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ABSTRACT

While Large Language Models (LLMs) hold promise to become autonomous
agents, they often explore suboptimally in sequential decision-making. Recent
work has sought to enhance this capability via supervised fine-tuning (SFT) or
reinforcement learning (RL), improving regret on the classic multi-armed bandit
task. However, it remains unclear how these learning methods shape exploration
strategies and how well they generalize. We investigate both paradigms by train-
ing LLMs with SFT on expert trajectories and RL with a range of tailored reward
signals including a strategic, regret-shaped reward to reduce variance, and an algo-
rithmic reward that enables oracle imitation. The resulting agents outperform pre-
trained models and achieve performance comparable to Upper Confidence Bound
(UCB) and Thompson Sampling, with robust generalization to 6x longer hori-
zons and across bandit families. Behavioral analysis reveals that gains often stem
from more sophisticated but greedier exploitation: RL/SFT agents are more prone
to early catastrophic failure than pre-trained models, prematurely abandoning ex-
ploration. Furthermore, agents trained to imitate UCB learn to outperform their
teacher by adopting more exploitative variants. Our findings clarify when each
training paradigm is preferable and advocate tailored reward design and evalua-
tion beyond average regret to promote robust exploratory behavior. []_-]

1 INTRODUCTION

A fundamental challenge in sequential decision-making problems lies in the exploration-exploitation
trade-off, where an agent must balance exploiting known good actions with exploring new ones to
discover potentially better options. The multi-armed bandit (MAB) problem serves as a classic,
formalized testbed for studying this critical behavior. Despite their sophisticated capabilities, Large
Language Models (LLMs) often struggle here, defaulting to short-sighted, greedy behavior that
over-exploits known rewards at the expense of exploration (Krishnamurthy et al., [2024; |[Schmied
et al.l 2025). While certain prompting configurations can elicit better performance from frontier
models like GPT-4, this inherent suboptimal bias remains a significant hurdle for most models.

To address this, two primary training paradigms have emerged for shaping LLM exploration be-
havior: Supervised Fine-Tuning (SFT) and RL. SFT teaches the LLM to mimic the behavior of an
optimal exploration algorithm, such as Upper Confidence Bound (UCB), by training on trajectories
of expert demonstrations. In contrast, RL enables the model to learn an effective policy directly
from environmental rewards. When trained to solve bandit instances that differ from those they
encountered during training, LLMs effectively become meta-bandit agents, acquiring meta-policy
capable of exploring novel environments (Kveton et al., | 2020). Prior works suggest that both meth-
ods can improve exploration capabilities in LLMs on in-distribution tasks, with SFT showing more
consistent results (Nie et al.l 2024} Schmied et al.,|2025). However, a deeper understanding of how
these training methods shape an agent’s strategy is lacking. It is unclear whether the policies induced
by SFT and RL differ mechanistically. More critically, how do these policies generalize to longer
horizons and out-of-distribution environments?

In this work, we train LLMs to perform MAB tasks using both SFT on expert trajectories and RL
with a spectrum of task-specific reward signals. We evaluate the performance of learned policies

"We will release all the code, model checkpoints for training and evaluation upon acceptance.



Under review as a conference paper at ICLR 2026

on a range of MAB environments, under length generalization and cross-distribution transfer (e.g.,
Gaussian to Bernoulli). In addition to the standard stochastic reward of bandits, we propose two
additional reward signals: a strategic reward based on the notion of regret to reduce training vari-
ance, and an algorithmic reward, which incentivizes imitation learning of an oracle policy like
UCB via RL. We find that both SFT and RL improve the base model’s performance on MAB tasks
in achieving lower regret and higher rewards, achieving comparable performance to theoretical op-
timal baselines like UCB and Thompson Sampling. For RL, the strategic reward improves training
efficiency in high-variance environments, while the algorithmic reward consistently outperforms
other learned policies due to the ease of credit assignment. Moreover, RL policies yield more robust
generalization across different bandit families compared to SFT. The policies also exhibit strong
generalization on 6 x longer (compared to training) and out-of-distribution environments.

While achieving lower regret is the canonical measure of success in MAB, classical literature cau-
tions that relying solely on this aggregate statistic can obscure important characteristics of the agent’s
behavior (Lattimore & Szepesvari, |2020). An agent might achieve a superior average performance
with a high-risk policy prone to catastrophic failure, a nuance that the expected outcome can over-
look. This prompts a deeper question: does a lower average regret achieved by the LLM policies
indicate the acquisition of a robust exploration strategy?

To answer this question, we analyze the agents’ action patterns and compare them to pre-trained
models and baselines like UCB and Greedy policies. We utilize surrogate statistics such as suf-
fix failure rate, which is highly suggestive of the long-term prospects of the agent (Krishnamurthy
et al.,[2024)). We find that the agents’ impressive improvements in performance are linked to learning
more sophisticated forms of exploitative behavior. For instance, agents trained via RL to imitate an
optimal UCB policy often outperform their teacher by implementing variants of UCB that can pre-
maturely stop exploring an action after unsatisfactory short-term rewards. This suggests that while
the training process maximizes average performance with reasonable generalization, it incentivizes
short-term reward seeking that can be counterproductive in the long run. The suitability of these
learned policies ultimately depends on whether an application prioritizes long-term robustness over
immediate returns, or average performance over worst-case scenarios.

In summary, we present a unified study of how SFT and RL shape LLM exploration in MAB, treat-
ing trained models as meta-bandit agents. We introduce two principled reward designs—strategic
(regret-shaped) rewards that stabilize learning in high-variance settings and algorithmic rewards that
enable efficient RL-based imitation of oracle policies, which both improve over baselines from prior
work (Schmied et al., |2025), with algorithmic rewards yielding the most consistent gains. Eval-
uations demonstrate robust generalization to 6x longer horizons and across bandit families, with
RL policies transferring more reliably than SFT. Beyond aggregate regret, our behavioral analysis
reveals mechanistic differences: learned policies often implement exploitative strategies that boost
average returns but can sacrifice long-term robustness.

2 RELATED WORK

The multi-armed bandit problem, despite being a classical abstraction, embodies the fundamental
exploration-exploitation trade-off central to sequential decision-making and has wide real-world
applications (Bouneffouf et al., 2020; [Bouneffouf & Feraud, [2025). As LLMs are increasingly
deployed in interactive settings, the MAB problem has become a key testbed for evaluating their
ability to incrementally gather information and improve over time, a paradigm known as In-Context
Reinforcement Learning (ICRL) (Moeini et al., [2025)).

Bandit problems have long been used to evaluate the generalizable ICRL capabilities of sequential
models like RNNs and Transformers (Duan et al.l 2016} [Laskin et al., [2023}; [Lee et al.l [2023). In
the LLM era, initial benchmarks found that pre-trained models can learn to explore simple MAB
problems in-context (Binz & Schulz, [2022; |Wu et al.| [2024; |Coda-Forno et al.l 2023} [Park et al.|
2025)). However, they exhibit unsatisfactory exploratory behavior in complex environments without
careful prompt engineering (Krishnamurthy et al., [2024; |Monea et al.l [2024). Subsequent work
has sought to address this through activation steering (Rahn et al., 2024) and fine-tuning (Tajwar
et al., 2025). [Nie et al.| (2024)) uses supervised fine-tuning (SFT) on expert trajectories to improve
performance, demonstrating successful generalization to different reward distributions within the
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same bandit class. More recently, [Schmied et al.| (2025) applies reinforcement learning to train
LLMs for bandit tasks, showing positive but weaker in-distribution results compared to SFT.

Our work provides a systematic comparison of these two learning paradigms. We demonstrate that
RL-trained agents, while matching SFT performance in-distribution, generalize more effectively to
out-of-distribution environments. More importantly, we move beyond simple performance compar-
isons to conduct a behavioral analysis that uncovers subtle but critical failure modes in how LLMs
learn to explore, highlighting previously unaddressed challenges.

