
WFCRL: A Multi-Agent Reinforcement Learning
Benchmark for Wind Farm Control

Claire Bizon Monroc
Inria and DI ENS, École Normale Supérieure, PSL Research University, Paris, France

IFP Energies nouvelles
claire.bizon-monroc@inria.fr

Ana Bušić
Inria and DI ENS, École Normale Supérieure, PSL Research University

Paris, France

Donatien Dubuc
IFP Energies nouvelles

Solaize, France

Jiamin Zhu
IFP Energies nouvelles

Rueil-Malmaison, France

Abstract

The wind farm control problem is challenging, since conventional model-based
control strategies require tractable models of complex aerodynamical interactions
between the turbines and suffer from the curse of dimension when the number of
turbines increases. Recently, model-free and multi-agent reinforcement learning
approaches have been used to address this challenge. In this article, we introduce
WFCRL (Wind Farm Control with Reinforcement Learning), the first open suite
of multi-agent reinforcement learning environments for the wind farm control
problem. WFCRL frames a cooperative Multi-Agent Reinforcement Learning
(MARL) problem: each turbine is an agent and can learn to adjust its yaw, pitch or
torque to maximize the common objective (e.g. the total power production of the
farm). WFCRL also offers turbine load observations that will allow to optimize
the farm performance while limiting turbine structural damages. Interfaces with
two state-of-the-art farm simulators are implemented in WFCRL: a static simulator
(FLORIS) and a dynamic simulator (FAST.Farm). For each simulator, 10 wind
layouts are provided, including 5 real wind farms. Two state-of-the-art online
MARL algorithms are implemented to illustrate the scaling challenges. As learning
online on FAST.Farm is highly time-consuming, WFCRL offers the possibility of
designing transfer learning strategies from FLORIS to FAST.Farm.

1 Introduction

The development of wind energy plays a crucial part in the global transition away from fossil energies,
and it is driven by the deployment of very large offshore wind farms [42, 30]. Significant gains
in wind energy production can be made by increasing the amount of wind power captured by the
farms [30]. The power production of a wind farm is greatly influenced by wake effects: an operating
upstream turbine causes a decrease in wind velocity and an increase in wind turbulence behind its
rotor, which creates sub-optimal wind conditions for other wind turbines downstream. An illustration
of this phenomenon can be seen on Figure 1. Wake effects are a major cause of power loss in wind
farms, with the decrease in power output estimated to be between 10% and 20% in large offshore

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

Figure 1: Left: Wake effects in the offshore wind farm of Horns Rev 1 - Vattenfall. Right: Schema of
a wind turbine [6]. The pitch, yaw or torque can be controlled.

wind farms [4]. Higher turbulence in wakes also increases fatigue load on the downstream turbines
by 5% to 15%, which can shorten their lifespans [41].

The wind farm control problem is challenging. Conventional model-based control strategies require
tractable models of complex dynamic interactions between turbines, and suffer from the curse
of dimensionality when the number of turbines increases. Moreover, optimal strategies differ
significantly with modeling choices. Reinforcement Learning (RL) provides a model-free, data-based
alternative, and recent work applying RL algorithms to wind farm control has yielded promising
results (see e.g. [1]). Single agent approaches, where a single RL controller must learn a centralized
policy, encounter scaling challenges [10], are slow to converge under dynamic conditions [24] and do
not explore the graph structure of the problem induced by local perturbations. Several multi-agent RL
approaches have been proposed to tackle this issue, relying on both centralized critics [9, 10, 29] and
independent learning approaches [5, 21, 37]. Authors have published code relative to their specific
applications [44, 43, 27], and [27] proposes a single-agent RL environment for power maximization
in static simulations. There is to the best of our knowledge no open-source reinforcement learning
environment for the general wind farm control problem.

In this article, we propose WFCRL, the first open suite of reinforcement learning environments for
the wind farm control problem. WFCRL is highly customizable, allowing researchers to design and
run their own environments for both centralized and multi-agent RL.

Wind turbines can be controlled in several ways. A turbine can adjust its yaw (defined as the angle
between the rotor and the wind direction) to deflect its wake, increase its pitch (the angle between the
turbine blades and the incoming wind) to decrease its wind energy production, or directly control the
torque of its rotor. WFCRL makes it possible to control yaw, pitch or torque, and a schema of these
different control variables can be found in fig. 1. WFCRL offers a large set of observations including
local wind statistics, power production, and fatigue loads for each turbine. This makes it possible to
consider different objective, including the maximization of the total production, the minimization of
loads to reduce maintenance costs over the wind turbine life-cycle [22], or, as wind energy becomes a
larger part of the energy mix, the tracking of power or frequency targets that will allow operators to
offer ancillary services for grid integration [25].

In WFCRL, interfaces with two state-of-the-art farm simulators are implemented : a static simulator
FLORIS [12] and a dynamic simulator FAST.Farm [20]. Indeed, the choice of a static or dynamic
model is particularly important: the overwhelming majority of proposed approaches are evaluated on
static models, but it was shown in [38] that successful learning approaches under static conditions
generally do not adapt to dynamic ones. However, online learning from scratch with dynamic
simulators is often too slow, making transfer learning from static to dynamic simulators of great
interest. From the broader literature on transfer learning and learning from simulators we know that
it is challenging to train policies that can improve on previously learned behavior when deployed

2

on new environments with unseen dynamics [46, 14]. In spite of this problem, to the best of our
knowledge, most approaches so far have been trained and evaluated on the same environment, and
it is therefore not clear whether the policies learned with simulators are robust enough to be useful,
or even safe, when deployed on real wind farms. With two simulators of different model-fidelity
(referring to how closely the model represents the real system), WFCRL offers the possibility of
designing transfer learning strategies between these simulators.

Contributions of the paper

• We introduce WFCRL, the first open reinforcement learning suite of environments for
wind farm control. WFCRL is highly customizable, allowing researchers to design and run
their own environments for both centralized and multi-agent RL. It includes a default suite
of wind farm layouts to be used in benchmark cases.

• We interface all our wind farm layouts with two different wind farm simulators: a static
simulator FLORIS [12] and a dynamic simulator FAST.Farm [20]. They can be used to
design transfer learning strategies, with the goal to learn robust policies that can adapt
to unseen dynamics.

• We include two implementations of PPO-based state-of-the-art MARL algorithms, IPPO
and MAPPO [45], adapted to our environments.

• We propose a benchmark example for wind power maximization with two wind condition
scenarios. It takes into account the costs induced by wind turbine fatigue.

