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Abstract

The wind farm control problem is challenging, since conventional model-based
control strategies require tractable models of complex aerodynamical interactions
between the turbines and suffer from the curse of dimension when the number of
turbines increases. Recently, model-free and multi-agent reinforcement learning
approaches have been used to address this challenge. In this article, we introduce
WPFCRL (Wind Farm Control with Reinforcement Learning), the first open suite
of multi-agent reinforcement learning environments for the wind farm control
problem. WFCRL frames a cooperative Multi-Agent Reinforcement Learning
(MARL) problem: each turbine is an agent and can learn to adjust its yaw, pitch or
torque to maximize the common objective (e.g. the total power production of the
farm). WFCRL also offers turbine load observations that will allow to optimize
the farm performance while limiting turbine structural damages. Interfaces with
two state-of-the-art farm simulators are implemented in WFCRL: a static simulator
(FLORIS) and a dynamic simulator (FAST.Farm). For each simulator, 10 wind
layouts are provided, including 5 real wind farms. Two state-of-the-art online
MARL algorithms are implemented to illustrate the scaling challenges. As learning
online on FAST.Farm is highly time-consuming, WFCRL offers the possibility of
designing transfer learning strategies from FLORIS to FAST.Farm.

1 Introduction

The development of wind energy plays a crucial part in the global transition away from fossil energies,
and it is driven by the deployment of very large offshore wind farms [44, [32]]. Significant gains
in wind energy production can be made by increasing the amount of wind power captured by the
farms [32]]. The power production of a wind farm is greatly influenced by wake effects: an operating
upstream turbine causes a decrease in wind velocity and an increase in wind turbulence behind its
rotor, which creates sub-optimal wind conditions for other wind turbines downstream. An illustration
of this phenomenon can be seen on Figure [T} Wake effects are a major cause of power loss in wind
farms, with the decrease in power output estimated to be between 10% and 20% in large offshore

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.



blade

Figure 1: Left: Wake effects in the offshore wind farm of Horns Rev 1 - Vattenfall. Right: Schema of
a wind turbine [6]. The pitch, yaw or torque can be controlled.

wind farms [4]. Higher turbulence in wakes also increases fatigue load on the downstream turbines
by 5% to 15%, which can shorten their lifespans [43]].

The wind farm control problem is challenging. Conventional model-based control strategies require
tractable models of complex dynamic interactions between turbines, and suffer from the curse
of dimensionality when the number of turbines increases. Moreover, optimal strategies differ
significantly with modeling choices. Reinforcement Learning (RL) provides a model-free, data-based
alternative, and recent work applying RL algorithms to wind farm control has yielded promising
results (see e.g. [1]]). Single agent approaches, where a single RL controller must learn a centralized
policy, encounter scaling challenges [11]], are slow to converge under dynamic conditions [25] and do
not explore the graph structure of the problem induced by local perturbations. Several multi-agent RL
approaches have been proposed to tackle this issue, relying on both centralized critics [9,11},131]] and
independent learning approaches [5, 122} [39]. Authors have published code relative to their specific
applications [46} 45, 29], and [29] proposes a single-agent RL environment for power maximization
in static simulations. There is to the best of our knowledge no open-source reinforcement learning
environment for the general wind farm control problem.

In this article, we propose WFCRL, the first open suite of reinforcement learning environments for
the wind farm control problem. WFCRL is highly customizable, allowing researchers to design and
run their own environments for both centralized and multi-agent RL.

Wind turbines can be controlled in several ways. A turbine can adjust its yaw (defined as the angle
between the rotor and the wind direction) to deflect its wake, increase its pitch (the angle between the
turbine blades and the incoming wind) to decrease its wind energy production, or directly control
the rorque of its rotor. WFCRL makes it possible to control yaw, pitch or torque, and a schema of
these different control variables can be found in Figure[Tl WFCRL offers a large set of observations
including local wind statistics, power production, and fatigue loads for each turbine. This makes
it possible to consider different objective, including the maximization of the total production, the
minimization of loads to reduce maintenance costs over the wind turbine life-cycle [23|], or, as wind
energy becomes a larger part of the energy mix, the tracking of power or frequency targets that allows
operators to offer ancillary services for grid integration [26].

In WFCRL, interfaces with two state-of-the-art farm simulators are implemented : a static simulator
FLORIS [13] and a dynamic simulator FAST.Farm [21]]. Indeed, the choice of a static or dynamic
model is particularly important: the overwhelming majority of proposed approaches are evaluated on
static models, but it was shown in [40]] that successful learning approaches under static conditions
generally do not adapt to dynamic ones. However, online learning from scratch with dynamic
simulators is often too slow, making transfer learning from static to dynamic simulators of great
interest. From the broader literature on transfer learning and learning from simulators we know that
it is challenging to train policies that can improve on previously learned behavior when deployed



on new environments with unseen dynamics [48} [15]. In spite of this problem, to the best of our
knowledge, most approaches so far have been trained and evaluated on the same environment, and
it is therefore not clear whether the policies learned with simulators are robust enough to be useful,
or even safe, when deployed on real wind farms. With two simulators of different model-fidelity
(referring to how closely the model represents the real system), WFCRL offers the possibility of
designing transfer learning strategies between these simulators.

Contributions of the paper

* We introduce WFCRL, the first open reinforcement learning suite of environments for
wind farm control. WFCRL is highly customizable, allowing researchers to design and run
their own environments for both centralized and multi-agent RL. It includes a default suite
of wind farm layouts to be used in benchmark cases.

* We interface all our wind farm layouts with two different wind farm simulators: a static
simulator FLORIS [13] and a dynamic simulator FAST.Farm [21]]. They can be used to
design transfer learning strategies, with the goal to learn robust policies that can adapt
to unseen dynamics.

* We include implementations of three state-of-the-art MARL algorithms, IPPO, MAPPO
[47], and QMIX [34]] adapted to our environments.

* We propose a benchmark example for wind power maximization with two wind condition
scenarios. It takes into account the costs induced by wind turbine fatigue.

