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ABSTRACT

While Large Language Models (LLMs) hold promise to become autonomous
agents, they often explore suboptimally in sequential decision-making. Recent
work has sought to enhance this capability via supervised fine-tuning (SFT) or
reinforcement learning (RL), improving regret on the classic multi-armed bandit
task. However, it remains unclear how these learning methods shape exploration
strategies and how well they generalize. We investigate both paradigms by train-
ing LLMs with SFT on expert trajectories and RL with a range of tailored reward
signals including a strategic, regret-shaped reward to reduce variance, and an algo-
rithmic reward that enables oracle imitation. The resulting agents outperform pre-
trained models and achieve performance comparable to Upper Confidence Bound
(UCB) and Thompson Sampling, with robust generalization to 6x longer hori-
zons and across bandit families. Behavioral analysis reveals that gains often stem
from more sophisticated but greedier exploitation: RL/SFT agents are more prone
to early catastrophic failure than pre-trained models, prematurely abandoning ex-
ploration. Furthermore, agents trained to imitate UCB learn to outperform their
teacher by adopting more exploitative variants. Our findings clarify when each
training paradigm is preferable and advocate tailored reward design and evalua-
tion beyond average regret to promote robust exploratory behavior. []_-]

1 INTRODUCTION

A fundamental challenge in sequential decision-making problems lies in the exploration-exploitation
trade-off, where an agent must balance exploiting known good actions with exploring new ones to
discover potentially better options. The multi-armed bandit (MAB) problem serves as a classic,
formalized testbed for studying this critical behavior. Despite their sophisticated capabilities, Large
Language Models (LLMs) often struggle here, defaulting to short-sighted, greedy behavior that
over-exploits known rewards at the expense of exploration (Krishnamurthy et al., [2024; |[Schmied
et al.l 2025). While certain prompting configurations can elicit better performance from frontier
models like GPT-4, this inherent suboptimal bias remains a significant hurdle for most models.

To address this, two primary training paradigms have emerged for shaping LLM exploration be-
havior: Supervised Fine-Tuning (SFT) and RL. SFT teaches the LLM to mimic the behavior of an
optimal exploration algorithm, such as Upper Confidence Bound (UCB), by training on trajectories
of expert demonstrations. In contrast, RL enables the model to learn an effective policy directly
from environmental rewards. When trained to solve bandit instances that differ from those they
encountered during training, LLMs effectively become meta-bandit agents, acquiring meta-policy
capable of exploring novel environments (Kveton et al., | 2020). Prior works suggest that both meth-
ods can improve exploration capabilities in LLMs on in-distribution tasks, with SFT showing more
consistent results (Nie et al.l 2024} Schmied et al.,|2025). However, a deeper understanding of how
these training methods shape an agent’s strategy is lacking. It is unclear whether the policies induced
by SFT and RL differ mechanistically. More critically, how do these policies generalize to longer
horizons and out-of-distribution environments?

In this work, we train LLMs to perform MAB tasks using both SFT on expert trajectories and RL
with a spectrum of task-specific reward signals. We evaluate the performance of learned policies
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on a range of MAB environments, under length generalization and cross-distribution transfer (e.g.,
Gaussian to Bernoulli). In addition to the standard stochastic reward of bandits, we propose two
additional reward signals: a strategic reward based on the notion of regret to reduce training vari-
ance, and an algorithmic reward, which incentivizes imitation learning of an oracle policy like
UCB via RL. We find that both SFT and RL improve the base model’s performance on MAB tasks
in achieving lower regret and higher rewards, achieving comparable performance to theoretical op-
timal baselines like UCB and Thompson Sampling. For RL, the strategic reward improves training
efficiency in high-variance environments, while the algorithmic reward consistently outperforms
other learned policies due to the ease of credit assignment. Moreover, RL policies yield more robust
generalization across different bandit families compared to SFT. The policies also exhibit strong
generalization on 6 x longer (compared to training) and out-of-distribution environments.