The paper is organized as follows. In Section 2, we introduce the WFCRL environment suite. First in
Section 2.1 we introduce the simulators, the specifications of the simulated wind farms and turbines
and the wind conditions scenarios we consider. We then lay out in Section 2.2 the cooperative MARL
framework for the wind farm control problem, and finally detail the learning tasks and algorithms
available with the suite in Section 2.3. In the second part Section 3, we illustrate the possibilities
of the WFCRL environment suite by introducing a benchmark example: the maximization of total
power production with fatigue-induced costs. In Section 3.1, we explicit the actions, observations
and rewards used in this problem, then in Section 3.2, we present and discuss the results of the IPPO
and MAPPO on our benchmark tasks. In Section 4, we discuss perspectives and limitations, and we
conclude in Section 5

2 WFCRL environments suite

In this section, we present our WFCRL environments suite. We first present the simulators interfaced
in WFCRL (FLORIS and FAST.Farm), several pre-defined layouts and wind condition scenarios.
Note again that having two simulation environments with different model-fidelity offers the possibility
of designing transfer learning strategies between simulation environments. Then, we describe briefly
the MARL framework for the wind farm control problem. More precisely, we consider a wind
farm with M turbines, which operate in the same wind field and create turbulence that propagates
across the farm. In our multi-agent environment, each turbine is considered an agent receiving local
observations, and all cooperate to maximize a common objective.

2.1 The simulation environments

In WFCRL, users can choose one of the two state-of-the-art wind farm simulators (FLORIS or
FAST.Farm), select a pre-defined wind farm layout or define a custom one, and choose one of the
implemented wind conditions. Though designed for the MARL framework, we note that it is also
possible to apply single-agent RL algorithms by considering global observations and actions.

Various wind farm simulators can be used to evaluate wind farm control strategies [3]. The choice
of the wind farm simulators included in WFRCL relies on three criteria: the trade-off between
fidelity and computation time, the popularity of the simulators in the wind farm energy community,
and open-source availability. We discuss this further in Appendix A, and introduce our simulation
environments in the following paragraph.

3

WFCRL environment Real wind farm
Ablaincourt Ablaincourt Energies onshore wind farm, Somme, France

Ormonde Ormonde Offshore Wind Farm, Irish Sea, UK
WMR Westermost Rough Wind Farm is an offshore wind farm, North Sea, UK

HornsRev1 Horns Rev 1 Offshore Wind Farm, North Sea, Denmark
HornsRev2 Horns Rev 2 Offshore Wind Farm, North Sea, Denmark

Table 1: Correspondences between WFCRL environments and real wind farms.

FLORIS environments The wind farm simulator FLORIS implements static wind farm models,
which predict the locations of wake centers and velocities at each turbine in the steady state: the
dynamic propagation of wakes are neglected. The yaws of all wind turbines can be controlled, and the
power production of the wind farm is then a function of all yaw angles and the so-called free-stream
wind conditions: wind measurements - e.g. velocity and direction - taken at the entrance of the farm.
FLORIS has been released as an open-source Python software tool1. In WFCRL environments built
on FLORIS, global and local states contain time-averaged, steady-state wind and production statistics
for both global and local observations.

The models used by FLORIS do not compute any estimate of fatigues on wind turbines, and we
propose to use local wind statistics to compute a proxy for load estimates indeed. We detail this when
introducing our benchmark example in Section 3.1.

FAST.Farm environments Unlike FLORIS, FAST.Farm is a dynamic simulator that produces
time-dependent wind fields that take into account the dynamics of wake propagation [20]: wakes in
wind farms tend to meander, and the wakes of different turbines interact and eventually merge as
they propagate in the farms. One consequence is that under dynamic conditions there is a significant
delay between the time agents take an action and the time this action finally impacts the turbines
downstream.

FAST.Farm is built on wind turbine simulation tool OpenFAST [28] which computes an estimate of
the strength of the bending moment on each turbine blades. This reflects the structural loads induced
on turbine blades, and thus can be used to design rewards in RL problems to reduce or avoid physical
damages to turbines.

FAST.Farm is coded in Fortran. To allow for integration with the large ecosystem libraries and RL
research practices developed in Python, we implement an interface between the simulator and the
Python wind farm environment via MPI communication channels. The details of the interfacing
infrastructure are reported in Appendix B.

Wind farm layouts Any custom layout - the arrangement of the wind turbines in the farm - can be
used in WFCRL. We also propose several pre-defined wind farm layouts for use in benchmark cases.
The coordinates of the wind turbines of 5 real wind farms with 7 to 92 wind turbines are obtained
from [2]. A complete list of all correspondences between wind farms inspired by real environments
and their locations is in Table 1, and a list of all available environments can be found in Appendix C.
We also include in WFCRL several toy layouts, including a simple row of 3 turbines (the Turb3Row1
layout) for validation purpose and the 32 turbines layout of the FarmConners benchmark [13]. A
visual representation of the layouts can be found in Appendix H.

For all cases, we simulate instances of the NREL Reference 5MW wind turbines, whose specifications
have been made public by the National Renewable Energy Laboratory (NREL) [19]. It has become
standard reference for wind energy research and is used by the majority of proposed evaluations of
RL methods [1].

Wind condition scenarios For all environments, we distinguish three scenarios.

Wind scenario I: In this scenario, all trajectories in a given environment are run under the prevailing
wind velocity and direction at the location.

1https://nrel.github.io/floris/

4

Wind scenario II: In this scenario, we let the wind farm be subject to variations in wind change, and
sample new free-stream wind conditions u∞, ϕ∞ at the beginning of each episode:

u∞ ∼ W(ū, λ) ϕ∞ ∼ N (ϕ̄, σϕ) (1)

where W is a Weibull distribution modeling wind speed with shape λ and scale ū, and N is a Normal
distribution with ϕ̄ being the dominant wind direction for a given farm.

Wind scenario III: In this scenario, the wind farm is subjected to a an incoming wind that varies
during a single episode. Any time series with wind speed and direction measurements can be used
by WFCRL, and we provide a default time series of measurements collected on a real wind farm. A
starting point in the time-series is randomly selected at the beginning of each new episode.

By default, at the beginning of each simulation, all wind turbines have the yaw angle zero. This
corresponds to the so-called greedy case, the strategy that would allow each of them to maximize its
production in un-waked conditions.

2.2 The MARL framework for the wind farm control problem

A Decentralized Partially Observable Markov Decision Process (Dec-POMDP) with M interacting
agents is a tuple {M,S,O,A, P, o1, . . . , oM , r}. S is the full state space of the system, while for
any i ∈ {1, . . . ,M}, Oi is the observation space of the ith agent with O = ×M

i Oi. Ai is the
local action space of the agent, and the global action space is the product of all local action spaces
A = ×M

i Ai. At each iteration, all agents observe their local information, chose an action and
receive a reward r : S × A× S → R. The system then moves to a new state, the transition kernel
P : S ×A× S → [0, 1] gives the probability of transition from a state s ∈ S to s′ ∈ S when agents
have taken global action a ∈ A. The probability for the ith agent to observe oi is then defined by local
observation function oi : S × A × Oi → [0, 1], and the history of all past observations is denoted
hi. We call π1, . . . , πM the policies followed by each agent, where πi(ai|hi), defines the probability
for agent i to chose action ai after observing hi. The corresponding global policy π = (π1, . . . , πM)
simply concatenates the outputs of all local policies.