3 METHODOLOGY Prompt with summary statistics

. In a 5-armed bandit problem, here are
A MAB problem B = (A, R) is defined as a set of arms the results of previous arm pulls:

,4. ={1,..., K}, where each arm i € A is associated Arm 0 1l pull, avg, reward ~01249
with a reward distribution R; and mean y;. The goal Arm 1: 2 pulls, ave. reward 0.281
of the agent is to maximize the expected cumulative re- Arm 2: 7 pulls, avg. reward 0.790

ward E[Zthl r¢] over T trials. During training, the agent | Arm 3: 3 pulls, avg. reward 0.279
learns from bandit instances sampled from an unknown | Arm4:7 pulls, avg. reward 1.015
task distribution D. We can evaluate the learning agent’s Which arm should be pulled next?
performance in-distribution by sampling bandit instances Show your reasoning in <think>
from D or out-of-distribution (OOD) on instances from </think> tags and vyour final answer
a different distribution D’. In training an agent to solve | In <answer> </answer> tags.
various bandit instances from a task distribution, we are
effectively searching for a meta-bandit policy (Kveton| Figure 1: An instruction provided to
et al.}[2020), which is a reinforcement learning problem.  the LLM agent for the MAB task.

3.1 REINFORCEMENT LEARNING OF META-BANDIT LLM AGENTS

At each bandit turn ¢, the LLM agent takes as input the interaction history consisting of past actions
and rewards in the observation o;, and generates a sequence of tokens s; which contains the action
of the next arm to pull a;. The environment then returns the stochastic reward r, ~ R,,. The
interaction history is then updated with 0,11 = f(o¢, a¢,7¢), where f can be a simple concatenation
or, in our case, a summarizer that extracts sufficient statistics as shown in The process is
repeated for T turns for each episode. As the agent learns over a history to build its belief about
the environment (e.g., distribution family and variance), this process forms a Partially Observable
Markov Decision Process (POMDP). It can be trained using on-policy RL to maximize episodic
return and thus learns an amortized exploration strategy over histories.

Unlike traditional RL policies that directly select actions, LLM agents operate in the token space.
This implementation converts the problem into a two-level hierarchical MDP (Hauskrecht et al.,
2013;Xue et al.,[2025)), where a high-level policy operates at the turn level to select a local policy that
generates the entire response s; and receives the external reward ;. The low-level policy operates
at the token level to implement the selected local policy. The probability of generating the token s; ;
at position j is given by: mg (s j|ot, S¢,<;) Where s; <; is the sequence of tokens generated in turn ¢
up to position j — 1. At turn ¢, the token index j ranges from J st = 0| + 1 t0 Jyena = |0¢] + |5¢].
We pass r; as the reward signal to the low-level policy at J; ¢nq, While there is no reward signal for
intermediate tokens.

To learn 7y, we adopt PPO (Schulman et al.|[2017)) and compute token-level advantages with a dual-
(7, A) Generalized Advantage Estimator (Schulman et al.,|2016). We use separate discount factors
and trace-decay coefficients for intra-turn and inter-turn steps, denoted “inga, Vinter a0d Ainra> Ainters
respectively. For simplicity, we define the token-level state at step j as hy; = (04, St,<;). The
one-step temporal difference (TD) error for each generated token index j is:

L {’Yimrav(ht,j+1) —V(h;) if Jystare < J < Jtend
J Ty + "YimerV(Ot-i-l) - V(ht,j) lf.] = Jt,end

For the final token at index Jy cnq, the error incorporates the external reward r; and bootstraps from
the value of the next turn’s initial state, V' (0;1), using the inter-turn discount factor ~in,. In prac-
tice, since we can only optimize over a truncated horizon for this infinite-horizon problem, we infer
the value of one more turn, V (o7 1) for the last turn 7T'.

(D
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The GAE advantage for token index j now accumulates TD errors over all subsequent generated-
token positions across the entire episode. Let x(7) denote the starting generated-token index in turn

. .
7 as seen from (¢, 7): k(1) = / nr t. Define the step-weighting product from (¢, j) to
JT,Start ifr>t
(1,k) as
— JIpena—1
P (t J,Ts k H 1nter'Yinter) H AintraYintra H AintraYintra
p=t u=r(p) u=r(T)

The token-level GAE advantage for (¢, j) is then:

7- end

ZZ (t, 5,7, k) 6k

7=t k=k(T)

With token-level advantages defined only for generated tokens, the clipped PPO objective is:

£70(0) = Bz [min (o3 (6) Au g, clip(reg(6),1— 1+ €) Ay )]

mo(st.51he.5)

Togq (st,51ht,5)
parameter at the previous iteration. This objective trains the policy at token level using the two-scale
GAE that respects intra-turn and inter-turn dynamics. We intentionally omit the KL-divergence
term, which is often employed in PPO as we find it to be unnecessary for our setting without a
learned reward model.

where the per-token probability ratio is r; ; () = . Here 60,4 is the reference policy

3.2 REWARD DESIGN

As described above, the meta-bandit agent relies solely on the past interaction history o; to generate
the next action. The interaction history o, is a summary of the past actions and rewards, which is tied
to the stochastic bandit rewards r; and cannot be changed. We can however opt for a different reward
signal for the PPO optimization in[Equation I| The original bandit rewards (RL-0G), although a
natural choice of reward signal for PPO optimization, contribute to credit assignment difficulty and
learning inefficiency due to their intrinsic stochasticity.

On the other hand, we can more accurately measure the optimality of an action based on the notion
of immediate regret. At each time step, the immediate regret is defined as the difference between
the expected reward of the optimal arm and the expected reward of the arm selected by the agent.
A; = p* — pa,. We define the strategic reward (RL—-STG) based on the immediate regret of the
agent’s action:

Ay pa, —ming g
Amax /1,* - mini 223

Fe=1-— € [0,1].

This reward signal directly optimizes an action’s utility, which simplifies credit assignment. Using
the realized regret as the reward is a form of baseline subtraction (Kveton et al.| 2020). We further
use the (pseudo) regret, which is analogous to introducing a control variate. While this approach
reduces variance, it theoretically does not alter the optimal policy to which the agent converges.

A third approach moves beyond extrinsic environmental rewards, instead using a reward function
optimized by an expert oracle (Ciosekl 2022). While this reward function often needs to be learned
via inverse reinforcement learning (Abbeel & Ng| [2004), we can bypass this by deriving it directly
from well-established optimal algorithms for MAB. We select the Upper Confidence Bound (UCB)
algorithm as the oracle policy, as its deterministic and distribution-agnostic properties provide a con-
sistent and unambiguous learning signal. We therefore define the algorithmic reward (RL-ALG)
as a binary signal 7, = 1 if the agent’s action matches the oracle’s decision Toracle(0t), and 14 = 0
otherwise. Because the UCB oracle is a reactive algorithm, this myopic reward is sufficient for
on-policy learning and sidesteps the need for return-based credit assignment. This imitation learn-
ing setup leaves the agent free to discover its own internal algorithm for processing the interaction
history to match the oracle’s choice at each step, without any supervision on the reasoning process.
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Demonstration of UCB calculation

<think> Let me calculate the UCB value for each arm after (1 +2 + 7 + 3 + 7) = 20 pulls:
Arm 0: Uncertainty bonus = 1/In(20)/1 a 1/2.996/1 ~ 1.731; UCB = —0.249+1/2 x 1.731 = 0.616
Details of Arm 1-3 omitted for brevity.
Arm 4: Uncertainty bonus = 1/In(20) /7 ~ /2.996/7 ~ 0.654; UCB = 1.015 + 1/2 x 0.654 = 1.342

Based on these calculations, I choose arm 4 as it has the highest UCB value. </think>
<answer> Arm 4 </answer>

Figure 2: An example of the UCB calculations for the state in|[Figure 1} used in SFT.