While achieving lower regret is the canonical measure of success in MAB, classical literature cau-
tions that relying solely on this aggregate statistic can obscure important characteristics of the agent’s
behavior (Lattimore & Szepesvari, |2020). An agent might achieve a superior average performance
with a high-risk policy prone to catastrophic failure, a nuance that the expected outcome can over-
look. This prompts a deeper question: does a lower average regret achieved by the LLM policies
indicate the acquisition of a robust exploration strategy?

To answer this question, we analyze the agents’ action patterns and compare them to pre-trained
models and baselines like UCB and Greedy policies. We utilize surrogate statistics such as suf-
fix failure rate, which is highly suggestive of the long-term prospects of the agent (Krishnamurthy
et al.,[2024)). We find that the agents’ impressive improvements in performance are linked to learning
more sophisticated forms of exploitative behavior. For instance, agents trained via RL to imitate an
optimal UCB policy often outperform their teacher by implementing variants of UCB that can pre-
maturely stop exploring an action after unsatisfactory short-term rewards. This suggests that while
the training process maximizes average performance with reasonable generalization, it incentivizes
short-term reward seeking that can be counterproductive in the long run. The suitability of these
learned policies ultimately depends on whether an application prioritizes long-term robustness over
immediate returns, or average performance over worst-case scenarios.

In summary, we present a unified study of how SFT and RL shape LLM exploration in MAB, treat-
ing trained models as meta-bandit agents. We introduce two principled reward designs—strategic
(regret-shaped) rewards that stabilize learning in high-variance settings and algorithmic rewards that
enable efficient RL-based imitation of oracle policies, which both improve over baselines from prior
work (Schmied et al., |2025), with algorithmic rewards yielding the most consistent gains. Eval-
uations demonstrate robust generalization to 6x longer horizons and across bandit families, with
RL policies transferring more reliably than SFT. Beyond aggregate regret, our behavioral analysis
reveals mechanistic differences: learned policies often implement exploitative strategies that boost
average returns but can sacrifice long-term robustness.

2 RELATED WORK

The multi-armed bandit problem, despite being a classical abstraction, embodies the fundamental
exploration-exploitation trade-off central to sequential decision-making and has wide real-world
applications (Bouneffouf et al., 2020; [Bouneffouf & Feraud, [2025). As LLMs are increasingly
deployed in interactive settings, the MAB problem has become a key testbed for evaluating their
ability to incrementally gather information and improve over time, a paradigm known as In-Context
Reinforcement Learning (ICRL) (Moeini et al., [2025)).

Bandit problems have long been used to evaluate the generalizable ICRL capabilities of sequential
models like RNNs and Transformers (Duan et al.l 2016} [Laskin et al., [2023}; [Lee et al.l [2023). In
the LLM era, initial benchmarks found that pre-trained models exhibit unsatisfactory exploratory
behavio without careful prompt engineering (Krishnamurthy et al., |2024; Monea et al.,[2024). Sub-
sequent work has sought to address this through fine-tuning (Tajwar et al.| [2025). [Nie et al.| (2024)
uses supervised fine-tuning (SFT) on expert trajectories to improve performance, demonstrating suc-
cessful generalization to different reward distributions within the same bandit class. More recently,
Schmied et al.| (2025) applies reinforcement learning (RL) to train LLMs for bandit tasks, showing
positive but weaker in-distribution results compared to SFT.
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Our work provides a systematic comparison of these two learning paradigms. We demonstrate that
RL-trained agents, while matching SFT performance in-distribution, generalize more effectively to
out-of-distribution environments. More importantly, we move beyond simple performance compar-
isons to conduct a behavioral analysis that uncovers subtle but critical failure modes in how LLMs
learn to explore, highlighting previously unaddressed challenges.