Objective The MARL problem is to find a policy π∗ that maximizes the expectation of the
discounted sum of rewards collected over a finite or infinite sequence of time-steps

max
π

Es0,a0,s1,... [J] , J :=

T∑
k=0

βkrk (2)

with 0 < β < 1 the discount factor and T the number of steps in the environment, or the length of an
episode. For the wind farm control problem, possible rewards include the total production of the farm
or a distance to a target production. As fatigue load measurements are also available, rewards can
also be designed to encourage actions that preserve the turbine structure. Note that knowledge of
the farm layout and incoming wind direction can also be exploited to represent wake interactions
between wind turbines as a time-varying graph (see Appendix G): this approach can motivate the
design of local reward functions for decentralized learning RL algorithms with communication. To
support this effort, WFCRL implements a RewardShaper class that allows easy design of custom
reward functions, and can be used to train both centralized and decentralized learning algorithms.

State and Observation As the production of each turbine is a function of the local wind conditions
at its rotor, a Markovian description of the full state of the system should contain the whole wind
velocity field of the entire farm. This is so far impossible to know in practice. We rather assume
that local measurements of wind speed and direction are available at each wind turbine, and that an
estimate of the free-stream wind speed and direction can be accessed, but might not necessarily be sent
to the turbines in real time. Our environments therefore distinguish between the local observations oi
for each i ∈ {1, . . . ,M} and a global observation og . Each oi = (ui, ϕi, θi) contains a local measure
of the wind velocity ui and direction ϕi, as well as the last target value sent to each actuator θi. The
global observation og = (oi, . . . , oM , u∞, ϕ∞) contains the concatenation of all local states, as well
as the free-stream measure of the wind u∞, ϕ∞. Table 2 summarizes all observations and actions
available with the two simulators.

5

FLORIS FAST.Farm
Local Observations oi ui, ϕi (steady-state), yi ui, ϕi (time-dependent), yi, pi, τi

Global Observations og o1, . . . , oM , u∞, ϕ∞
Actions ∆yi ∆yi,∆pi,∆τi

Table 2: Observations (global and local) and actions available for an agent i in FLORIS and
FAST.Farm environments. yi, pi, τi refer respectively to the yaw, pitch and torque of the turbine.

Actions WFCRL offers several ways to control wind turbines: the yaw, the pitch or torque. Yaw
control is available on the FLORIS environments, and all three can be controlled on FAST.Farm
environments. The yaw is the angle between a wind turbine’s rotor and the wind direction: turbines
facing the wind have a yaw of 0° which maximizes their individual power output. Increasing the yaw
can deflect the wake away from downstream turbines, which may increase the total production of the
wind farm. The pitch is the angle of the attack of the rotor blades with respect to the incoming wind,
while the torque of the turbine’s rotor directly controls the rotation speed. Increasing the blade pitch
or decreasing the torque target both decrease the fraction of the power in the wind extracted by the
turbine, and therefore decrease the turbulence in its wake. To reflect the fact that the actuation rate of
the wind turbines is limited by physical constraints, we conceive actions as increases or decreases in
the actuator target value rather than absolute values, with the limits being implemented by the upper
and lower bounds of a continuous action space.

2.3 Learning in WFCRL

All environments are implemented with standard RL and MARL Python interfaces Gymnasium [7]
and PettingZoo [40]. The source code of WFCRL is open-sourced under the Apache-2.0 license and
publicly released at www.github.com/ifpen/wfcrl-env.

2.3.1 Online Learning

Environments implemented on both FLORIS and FAST.Farm can be used in an episodic learning
approach. This is the traditional setting of the RL problem, and we will refer to it as the Online
Learning Task. In Wind scenario I and III, we look at the evolution of the sum of rewards collected
over an episode. In Wind scenario II, where a different set of wind conditions is sampled at each
episode, we evaluate the policies on a predefined set of wind conditions and use a weighted average
as the final score. This gives us our evaluation score:

score(π1, . . . , πM) =

nw∑
j=1

ρj

T∑
k=0

rk (3)

where T is the length of the episode, nw is the number of wind conditions considered and the
ρ1, . . . , ρnw

are the weights on each conditions, with for all j, 0 < ρj < 1 and
∑nw

j ρj = 1. The
wind conditions distributions on which policies are evaluated need not be identical to the one from
which conditions were sampled during training.

2.3.2 Transfer

Exploration on real wind farms is costly: as prototype models are typically not available for large
wind farms, adjusting to the real dynamics of the system will require exploring in real time on an
operating wind farm. Every move of explorating in a suboptimal direction is a cost for the farm
operator. Learning efficient policies offline that can quickly adapt to the real system is therefore
critical. Since the dynamic FAST.Farm simulator is considered a higher fidelity version of the static
simulator FLORIS, we propose to use the former as a proxy of a real wind farm to evaluate the
robustness of policies learned on the latter, and their ability to adjust to the real dynamics of a farm.
We will refer to this as the Transfer Task.

2.3.3 Algorithms

We consider two state-of-the-art algorithms IPPO (Independent PPO) and MAPPO (Multi-Agent
PPO) introduced in [8, 45]. Both are based on the on-policy PPO algorithm [33]. In [45], it was found
that PPO-based methods can perform very well when extended to cooperative multi-agent tasks,
outperforming algorithms specifically designed for cooperative problems like QMIX [32]. Following

6

www.github.com/ifpen/wfcrl-env

an approach called independent learning, IPPO builds on PPO by allowing every agent to run a PPO
algorithm in parallel. On the other hand MAPPO maintains both M agent policies taking actions
based on local information and a shared critic, which estimates the value of a global observation. The
choice of the global observation fed to the critic is an important factor influencing the performance of
the algorithm [45]. We follow the recommendations of [45] to adapt PPO to the multi-agent case.
They suggest to include both local and global observation features to the value function input. We
therefore feed to our shared critic network the full global observation introduced in Section 2.2, that
is both the of concatenation of all local observations and the free-stream wind velocity.

For implementation, we adapt the CleanRL 2 [17] baseline implementations of PPO to our multi-agent
Petting Zoo environments. Although our analysis for the benchmark case considered in Section 3
focuses on PPO-based algorithms, implementations of two other baselines, Independent Q-Learning
(IQL) and QMIX [32], are also available.

3 Benchmark example: the maximization of the total power production

We consider the problem of finding the optimal yaws to maximize the total power production under
a set of wind conditions, and taking into account the costs induced by turbine fatigue load. This
problem is known as the wake steering problem, and is an active area of research in the wind energy
literature [15, 16].

3.1 Problem formulation

Actions and observations Local observations include the local yaw and local wind statistics. The
concatenation of all local observations along with free-stream wind statistics in the global observation
is as described in Section 2.2. Recall that actions are defined as increase or decrease in the actuator
target value. In this problem, all agents control their yaws, and we define the continuous action space
[−5, 5], defining changes in yaw angle expressed in degrees. To constraint the load on the turbines
caused by the control strategies and reduce its impact on the lifetime of the turbines, the time each
turbine spends actuating is limited. We choose the upper bound of 10% of the time, which is the
same upper bound value discussed in [31]. At every iteration, the time needed to change the state of
the actuator is computed, and any action violating this condition is not allowed.

Rewards At each iteration k, all agents receive a reward rPk which is the currently measured
production of the wind farm in kW divided by the number of agents and normalized by the free-
stream wind velocity:

rPk =
1

M

M∑
i

P̂ i
k

(u∞,k)3
(4)

where P̂ i
k is the measured power production and u∞,k the free-stream wind velocity at time-step k.