The paper is organized as follows. In Section[2] we introduce the WFCRL environment suite. First in
Section@]we introduce the simulators, the specifications of the simulated wind farms and turbines
and the wind conditions scenarios we consider. We then lay out in Section[2.2]the cooperative MARL
framework for the wind farm control problem, and finally detail the learning tasks and algorithms
available with the suite in Section [2.3] In the second part Section [3] we illustrate the possibilities
of the WFCRL environment suite by introducing a benchmark example: the maximization of total
power production with fatigue-induced costs. In Section[3.1} we explicit the actions, observations
and rewards used in this problem, then in Section we present and discuss the results of the IPPO
and MAPPO on our benchmark tasks. In Section 4] we discuss perspectives and limitations, and we
conclude in Section[3]

2  WPFCRL environments suite

In this section, we present our WFCRL environments suite. We first present the simulators interfaced
in WFCRL (FLORIS and FAST.Farm), several pre-defined layouts and wind condition scenarios.
Note again that having two simulation environments with different model-fidelity offers the possibility
of designing transfer learning strategies between simulation environments. Then, we describe briefly
the MARL framework for the wind farm control problem. More precisely, we consider a wind
farm with M turbines, which operate in the same wind field and create turbulence that propagates
across the farm. In our multi-agent environment, each turbine is considered an agent receiving local
observations, and all cooperate to maximize a common objective. Note that WFCRL also has a
single-agent RL environment, which uses global observations and actions.

2.1 The simulation environments

In WFCRL, users can choose one of the two state-of-the-art wind farm simulators (FLORIS or
FAST.Farm), select a pre-defined wind farm layout or define a custom one, and choose one of the
implemented wind conditions.

Various wind farm simulators can be used to evaluate wind farm control strategies [3]]. The choice
of the wind farm simulators included in WFRCL relies on three criteria: the trade-off between
fidelity and computation time, the popularity of the simulators in the wind farm energy community,
and open-source availability. We discuss this further in Appendix [A] and introduce our simulation
environments in the following paragraph.



WFCRL environment Real wind farm
Ablaincourt Ablaincourt Energies onshore wind farm, Somme, France
Ormonde Ormonde Offshore Wind Farm, Irish Sea, UK
WMR Westermost Rough Wind Farm is an offshore wind farm, North Sea, UK
HornsRev1 Horns Rev 1 Offshore Wind Farm, North Sea, Denmark
HornsRev2 Horns Rev 2 Offshore Wind Farm, North Sea, Denmark

Table 1: Correspondences between WFCRL environments and real wind farms.

FLORIS environments The wind farm simulator FLORIS implements static wind farm models,
which predict the locations of wake centers and velocities at each turbine in the steady state: the
dynamic propagation of wakes are neglected. The yaws of all wind turbines can be controlled, and the
power production of the wind farm is then a function of all yaw angles and the so-called free-stream
wind conditions: wind measurements - e.g. velocity and direction - taken at the entrance of the farm.
FLORIS has been released as an open-source Python software tooﬂ In WEFCRL environments built
on FLORIS, global and local states contain time-averaged, steady-state wind and production statistics
for both global and local observations.

The models used by FLORIS do not compute any estimate of fatigues on wind turbines, and we
propose to use local wind statistics to compute a proxy for load estimates indeed. We detail this when
introducing our benchmark example in Section [3.1]

FAST.Farm environments Unlike FLORIS, FAST.Farm is a dynamic simulator that produces
time-dependent wind fields that take into account the dynamics of wake propagation [21]: wakes in
wind farms tend to meander, and the wakes of different turbines interact and eventually merge as
they propagate in the farms. One consequence is that under dynamic conditions there is a significant
delay between the time agents take an action and the time this action finally impacts the turbines
downstream.

FAST.Farm is built on wind turbine simulation tool OpenFAST [30]] which computes an estimate of
the strength of the bending moment on each turbine blades. This reflects the structural loads induced
on turbine blades, and thus can be used to design rewards in RL problems to reduce or avoid physical
damages to turbines.

FAST.Farm is coded in Fortran. To allow for integration with the large ecosystem libraries and RL
research practices developed in Python, we implement an interface between the simulator and the
Python wind farm environment via MPI communication channels. The details of the interfacing
infrastructure are reported in Appendix [B]

Wind farm layouts Any custom layout - the arrangement of the wind turbines in the farm - can be
used in WFCRL. We also propose several pre-defined wind farm layouts for use in benchmark cases.
The coordinates of the wind turbines of 5 real wind farms with 7 to 91 wind turbines are obtained
from [2]. A complete list of all correspondences between wind farms inspired by real environments
and their locations is in Table[I] and a list of all available environments can be found in Appendix [C]
We also include in WFCRL several toy layouts, including a simple row of 3 turbines (the Turb3Row1
layout) for validation purpose and the 32 turbines layout of the FarmConners benchmark [14]. A
visual representation of the layouts can be found in Appendix [H]

For all cases, we simulate instances of the NREL Reference SMW wind turbines, whose specifications
have been made public by the National Renewable Energy Laboratory (NREL) [20]. It has become
standard reference for wind energy research and is used by the majority of proposed evaluations of
RL methods [I1].

Wind condition scenarios For all environments, we distinguish three scenarios.

Wind scenario I: In this scenario, all trajectories in a given environment are run under the prevailing
wind velocity and direction at the location.

"https://nrel.github.io/floris/



Wind scenario II: In this scenario, we let the wind farm be subject to variations in wind change, and
sample new free-stream wind conditions 1., ¢ at the beginning of each episode:

Uoo ~ W(T,N) oo ~ N (¢, 04) (1

where W is a Weibull distribution modeling wind speed with shape A and scale @, and AV is a Normal
distribution with ¢ being the dominant wind direction for a given farm.

Wind scenario I1I: In this scenario, the wind farm is subjected to a an incoming wind that varies
during a single episode. Any time series with wind speed and direction measurements can be used
by WFCRL, and we provide a default time series of measurements collected on a real wind farm. A
starting point in the time-series is randomly selected at the beginning of each new episode.

By default, at the beginning of each simulation, all wind turbines have the yaw angle zero. This
corresponds to the so-called greedy case, the strategy that would allow each of them to maximize its
production in un-waked conditions.