3  METHODOLOGY Prompt with summary statistics

. In a 5-armed bandit problem, here are
A MAB problem B = (A, R) is defined as a set of arms the results of previous arm pulls:
A. ={1,... ,K}, v.vher.e each arm i € A is associated Axand@ 1 il 27, e D240
with a rewarq dlstrlbqthn R; and mean pu;. Thg goal Arm 1: 2 pulls, ave. reward 0.281
of the agent is to maximize the expected cumulative re- Arm 2: 7 pulls, avg. reward 0.790
ward E[ZtT:l r¢] over T trials. During training, the agent | Arm 3: 3 pulls, avg. reward 0.279
learns from bandit instances sampled from an unknown | Arm4: 7 pulls, avg. reward 1.015
task distribution D. We can evaluate the learning agent’s Which arm should be pulled next?
performance in-distribution by sampling bandit instances Show vour reasoning in <think>
from D or out-of-distribution (OOD) on instances from _</think>> tags and vour final answer
a different distribution D’. In training an agent to solve in <answer> </answer> tags.

various bandit instances from a task distribution, we are
effectively searching for a meta-bandit policy (Kveton| Figure 1: An instruction provided to
et al.,[2020), which is a reinforcement learning problem. the LLM agent for the MAB task.

3.1 REINFORCEMENT LEARNING OF META-BANDIT LLM AGENTS

At each bandit turn ¢, the LLM agent takes as input the interaction history consisting of past actions
and rewards in the observation o;, and generates a sequence of tokens s, which contains the action
of the next arm to pull a;. The environment then returns the stochastic reward r, ~ R,,. The
interaction history is then updated with 0,11 = f(o¢, a¢, 7¢), where f can be a simple concatenation
or, in our case, a summarizer that extracts sufficient statistics as shown in The process is
repeated for T turns for each episode. As the agent learns over a history to build its belief about
the environment (e.g., distribution family and variance), this process forms a Partially Observable
Markov Decision Process (POMDP). It can be trained using on-policy RL to maximize episodic
return and thus learns an amortized exploration strategy over histories.

Unlike traditional RL policies that directly select actions, LLM agents operate in the token space.
This implementation converts the problem into a two-level hierarchical MDP (Hauskrecht et al.,
2013;|Xue et al.|2025)), where a high-level policy operates at the turn level to select a local policy that
generates the entire response s; and receives the external reward r;. The low-level policy operates
at the token level to implement the selected local policy. The probability of generating the token s; ;
at position j is given by: mg (s ;|os, St <;) where s, <; is the sequence of tokens generated in turn ¢
up to position j — 1. At turn ¢, the token index j ranges from J; gart = |0¢] + 1 t0 Ji end = |0¢] +|5¢]-
We pass r; as the reward signal to the low-level policy at J; ¢nq, While there is no reward signal for
intermediate tokens.

To learn 7y, we adopt PPO (Schulman et al.| 2017 and compute token-level advantages with a dual-
(v, A) Generalized Advantage Estimator (Schulman et al., [2016). We use separate discount factors
and trace-decay coefficients for intra-turn and inter-turn steps, denoted inga, Vinter a0d Ainra> Ainters
respectively. For simplicity, we define the token-level state at step j as hy; = (04, 5¢,<;). The
one-step temporal difference (TD) error for each generated token index j is:

. {Vimrav(ht,jﬂ) = V(hs,j) if Jistare < J < Jtena
7 e + ’yimerv(othl) - V(ht,j) lfj - Jt,end

For the final token at index J; ¢nq, the error incorporates the external reward r; and bootstraps from
the value of the next turn’s initial state, V' (0;1), using the inter-turn discount factor ~yin,. In prac-
tice, since we can only optimize over a truncated horizon for this infinite-horizon problem, we infer
the value of one more turn, V' (or1) for the last turn 7.