To discourage agents from taking risky policies damaging the turbines, we also return a load penalty
rLk which increases with the sum of loads on all the turbine blades.

FLORIS does not provide estimates of the loads on structures. Instead, we evaluate the impact of
actuations on loads with a proxy based on local estimates of turbulence and velocities on the surface
of the rotor planes. Our proxy takes into account 2 factors increasing stress on wind turbine structures
as noted in [39]: first, the turbulence of the wind and second, the variation of velocities on the turbine
rotor. We therefore define the load penalty in FLORIS environments as

rLk,S =
1

M

M∑
i

 9∑
j

TIk[xi,j , yi,j] + σ(uk) + σ(vk) + σ(wk)

 (5)

where TIk is the turbulence field at time-step k, uk, vk and wk are respectively the x, y and z
components of the velocity field at time-step k, and the xi,j define the coordinates of the 9×M grid
points at which these values are computed for the M rotor planes. σ denotes the standard-deviation.
For FAST.Farm, we use the estimates of the the blades’ bending moment strength as a proxy for the

2https://github.com/vwxyzjn/cleanrl

7

4 6 8 10 12 14 16 18

2

1

0

1

2

(a) Ablaincourt Layout

� � � � � �

���������� ���

����

����

����

����

����

����

����

����

��

��
��

��
��

��
�

���
�	��

(b) Episode Reward

� � � � 	

�����!"��! ��

��

���

��

��

�

���

�#
�

��
��

��
$

�
���

�
��

����
�����
� ���%

(c) Power (MWH)

� � � � � �

���������� ���

��	�

��
�

��
�

����

����

����

����

�!
��
��

��
��

��
��
��
 �

���
�����

(d) Load Indicator

Figure 2: The evolution of episode reward, average power output and average load on the Ablaincourt
environment, simulated with FLORIS. A visual representation of the layout is in (a), where the
coordinates are in wind turbine diameters. The evolution of the episode reward is reported in (b), the
power output averaged on an episode length (here T=2048) is reported on the (c) and the loading
indicator is on (d). The curves are plotted for all 5 seeds.

structural loads induced on the turbines, and define the load penalty as

rLk,D =
1

M

M∑
i

(
3∑
j

|Mopk[i, j]|+
3∑
j

|Mipk[i, j]|

)
(6)

where Mopk is the M × 3 matrix of out-of-plane bending moments for the 3 blades of every turbine
at time-step k, and Mipk is the corresponding matrix of in-plane bending moments.

Both rewards are common to all turbines, and all must therefore maximize (2) with rk = (rPk −αrLk),
where α is a weighting parameter. By default, the value of α is 0.1, corresponding to the value for
which rPk and αrLk are of the same magnitude. We downscale the load penalty to account for the
difference in magnitude between current production energy and load-induced maintenance cost for
wind energy projects.

Wind conditions We focus here on Wind Scenarios I and II. To evaluate the algorithms with
score (3), we need to choose weights ρj . We use data acquired during the SmartEole project at the
location of the Ablaincourt wind farm [11]. It consists of estimates of free-stream wind direction and
velocity computed from measures taken during a 3 months field campaign every 10 min. Since in real
conditions wind velocity and wind direction are correlated, we compute the bi-dimensional histogram
for the two variables, taking 5 bins for each dimension. We obtain a set of 25 wind condition rectangle.
The wind condition w1, . . . , wj are the center of each rectangle, and the corresponding weights ρj
are defined as the frequencies at which wind conditions in the time series appeared in the rectangle.

8

� � � � � �

���������� ���

����

����

����

����

����

	
��

��
��

��
��

�
��

��

�
���

(a) Turb3Row1

� � � � � �

���������� ���

����

����

����

����

����

����

����

����

����

��
��
��
��
��
�
��
��

���
�	��

(b) Ablaincourt

Figure 3: Evolution of the evaluation score, defined in (3), during the training of IPPO an MAPPO
on the two environments Turb3Row1 (left) and Ablaincourt (right).

3.2 Results

We apply algorithms IPPO and MAPPO available in WFCRL to our benchmark example. We
distinguish two scenarios, the first (resp. second) is trained with the wind scenario I (resp. II)
described in section 2.1. Both are learned with the static simulator FLORIS. For the first scenario,
the score is reward obtained on a single policy rollout of 2048 steps in the environment. Results
with on the Ablaincourt layout are given in Fig. 2. For the second scenario, the score is the
one defined in (3). The training curves for the the Ablaincourt and the Turb3Row1 layouts are
illustrated in Fig. 3. A table detailing training scores at convergence is available in Appendix F and
hyper-parameters are given in Appendix D. The code to reproduce all experiments is available at
www.github.com/ifpen/wfcrl-benchmark.

To illustrate the Transfer case, we then deploy the learned IPPO policies on a Turb3Row1 on 40k steps
(1 day in simulated time) in the corresponding FAST.Farm environment. We report in Appendix F.1
the average the evolution of power output and load, and compare it to a naive deployment of strategies
learned online. Our results illustrate the difficulty of adapting learned policies to unseen dynamics.

4 Limitations

As noted in Section 2, the choice of the simulators included in WFRCL has been made on the
criteria of fidelity, computation cost, popularity and availability in open source. Both FLORIS and
FAST.Farm are developed and actively maintained by the US-based National Renewable Energy
Laboratory 3, and have a large user base among wind energy researchers. FAST.Farm was explicitly
designed to provide good fidelity at a limited computation cost [20]. Despite this, dynamic wind
farm simulators remain slow. The development and open-sourcing of faster dynamic simulators will
be critical. Machine-learning accelerated simulators could be an important step in that direction.
Moreover, although FAST.Farm has been extensively validated against both real wind farm data and
high-fidelity simulations (see Appendix A), there has been to the best of our knowledge no explicit
investigation of the transfer of yaw optimization results from FAST.Farm simulations to a real wind
farm.

5 Conclusion

We have introduced WFCRL, the first open reinforcement learning suite of environments for wind
farm control. WFCRL is highly customizable, allowing researchers to design and run their own
environments for both centralized and multi-agent RL. It is interfaced with two different wind farm
simulators: a static simulator FLORIS and a dynamic simulator FAST.Farm. They can be used to
design transfer learning strategies with the goal to learn robust policies that can adapt to unseen
dynamics. We have proposed a benchmark example for wind power maximization with two wind

3https://www.nrel.gov/

9

www.github.com/ifpen/wfcrl-benchmark

condition scenarios that take into account the costs induced by wind turbine fatigue. We hope that
WFCRL will help building a bridge between the RL and wind energy research communities.

10

References
[1] Mahdi Abkar, Navid Zehtabiyan-Rezaie, and Alexandros Iosifidis. Reinforcement learning for

wind-farm flow control: Current state and future actions. Theoretical and Applied Mechanics
Letters, 13(6):100475, 2023.

[2] Ramon Abritta. https://zenodo.org/records/10927983, 2023.

[3] Cristina L. Archer, Ahmadreza Vasel-Be-Hagh, Chi Yan, Sicheng Wu, Yang Pan, Joseph F.
Brodie, and A. Eoghan Maguire. Review and evaluation of wake loss models for wind energy
applications. Applied Energy, 226:1187–1207, 9 2018.