2.2 The MARL framework for the wind farm control problem

A Decentralized Partially Observable Markov Decision Process (Dec-POMDP) with M interacting
agents is a tuple { M, S,0, A, P,o*, ..., 0M r}. S is the full state space of the system, while for any
i€ {l1,..., M}, O, is the observation space of the ith agent with O = xf”OZ-. Aj; is the local action
space of the agent, and the global action space is the product of all local action spaces A = xM A,.
At each iteration, all agents observe their local information, chose an action and receive a reward
r: 8 x A xS — R. The system then moves to a new state, which is sampled from the transition
kernel P : S x A x S — [0,1]. P gives the probability of transition from a state s € Sto s’ € S
when agents have taken global action a € A. The probability for the ith agent to observe o; is
then defined by local observation function o’ : S x A x O; — [0,1], and the history of all past
observations is denoted h;. We call 7y, . . ., mps the policies followed by each agent, where 7;(a;|h;),
defines the probability for agent ¢ to chose action a; after observing h;. The corresponding global
policy m = (71, ..., 7 ) simply concatenates the outputs of all local policies.

Objective The MARL problem is to find a policy 7* that maximizes the expectation of the
discounted sum of rewards collected over a finite or infinite sequence of time-steps

T
maxEq a0 [J], T = B ©)
k=0

with 0 < 8 < 1 the discount factor and 7" the number of steps in the environment, or the length of an
episode. For the wind farm control problem, possible rewards include the total production of the farm
or a distance to a target production. As fatigue load measurements are also available, rewards can be
designed to encourage actions that preserve the turbine structure. Note that knowledge of the farm
layout and incoming wind direction can also be exploited to represent wake interactions between wind
turbines as a time-varying graph (see Appendix [G): this approach can motivate the design of local
reward functions for decentralized learning RL algorithms with communication. Moreover, empirical
successes applying RL to wind farm control have often relied on creative reward shaping [} [10].
To support these two efforts, WFCRL implements a RewardShaper class that allows easy design
of custom reward functions, and can be used to train both centralized and decentralized learning
algorithms.

State and Observation As the production of each turbine is a function of the local wind conditions
at its rotor, a Markovian description of the full state of the system should contain the whole wind
velocity field of the entire farm. This is impossible to know in practice. We rather assume that local
measurements of wind speed and direction are available at each wind turbine, and that an estimate of
the free-stream wind speed and direction can be accessed, but might not necessarily be sent to the
turbines in real time. Our environments therefore distinguish between the local observations o; for
eachie€ {1,..., M} and a global observation o,. Each 0; = (u;, ¢;,6;) contains a local measure
of the wind velocity u; and direction ¢;, as well as the last target value sent to each actuator ;. On
FLORIS environments, 6; is always equal to the current value of the actuators. This is not the case on
FAST.Farm, for which an inner control loop at the level of the actuators adds a response delay. The
global observation o, = (0;, ..., 0n, Uso, Poo) contains the concatenation of all local states, as well



FLORIS \ FAST.Farm
Local Observations o; | u;, ¢; (steady-state), y; \ u;, ¢; (time-dependent), y;, p;, 5
Global Observations o, 01, .., 0M, Uso, DPoo
Actions Ay; | Ay;, Ap;, AT;
Table 2: Observations (global and local) and actions available for an agent ¢ in FLORIS and
FAST.Farm environments. y;, p;, 7; refer respectively to the yaw, pitch and torque of the turbine.

as the free-stream measure of the wind .., Po. Table [2] summarizes all observations and actions
available with the two simulators.

Actions WFCRL offers several ways to control wind turbines: the yaw, the pitch or torque. Yaw
control is available on the FLORIS environments, and all three can be controlled on FAST.Farm
environments. The yaw is the angle between a wind turbine’s rotor and the wind direction: turbines
facing the wind have a yaw of 0° which maximizes their individual power output. Increasing the yaw
can deflect the wake away from downstream turbines, which may increase the total production of the
wind farm. The pitch is the angle of the attack of the rotor blades with respect to the incoming wind,
while the torque of the turbine’s rotor directly controls the rotation speed. Increasing the blade pitch
or decreasing the torque target both decrease the fraction of the power in the wind extracted by the
turbine, and therefore decrease the turbulence in its wake. To reflect the fact that the actuation rate of
the wind turbines is limited by physical constraints, we conceive actions as increases or decreases in
the actuator target value rather than absolute values, with the limits being implemented by the upper
and lower bounds of a continuous action space.

2.3 Learning in WFCRL

All environments are implemented with standard RL and MARL Python interfaces Gymnasium [7]]
and PettingZoo [42]. The source code of WFCRL is open-sourced under the Apache-2.0 license and
publicly released at www.github.com/ifpen/wfcrl-env.

2.3.1 Online Learning

Environments implemented on both FLORIS and FAST.Farm can be used in an episodic learning
approach. This is the traditional setting of the RL problem, and we will refer to it as the Online
Learning Task. In Wind scenario I and III, we look at the evolution of the sum of rewards collected
over an episode. In Wind scenario II, where a different set of wind conditions is sampled at each
episode, we evaluate the policies on a predefined set of wind conditions and use a weighted average
as the final score. This gives us our evaluation score:

N T

score(my, ..., my) = ij Tk 3)
j=1 k=0

where T is the length of the episode, n,, is the number of wind conditions considered and the

P1s-- -, Pn, are the weights on each conditions, with for all 5, 0 < p; < 1 and Z;“” pj = 1. The

wind conditions distributions on which policies are evaluated need not be identical to the one from

which conditions were sampled during training.

2.3.2 Transfer

Exploration on real wind farms is costly: as prototype models are typically not available for large
wind farms, adjusting to the real dynamics of the system will require exploring in real time on an
operating wind farm. Every move of explorating in a suboptimal direction is a cost for the farm
operator. Learning efficient policies offline that can quickly adapt to the real system is therefore
critical. Since the dynamic FAST.Farm simulator is considered a higher fidelity version of the static
simulator FLORIS, we propose to use the former as a proxy of a real wind farm to evaluate the
robustness of policies learned on the latter, and their ability to adjust to the real dynamics of a farm.
We will refer to this as the Transfer Task.