On top of these task specific rewards, we also consider a reward shaping term that encourages the
LLM agent to generate valid responses. Specifically, we set reward to zero if our parser cannot
extract a valid action and rationale from the response. For the stochastic reward setting (RL-0G),
because the unbounded reward is sometimes negative, we subtract 0.5 from the reward as the penalty
for invalid responses.

3.3 SUPERVISED LEARNING

We also consider a supervised fine-tuning (SFT) baseline, where the LLM agent is trained on
observation-response pairs. The response includes synthetic CoT demonstrations to explicitly cal-
culate UCB values and the UCB action (Figure 2). Here, both the rationales and the actions are
directly supervised. Since the states embodied by the observation are sampled from the UCB policy,
the learning process is off-policy.

4 EXPERIMENTAL SETUP

Language Model Configuration. We use Qwen 2.5 3B and 7B Instruct (Qwen et al., [2024) as
the base model for fine-tuning. The observation at each time step consists of a natural language
instruction of the MAB task and the interaction history presented as a summary of the number of
pulls and average reward for each arm (Figure T). We use this sufficient statistics to summarize the
interaction history, which has been shown to be more effective than using a cumulative context, e.g.,
a raw list of actions and rewards (Krishnamurthy et al., [2024])). In the instruction, the agent is asked
to think step-by-step using chain-of-thought reasoning, which is critical for eliciting the sequential
decision-making ability of LLMs (Yao et al., 2023).

RL Configuration. We build our RL training code on top of the VeRL framework (Sheng et al.,
2024). At each training iteration, we first sample a batch of 64 random environments from the
training task distribution D. From each environment, we collect a rollout of length 7" = 50, resulting
in a batch of 64 x 50 transitions (o, ¢, 7¢). This batch is then used to compute policy gradients and
perform PPO updates. We sample another set of environments for the next batch of rollouts.

Supervised Fine-Tuning (SFT). For the SFT experiments, we train the model for 6 epochs on 32k
transitions sampled from UCB rollouts in environments drawn from the training task distribution
D. Transitions are uniformly sampled across the length of training horizon 7. We synthesize a
templated response for each transition by demonstrating the step-by-step UCB value calculation for
each arm and the comparison process which leads to the final action. We perform full fine-tuning
minimizing the cross-entropy loss between the predicted and ground-truth responses.

Bandit Environments. We primarily consider MAB environments listed in Our ap-
proaches are also generalizable to a popular contextual bandit setup described in The
environments can be generally grouped into two families: Gaussian and Bernoulli, based on the
reward distribution. The Gaussian environments have continuous reward distributions, while the
Bernoulli environments have discrete binary reward distributions. We select one from each family
(i.e., Bernoulli5_ Uniform and Gaussian5_Varl MeanNO) as the two training task distri-
butions, under which we train two set of policies to test out-of-distribution generalization.
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Table 1: Generic families of k-armed MAB environments and some specific parameterizations used
in our study. Asterisk indicates the training task distributions.

Family Reward Dist.  Mean Dist. Example Instantiation
Gaussiank_Varo? MeanNm  r ~ N(u;,02)  u~ N(m,o2) Gaussian5_Varl_MeanNO*
Gaussiank_Varo?_MeanU r~N(ui,0?) u~U(0,1) Gaussian5_Varl_MeanU
Bernoullik_Uniform r ~ B(u;) u~U(0,1) Bernoulli5_Uniform*
Bernoullik_DeltaA r ~ B(u;) Ui = P, Bernoulli5_Delta0.2

u; =p—AVi £ "

Baselines. We compare learning agents against the following standard baselines:
1) Upper Confidence Bound (UCB) (Auer et al, [2002) selects the action A; =

arg max, (Qt(a) +C x ,/ﬁf’&), where @Q;(a) is the mean reward of action a up to time

t, N¢(a) is the number of times action a has been selected up to time ¢, and C' is a constant. 2)
Thompson Sampling (TS) (Thompson, 1933) is a Bayesian method that samples from the posterior
reward distribution of each action and selects the one with the highest sample. We use Beta and
Gaussian posteriors for Bernoulli and Gaussian rewards, respectively. 3) e-Greedy chooses a
random action with probability € and the action with the highest current mean reward otherwise.
While simple, its constant exploration leads to linear regret. The purely exploitative Greedy policy
is a special case where € = 0.

For UCB, which sometimes serves as a teacher, we use an exploration constant of C' = 0.5, which
performs well for both training environments. For e-Greedy, we use a standard € = 0.1; while likely
suboptimal, it provides a consistent anchor for comparison. The direct performance comparison
between learned agents and baselines is not the central focus of this study. The one exception is the
evaluation of our imitation learning agents against their UCB teacher.

Evaluation. We evaluate the policy over 64 episodes, each with a maximum of 300 steps. We use
a fixed set of 64 different seeds for initialization of evaluation environments and baseline policies.
To compare the policies and test for length generalization, we follow standard practice to report
cumulative regret at t € {50,300}. MAB instances, even when they are drawn from the same
distribution, can be quite different in terms of challenge level. Conventional empirical evaluation
aggregates from exccessive number of rollouts (e.g., ten of thousands) and long horizons, which
although provides a more stable estimate is prohibitively costly for LLM inference. We therefore
utilize distribution plots to visualize this variation in regret and focus on the typical performance in
comparison. To provide a more comprehensive evaluation, we supplement this with two additional
metrics: time-averaged reward and best arm frequency, which measure the proportion of times the
optimal arm is selected.

5 EXPERIMENTAL RESULTS

5.1 LLM AGENTS ARE META-BANDIT LEARNERS

As shown in [Figure 3] across both training setups, RL-trained policies improve upon pre-trained
models to be comparable with classical baselines (UCB, TS, e-Greedy), achieving lower cumulative
regret and length generalization to a 6x longer horizon (50 — 300). The time-averaged reward
(AvgReward) and best arm frequency (BestArmFreq) in indicate steady performance gains
over time. Learning agents remain competitive under OOD evaluation, exhibiting non-trivial cross-
distribution transfer from Gaussian-trained policies to Bernoulli environments and vice versa. How-
ever, RL agents that trained on environmental feedback (i.e., RL—OG and RL-STG) show weaker
cross-distribution generalization, with greater variability in worst-case performance. Following Nie
et al.| (2024), we adopt function fitting to measure the linearity versus sub-linearity of cumulative re-
gret through time. We find that pretrained LLM exhibits linear regret (similar to Greedy), while fine-
tuning greatly reduces the linearity, reaching levels comparable to or lower to UCB (Appendix B).
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Figure 3: Comparison of LLM policies against baselines on cumulative regret at 300 steps. The
first row shows the results of 7B models trained on Gaussian5_Varl_MeanNO, and the second
row shows the results of 7B models trained on Bernoulli5_Uniform. Evaluation is performed
both in- (first column) and out-of-distribution (other columns). The boxplots depict the median,
interquartile range (IQR) from the 25" to the 75" percentile, and whiskers extending to 1.5xIQR.

3B model results can be found in|Appendix B

Learning from UCB signals. Overall, policies optimized using teacher UCB signals, whether
through reinforcement learning (RL—ALG) or supervised fine-tuning (SFT), consistently outperform
policies trained solely on the task reward signal (RL—-0G). This underscores the difficulty of training
RL LLM policies for long-horizon exploration where credit assignment is challenging. The imita-
tion policies match or achieve lower cumulative regret compared to the teacher UCB policy in all
evaluation environments, revealing a seemingly exciting result: policies trained on expert-generated
data can ultimately outperform the very expert policy that produced the data.