(D

The GAE advantage for token index j now accumulates TD errors over all subsequent generated-
token positions across the entire episode. Let x(7) denote the starting generated-token index in turn
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7 as seen from (¢, j): k(1) = {‘7 ?fT - t. Define the step-weighting product from (¢, j) to
Jrstat 7 >1
(1,k) as:
—1 JIpend—1 k—1
P (tvj; T, k) = H (Ainter’Yinter) H AintraVintra H Aintra Yintra
p=t u=r(p) u=r(T)
The token-level GAE advantage for (¢, j) is then:
T Jrend
At,j = Z Z P(tvjaTa k) 5T,k~
=t k=k(r)

With token-level advantages defined only for generated tokens, the clipped PPO objective is:
£70(0) = By 5 [min (ro;(6) Aug, clip(ro;(6),1— €1+ ¢) Ay,

mo(sejlhe.;)
Togq (5,5 |he,5) "
parameter at the previous iteration. This objective trains the policy at token level using the two-scale
GAE that respects intra-turn and inter-turn dynamics. We intentionally omit the KL-divergence
term, which is often employed in PPO as we find it to be unnecessary for our setting without a
learned reward model.

where the per-token probability ratio is 7, ;(0) = Here 6,4 is the reference policy

3.2 REWARD DESIGN

As described above, the meta-bandit agent relies solely on the past interaction history o, to generate
the next action. The interaction history o; is a summary of the past actions and rewards, which is tied
to the stochastic bandit rewards r; and cannot be changed. We can however opt for a different reward
signal for the PPO optimization in The original bandit rewards (RL-0G), although a
natural choice of reward signal for PPO optimization, contribute to credit assignment difficulty and
learning inefficiency due to their intrinsic stochasticity.

On the other hand, we can more accurately measure the optimality of an action based on the notion
of immediate regret. At each time step, the immediate regret is defined as the difference between
the expected reward of the optimal arm and the expected reward of the arm selected by the agent.
Ay = p* — pa,. We define the strategic reward (RL—-STR) based on the immediate regret of the
agent’s action:

At _ ma, — mini M

€ [0,1].

E ! Amax w* = min; Hi
This reward signal directly optimizes an action’s utility, which simplifies credit assignment. Using
the realized regret as the reward is a form of baseline subtraction (Kveton et al.,[2020). We further
use the (pseudo) regret, which is analogous to introducing a control variate. While this approach
reduces variance, it theoretically does not alter the optimal policy to which the agent converges.

A third approach moves beyond extrinsic environmental rewards, instead using a reward function
optimized by an expert oracle (Ciosek, |2022). While this reward function often needs to be learned
via inverse reinforcement learning (Abbeel & Ng| |2004), we can bypass this by deriving it directly
from well-established optimal algorithms for MAB. We select the Upper Confidence Bound (UCB)
algorithm as the oracle policy, as its deterministic and distribution-agnostic properties provide a con-
sistent and unambiguous learning signal. We therefore define the algorithmic reward (RL-ALG)
as a binary signal 7, = 1 if the agent’s action matches the oracle’s decision 7oracle(0t), and 14 = 0
otherwise. Because the UCB oracle is a reactive algorithm, this myopic reward is sufficient for
on-policy learning and sidesteps the need for return-based credit assignment. This imitation learn-
ing setup leaves the agent free to discover its own internal algorithm for processing the interaction
history to match the oracle’s choice at each step, without any supervision on the reasoning process.

On top of these task specific rewards, we also consider a reward shaping term that encourages the
LLM agent to generate valid responses. Specifically, we set reward to zero if our parser cannot
extract a valid action and rationale from the response. For the stochastic reward setting (RL-0G),
because the unbounded reward is sometimes negative, we subtract 0.5 from the reward as the penalty
for invalid responses.
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Demonstration of UCB calculation

<think> Let me calculate the UCB value for each arm after (1 +2 + 7 + 3 + 7) = 20 pulls:
Arm 0: Uncertainty bonus = 1/In(20)/1 a 1/2.996/1 ~ 1.731; UCB = —0.249+1/2 x 1.731 = 0.616
Details of Arm 1-3 omitted for brevity.
Arm 4: Uncertainty bonus = 1/In(20) /7 ~ /2.996/7 ~ 0.654; UCB = 1.015 + 1/2 x 0.654 = 1.342

Based on these calculations, I choose arm 4 as it has the highest UCB value. </think>
<answer> Arm 4 </answer>

Figure 2: An example of the UCB calculations for the state in|[Figure 1} used in SFT.