2.3.3 Algorithms

We focus on two state-of-the-art algorithms IPPO (Independent PPO) and MAPPO (Multi-Agent PPO)
introduced in [8,47]]. Both are based on the on-policy actor-critic PPO algorithm [35], and support
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continuous action spaces. Following an approach called independent learning, IPPO builds on PPO
by allowing every agent to run a PPO algorithm in parallel. MAPPO, on the other hand, maintains
both M agent policies taking actions based on local information and a shared critic, which estimates
the value of a global observation. The choice of the global observation fed to the critic is an important
factor influencing the performance of the algorithm [47]. We follow the recommendations of [47]]
to adapt PPO to the multi-agent case. They suggest to include both local and global observation
features to the value function input. We therefore feed to our shared critic network the full global
observation introduced in Section [2.2] that is both the of concatenation of all local observations and
the free-stream wind velocity.

In [47]], it was found that PPO-based methods perform very well when extended to cooperative
multi-agent tasks, outperforming algorithms specifically designed for cooperative problems like
QMIX [34]. We implement both QMIX and independent Deep Q-network (DQN) [27] baselines,
where all agents run DQN algorithms in parallel using a discrete action space. As QMIX uses a
recurrent neural network, we implement independent DQN baselines with both fully connected
(IDQN) and recurrent (IDRQN) neural networks. The same global observation is fed to the central
MAPPO critic and the mixing network of QMIX.

For implementation, we adapt the CleanRLE] [[L8] baseline implementations of PPO and DQN to our
multi-agent Petting Zoo environments. Although our analysis for the benchmark case considered
in Section [3|focuses on PPO-based algorithms on continuous action spaces, additional results for
baselines on discrete action spaces are reported in Appendix [

3 Benchmark example: the maximization of the total power production

We consider the problem of finding the optimal yaws to maximize the total power production under
a set of wind conditions, and taking into account the costs induced by turbine fatigue load. This
problem is known as the wake steering problem, and is an active area of research in the wind energy
literature 16} [17]].

3.1 Problem formulation

Actions and observations Local observations include the local yaw and local wind statistics. The
concatenation of all local observations along with free-stream wind statistics in the global observation
is as described in Section[2.2] Recall that actions are defined as increase or decrease in the actuator
target value. In this problem, all agents control their yaws, and we define the continuous action space
[—5, 5], defining changes in yaw angle expressed in degrees. To constraint the load on the turbines
caused by the control strategies and reduce its impact on the lifetime of the turbines, the time each
turbine spends actuating is limited. We choose the upper bound of 10% of the time, which is the
same upper bound value discussed in [33]. At every iteration, the time needed to change the state of
the actuator is computed, and any action violating this condition is not allowed.

Rewards At each iteration k, all agents receive a reward r{ which is the currently measured
production of the wind farm in kW divided by the number of agents and normalized by the free-
stream wind velocity:
M AL
1 P
P k
r, = — —E 4
£ 2 T
where ]5,3 is the measured power production and u« . the free-stream wind velocity at time-step k.
To discourage agents from taking risky policies damaging the turbines, we also return a load penalty
r& which increases with the sum of loads on all the turbine blades.

FLORIS does not provide estimates of the loads on structures. Instead, we evaluate the impact of
actuations on loads with a proxy based on local estimates of turbulence and velocities on the surface
of the rotor planes. Our proxy takes into account 2 factors increasing stress on wind turbine structures
as noted in [41]: first, the turbulence of the wind and second, the variation of velocities on the turbine

*https://github.com/vwxyzjn/cleanr]
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Figure 2: The evolution of total reward (b), power output (¢) and load penalties (d) accumulated
over an episode (with T'=150) on the Ablaincourt environment, simulated with FLORIS. A visual
representation of the layout is in (a), where the coordinates are in wind turbine diameters. During
training, policies are evaluated every 5 training steps with deterministic policies. The curves are
plotted for all 5 seeds.

rotor. We therefore define the load penalty in FLORIS environments as

M 9

1
Ths = i Y D TLilwi i) + o(uw) + o (vk) + o (wy) 5
i\ J

where T'I;, is the turbulence field at time-step k, ug, vi and wy, are respectively the x, y and z
components of the velocity field at time-step k, and the x; ; define the coordinates of the 9 x M grid
points at which these values are computed for the M rotor planes. o denotes the standard-deviation.

For FAST.Farm, we use the estimates of the the blades’ bending moment strength as a proxy for the
structural loads induced on the turbines, and define the load penalty as

| M (3 3
rp = Vi Z (Z |Mopyli, j]| + Z |Mipk[i,ﬂ|> (6)
i J J

where M opy, is the M x 3 matrix of out-of-plane bending moments for the 3 blades of every turbine
at time-step k, and Mipy is the corresponding matrix of in-plane bending moments.

Both rewards are common to all turbines, and all must therefore maximize @) with rj, = (rf — ark),
where « is a weighting parameter. The load penalty indicator returned by the environment is
downscaled so that rf and 7L are of similar magnitudes. By default, the value of « is 1, but greater
or less importance can be given to turbine safety by changing a.

Wind conditions We focus here on Wind Scenarios I and II. To evaluate the algorithms on Scenario
IT with score (3), we need to define weights p;. We use data acquired during the SmartEole project at
the location of the Ablaincourt wind farm [12]]. It consists of estimates of free-stream wind direction
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Figure 3: Evolution of the evaluation score, defined in (3), during the training of IPPO and MAPPO
on the two environments Turb3Rowl (left) and Ablaincourt (right).

and velocity computed from measures taken during a 3 months field campaign every 10 min. Since
in real conditions wind velocity and wind direction are correlated, we compute the bi-dimensional
histogram for the two variables, taking 5 bins for each dimension. We obtain a set of 25 wind
condition rectangles. The wind conditions w1, ..., w; are the center of each rectangle, and the
corresponding weights p; are defined as the frequencies at which wind conditions in the time series
appeared in the rectangle.