Improving training with strategic rewards. To learn RL poli-

cies from environmental feedback, while theoretically aligned with 08 ‘M_ BTSN
the original bandit reward signal (RL-0G), optimizing for strate- et T == Ks5

o
g9
n
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e 3b RL-STG
=== 7b RL-STG
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gic rewards (RL-STG) empirically improves the performance of
the policy in the Gaussian training setup, despite certain instabilities
observed in OOD evaluation. As the variance of the reward distribu-
tion decreases, RL—STG becomes equivalent to RL—0G, which ex-
plains why their performance is more closely matched when train-
ing in the Bernoulli5_Uniform environment.
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SFT vs RL for imitation. SFT with UCB expert demonstrations

can achieve similar regret to UCB in-domain, consistent with prior Figure 4: Training perfor-
work (Schmied et al., 2025)). We additionally find SFT policies to mance of RL-STG policy on
be surprisingly competitive out-of-distribution. Part of the reasonis GaussianK_Varl _MeanNO
that UCB is a distribution-agnostic policy—the same calculation can with 3B and 7B models. We
be applied to different reward distributions as long as the LLM fol- additionally include RL-ALG
lows the arithmetic operations. This generalization is however frag- of 3B model (5 arms) for
ile. SFT policies can overfit to the training distribution and cause comparison.

a degradation of basic arithmetic capability. Together, these factors

lead to higher variability and worst-case regret in OOD evaluation. For example, in the
SFT policy trained in the Bernoulli5_Uniform environment exhibits unsatisfactory worst-case
performance in Gaussian5_Varl MeanNO, while the RL-ALG policy based on UCB reward sig-
nal remains robust.
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Figure 5: Generalization to environments with 10 arms of 7B LLM policies trained on

Gaussian5_Varl MeanNO. Best arm selection frequency is reported.

Table 2: Analytics of baselines and 7B LLM policies trained on Gaussian5_Varl MeanNO,
evaluated in-distribution. Except rewards, statistics are shown as percentages. Note that suffix
failures emerge from every fine-tuned LLM agents.

Type Metric AvgReward BestArmFreq GreedyFreq SuffixFail — MinFrac
@t 50 300 50 300 50 300 50 150 50 300

Baselines Greedy 091 1.01 654 7177 90.0 983 250 25.0 102 1.7
e-Greedy 0.76 090 47.9 676 913 916 00 00 25 85
TS 0.77 1.00 55.8 785 670 852 0.0 0.0 152 4.0
UCB 091 1.04 67.7 80.6 833 954 31 47 105 18

LLM Agents Pretrain  0.55 0.79 454 63.1 487 654 00 00 352 18.1
SFT 092 1.05 694 81.3 835 955 62 62 105 1.8
RL-OG 0.81 1.01 6l1.1 79.8 783 91.7 16 47 133 3.6
RL-STG 0.84 1.01 63.7 81.1 837 958 31 62 109 24
RL-ALG 0.92 1.05 70.7 857 854 970 78 94 100 1.7

Small models struggle to learn without teachers. illustrates the training dynamics of
the RL—-STG policy on the GaussianK_Varl_MeanNO environment using 3B and 7B parameter
models, measured by the frequency of selecting the best arm. For the 7B models, performance
improves over iterations across varying numbers of arms (K=2, 3, 5), with higher accuracy for
smaller K. In contrast, the 3B model exhibits stagnant accuracy, starting comparably or even higher
than the 7B counterpart in simpler 2- and 3-arm settings pre-training but failing to improve with
RL updates. Nevertheless, we observe that the 3B model can learn with teacher guidance using
RL-ALG or SFT. This highlights the challenges of training smaller models with RL on task rewards,
as learning effective exploration policies from environmental feedback demands long-horizon credit
assignment.

Generalization to Larger Action Space. The pre-trained model’s performance degrades signif-
icantly as the action space increases. In three 10-arm environments, it exhibits excessive regret,
while the policies we trained maintain stable performance. [Figure 3|illustrates this failure: the base
LLM’s best-arm selection frequency stops improving at an early stage and degrades to near random
performance. All the trained agents do not suffer from this collapse, suggesting that the training
process has successfully enhanced the policy’s generalization to an increased action space.

We will explore in the following section why the LLM policies excel, what strategies drive their
success, and how different learning paradigms lead to different behaviors, to better understand their
potential and limitations.

5.2 ANALYZING LLM EXPLORATION STRATEGIES

We additionally include three surrogate statistics used in [Krishnamurthy et al.| (2024) as diagnos-
tics for long-term exploration failure: GreedyFreq@t measures the relative frequency of rounds that
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Figure 6: Suffix failure frequency and best arm selection histogram of the two sets of LLM policies
described in evaluated in-distribution. We observe that the distributions of best arm selec-
tion frequency of learned policies shifts from approximately normal distributions of the pretrained
model to bimodal distributions.

selects the greedy action up to time ¢; SuffixFail @t measures the frequency of suffix failures; and
MinFrac@t diagnoses uniform-like failures. Specifically, a suffix failure at ¢ indicates that the
policy never selects the optimal arm again for rounds ¢, ..., T, while MinFrac@t tracks the mini-
mum fraction of rounds any arm is chosen up to ¢, rescaled by K to the range [0, 1]. For MinFrac,
sustained large values indicate a failure to converge (uniform selection).

Learned policies exhibit greedy tendencies. While learned LLM policies achieve lower regret
and less uniform failures compared to the pretrained model, our qualitative analysis reveals con-
cerns about suboptimal exploration. The first warning sign, shown in is that the learned
agents exhibit higher suffix failure frequency than both the pre-trained model and theoretical optimal
policies. This indicates premature abandonment of the best arm, a pattern absent in the pretrained
model. Learning also alters the distribution of best arm selection frequency from an approximately
normal distribution for the pretrained model to a bimodal distribution, where the agent either almost
always selects or very rarely selects the best arm within an episode, a characteristic of Greedy be-
havior (Figure 6). Direct measurement of greedy-arm selection frequency further confirms that the
learning agents reach the exploitation phase more quickly than the pre-trained model.

Dissecting imitation of the UCB oracle: RL
Gaussian5_Varl_MeanNO Bernoulli5_Uniform

vs. SFT. Although the UCB policy is it- 101 10
self greedy in construction, student policies 051 0s
trained under UCB teacher often amplify this 061 061

tendency. This partially explains why LLM
policies trained to imitate UCB decisions can 021 021
sometimes perform better than the oracle. To 003 " 0
analyze this phenomenon, we compare how of-
ten the choices of each UCB-mimicking pol- 107
icy diverge from the oracle’s decision given the
same state, a metric we refer to as the “match
rate”. For SFT policies that explicitly calcu-
late confidence-bound values, we additionally
report the absolute difference between the pol-
icy’s predicted UCB value and the correspond- ~UCB ~ UCBuar | - Avg Abs Dela
ing oracle value, averaged across the arms.

Match Rate RL
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. .. Figure 7: Match rates of the RL-ALG policy

As shown in [Fig . when both policies . .
trained with Uision in the sz?me en- against decisions of the oracle UCB and a UCB-
like algorithm discovered in LLM rationales, at

vironment Gaussianb_Varl_MeanNO, the . . . . .
. o . different timesteps. SFT policy shows a jump in
SFT policy maintains a higher match rate than .
calculation errors at the 5S1st step.

the RL policy from the beginning, indicating
that it more faithfully imitates the teacher’s decisions. Both sustain a high match rate above 80%
in the first 50 steps in-distribution, with the SFT policy tracks the oracle’s UCB decisions more
closely. However, this stronger imitation capability also makes the SFT policy more susceptible to
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overfitting, meaning its high match rates are only guaranteed when evaluation conditions closely
resemble the training data.