3.3 SUPERVISED LEARNING

We also consider a supervised fine-tuning (SFT) baseline, where the LLM agent is trained on
observation-response pairs. The response includes synthetic CoT demonstrations to explicitly cal-
culate UCB values and the UCB action (Figure 2). Here, both the rationales and the actions are
directly supervised. Since the states embodied by the observation are sampled from the UCB policy,
the learning process is off-policy.

4 EXPERIMENTAL SETUP

Language Model Configuration. We use Qwen 2.5 3B and 7B Instruct (Qwen et al [2024) as
the base model for fine-tuning. The observation at each time step consists of a natural language
instruction of the MAB task and the interaction history presented as a summary of the number of
pulls and average reward for each arm (Figure I). We use this sufficient statistics to summarize the
interaction history, which has been shown to be more effective than using a cumulative context, e.g.,
a raw list of actions and rewards (Krishnamurthy et al., [2024)). In the instruction, the agent is asked
to think step-by-step using chain-of-thought reasoning, which is critical for eliciting the sequential
decision-making ability of LLMs (Yao et al.| 2023).

RL Configuration. We build our RL training code on top of the VeRL framework (Sheng et al.,
2024). At each training iteration, we first sample a batch of 64 random environments from the
training task distribution D. From each environment, we collect a rollout of length 7" = 50, resulting
in a batch of 64 x 50 transitions (o, ¢, 7¢). This batch is then used to compute policy gradients and
perform PPO updates. We sample another set of environments for the next batch of rollouts.

Supervised Fine-Tuning (SFT). For the SFT experiments, we train the model for 6 epochs on 32k
transitions sampled from UCB rollouts in environments drawn from the training task distribution
D. Transitions are uniformly sampled across the length of training horizon 7. We synthesize a
templated response for each transition by demonstrating the step-by-step UCB value calculation for
each arm and the comparison process which leads to the final action. We perform full fine-tuning
minimizing the cross-entropy loss between the predicted and ground-truth responses.

Table 1: Generic families of k-armed MAB environments and some specific parameterizations used
in our study. Asterisk indicates the training task distributions.

Family Reward Dist.  Mean Dist. Example Instantiation
Gaussiank_Varo? MeanNm 7 ~ N (u;,02)  u~ N(m,o2) Gaussian5_Varl_MeanNO0*
Gaussiank_Varo? MeanU 7 ~ N (u;,02)  u~U(0,1) Gaussian5_Varl_MeanU
Bernoullik_Uniform r~ B(u;) u~U(0,1) Bernoulli5_Uniform*
Bernoullik_DeltaA r ~ B(u;) Ujx =D, Bernoulli5_Delta0.2

u=p—A,Vi#i*

Bandit Environments. We consider MAB environments listed in [Table 1l The environments
can be generally grouped into two families: Gaussian and Bernoulli, based on the reward dis-
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tribution. The Gaussian environments have continuous reward distributions, while the Bernoulli
environments have discrete binary reward distributions. We select one from each family (i.e.,
Bernoulli5 Uniformand Gaussian5_Varl MeanNO) as the two training task distributions,
under which we train two set of policies to test out-of-distribution generalization.

Baselines. We compare learning agents against the following standard baselines:
1) Upper Confidence Bound (UCB) (Auer et al, [2002) selects the action A; =

arg max, (Qt(a) +C x ,/ﬁf’&), where @Q:(a) is the mean reward of action a up to time

t, N¢(a) is the number of times action a has been selected up to time ¢, and C' is a constant. 2)
Thompson Sampling (TS) (Thompson, 1933) is a Bayesian method that samples from the posterior
reward distribution of each action and selects the one with the highest sample. We use Beta and
Gaussian posteriors for Bernoulli and Gaussian rewards, respectively. 3) e-Greedy chooses a
random action with probability € and the action with the highest current mean reward otherwise.
While simple, its constant exploration leads to linear regret. The purely exploitative Greedy policy
is a special case where € = 0.