3.2 Results

We apply algorithms IPPO and MAPPO, whose implementations are both available in WFCRL, to
our benchmark example. Both are trained on the two wind scenarios I and II described in Section [2.1]
on the static simulator FLORIS. For the Scenario I, the score is the reward obtained on a single policy
rollout of 150 steps in the environment, and policies are updated after 2048 steps in the environment.
Learned deterministic policies are evaluated every 5 training steps. Results for the Ablaincourt layout
are given in Fig. @ For the Scenario 11, the score is the one defined in @, with T' = 2048. The
training curves for the the Ablaincourt and the Turb3RowI layouts are illustrated in Fig.

At the end of training, we evaluate all algorithms on both scenarios, as well as on FAST.Farm
environments for Scenario I. On Turb3Row1, IPPO has the best performance for all evaluation tasks,
while on Ablaincourt, MAPPO performs better for 2 evaluation tasks out of 3. This confirms the
good empirical results of IPPO on cooperative tasks observed in the literature [8]], and suggests that
MAPPO’s shared critic becomes more beneficial as the number of agents increases. Although IPPO
and MAPPO perform similarly on Scenario I, the gap in favor of IPPO increases on Scenario 1I,
showing MAPPO to be less efficient at adapting policies to diverse wind conditions.

As expected, the best evaluation performance for each wind scenario on FLORIS is provided by the
algorithms trained on this scenario. Yet on FAST.Farm, although our evaluation task is solely under
Scenario I (constant wind), its noisier wind observations pose a challenge to IPPO policies trained on
Scenario 1. As local wind observations are now perturbed by time-dependent turbulences created by
other agents, information sharing (MAPPO) or exposition to a variety of wind conditions (Scenario
II) during training becomes more useful.

A table detailing all evaluation scores at convergence is available in Appendix [Fland hyper-parameters
are given in Appendix [D] The code to reproduce all experiments is available at www . github. com/
ifpen/wfcrl-benchmark.

To illustrate the Transfer case, we then fine-tune the learned IPPO policies on a Turb3Rowl on
40k steps (1 day in simulated time) in the corresponding FAST.Farm environment. We report in
Appendix [F.I| the evolution of average power output and load, and compare it to a naive deployment
of strategies learned online. Our results illustrate the difficulty of adapting learned policies to unseen
dynamics.


www.github.com/ifpen/wfcrl-benchmark
www.github.com/ifpen/wfcrl-benchmark

4 Limitations

As noted in Section 2} the choice of the simulators included in WFRCL has been made on the
criteria of fidelity, computation cost, popularity and availability in open source. Both FLORIS and
FAST.Farm are developed and actively maintained by the US-based National Renewable Energy
Laboratory EL and have a large user base among wind energy researchers. FAST.Farm was explicitly
designed to provide good fidelity at a limited computation cost [21]. Despite this, dynamic wind
farm simulators remain slow. The development and open-sourcing of faster dynamic simulators will
be critical. Machine-learning accelerated simulators could be an important step in that direction.
Moreover, although FAST.Farm has been extensively validated against both real wind farm data and
high-fidelity simulations (see Appendix [A), there has been to the best of our knowledge no explicit
investigation of the transfer of yaw optimization results from FAST.Farm simulations to a real wind
farm.

5 Conclusion

We have introduced WFCRL, the first open reinforcement learning suite of environments for wind
farm control. WFCRL is highly customizable, allowing researchers to design and run their own
environments for both centralized and multi-agent RL. It is interfaced with two different wind farm
simulators: a static simulator FLORIS and a dynamic simulator FAST.Farm. They can be used to
design transfer learning strategies with the goal to learn robust policies that can adapt to unseen
dynamics. We have proposed a benchmark example for wind power maximization with two wind
condition scenarios that take into account the costs induced by wind turbine fatigue. We hope that
WFCRL will help building a bridge between the RL and wind energy research communities.

3https://www.nrel.gov/
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(b) FAST.Farm

Figure 4: Wind velocity field for the simulation of our 3-turbines layout on the 2 simulators: FLORIS
and FAST.Farm.

A Difference between FLORIS and FAST.Farm

Wind farm models serve two main purposes, in the broader literature as in WFCRL. First, when
experiments on real wind farms or tunnel experiments on scaled farms are not possible, they are the
only way to evaluate and compare control strategies by predicting their impact on the total power
output of a farm. For that purpose, the value of models lie in their accuracy, and the best results are
achieved by complex dynamic models involving costly computations. Secondly, a model of the farm
can be used to estimate an optimal command. Here, accuracy must be balanced by tractability, and a
constraint on computation time arises for real-time optimization. Of course, evaluating the command
on the model used to derive it will likely overestimate its performance: it should rather be evaluated
on an other, higher fidelity model which will serve as a substitute for the real farm.

Static models estimate the time-averaged features of the wind flow while ignoring the dynamics
of short-term effects, including wake propagation time and wake meandering. They rely on the
design of an analytical solution to predict wind speed deficit at a downwind turbine with respect to an
upstream turbine [3]]. This gives them the advantage of a very low computation time, as they usually
return a solution instantaneously. The wind farm simulation software FLORIS (NREL 2021), created
and maintained by the National Renewable Energy Laboratory (NREL), proposes a variety of such
models in a single Python framework, and has become a reference for wind farm control engineering.
These parametric models combine several components to estimate the effects of turbine yaws on both
the redirection of the wake behind the turbine and the velocity in the wake. An example of such a
simulation can be found on Figure@

At higher accuracy and higher computational complexity is FAST.Farm [21]]. It relies on OpenFAST
(NREL 2022) to model the dynamics of each individual turbine, but considers additional physics to
account for farm-wide ambient wind, as well as wake deficits, propagation dynamics and interactions
between different wakes. It supports the implementation of controllers tracking a received yaw
reference for each turbine. Figure b]provides an example of these realistic wind fields.