[4] R. J. Barthelmie, S. C. Pryor, S. T. Frandsen, K. S. Hansen, J. G. Schepers, K. Rados, W. Schlez,
A. Neubert, L. E. Jensen, and S. Neckelmann. Quantifying the impact of wind turbine wakes
on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology,
27(8):1302 – 1317, 2010.

[5] Claire Bizon Monroc, Ana Bušić, Donatien Dubuc, and Jiamin Zhu. Actor critic agents for
wind farm control. In 2023 American Control Conference (ACC), pages 177–183, 2023.

[6] Sjoerd Boersma, Bart M Doekemeijer, Pieter MO Gebraad, Paul A Fleming, Jennifer Annoni,
Andrew K Scholbrock, Joeri Alexis Frederik, and Jan-Willem van Wingerden. A tutorial on
control-oriented modeling and control of wind farms. In 2017 American control conference
(ACC), pages 1–18. IEEE, 2017.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? 2020.

[9] Zhiwen Deng, Chang Xu, Xingxing Han, Zhe Cheng, and Feifei Xue. Decentralized yaw
optimization for maximizing wind farm production based on deep reinforcement learning.
Energy Conversion and Management, 286:117031, 2023.

[10] Hongyang Dong and Xiaowei Zhao. Reinforcement learning-based wind farm control: Toward
large farm applications via automatic grouping and transfer learning. IEEE Transactions on
Industrial Informatics, 19(12):11833–11845, 2023.

[11] Thomas Duc, Olivier Coupiac, Nicolas Girard, Gregor Giebel, and Tuhfe Göçmen. Local
turbulence parameterization improves the jensen wake model and its implementation for power
optimization of an operating wind farm. Wind Energy Science, 4(2):287–302, 5 2019.

[12] PMO Gebraad, FW Teeuwisse, JW van Wingerden, PA Fleming, SD Ruben, JR Marden, and
L.Y Pao. Wind plant power optimization through yaw control using a parametric model for
wake effects - a cfd simulation study. Wind Energy, 19(1):95 – 114, 2016.

[13] T. Göçmen, F. Campagnolo, T. Duc, I. Eguinoa, S. J. Andersen, V. Petrović, L. Imširović,
R. Braunbehrens, J. Liew, M. Baungaard, M. P. van der Laan, G. Qian, M. Aparicio-Sanchez,
R. González-Lope, V. V. Dighe, M. Becker, M. J. van den Broek, J.-W. van Wingerden, A. Stock,
M. Cole, R. Ruisi, E. Bossanyi, N. Requate, S. Strnad, J. Schmidt, L. Vollmer, I. Sood, and
J. Meyers. Farmconners wind farm flow control benchmark – part 1: Blind test results. Wind
Energy Science, 7(5):1791–1825, 2022.

[14] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian, Florian
Golemo, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, et al. Sim2real in robotics
and automation: Applications and challenges. IEEE transactions on automation science and
engineering, 18(2):398–400, 2021.

[15] Daniel R Houck. Review of wake management techniques for wind turbines. Wind Energy,
25(2):195–220, 2022.

11

https://zenodo.org/records/10927983

[16] Michael F. Howland, Sanjiva K. Lele, and John O. Dabiri. Wind farm power optimization
through wake steering. Proceedings of the National Academy of Sciences, 116(29):14495–14500,
2019.

[17] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[18] J Jonkman, P Doubrawa, N Hamilton, J Annoni, and P Fleming. Validation of FAST.farm
against large-eddy simulations. Journal of Physics: Conference Series, 1037:062005, 6 2018.

[19] Jason Jonkman, Sandy Butterfield, Walter Musial, and George Scott. Definition of a 5-mw
reference wind turbine for offshore system development. Technical report, National Renewable
Energy Lab.(NREL), Golden, CO (United States), 2009.

[20] Jason M Jonkman, Jennifer Annoni, Greg Hayman, Bonnie Jonkman, and Avi Purkayastha.
Development of fast. farm: A new multi-physics engineering tool for wind-farm design and
analysis. In 35th wind energy symposium, page 0454, 2017.

[21] Elie Kadoche, Sébastien Gourvénec, Maxime Pallud, and Tanguy Levent. Marlyc: Multi-agent
reinforcement learning yaw control. Renewable Energy, 217:119129, 2023.

[22] Ali C. Kheirabadi and Ryozo Nagamune. A quantitative review of wind farm control with
the objective of wind farm power maximization. Journal of Wind Engineering and Industrial
Aerodynamics, 192:45–73, 2019.

[23] Matthias Kretschmer, Jason Jonkman, Vasilis Pettas, and Po Wen Cheng. Fast. farm load
validation for single wake situations at alpha ventus. Wind Energy Science Discussions, 2021:1–
20, 2021.

[24] Jaime Liew, Tuhfe Göçmen, Wai Hou Lio, and Gunner Chr. Larsen. Model-free closed-loop
wind farm control using reinforcement learning with recursive least squares. Wind Energy,
2023.

[25] Nicholas W. Miller and Kara Clark. Advanced controls enable wind plants to provide ancillary
services. In IEEE PES General Meeting, pages 1–6, 2010.

[26] C Bizon Monroc, A Bušić, D Dubuc, and J Zhu. Towards fine tuning wake steering policies in
the field: an imitation-based approach. In Journal of Physics: Conference Series, volume 2767,
page 032017. IOP Publishing, 2024.

[27] Grigory Neustroev, Sytze PE Andringa, Remco A Verzijlbergh, and Mathijs M De Weerdt.
Deep reinforcement learning for active wake control. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems, pages 944–953, 2022.

[28] NREL. Openfast documentation, 2022.

[29] Venkata Ramakrishna Padullaparthi, Srinarayana Nagarathinam, Arunchandar Vasan, Vishnu
Menon, and Depak Sudarsanam. Falcon-farm level control for wind turbines using multi-agent
deep reinforcement learning. Renewable Energy, 181:445–456, 2022.

[30] Sara C Pryor, Rebecca J Barthelmie, and Tristan J Shepherd. Wind power production from very
large offshore wind farms. Joule, 5(10):2663–2686, 2021.

[31] Alban Puech and Jesse Read. An improved yaw control algorithm for wind turbines via
reinforcement learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 614–630. Springer, 2022.

[32] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

[34] Kelsey Shaler, Mithu Debnath, and Jason Jonkman. Validation of fast. farm against full-scale
turbine scada data for a small wind farm. In Journal of Physics: Conference Series, volume
1618, page 062061. IOP Publishing, 2020.

[35] Kelsey Shaler and Jason Jonkman. Fast. farm development and validation of structural load
prediction against large eddy simulations. Wind Energy, 24(5):428–449, 2021.

[36] Coen-Jan Smits, Jean Gonzalez Silva, Valentin Chabaud, and Riccardo Ferrari. A fast.farm and
matlab/simulink interface for wind farm control design. Journal of Physics: Conference Series,
2626(1):012069, oct 2023.