For UCB, which sometimes serves as a teacher, we use an exploration constant of C' = 0.5, which
performs well for both training environments. For e-Greedy, we use a standard € = 0.1; while likely
suboptimal, it provides a consistent anchor for comparison. The direct performance comparison
between learned agents and baselines is not the central focus of this study. The one exception is the
evaluation of our imitation learning agents against their UCB teacher.

Evaluation. We evaluate the policy over 64 episodes, each with a maximum of 300 steps. We use
a fixed set of 64 different seeds for initialization of evaluation environments and baseline policies.
To compare the policies and test for length generalization, we follow standard practice to report
cumulative regret at ¢ € {50,300}. MAB instances, even when they are drawn from the same
distribution, can be quite different in terms of challenge level. Conventional empirical evaluation
aggregates from exccessive number of rollouts (e.g., ten of thousands) and long horizons, which
although provides a more stable estimate is prohibitively costly for LLM inference. We therefore
utilize distribution plots to visualize this variation in regret and focus on the typical performance in
comparison. To provide a more comprehensive evaluation, we supplement this with two additional
metrics: time-averaged reward and best arm frequency, which measure the proportion of times the
optimal arm is selected.

5 EXPERIMENTAL RESULTS

5.1 LLM AGENTS ARE META-BANDIT LEARNERS

As shown in [Figure 3| across both training setups, RL-trained policies improve upon pre-trained
models to be comparable with classical baselines (UCB, TS, e-Greedy), achieving lower cumulative
regret and length generalization to a 6x longer horizon (50 — 300). The time-averaged reward
(AvgReward) and best arm frequency (BestArmFreq) in indicate steady performance gains
over time. Learning agents remain competitive under OOD evaluation, exhibiting non-trivial cross-
distribution transfer from Gaussian-trained policies to Bernoulli environments and vice versa. How-
ever, RL agents that trained on environmental feedback (i.e., RL—OG and RL-STG) show weaker
cross-distribution generalization, with greater variability in worst-case performance.

Learning from UCB signals. Overall, policies optimized using teacher UCB signals, whether
through reinforcement learning (RL—-ALG) or supervised fine-tuning (SE'T), consistently outperform
policies trained solely on the task reward signal (RL—0G). This underscores the difficulty of training
RL LLM policies for long-horizon exploration where credit assignment is challenging. The imita-
tion policies match or achieve lower cumulative regret compared to the teacher UCB policy in all
evaluation environments, revealing a seemingly exciting result: policies trained on expert-generated
data can ultimately outperform the very expert policy that produced the data.

Improving training with strategic rewards. To learn RL policies from environmental feedback,
while theoretically aligned with the original bandit reward signal (RL-0G), optimizing for strate-
gic rewards (RL—STG) empirically improves the performance of the policy in the Gaussian training
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Figure 3: Comparison of LLM policies against baselines on cumulative regret at 300 steps. The
first row shows the results of 7B models trained on Gaussian5_Varl_MeanNO, and the second
row shows the results of 7B models trained in Bernoulli5_Uniform. Evaluation is performed
both in- (first column) and out-of-distribution (other columns). The boxplots depict the median,
interquartile range (IQR) from the 25" to the 75" percentile, and whiskers extending to 1.5xIQR.

3B model results can be found in|Appendix B

setup, despite certain instabilities observed in OOD evaluation. As the variance of the reward distri-
bution decreases, RL—STG becomes equivalent to RL-0G, which explains why their performance is
more closely matched when training in the Bernoulli5_Uniform environment.