FAST.Farm has been shown to be of similar accuracy with high-fidelity large-eddy simulations with
much less computational expense. It has been validated against both real wind farm data (36, 24 and
Large Eddy Simulations [19} 37]. Power predictions match real measurements within 2-7% error on
average [36]], although the error can reach 18% for downstream turbines under low free-stream wind
speeds. Load predictions are within 10% of groundtruth values, with errors reaching 25% for certain
wind directions [37]. Predictions always respect trends in power and load changes: under the same
wind conditions, yaws that lead to increases in power output in simulations also lead to increases in
real wind farms.
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B Details of the FAST.Farm interface

The Python-FAST.Farm interfacing tool relies on two interfaces with RECEIVE and SEND functions.
Following [138]] in which the authors designed an interface between FAST.Farm and Matlab based on
the MPI communication protocol, we rely on an MPI communication channel between the Python
and FAST.Farm processes. We choose to let the Python process spawn a new child process to launch
the FAST.Farm simulation in the background, allowing the user to only interface with Python. The
architecture of the interfacing tool is illustrated in Figure 5]

At every iteration, the FAST.Farm interface retrieves 12 measures per turbine:

* 2 wind measurements: wind velocity and direction at the entrance of the farm. The wind
direction is estimated by subtracting the yaw estimation error from the current yaw measure.

* The current output power of the turbine

* The yaw of the turbine

* The pitch of the turbine

* The torque of the turbine

* 6 measures of blade loads: the out-of-plane bending moment estimate for each blade, and

the in-plane bending moment estimate on each blade

and sends the 3 control targets - yaw, pitch, torque - to each local turbine controller. Other actuators
that are not controlled by the RL algorithm are controlled by the default naive FAST.Farm controllers.

RL Loop Python program MPI Communication Simulator
: Control references:
actions send yaws receive
PettingZoo — ”| Python | — itch i Simulator
Environment  <«——— jpterface | «—— prte «— Interface
. ; torque send
wind receive
W l statistics l I
prodchlon Simulated measures:
actions rewards  statistics wind speeds
states o Wind farm
wind directions model
power outputs
loads on blades
Agent

Figure 5: Schema: interfacing infrastructure between FAST.Farm and Python

Free-stream wind speed and direction are estimated as the wind measurements at the wind turbine
with the highest wind speed. Since inflow wind can be turbulent, all estimates are averaged over a
period of time defined by the buffer_window parameter.
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C Characteristics of all environments

Centralized Control Decentralized Control

FLORIS LayoutName_Floris Dec_LayoutName_Floris
FAST.Farm | LayoutName_Fastfarm | Dec_LayoutName_Fastfarm

Table 3: Creating environment IDs: Prefix, Root, Suffix

For preregistered layouts, every environment is characterized by a tuple of 3 options, and every
environment ID is a combination of the corresponding 3 parts: a prefix, a root, and a suffix.

 The choice to formalize it as a centralized or decentralized control problem. Environments
with centralized control are Gymnasium environments and expect global actions, i.e. vectors
concatenating all actions, and have no prefix. Environments with decentralized control are
PettingZoo environments and expect local actions sent by each agent. They have the prefix

Dec.

* The choice of the layout, i.e. the arrangement of wind turbines in the field. A list of all
layouts is given in Table[d] and a visual overview of them in Appendix [H] The name of the
layout is the root of the environment ID.

* The choice of a simulator. Two simulators are for now implemented in WFCRL: the static
FLORIS and the dynamic FAST.Farm. The corresponding suffix Floris or Fastfarm is

appended to the environment ID.

Layout Name # Agents Description
. Inspired by layout of the Ablaincourt farm
Ablaincourt 7 in France, (Duc et al, 2019)
Layout of the Total Control Reference Wind Power Plant
Turb16_TCRWP 16 (TC RWP) (the first 16 turbines)
Custom case -
Turb6_Row2 6 2 rows of 6 turbine
Layout of the first 16 turbines in the
Turb16_Rows3 16 CL-Windcon project as implemented in WFSim
Layout of the farm used in the
Turb32_Rows3 32 CL-Windcon project as implemented in WFSim
. Procedurally generated single row layout with X turbines,
TurbX_Rowl for Xin (1, 12] X spaced by 4D with the D the diameter of the turbine.
Ormonde 30 Layout of the Ormonde Offshore Wind Farm
WMR 35 Layout of the Westermost Rough Offshore Wind Farm
HornsRevl 80 Layout of the Horns Rev 1 Offshore Wind Farm
HornsRev2 91 Layout of the Horns Rev 2 Offshore Wind Farm

Table 4: Preregistered layouts: name, number of agents, and description
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D Environment and Training procedure details

The source code for the WFCRL package is open-sourced under the license Apache v2, and publicly
released here www.github.com/ifpen/wfcrl-env, along with notebook tutorials and documenta-
tion. An example of code snippet allowing the creation of the FLORIS Ablaincourt environment with
decentralized control is given below:

from wfcrl import environments as envs
env = envs.make(" Dec_Ablaincourt_Floris")

The code to reproduce all experiments is available here www.github.com/ifpen/
wfcrl-benchmark. Our algorithm implementations use PettingZoo’s Agent Environment
Cycle [42] interaction logic. Our multi-agent environments also support standard Gymnasium-like
RL control loops via the PettingZoo’s aec_to_parallel function.

We report in Table [5] the hyper-parameters used for IPPO and MAPPO, and in Table [6] the hyper-
parameters used for QMIX and IDRQN. Recurrent Q-networks in QMIX and IDRQN take as input
both the current local observation and the last action taken by the agent. All algorithms are trained
on episodes of length T" = 150 (Sc. 1) or T' = 2048 (Sc. 2) with § = 0.99. Evaluation is done on

episodes of length T' = 150.

Parameter Value
Learning rate 0.0003 — O (linear annealing)
B 0.99
GAE )\ 0.95
# minibatches 32
# epochs 10
Normalize advantages True
Clip coefficient 0.2
Value loss coefficient 0.5
Maximum gradient norm 0.5
Hidden layers (64, 64)
# steps between updates 2048
Batch size 2048
Minibatch size 64

Table 5: PPO Experiment hyperparameters (used in IPPO and MAPPO)

Parameter Value
Shared parameters (Q-networks)
Learning rate 0.0005
I6] 0.99
Hidden layers 64
# layers 2
Batch size (episodes) 32
Buffer size (episodes) 200
Exploration € 1 —0.05

Target network frequency (episodes) 25

ith Q-Network input (oi,at_q)
OMIX Hypernetwork Parameters
Hidden layer dim 32
# layers 2

Table 6: QMIX and IDRQN (Independent DQN with deep recurrent network) experiment hyperpa-
rameters
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The experiments were run on 3 different computers. The first computer, which has no GPU and a
Intel Xeon Gold 6240Y processor, was used to train IPPO and MAPPO on Wind Scenario I for 1
week of compute. On the second computer, an internal cluster with a GPU Quadro RTX 6000 24Go,
2 week of compute was used to to train experiments of Wind Scenario II. The last computer which
has a Intel Xeon Gold 6240Y processor was used for training models during 3 days of compute on
Wind Scenario I, and for evaluation purposes.