[37] Paul Stanfel, Kathryn Johnson, Christopher J. Bay, and Jennifer King. A distributed reinforce-
ment learning yaw control approach for wind farm energy capture maximization. In 2020
American Control Conference (ACC), pages 4065–4070, 2020.

[38] Paul Stanfel, Kathryn Johnson, Christopher J. Bay, and Jennifer King. Proof-of-concept of a
reinforcement learning framework for wind farm energy capture maximization in time-varying
wind. Journal of Renewable and Sustainable Energy, 13(4), 8 2021.

[39] A. P. J. Stanley, J. King, C. Bay, and A. Ning. A model to calculate fatigue damage caused by
partial waking during wind farm optimization. Wind Energy Science, 7(1):433–454, 2022.

[40] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:15032–15043, 2021.

[41] Kenneth Thomsen and Poul Sørensen. Fatigue loads for wind turbines operating in wakes.
Journal of Wind Engineering and Industrial Aerodynamics, 80(1):121–136, 1999.

[42] P. Veers, K. Dykes, S. Basu, A. Bianchini, A. Clifton, P. Green, H. Holttinen, L. Kitzing,
B. Kosovic, J. K. Lundquist, J. Meyers, M. O’Malley, W. J. Shaw, and B. Straw. Grand
challenges: wind energy research needs for a global energy transition. Wind Energy Science,
7(6):2491–2496, 2022.

[43] Timothy Verstraeten, Pieter-Jan Daems, Eugenio Bargiacchi, Diederik M. Roijers, Pieter J.K.
Libin, and Jan Helsen. Scalable optimization for wind farm control using coordination graphs.
In Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent
Systems, AAMAS ’21, page 1362–1370, Richland, SC, 2021. International Foundation for
Autonomous Agents and Multiagent Systems.

[44] Timothy Verstraeten, Pieter JK Libin, and Ann Nowé. Fleet control using coregionalized
gaussian process policy iteration. 24th European Conference on Artificial Intelligence - ECAI
2020, 2020.

[45] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

[46] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

13

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 3.2 for a Discussion
of the limitations of our work

(c) Did you discuss any potential negative societal impacts of your work? [N/A] To the
best of our knowledge our work does not have any potential negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] Yes, we believe our paper conform to the ethics review guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We have not
included theoretical results

(b) Did you include complete proofs of all theoretical results? [N/A] We have not included
theoretical result

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] Yes, all
code and instructions needed to reproduce the experimental results are included in the
supplementary material in Appendix D, along an URL to both the environment suite
and the training and evaluation scripts

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, see Appendix D as well as Section 3.2

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] Yes, all our results figures and tables either plot the
curves for all seeds like in Appendix F or report error bars like in Section 3.2

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Of course, for both
simulators in Section 2.1 and base RL algorithms implementations in Section 2.3.3

(b) Did you mention the license of the assets? [Yes] See Appendix I.1
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See Appendix C
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] See Appendix I.1, we only use open-source wind data and
software dependencies

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] This is not relevant to our work.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] We have not used crowdsourcing or conducted research with human
subjects

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] We have not used crowdsourcing or
conducted research with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] We have not used crowdsourcing or con-
ducted research with human subjects

14

(a) FLORIS

(b) FAST.Farm

Figure 4: Wind velocity field for the simulation of our 3-turbines layout on the 2 simulators: FLORIS
and FAST.Farm.

A Difference between FLORIS and FAST.Farm

Wind farm models serve two main purposes, in the broader literature as in WFCRL. First, when
experiments on real wind farms or tunnel experiments on scaled farms are not possible, they are the
only way to evaluate and compare control strategies by predicting their impact on the total power
output of a farm. For that purpose, the value of models lie in their accuracy, and the best results are
achieved by complex dynamic models involving costly computations. Secondly, a model of the farm
can be used to estimate an optimal command. Here, accuracy must be balanced by tractability, and a
constraint on computation time arises for real-time optimization. Of course, evaluating the command
on the model used to derive it will likely overestimate its performance: it should rather be evaluated
on an other, higher fidelity model which will serve as a substitute for the real farm.

Static models estimate the time-averaged features of the wind flow while ignoring the dynamics
of short-term effects, including wake propagation time and wake meandering. They rely on the
design of an analytical solution to predict wind speed deficit at a downwind turbine with respect to an
upstream turbine [3]. This gives them the advantage of a very low computation time, as they usually
return a solution instantaneously. The wind farm simulation software FLORIS (NREL 2021), created
and maintained by the National Renewable Energy Laboratory (NREL), proposes a variety of such
models in a single Python framework, and has become a reference for wind farm control engineering.
These parametric models combine several components to estimate the effects of turbine yaws on both
the redirection of the wake behind the turbine and the velocity in the wake. An example of such a
simulation can be found on Figure 4a.

At higher accuracy and higher computational complexity is FAST.Farm [20]. It relies on OpenFAST
(NREL 2022) to model the dynamics of each individual turbine, but considers additional physics to
account for farm-wide ambient wind, as well as wake deficits, propagation dynamics and interactions
between different wakes. It supports the implementation of controllers tracking a received yaw
reference for each turbine. Figure 4b provides an example of these realistic wind fields.

FAST.Farm has been shown to be of similar accuracy with high-fidelity large-eddy simulations with
much less computational expense. It has been validated against both real wind farm data [34, 23] and
Large Eddy Simulations [18, 35]. Power predictions match real measurements within 2-7% error on
average [34], although the error can reach 18% for downstream turbines under low free-stream wind
speeds. Load predictions are within 10% of groundtruth values, with errors reaching 25% for certain
wind directions [35]. Predictions always respect trends in power and load changes: under the same
wind conditions, yaws that lead to increases in power output in simulations also lead to increases in
real wind farms.

15

B Details of the FAST.Farm interface

The Python-FAST.Farm interfacing tool relies on two interfaces with RECEIVE and SEND functions.
Following [36] in which the authors designed an interface between FAST.Farm and Matlab based on
the MPI communication protocol, we rely on an MPI communication channel between the Python
and FAST.Farm processes. We choose to let the Python process spawn a new child process to launch
the FAST.Farm simulation in the background, allowing the user to only interface with Python. The
architecture of the interfacing tool is illustrated in Figure 5.

At every iteration, the FAST.Farm interface retrieves 12 measures per turbine:

• 2 wind measurements: wind velocity and direction at the entrance of the farm. The wind
direction is estimated by subtracting the yaw estimation error from the current yaw measure.

• The current output power of the turbine
• The yaw of the turbine
• The pitch of the turbine
• The torque of the turbine
• 6 measures of blade loads: the out-of-plane bending moment estimate for each blade, and

the in-plane bending moment estimate on each blade

and sends the 3 control targets - yaw, pitch, torque - to each local turbine controller. Other actuators
that are not controlled by the RL algorithm are controlled by the default naive FAST.Farm controllers.

Simulator

Agent

Simulator
Interface

Wind farm
model

receivesend

send

MPI CommunicationPython program

Python
interface

Control references:

rewardsactions

actions

states

RL Loop

PettingZoo
Environment

wind
statistics

production
statistics

receive

Simulated measures:

pitch
torque

wind directions
power outputs
loads on blades

yaws

wind speeds

Figure 5: Schema: interfacing infrastructure between FAST.Farm and Python

Free-stream wind speed and direction are estimated as the wind measurements at the wind turbine
with the highest wind speed. Since inflow wind can be turbulent, all estimates are averaged over a
period of time defined by the buffer_window parameter.