This sensitivity becomes apparent when training on different data. While the SFT policy trained
on Gaussianb5_Varl_MeanNO sustains high match rates across all tested environments, an SET
policy trained on Bernoulli5_Uniform achieves this only within the same Bernoulli family of
tasks (Figure 20). We find this failure is a result of systematic errors in simple calculations involving
negative rewards, which are unseen during training—a sign of catastrophic forgetting of basic arith-
metic skills (Chu et al.| 2025} Shenfeld et al.l [2025)). The agent frequently miscalculates the UCB
values and subsequently disregards its own calculations. This leads to asymmetric generalization,
where performance degrades sharply outside the training distribution, consistent with the higher
worst-case regret we previously observed in[Figure 3] These results highlight the critical importance
of training data selection to balance imitation fidelity with robustness.

What incentivizes RL-ALG to prioritize exploitation over imitation? The adaptive behavior
of the RL-ALG policy is a subtle consequence of the bandit learning structure and a fundamental
change in the UCB teacher’s behavior over an episode. Initially, the UCB algorithm balances high
uncertainty (exploration) and high observed rewards (exploitation). As an episode progresses, the
uncertainty bounds shrink, and the teacher’s policy converges. Its decisions become increasingly
dominated by the empirical means, causing it to select the greedy arm. In this regime, the RL
objective, though formally defined in terms of imitation, becomes highly correlated with a reward
for exploitation. The agent discovers that it can optimize more easily by directly picking the greedy
arm, rather than faithfully internalizing the teacher’s complex exploration logic.

LLM rationales reveal flawed, exploitative heuristics. The LLM’s generated rationales can re-
veal its underlying decision-making process. RL policies trained on bandit rewards converge to
templated heuristics that most oftenly compare and choose the arm with the highest mean reward.
Their explorative actions are driven by rationales that explicitly evaluate the uncertainty of the
arms, sometimes with UCB-like calculation. RL-ALG trained in Gaussian5_Varl_MeanN0
however converges to a UCB-like algorithm and mentions in its rationales 98% of the time:

Q:(a)+C x4/ %. In the standard UCB algorithm, the numerator of the exploration term

log(t) grows with the total number of pulls, ensuring that no action is ever abandoned permanently.
In contrast, this learned variant’s exploration term depends only on N;(a), the pulls of a specific
arm. This allows the policy to prematurely stop exploring an action if it appears unprofitable in the
short run, embodied an exploitative tendency.

Figure 7|shows that this UCB-like algorithm describes the LLM policy better than the oracle UCB.
However, the LLM does not follow the algorithm strictly, as its decisions are also affected by fre-
quent numerical inaccuracies such as miscalculating the log term. We can also observe that when
the policy diverges from the UCB variant’s decisions, it opts for the greedy action more than 86%
of the time. In Bernoulli5_Uniform, the LLM converges to another variant Q;(a) + —-<

v/ N¢(a)

with similar greedy behavior. These findings reveal that the RL-ALG policy learns approximate,
error-tolerant variants of UCB, blending imitation with opportunistic exploitation that lowers regret
in certain environments. Intriguingly, we observe that the LLM generates the correct UCB formula
with inaccurate calculations during early training stages. Its eventual convergence to greedy variants
suggests failures in credit assignment.

6 CONCLUSION

We fine-tune LLM agents via SFT and RL with novel reward signals, achieving strong performance
with lower regret and robust generalization to 6x longer horizons and new reward distributions in
the multi-armed bandit task. However, behavioral analysis reveals that training elicits short-sighted,
exploitative policies. This emergent greediness is a consequence of the fundamental imbalance in
training data, where sparse exploration signals are easily overwhelmed by frequent exploitation.
Compounded by the complex credit assignment problem, this challenge highlights the need for
methods that explicitly amplify exploration signals. Future work could explore focused replay tech-
niques that re-weight experiences based on information gain and surprise or design adversarial and
curriculum-based environments that make robust long-horizon planning a necessity for success.

10
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REPRODUCIBILITY

To support the reproducibility of our results, we provide more implementation details in[Appendix Al
We commiit to sharing the code, pre-trained models and data to the general public upon publication.
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A IMPLEMENTATION DETAILS

We report additional details for the environment settings, the RL and SFT training of LLM policies.

A.1 ENVIRONMENT SETTINGS

Table 3: Generic families of k-armed MAB environments and a complete list of 15 parameterizations
used in our study. Asterisk indicates the training task distributions.

Family Reward Dist.  Mean Dist. Example Instantiation

Gaussiank_Varo? MeanNm 1 ~ N (u;,02)  u~ N(m,o2) Gaussian5_Varl _MeanNO*
Gaussian10_Varl_MeanNO
Gaussian5_Var3_MeanNO
Gaussian5_Varl _MeanN+1
Gaussian5_Var3_MeanN=+1

Gaussiank_Varo? MeanU 7 ~ N (u;,02)  u~U(0,1) Gaussian5_Varl _MeanU
Gaussian5_Var3_MeanU
Gaussian5_Var5_MeanU

Bernoullik_Uniform r ~ B(u;) u~U(0,1) Bernoulli5_Uniform*
Bernoullil0_Uniform
Bernoullik_DeltaA r ~ B(u;) Ui = P, Bernoulli5_Delta0.2

u; =p— A,Vi#1¢*  Bernoullil0_Delta0.2
Bernoulli5_Delta0.1

We evaluate our policies on a comprehensive set of environments from the Gaussian and Bernoulli
families, as listed in Table[3] The Bernoullik_DeltaA class, studied by Krishnamurthy et al.
(2024), allows for instance difficulty to be easily adjusted by changing the reward gap between the
optimal and sub-optimal arms. However, this environment is unsuitable for training, as a policy
can simply explore each action sequentially until finding one with a mean reward above 0.5. The
Gaussiank_Varo? MeanNm class is a popular benchmark introduced in|Sutton et al.| (1998) and
later used by [Nie et al.| (2024). In these environments, the variances of both the reward and mean
distributions are tied to a single hyperparameter, o2. Increasing the variance does not necessarily
make the environment more challenging; while the rewards become noisier, the means also become
more dispersed. These two effects offset each other, so this comparison group primarily tests a pol-
icy’s robustness to multiplicative rescaling and shifts in rewards. The Gaussiank_Varc? MeanU
class, from|Schmied et al.|(2025), maintains a fixed uniform distribution for the means, allowing the
reward variance to be adjusted via o2 to control for different difficulty levels.

The diverse distribution shifts across these test environments—including changes in mean, variance,
and distributional family—are designed to ablate different aspects of generalization. For instance,
transitioning from Gaussian5_Varl MeanNO to Gaussian5_Varl MeanN=£1 provides a tar-
geted test of a policy’s ability to handle shifted reward distributions while all other properties remain
constant. To assess scalability, we additionally test the policies on environments with an increasing
number of arms (from & = 5 to k = 10).

A.2 RL SETTINGS

presents the hyperparameters used for PPO training of the LLM policies (RL-0G and
RL-STG). For the algorithmic-reward variant (RL—ALG), we retain all settings except that we set the
episode-level discount factor and GAE lambda to zero, since cumulative rewards are not required.

We use VLLM (Kwon et al., 2023) for asynchronous rollouts across parallel environments and
FSDP (Zhao et al.l 2023)) for fully sharded training under the VeRL framework. At the start of
each iteration, all environments are reinitialized with fresh random seeds to ensure diverse experi-
ence collection.
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Table 4: Hyperparameters for the PPO training of LLM policies (RL-0G and RL-STG).