19



E Score: wind rose and weights
In this section we illustrate the use of wind statistics from the SMARTEOLE dataset to extract
wind conditions weights p of the evaluation score (3)). In Figure[6a we report the distribution of

wind velocity and direction in the SMARTEOLE dataset. In Figure|6b] we show the corresponding
extracted weights p for the 25 corresponding wind conditions.

0.0002

0.00079

direction

0.00018

2 7 " 16 20 25
speed

(a) Wind conditions in SMARTEOLE (b) p; extracted from SMARTEOLE

Figure 6: Extraction of the p; weights from the SMARTEOLE dataset. The empirical distribution
of wind speed and direction in the data represented as a windrose is in (a), and the corresponding
extracted weights p; given to each of the 25 wind conditions are in (b).
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F More benchmark results

F.1 Evaluation and transfer on FAST.Farm

The literature on transferring wind farm control policies from lower to higher fidelity simulators is
scarce. In [28]], a transfer method is proposed that relies on a complex combination of optimization
in static models, supervised learning of policies, policy evaluation and problem-specific reward
engineering. The development of simpler transfer solutions that are less problem-dependent will be
necessary to progress towards the deployment of RL policies on real wind farms. Yet as we show
here, a naive fine-tuning approach might not be enough. On this task, we simulate a 900 steps episode
of the Turb3Row1 layout on FAST.Farm (environment Dec_Turb3_RowI_Fastfarm).

For the Transfer task, we pursue the training in the new environments, and report the evolution of
the power and load compared to the Eval case in Figure (/| for the agents trained under IPPO. We
simulate a day of training on FAST.Farm, correponding to 28800 steps in the environment. During

—— Eval — Eval
= Transfer Transfer
< 30 q:J
= = 1.95
= >

28 T 1.90
Q ®
2 o
o —
o 26 P 1.85
0] o))
% © 180
o 24 o
5: <175
0 5 10 15 20 25 0 5 10 15 20 25
Hours Hours
(a) Power (b) Load

Figure 7: Evaluation and transfer on FAST.Farm: evolution of power (left) and load (right) on the
Dec_Turb3_Rowl_Fastfarm environment. Results are reported for 5 seeds.

the evaluation tasks, policies learned on FLORIS (IPPO, Sc. I) deployed on the dynamic simulator
achieve an increase of 15% in power production over the baseline. We know from existing literature
that on Turb3Rowl, there exists a policy that reaches an increase of 21% [28]]. The difference in
performance suggests that we could benefit from further fine-tuning these policies on the dynamic
simulation. However, the simple transfer learning strategy pursued during the Transfer task degrades
the performance of the policies when learning online, reaching an average of 0% increase over the
greedy baseline at the end of the experiments. This illustrates the challenge of designing robust
methods to bridge the gap between simple simulators and complex real world dynamics.

F.2 More training results

In this section we report more benchmark results. The training curves of IPPO and MAPPO (resp.
QMIX and IDRQN) under Wind Scenario I on the Turb3RowI layout are in Figure 8] (resp Figure J).
As the latter, value-based algorithms require a discretization of the action space, we report their
results separately. We use an action space of 3 actions: increase actuation target value, decrease
it, or do nothing. Each change in actuation leads to a change of 5° in the actuation space. Table 7]
summarizes the evaluation scores, reporting mean and standard deviation on the 5 seeds.

We also report for the evaluated models on Sc. I the decomposition of the episode reward in power
output (Table[§)) and load penalty (Table[0). Table[§]is equivalent to the total energy produced during
the episode, while Table[0]can be interpreted as an indication of accumulated damage. An example of
a the rollout of a policies learned with IPPO on Scenario I is given in Figure[I0]for Turb3Row! and
Ablaincourt. In both layouts, the wake of the last turbine in the row has no impact on the production
of the others. Its rotor is therefore maintained facing the wind, as in the greedy solution (yaw of
0°). On Turb3Rowl, where a row of 3 turbines are perfectly aligned with the wind direction, learned
policies alternatively lead the yaws of the first turbines to around +30° or —30°. On Ablaincourt on
the other hand, learned policies always converge towards negative yaws.

21



240

] o
230 227 g
® nO_ » Qo
Q 220 o [0)
Q © g 0.65
@ Qs 2
20 UQJ- 04 UDJ- 0.60
200
23 0.55
0.0 05 1.0 15 20 0.0 0.5 1.0 15 0.0 0.5 1.0 15
Time-steps 1 Time-steps e Time-steps e
(a) Episode Reward (b) Episode Power Output (c) Episode Load Indicator
1.8
350
340 o 17
8
2 330 i 6
8 320 ©
@ 8 15
310 ‘a -
L
300 1.4
290
0.0 05 1.0 15 20 0.0 05 1.0 15 20 0.0 05 1.0 15 20
Time-steps e Time-steps e Time-steps 1