16

C Characteristic of all environments

Centralized Control Decentralized Control
Floris LayoutName_Floris Dec_LayoutName_Floris

FAST.Farm LayoutName_Fastfarm Dec_LayoutName_Fastfarm
Table 3: Creating environment IDs: Prefix, Root, Suffix

For preregistered layouts, every environment is characterized by a tuple of 3 options, and every
environment ID is a combination of the corresponding 3 parts: a prefix, a root, and a suffix.

• The choice to formalize it as a centralized or decentralized control problem. Environments
with centralized control are Gymnasium environments and expect global actions, i.e. vectors
concatenating all actions, and have no prefix. Environments with decentralized control are
PettingZoo environments and expect local actions sent by each agent. They have the prefix
Dec.

• The choice of the layout, i.e. the arrangement of wind turbines in the field. A list of all
layouts is given in Table 4, and a visual overview of them in Appendix H. The name of the
layout is the root of the environment ID.

• The choice of a simulator. Two simulators are for now implemented in WFCRL: the static
FLORIS and the dynamic FAST.Farm. The corresponding suffix Floris or Fastfarm is
appended to the environment ID.

Layout Name # Agents Description

Ablaincourt 7 Inspired by layout of the Ablaincourt farm
in France, (Duc et al, 2019)

Turb16_TCRWP 16 Layout of the Total Control Reference Wind Power Plant
(TC RWP) (the first 16 turbines)

Turb6_Row2 6 Custom case -
2 rows of 6 turbine

Turb16_Row5 16 Layout of the first 16 turbines in the
CL-Windcon project as implemented in WFSim

Turb32_Row5 32 Layout of the farm used in the
CL-Windcon project as implemented in WFSim

TurbX_Row1 for X in [1, 12] X Procedurally generated single row layout with X turbines,
spaced by 4D with the D the diameter of the turbine.

Ormonde 31 Layout of the Ormonde Offshore Wind Farm
WMR 36 Layout of the Westermost Rough Offshore Wind Farm

HornsRev1 76 Layout of the Horns Rev 1 Offshore Wind Farm
HornsRev2 92 Layout of the Horns Rev 2 Offshore Wind Farm

Table 4: Preregistered layouts: name, number of agents, and description

17

D Environment and Training procedure details

The source code for the WFCRL package is open-sourced under the license Apache v2, and publicly
released here www.github.com/ifpen/wfcrl-env, along with notebook tutorials and documenta-
tion. An example of code snippet allowing the creation of the Floris Ablaincourt environment with
decentralized control is given below:

from w f c r l i m p o r t e n v i r o n m e n t s a s envs
env = envs . make (" D e c _ A b l a i n c o u r t _ F l o r i s ")

The code to reproduce all experiments is available here www.github.com/ifpen/
wfcrl-benchmark. We report in Table 5 the hyper-parameters used for both algorithms.

Parameter Value
learning_rate 0.0003

gamma 0.99
gae_lambda 0.95

num_minibatches 32
update_epochs 10

norm_adv True
clip_coef 0.2
clip_vloss True
ent_coef 0.0
vf_coef 0.5

max_grad_norm 0.5
target_kl None
kl_coef 0.0

hidden_layer_nn (64, 64)
num_steps 2048
anneal_lr True

batch_size 2048
minibatch_size 64
num_iterations 24

Table 5: Experiment Hyperparameters

The experiments were run on 3 different computers. The first computer, which has no GPU and a
Intel Xeon Gold 6240Y processor, was used to train IPPO and MAPPO on Wind Scenario I during
1 week. On the second computer, an internal cluster with a GPU Quadro RTX 6000 24Go, 1 week
of compute was used to to train experiments of Wind Scenario II. The last computer which has a
Intel Xeon Gold 6240Y processor and a GPU Quadro RTX 6000 24Go was used for training models
during 3 days of compute on Wind Scenario I, and for evaluation purposes.

18

www.github.com/ifpen/wfcrl-env
www.github.com/ifpen/wfcrl-benchmark
www.github.com/ifpen/wfcrl-benchmark

E Score: wind rose and weights

In this section we illustrate the use of wind statistics from the SMARTEOLE dataset to extract
wind conditions weights ρ of the evaluation score (3). In Figure 6a, we report the distribution of
wind velocity and direction in the SMARTEOLE dataset. In Figure 6b, we show the corresponding
extracted weights ρ for the 25 corresponding wind conditions.

(a) Wind conditions in SMARTEOLE

(b) ρi extracted from SMARTEOLE

Figure 6: Extraction of the ρi weights from the SMARTEOLE dataset. The empirical distribution
of wind speed and direction in the data represented as a windrose is in (a), and the corresponding
extracted weights ρi given to each of the 25 wind conditions are in (b).

19

F More benchmark results

F.1 Evaluation and transfer on FAST.Farm

We evaluate the agents trained on the FLORIS environments by rolling out their determinist policies
in this new environment (they always pick the likeliest action under their policy functions). On
this task, we simulate a 900 steps episode of the Turb3Row1 layout on FAST.Farm (environment
Dec_Turb3_Row1_Fastfarm). The average rewards collected during the episode are in Table 6.

For the Transfer task, we pursue the training in the new environments, and report the evolution of the
power and load compared to the Eval case in Figure 7 for the agents trained under IPPO. We simulate
a day of training on FAST.Farm, correponding to 28800 steps in the environment. During the Eval

� 	 �� �	 �� �	

�����

���

��

���

���

��
��

��
��

��
�

��
���

�
��

���
��������

(a) Power

� � �� �� �� ��

�����

����

����

����

����

����

	�
��
��
��
��
��
��
��
��

���
�������

(b) Load

Figure 7: Evaluation and transfer on FAST.Farm: evolution of power (left) and load (Right) on the
Dec_Turb3_Row1_Fastfarm environment with respect to the greedy case. Results are reported for 5
seeds.

IPPO MAPPO
Turb3Row1 (Sc. 1) 1238± 24 1369± 41
Turb3Row1 (Sc. 2) 1607± 41 1369± 124

Table 6: FAST.Farm evaluation task

task, policies learned on FLORIS deployed on the dynamic simulator achieve an increase of 15%
in power production over the baseline. We know from existing literature that on Turb3Row1, there
exists a policy that reaches an increase of 21% [26]. The difference in performance suggests that we
could benefit from further fine-tuning these policies on the dynamic simulation. However, the simple
transfer learning strategy pursued during the Transfer task degrades the performance of the policies
when learning online, reaching an average of 0% increase over the greedy baseline at the end of the
experiments. This illustrates the challenge of designing robust methods to bridge the gap between
simple simulators and complex real world dynamics.

F.2 Some more training results

In this section we report more benchmark results. The training curves of IPPO and MAPPO under
Wind Scenario I on the Turb3_Row1 layout are in Figure 8. Table 7 summarizes the results at
convergence: both on the total score and the increase or decrease in average power of load compared
to the greedy baseline, for both the Turb3Row1 and Ablaincourt layouts.