Category Hyperparameter Value
Model & Environment
Model Base Language Model Qwen/Qwen2.5-3/7b-Instruct
Max Response Length 1024 tokens
Temperature 1.0
Environment Type Various (Gaussian, Bernoulli)
Number of Arms (k) 5
Episode Length (T") 50
Number of Parallel Environments 64
PPO Algorithm
Optimization Optimizer AdamW (Kingma & Ba, [2015)
Actor Learning Rate (a) ITx10°°
Critic Learning Rate (ay/) 1x107%
Gradient Clipping 1.00
Response-level Discount Factor (inga) 1.00
Response-level GAE Lambda (Ajpya) 1.00
Episode-level Discount Factor (Vinger) 0.95
Episode-level GAE Lambda (Ajyer) 0.95
PPO Clipping Coefficient (¢) 0.20
PPO Mini-batch Size 128
Regularization ~Weight Decay 1x1072
Entropy Coefficient 5x 1074
Training Infrastructure
Training Total Training Steps 500
Hardware Number of GPUs 4
Tensor Parallelism (Rollout) 4

Model checkpoints are saved every 100 training steps. Each checkpoint is evaluated on the same set
of environments (matching the training type) to guarantee fair comparison. The checkpoint with the
lowest cumulative regret is selected as the final model.

A.3 SFT SETTINGS

We generate training data for supervised fine-tuning by sampling N trajectories from the environ-
ment using a UCB policy. To expose the model to a broad spectrum of environment configurations
and exploration behaviors, we uniformly sample states and actions across each trajectory’s horizon.

As in our reinforcement learning experiments, we save model checkpoints at the end of every epoch
and evaluate them on the same set of environments to ensure a fair comparison.
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Table 5: Hyperparameters for Supervised Fine-Tuning (SFT).

Category Hyperparameter

Value

Model & Data

Model Base Language Model

Qwen/Qwen2.5-3/7b-Instruct

Data Type Various (Gaussian, Bernoulli)
Number of Arms (k) 5
Max Episode Length (7" 50
Number of Examples (V) 32768

Optimization

Optimizer Type AdamW
Learning Rate 1x107°
Betas (31, 32) (0.9, 0.95)
Weight Decay 0.01
LR Scheduler Cosine Decay
Warmup Ratio 0.1
Gradient Clipping 1.0

Training Details

Batch Size 256
Epochs 6
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Figure 8: Comparison of LLM policies against baselines on cumulative regret function fitting results.
The first row shows the results of 7B models trained on Gaussian5_Varl_MeanNO, and the
second row shows the results of 7B models trained on Bernoulli5_Uniform. Evaluation is
performed both in- (first column, highlighted) and out-of-distribution (other columns) as in

B DETAILS OF PERFORMANCE COMPARISON

We provide comprehensive experimental results of the LLM policies compared against baselines
over a range of environments and model sizes on cumulative regret at 50 and 300 steps. The obser-
vation is consistent with the analysis in main text.

B.1 7B MODEL COMPARISONS

The cumulative regret trends are consistent across evaluations at 50 and 300 steps. However, the
longer 300-step horizon more prominently exposes the weaknesses of simple heuristics like e-
greedy. At 50 steps, the imitation learning policies (RL-ALG and SFT) show some instability,
likely due to the stronger mimicking effect of the UCB oracle in the initial exploratory phase.

The learned policies demonstrate effective generalization to higher variance in the
Gaussian5_Var3_MeanNO environment, where the difficulty of identifying the optimal arm is
comparable to the Gaussian5_Varl_MeanNO training setting. This generalization fails, however,
when increased variance makes the task harder, as is the case in the Gaussian5_Varo2_MeanU
environments. Here, exploration strategies developed in low-variance settings are hindered by
their greedy bias, leading to poor performance under high uncertainty. Amidst this, the RL-0G
policy begins to show a slight advantage. Finally, we note that the SFT policy, when trained on
Bernoulli5_Uniform, consistently fails to generalize to any Gaussian environment (Figure 12)).

To quantify the asymptotic behavior of the cumulative regret within 300 steps, we follow Nie et al.
(2024) to employ a function fitting approach. We model the cumulative regret through time as
y(t) = A1 log(14¢)* + Bt, where 3 captures linear failure modes and the logarithmic term captures
exploration costs. In we find that pretrained LLMs exhibit a high linear coefficient (3),
comparable to the Greedy baselines, indicating a failure to converge to the optimal arm. Learned
policies instead show a significant reduction in 3 across both in-distribution and out-of-distribution
evaluations, suggesting that fine-tuning minimizes asymptotic linear regret in-average. The consis-
tently low MSE values and the visual alignment of the fitted curves validate that this parametric
model accurately captures the regret dynamics of the evaluated agents (examples in [Figure 9). We
note that, similar to other regret-based analysis, this function-fitting approach is less sensitive to
early failure signals than, for example, suffix fail rate. Since cumulative regret is averaged across
episodes, early failures can be disguised by early wins resulting from over-exploitation.
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Figure 9: Comparison of LLM policies against baselines on cumulative regret function fitting re-
sults. The second row shows the results of 7B models trained on Gaussian5_Varl_MeanNO.
Evaluation is performed in-distribution.
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Figure 10: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.

Bernoulli10_Uniform Bernoullis_Uniform Bernoulli10_Delta0.2 Bernoullis_Delta0.2 Bernoullis_Delta0.1

35 0= T o 5=
x § = 1 L
2 8
lé‘)ZS 8 4
2 15
220 6 3
fulll 1 otl T ‘ |
H 4
g0 L % [@% L 4 l J 14
H 5
S LT s 2 !
o 0
Gaussian10_Varl_MeanNO Gaussian5 Varl MeanN0" ian5_Varl_MeanN-1 _Varl MeanN+1 Gaussian5_Var3_MeanNO
150 60 w 150 T
40
% 125 50 125
° 30 30
%100 [ a0 T 100
5‘ ” T 20 0 T 20 75
Fll T Z Wil Z N
H 10 10
s 1380y ] i L TeT%
o IT 1+T T 1T L]
0 0 o o 0
Gaussian5_var3_MeanN-1 Gaussian5_Var3_MeanN+1 Gaussian5_Varl_MeanU Gaussian5_var3_MeanU Gaussian5_var5_MeanU
40
120 200 25
2 40
g1 150 20 *
2 30
3 sk | |
£ 60 T 100 2 20
3, 10
= 40

T s

lale é -BePedd T

Epsilon-Greedy e=0.1  wwss= UCB c=0.5 B 7b SFT mm 7b RL-STG
Thompson Sampling wmmm 7b Pretrain  EEE 7b RL-OG & 7b RL-ALG
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B.2 3B MODEL COMPARISONS

Table 6: Analytics of baselines and 3B LLM policies trained on Gaussian5_Varl MeanNO,
evaluated in-distribution.

Metric AvgReward BestArmFreq GreedyFreq SuffixFail
@t 50 300 50 300 50 300 50 150
Baselines

Epsilon-Greedy e=0.1 0.76  0.90 479 67.6 913 916 0.0 0.0
Thompson Sampling 0.77 1.00 55.8 785 67.0 85.2 0.0 0.0

Greedy 091 101 654 71.7 90.0 983 25.0 25:0
UCB ¢=0.5 091 1.04 677 80.6 833 954 3.1 4.7
Learned Agents
3b Pretrain 039 043 293 327 859 678 125 125
3b SFT 092 1.04 697 80.8 835 939 62 94
3b RL-OG 041 0.69 315 49.1 81.0 760 62 78
3b RL-STG 051 075 393 569 777 715 0.0 1.6
3b RL-ALG 0.81 095 60.2 712 81.7 89.0 141 172

Consistent with our main findings, results in [Figure 15|and [Figure 17| confirm that smaller models
benefit less from reinforcement learning optimized directly for environmental reward signals. The
RL-0G and RL—-STG policies trained this way perform on par with the pre-trained model at 50 steps
and achieve only small gains at 300 steps with RL—-STG generally outperforming RL—0G.

