 0.21 1.04 0.00 0.00
GNN+TS 0.04 0.17 0.12 0.17 0.00 0.00 0.00 0.00 0.00
Re-GNN+TS(VP-OR) 0.02 0.11 0.06 0.16 0.00 0.00 0.00 0.00 0.00

E.12. Accuracy of predicted bounds for integer and continuous variables

We evaluate the accuracy of predicted bounds for integer and continuous variables as follows: if the optimal value of a
variable lies within the predicted lower and upper bounds, the predicted bounds are considered accurate; otherwise, they
are not. Continuous and integer variables are treated similarly, with the key difference being that continuous variables are
rounded during preprocessing.

In Fig. 19, we evaluate how tight these bounds become after training and across different optimization stages, we use I o
and C o to denote the average difference between original upper and lower bounds for integer and continuous variables,
respectively. I p and C p represent the average predicted bounds gap for integers and continuous variables. In cases where
there are no integer or continuous variables in a dataset, we use “NA” as a placeholder.

Table 19. Average difference between original and predicted bounds of the datasets, where “NA” means there are no integer or continuous
variables in the dataset.

bnd 1 bnd 2 bnd 3 mat 1 obj 2 rhs 1 rhs 2 rhs 3
I o 72146.14 NA NA NA 2.0 NA NA NA
I p 32750.57 NA NA 1.34 NA NA NA NA
C o NA 25.91 26.15 1.0 1e+19 1e+20 2e+20 2e+20
C p NA 14.22 14.28 1.0 19968.14 1.0 14.22 13.67

23