20

� � � � � �

���������� ���

���

���

���

��	

��

��
��

��
��

�
��

��
�

����
����

(a) Episode Reward

� � � � 	

�����!"��! ��	

��	

��

���

���

��

���

���

���

�#
�

��
��

��
$

�
���

�
��

����
�����
� ���%

(b) Average Power Output

� � � � � �

���������� ���

��	�

��	�

��
�

��
�

����

����

�!
��
��
��
��
��
��
��
 �

���
�����

(c) Load Indicator

� � � � � �

���������� ���

����

����

����

����

����

����

����

����

�
��

��
��

�
��

��
�

���
�	��

� � � � 	

�����!"��! ��

��

���

��

��

�

���

�#
�

��
��

��
$

�
���

�
��

����
�����
� ���%

� � � � � �

���������� ���

��	�

��
�

��
�

����

����

����

����

�!
��
��
��
��
��
��
��
 �

���
�����

Figure 8: Evolution of episode reward, average power output and average load on the layout
Turb3Row1 (top) and Ablaincourt (down) simulated with FLORIS. The evolution of the episode
reward is reported on the first column (a), the power output averaged on an episode length (here
T=2048) is reported on the second column (b) and the loading indicator is on column (c).

IPPO MAPPO
Score Power (%) Load (%) Score Power (%) Load (%)

Turb3. (Sc. 1) 3431 ± 138 +18± 5 +30± 11 3362± 135 +15± 5 +27± 12
Turb3. (Sc. 2) 5501 ± 86 - - 4757± 164 - -

Abl. (Sc. 1) 3968± 29 +5± 1 −15± 2 4035 ± 7 +7± 0.3 −16± 3
Abl. (Sc. 2) 4430 ± 22 - - 3808± 275 - -

Table 7: Results at the end of training IPPO and MAPPO, on 50k and 500k time-steps for Turb3Row1
(Turb3. in the table) and Ablaincourt (Abl. in the table) respectively. Sc. 1 (resp Sc. 2) corresponds
to the firts Wind Scenario I (resp. II).

21

G Wind farm as a graph

Knowledge of the farm layout and incoming wind direction can be exploited to represent wake
interactions between wind turbines as a time-varying graph. In particular, under any given free-stream
wind conditions, agent interaction structure can be modeled as a Directed Acyclic Graph. This is
illustrated on Figure 9.

ω

Figure 9: A wind turbine (purple) and its descendants in a wind turbine interaction DAG

22

H Visual Overview of Layouts

0 1 2 3 4 5 6 7 8

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(a) Turb6_Row2: 6 turbines

4 6 8 10 12 14 16 18

2

1

0

1

2

(b) Ablaincourt: 7 turbines

0 5 10 15 20 25

20

10

0

10

20

(c) Turb16_Row5: 16 turbines

0 5 10 15 20 25 30

6

4

2

0

2

4

6

(d) Turb_TCRWP: 32 turbines

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(e) Ormonde: 31 turbines

0 10 20 30 40 50 60

20

10

0

10

20

(f) Turb32_Row5: 32 turbines

30 40 50 60 70 80 90

20

30

40

50

60

70

(g) WMR: 36 turbines

0 10 20 30 40

15

10

5

0

5

10

15

(h) HornsRev1: 76 turbines

10 20 30 40
10

20

30

40

50

60

70

80

90

(i) HornsRev2: 92 turbines

0 1 2 3 4 5 6 7 8

0.04

0.02

0.00

0.02

0.04

(j) TurbX_Row1. X = 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.04

0.02

0.00

0.02

0.04

(k) X=6

0 10 20 30 40

0.04

0.02

0.00

0.02

0.04

(l) X = 12

Figure 10: Coordinates of each wind turbine for the pre-registered layouts in WFCRL. Distances are
in turbine diameters (126m for the NREL 5MW Reference turbine). The TurbX_Row1 toy layouts
are procedurally generated for any value of X between 1 and 12.

23

I Additional information on WFCRL

I.1 List of dependencies

We report in the table below the list of open-source Python packages and other open-source software
that WCFRL relies on.

Software License License Link
numpy Custom https://numpy.org/doc/stable/license.html
Gymnasium MIT https://github.com/Farama-Foundation/Gymnasium/blob/main/LICENSE
PettingZoo MIT https://github.com/Farama-Foundation/PettingZoo/blob/master/LICENSE
Floris Apache v2.0 https://github.com/NREL/floris/blob/main/LICENSE.txt
FAST.Farm (OpenFAST) Apache v2.0 https://github.com/OpenFAST/openfast/blob/main/LICENSE
mpi4py Custom https://github.com/erdc/mpi4py/blob/master/LICENSE.txt
Microsoft-MPI MIT https://github.com/microsoft/Microsoft-MPI/blob/master/LICENSE.txt
Open MPI BSD 3-Clause https://www.open-mpi.org/community/license.php
Seaborn BSD 3-Clause https://github.com/mwaskom/seaborn/blob/master/LICENSE.md
Matplotlib Custom - BSD-compatible https://matplotlib.org/stable/project/license.html
PyYAML MIT https://github.com/yaml/pyyaml/blob/main/LICENSE
Pandas BSD 3-Clause https://github.com/pandas-dev/pandas/blob/main/LICENSE

I.2 Licence

The WFCRL package is licensed under the Apache v2 license. The text of the license can be found
here: https://github.com/ifpen/wfcrl-env/blob/main/LICENSE.

I.3 Responsability

The authors bear all responsibility in case of violation of rights.

24

https://numpy.org/doc/stable/license.html
https://github.com/Farama-Foundation/Gymnasium/blob/main/LICENSE
https://github.com/Farama-Foundation/PettingZoo/blob/master/LICENSE
https://github.com/NREL/floris/blob/main/LICENSE.txt
https://github.com/OpenFAST/openfast/blob/main/LICENSE
https://github.com/erdc/mpi4py/blob/master/LICENSE.txt
https://github.com/microsoft/Microsoft-MPI/blob/master/LICENSE.txt
https://www.open-mpi.org/community/license.php
https://github.com/mwaskom/seaborn/blob/master/LICENSE.md
https://matplotlib.org/stable/project/license.html
https://github.com/yaml/pyyaml/blob/main/LICENSE
https://github.com/pandas-dev/pandas/blob/main/LICENSE
https://github.com/ifpen/wfcrl-env/blob/main/LICENSE

	Introduction
	WFCRL environments suite
	The simulation environments
	The MARL framework for the wind farm control problem
	Learning in WFCRL
	Online Learning
	Transfer
	Algorithms

	Benchmark example: the maximization of the total power production
	Problem formulation
	Results

	Limitations
	Conclusion
	Difference between FLORIS and FAST.Farm
	Details of the FAST.Farm interface
	Characteristic of all environments
	Environment and Training procedure details
	Score: wind rose and weights
	More benchmark results
	Evaluation and transfer on FAST.Farm
	Some more training results

	Wind farm as a graph
	Visual Overview of Layouts
	Additional information on WFCRL
	List of dependencies
	Licence
	Responsability