In contrast, both the imitation learning policies, RL-ALG and SFT, demonstrate a significant im-
provement over the pre-trained model. The SFT policy, in particular, emerges as the top-performing
method, achieving reliably lower regret across nearly all environments. This suggests that, even
in the imitation learning setting, smaller models struggle with reinforcement learning optimization
process itself. According to SFT achieves AvgReward and BestArmFreq comparable to
the UCB teacher in-distribution. Its performance in identifying the best arm continues to improve
with more trials, even in most out-of-distribution environments (Figure 14). We once again ob-
serve the previously noted generalization failure of SFT at this model size, where it fails to transfer
from the Bernoulli5_Uniform environment to Gaussian environments with negative rewards

(Figure 17).

The pre-trained Qwen 2.5 3B model exhibits a distinct exploration pattern compared to its 7B coun-
terpart. While the pre-trained 7B model starts an episode with high exploration and becomes more
exploitative over time, the 3B model begins with a highly greedy strategy (GreedyFreq ~ 86%) and
becomes more explorative. This causes its ability to identify the best arm plateaus very early in the
Gaussian5_Varl_MeanNO environment. These behavioral differences lead to different training
dynamics: the 7B model consistently reduces exploration throughout the training iterations, while
the 3B model first undergoes a phase of increasing exploration before reducing it until convergence.

Across the board, all learned agents show lower GreedyFreq at 50 steps than the pre-trained model.
As trials progress, the two successful imitation learning policies (RL—ALG and SFT) adopt a more
greedy exploitation strategy. As a result, they both suffer from a higher suffix failure rate com-
pared to RL policies trained on environmental feedback. This reinforces our conclusion that their
performance gains are associated with more sophisticated greedy policies.
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Figure 15: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 16: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 17: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 18: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
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C DETAILS OF IMITATION LEARNING ANALYSIS

We investigate why an imitation learning policy might outperform its teacher by analyzing its ad-
herence to key decision-making heuristics. This section expands upon the main text by presenting
results from a complete set of experimental environments.

A key finding is that both imitation learning policies (RL-ALG and SFT) make fewer (imitation)
errors in high-variance environments. This is attributed to the teacher UCB policy (C=0.5) itself
behaving more greedily in these settings, matching the exploitative bias of the imitation learning
policies.

We find that the SFT agent’s mistakes reveal errors in both simple arithmetic (summation, sub-
traction) and complex calculations (logarithms, square roots). A prominent failure mode emerges
when the Bernoulli-trained policy observes negative rewards: it often struggles with summations
involving these numbers and subsequently disregards its own UCB calculations. For instance, in the
Gaussianb5_Var3_ MeanNO environment, the agent chooses an arm different from the one with
the highest calculated UCB value 78% of the time. This divergence is sensitive to the reward dis-
tribution; lowering the environment’s mean reward by 1 increases this deviation rate to 89%, while
raising the mean by 1 reduces it to 44%. This behavior indicates a regression in the LLM’s ca-
pabilities, leading to hallucinations in its reasoning. Future work can explore mixed training with
mathematical data to alleviate this issue.

We previously discovered that the RL—ALG agents converge to suboptimal variants of the UCB al-
gorithm. This finding is both interesting and disappointing. On one hand, it demonstrates that agents
can discover novel solutions from sparse reward signals received only at the end of a response. On
the other hand, it suggests that either the oracle policy is not encountered during RL exploration or
that credit assignment is a significant challenge. By manually inspecting rollouts from early train-
ing iterations, we find that the correct UCB formula did appear, but its calculations were frequently
incorrect due to the base model’s weakness in complex operations like square roots and logarithms
(Figure 23). This points to a credit assignment issue, where the agent incorrectly attributes poor
outcomes to the formula itself, rather than to flawed calculations or suboptimal hyper-parameter
choices. Future work could explore more fine-grained RL signals to address this problem.
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Figure 19: 7B SFT agent trained on Gaussian environments: UCB error by step.
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Figure 20: 7B SFT agent trained on Bernoulli environments: UCB error by step.
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Figure 21: 7B RL-ALG agent trained on Gaussian environments to optimize UCB reward signal:

match rate by step. UCB_Var here is the UCB variant Q;(a) + C X
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Figure 22: 7B RL-ALG agent trained on Bernoulli environments to optimize UCB reward signal:
match rate by step. UCB_Var here is the UCB variant Q;(a) +

consistently used.
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D CONTEXTUAL BANDITS ON MOVIELENS

To demonstrate the generalization capabilities of our RL approaches beyond Multi-Armed Bandits
(MAB), we conducted experiments on a Contextual Bandit setting using the MovieLens environment
from BanditBench (Nie et al.||[2024).

D.1 ENVIRONMENT SETUP

Using the open-source implementation of BanditBench, we construct a contextual bandit task based
on the MovieLens-100K dataset (Harper & Konstan, |2015). The dataset contains 100,000 ratings
for 1,682 movies from 943 users, including demographic information such as age, gender, and
occupation. Only the first 100 users are seen during training, the rest of them are used for evaluation.

To align with the standard linear assumption used in baselines like LinUCB, the environment is con-
structed via low-rank approximation. Specifically, the top K popular movies are selected to form the
action space. A user preference matrix P € RY*¥ is constructed and decomposed using Singular
Value Decomposition (SVD) such that P ~ UXV ™. Here, U represents the user embedding matrix,
V' the movie embedding matrix, and X the diagonal matrix of singular values. The ground-truth
reward for a user ¢ and movie j is deterministic: 7; ; = u! ;.

D.2 EXPERIMENTAL RESULTS

Following the same training setting described in the MAB task, we fine-tune the Qwen 2.5 7B
model over a horizon of 50 steps with 5 arms (recommending from 5 top movies). Note that as the
environment has deterministic reward, RL-STG is equivalent to RL-OG. We compare our methods
against the standard Pretrained LLM and LinUCB (Chu et al., 2011} (exploration ratio 0.5).

As shown in Table [/} both RL with environmental feedback (RL-OG) and RL with algorithmic
reward (RL-ALG) significantly reduce regret compared to the Pretrained LLM. Notably, our multi-
turn RL implementation (RL-OG) outperforms the strong LinUCB baseline. We observe that RL-
ALG performs worse than RL-OG; this is likely because RL-ALG attempts to approximate the
exact LinUCB calculation—a task more complex than standard UCB—often resulting in a greedy
approximation where the model converges to the most frequently chosen action of the teacher.

Table 7: Cumulative Regret on MovieLens (Horizon=50, 5 Arms). Results show mean and standard
error across 64 episodes varying random seeds.

Method Cumulative Regret
LinUCB 61.09 (£2.57)
7B Pretrain 100.84 (£3.09)
7B RL-OG (full history) 46.64 (£1.70)
7B RL-OG (no history) 58.71 (£1.32)
7B RL-ALG 73.23 (+£1.78)

D.3 ANALYSIS AND LIMITATIONS

While these results appear promising, a fundamental limitation exists in using this specific Movie-
Lens setup for meta-bandit training. Unlike MAB settings where we can generate infinite environ-
ments with varying parameters, this MovieLens contextual bandit setup represents a single bandit
instance defined by a static dataset.

Because the action set is fixed and the linear function defined by ¥ is universal across all interactions,
the task essentially requires the model to map user features (provided in the prompt) to a reward
distribution via a static function. This allows the model to memorize the underlying function during
training rather than performing online exploration. This hypothesis is supported by our ablation
study in Table [7] where the RL-OG (no history) agent, which has no access to previous interaction
feedback, still achieves lower regret (58.71) than the LinUCB baseline (61.09). This indicates the
model is relying more on memorized patterns than in-context bandit learning. Consequently, while
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our approach generalizes to this setting, we prioritize controllable MAB benchmarks in the main
text to ensure rigorous evaluation of the model’s online learning and exploration capabilities. We
leave the meta-bandit setup of realistic contextual bandit scenarios to future work.