Figure 8: Evolution of episode reward (a), power output (b) and load indicator (c) on the layout
Turb3Rowl (top) and Ablaincourt (down) FLORIS environments for actor-critic algorithms IPPO
and MAPPO during training. Deterministic policies are evaluated every 5 training steps.
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Turb3Rowl Ablaincourt
FLORIS FAST.Farm FLORIS FAST.Farm
Sc. 1 Sc. 2 Sc. 1 Sc. 1 Sc. 2 Sc. 1
Training on Sc. /
IPPO 2395 +24 3548144 2174418 351.0 £0.3 3299+ 14 3274 +£1.6
MAPPO 237.7 +£2.1 3451 £12.6 2153+ 14 351.7 £ 0.1 3276+ 1.4 330.2 0.1
IDQN 202.6 £21.5 278.84+31.8 173.5+287 2633+£112 2314479 189.3 £ 10.5
IDRQN  210.6 £20.7 295.1 +=32.2 184.84+28.7 257.1£25 240.8 £ 3.5 183.0 0.6
QMIX 193.5£17.0 273.14+£263 161.0+234 2548 +£0.7 2308 £ 11.1 181.74+0.2
Training on Sc. 2
IPPO 203.7 £4.3 406.0 - 10.5 218.7 +0.5 321.8+7.5 354.6 = 4.1 3173 £4.1
MAPPO 213.7+£102 37244155 2180+1.0 3292 +£11.0 3146434 319.8 £3.7
IDQN 193.8 £17.0 262.04+10.1 161.7+229 263.1 £4.8 230.5 £ 8.2 197.7 £ 12.0
IDRQN  199.1 £ 16.8 343.7+524 189.74+245 299.0+7.5 2769 £11.6 249.2 4+ 13.5
QMIX 2009 £+ 18.1 3134 4+50.6 180.5+287 2623+143 24594259 189.2+104

Table 7: Results at the end of training, on 200k and 20 time-steps for Turb3Row! and Ablaincourt
respectively. Sc. I (resp Sc. 2) corresponds to the firts Wind Scenario I (resp. II). All models are
evaluated on both scenarios. For a decomposition in power and load penalty contribution, see Table[9]

and Table/8}
Turb3Rowl Ablaincourt
FLORIS FAST.Farm FLORIS FAST.Farm
Training on Sc. 1
IPPO 1903 +2.0 2396+1.0 222.6+£54 2450=£0.8
MAPPO 1943+19 2375£05 218.6+58 239.8+1.5
IDON 159.1 £ 1.0 1283 +0.7 157.6 = 1.7 126.8 + 1.7
IDRQN 160.5£5.7 129.0+4.7 168.1 £22.6 1268 +£1.2
QMIX 159.6 £ 2.2 128.7 + 2.1 157.0 £ 0.5 126.3 £ 0.5
Training on Sc. 2
IPPO 2471 +£71 251.6+£27 2514+05 2534408
MAPPO 219.0 £32.7 2488 £2.5 2248+20.5 247.6+0.3
IDON 159.6 £0.0 128.7+0.0 1594+£0.5 128.3 £ 0.7
IDRQN  176.1 £38.0 151.2+£51.6 176.2+379 152.0+51.2
QMIX 196.6 =452 1793 +613 177.3+365 127.6+£1.1

Table 8: Sum of total power output at every time-step for an evaluation episode with constant wind
conditions (Sc. 7) at the end of training, after 200k time-steps for Turb3Row! and 2 time-steps for
Ablaincourt.
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Turb3Rowl Ablaincourt
FLORIS FAST.Farm FLORIS FAST.Farm

Training on Sc. 1

IPPO 84.0+09 343.6+34 823+10 3505=+05
MAPPO 84.7£0.7 34554+29 829+0.8 3483+0.8
IDQN 839+0.1 2857+04 84.0£02 2849+09
IDRQN 83.7£0.6 286.1 25 84.0+£0.2 2849+0.6
QMIX 83.8+02 2859+1.1 84.1£0.0 284.7+03

Training on Sc. 2

IPPO 755+22 351.7£20 742+03 3525+0.8
MAPPO 78.6+£3.2 3495+23 79.1x2.1 350.6+£2.1
IDRQN  82.0+£4.1 29794275 82.0+4.1 2983 %273

QMIX 798 +£49 3128 £327 820+37 2854+£0.6
Table 9: Sum of load penalties for an evaluation episode with constant wind conditions (Sc. ) after
200k time-steps for Turb3Rowl and 2M time-steps for Ablaincourt.
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Figure 10: Behavior of 2 different yaw control policies learned on Turb3Row1, and a control policy
learned on Ablaincourt, both on FLORIS environment with IPPO
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G Wind farm as a graph

Knowledge of the farm layout and incoming wind direction can be exploited to represent wake
interactions between wind turbines as a time-varying graph. In particular, under any given free-stream
wind conditions, agent interaction structure can be modeled as a Directed Acyclic Graph. This is

illustrated on Figure[T1]

) ®
¥ e
a‘g‘a

Figure 11: A wind turbine (purple) and its descendants in a wind turbine interaction DAG
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H Visual Overview of Layouts
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Figure 12: Coordinates of each wind turbine for the pre-registered layouts in WFCRL. Distances are
in turbine diameters (126m for the NREL SMW Reference turbine). The TurbX_Row] toy layouts
are procedurally generated for any value of X between 1 and 12.
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I Additional information on WFCRL

I.1 List of dependencies

We report in the table below the list of open-source Python packages and other open-source software
that WCFRL relies on.

Software License License Link

numpy Custom https://numpy.org/doc/stable/license.html

Gymnasium MIT https://github.com/Farama-Foundation/Gymnasium/blob/main/LICENSE
PettingZoo MIT https://github.com/Farama-Foundation/PettingZoo/blob/master/LICENSE
FLORIS Apache v2.0 https://github.com/NREL/floris/blob/main/LICENSE. txt

FAST.Farm (OpenFAST) Apache v2.0 https://github.com/OpenFAST/openfast/blob/main/LICENSE

mpi4py Custom https://github.com/erdc/mpidpy/blob/master/LICENSE. txt
Microsoft-MPI MIT https://github.com/microsoft/Microsoft-MPI/blob/master/LICENSE.txt
Open MPI BSD 3-Clause https://www.open-mpi.org/community/license.php

Seaborn BSD 3-Clause https://github.com/mwaskom/seaborn/blob/master/LICENSE.md

Matplotlib Custom - BSD-compatible https://matplotlib.org/stable/project/license.html

PyYAML MIT https://github.com/yaml/pyyaml/blob/main/LICENSE

Pandas BSD 3-Clause https://github.com/pandas-dev/pandas/blob/main/LICENSE

1.2 Licence

The WFCRL package is licensed under the Apache v2 license. The text of the license can be found
here: https://github.com/ifpen/wfcrl-env/blob/main/LICENSE.

I.3 Responsability

The authors bear all responsibility in case of violation of rights.
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