MovieLens Prompt Example

You are an Al movie recommendation assistant for a streaming platform powered by a bandit
algorithm that offers a wide variety of films. There are 5 unique movies you can recommend,
named

1. Star Wars (1977)

2. Contact (1997)

3. Fargo (1996)

4. Return of the Jedi (1983)

5. Liar Liar (1997)

When a user visits the streaming platform, you assess their demographic description to choose
a movie to suggest. You aim to match the user with movies they are most likely to watch
and enjoy. Each time a user watches a recommended movie, you adjust your recommendation
algorithms to better predict and meet future user preferences.

So far you have interacted 5 times with the most recent following choices and rewards:

Context: This person is a 39-year-old man, working as a scientist and live in University park of
Cook county, Illinois. User preference vector: [-0.01, 0.04, -0.01, -0.04, 0.00].

Recommended movie 2

Reward: 4

Context: This person is a 29-year-old woman, working as a administrator and live in Crofton of
Anne Arundel county, Maryland. User preference vector: [-0.05, 0.04, 0.05, 0.01, 0.01].
Recommended movie 1

Reward: 5

Context: This person is a 36-year-old woman, working as a writer and live in Los angeles of
Los Angeles county, California. User preference vector: [-0.02, -0.01, -0.07, 0.05, 0.01].
Recommended movie 1

Reward: 0

Context: This person is a 45-year-old woman, working as a educator and live in Boulder of
Boulder county, Colorado. User preference vector: [-0.05, -0.01, -0.02, -0.05, -0.00].
Recommended movie 1

Reward: 5

Context: This person is a 32-year-old man, working as a engineer and live in Little canada of
Ramsey county, Minnesota. User preference vector: [-0.04, -0.00, -0.02, -0.04, -0.00]. Recom-
mended movie 1 Reward: 4

You have a new user:

Context: This person is a 24-year-old woman studying as a student and live in Huntsville of
Madison county, Alabama. User preference vector: [-0.04, 0.03, 0.05, -0.02, -0.01].

Which movie (id) should be recommended next? Show your reasoning be-
tween  <think> </think> tags and the recommended movie index between
<answer> </answer> tags, for example: <answer> movie 3 </answer> .
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RL with Algorithmic Reward (7B Gaussian; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 2 pulls, average reward -1.421
Arm 1: 60 pulls, average reward 1.110
Arm 2: 2 pulls, average reward -2.903
Arm 3: 3 pulls, average reward -1.197
Arm 4: 1 pulls, average reward -1.842

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the highest
upper confidence bound, which is the sum of the estimated mean reward and an exploration

term. The formula for UCB is: UCB = average reward + C' x 4/ @ where ( n ) is the
number of times the arm has been pulled, and ( C ) is a tuning parameter typically set to 1 or 2.
Let’s calculate the UCB for each arm using (C =1 ):

For Arm 0: UCBy = —1.421 + 1 x /8% ~ 1491 4 0.549 ~ —0.872

:

:

For Arm 1: UCB; = 1.110 + 1 x 1/ 280%D ~ 1110 4 0.040 ~ 1.150

For Arm 2: UCBy = —2.903 + 1 x 1/ 8% ~ _9.903 + 0.549 ~ —2.354

For Arm 3: UCB3 = —1.197 + 1 x /284D ~ 1197 4 0.302 ~ —0.895

For Arm 4: UCBy = —1.842 + 1 x /804D ~ 1,849 4 0.693 ~ —1.149

B

Now, we compare the UCB values:

Arm 0: -0.872

Arm 1: 1.150

Arm 2: -2.354

Arm 3: -0.895

Arm 4: -1.149

The highest UCB value is for Arm 1, which suggests we should pull Arm 1 next.
</think> <answer> The arm that should be pulled next is Arm 1. </answer>
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RL with Algorithmic Reward (7B Bernoulli; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 19 pulls, average reward 0.541
Arm 1: 1 pulls, average reward -0.879
Arm 2: 1 pulls, average reward -2.651
Arm 3: 46 pulls, average reward 1.240
Arm 4: 1 pulls, average reward -1.374

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To determine which arm to pull next, we can use the Upper Confidence Bound
(UCB) algorithm, which balances exploration and exploitation by considering both the aver-
age reward and the uncertainty associated with each arm. The formula for UCB is: UCB =
Average Reward + Exploration Term

For simplicity, we can use a basic form where the exploration term is inversely proportional to

the square root of the number of pulls: UCB = Average Reward + ——~——— where (k) is

a constant, typically set to 1 for simplicity.
Let’s calculate the UCB for each arm:
Arm 0: UCBg = 0.541 + #9 ~ 0.541 + 0.229 ~ 0.770

Arm 1: UCB; = —0.879 + % ~ —0.879+1~0.121

Arm 2: UCB, = —2.651 + %ﬁ ~ —2.651 4+ 1~ —1.651
Arm 3: UCB3 = 1.240 + \/% ~ 1.240 + 0.120 ~ 1.360
Arm 4: UCBy = —1.374 + % ~ —1.374+ 1= —0.374

Now, we compare the UCB values: UCBj ~ 0.770
UCB; ~ 0.121

UCB; =~ —1.651
UCB3 ~ 1.360
UCB4 =~ —0.374.

Clearly, Arm 3 has the highest UCB value, indicating it is the best choice according to the UCB
algorithm. </think>
<answer> The arm that should be pulled next is Arm 3. </answer>
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RL with Algorithmic Reward (7B Gaussian; Iteration 50 Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 2 pulls, average reward -0.282
Arm 1: 10 pulls, average reward 1.723
Arm 2: 5 pulls, average reward 1.255
Arm 3: 2 pulls, average reward -1.101
Arm 4: 2 pulls, average reward 0.995

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the high-
est upper confidence bound of the expected reward. The formula for UCB is: UCB =

log total number of pulls
Average Reward + C' x \/number of times arm was pulled *

Here, (C) is a tuning parameter that controls the trade-off between exploration and exploitation.
For simplicity, we can assume (C =1).

First, calculate the total number of pulls: 2+ 10 + 5+ 2 4 2 = 21.

Now, apply the UCB formula to each arm:

Arm 0: UCBy = —0.282 + 1 x /1821 ~ _(.282 + 0.956 = 0.674.

Arm 1: UCB; = 1.723 + 1 x /%21 ~ 1.723 + 0.302 = 2.025.

Arm 2: UCBy = 1.255 + 1 x 1/ 120 ~ 1.255 4 0.509 = 1.764.

Arm 3: UCBg = —1.101 + 1 x 1/*82L ~ —1.101 + 0.956 = —0.145.

Arm 4: UCB, = 0.995 + 1 x 1/ '%82% ~ 0.995 + 0.956 = 1.951.

Comparing these UCB values, Arm 1 has the highest upper confidence bound. </think>
<answer> The arm that should be pulled next is Arm 1. </answer>

Figure 23: An example generated by RL-ALG policy at iteration 50 (7B Gaussian)
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E LLM USE DISCLOSURE

Using LLMs to help with paper writing. Commercial LLMs were used to correct typos and
grammar, suggest alternative phrasings, and provide insights on the clarity and readability. All
LLM-generated text was reviewed, edited, and approved by the human authors.

Using LLMs as a research assistant. LLMs assisted with brainstorming experimental designs,
suggesting analysis approaches, searching potentially relevant prior work, and producing code scaf-
folding and completion. The human authors provided the research context, validated the literature
identified by LLMs, verfied all analysis and results, and adapted or often rewrote the LLM-generated
content before inclusion.
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