SFT vs RL for imitation. SFT with UCB expert demonstrations can achieve similar regret to UCB
in-domain, consistent with prior work (Schmied et al.,|2025). We additionally find SFT policies to be
surprisingly competitive out-of-distribution. Part of the reason is that UCB is a distribution-agnostic
policy—the same calculation can be applied to different reward distributions as long as the LLM
follows the arithmetic operations. This generalization is however fragile. SFT policies can overfit
to the training distribution and cause a degradation of basic arithmetic capability. Together, these
factors lead to higher variability and worst-case regret in OOD evaluation. For example, in
the SFT policy trained in the Bernoul1li5_Uniform environment exhibits unsatisfactory worst-
case performance in Gaussian5_Varl MeanNO, while the RL—-ALG policy based on UCB reward
signal remains robust.

Small models struggle to learn without teachers. |Fig 4 O-B‘W_ NI
illustrates the training dynamics of the RL-STG policy on the e e—kes ]

<
~
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'
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Y

m— 3b RL-STG
== = 7b RL-STG
O 3bRL-ALG

GaussianK_Varl MeanNO environment using 3B and 7B pa-
rameter models, measured by the frequency of selecting the best
arm. For the 7B models, performance improves over iterations
across varying numbers of arms (K=2, 3, 5), with higher accuracy
for smaller K. In contrast, the 3B model exhibits stagnant accuracy,
starting comparably or even higher than the 7B counterpart in sim-
pler 2- and 3-arm settings pre-training but failing to improve with T 5 e 10 13 1k
RL updates. Neverthless, we observe that the 3B model can learn Training iteration

with teacher guidance using RL—-ALG or SFT. This highlights the

challenges of training smaller models with RL on task rewards, as Figure 4: Training perfor-
learning effective exploration policies from environmental feedback mance of RL—STG policy on
demands long-horizon credit assignment. GaussianK_Varl_MeanNO

ith 3B and 7B models. W
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5.2 ANALYZING LLM EXPLORATION STRATEGIES

We additionally include two surrogate statistics used in |Krishnamurthy et al.| (2024)) as diagnostics
for long-term exploration failure: GreedyFreq@t measures the relative frequency of rounds that
selects the greedy action up to time ¢, and SuffixFail@¢ measures the frequency of suffix failures.
Specifically, in an episode of length 7' = 300, a suffix failure at ¢ indicates that the policy never

selects the optimal arm again for rounds ¢, ..., T

Learneq policies exhibit greedy Table 2: Analytics of baselines and 7B LLM policies trained
tendencies. While LLM policies onGaussian5 varl_MeanNO , evaluated in-distribution.

achieve lower regret, our qualitative

analysis reveals concerns about sub-

. . Metric AvgReward BestArmFreq GreedyFreq SuffixFail
optimal exploration. The first warn-
ing sign, shown in[Table 2} is that the @ 50 300 50 300 50 300 50 150
learned agents exhibit higher suffix Baselines
failure frequency than both the pre-  “es™ 0 0177 04 "7 506 833 954 3.1 47
trained model and theorefical optimal g 077 100 558 785 67.0 852 0.0 0.0
policies.  This indicates premature ¢ Greedy 0.76 090 47.9  67.6 913 91.6 00 0.0
abandonment of the best arm, a pat-  Greedy 091 1.01 654  71.7 90.0 983 250 25.0
tern absent in the pretrained model.
Learning also alters the distribution Learned Agents
of best arm selection frequency from  Pretrain 055 0.79 454 63.1 487 654 0.0 0.0
an approximate]y normal distribution SFT 092 1.05 694 81.3 835 955 62 6.2
for the pretrained model t0 a bl B0, (U0l 67 11 837 958 51 62
modal distribution, where the agent o 7 & o) 05 707 857 854 970 78 94

either almost always selects or very

rarely selects the best arm within an

episode, a characteristic of Greedy behavior (Fig

than the pre-trained model.

Dissecting imitation of the UCB oracle: RL
vs. SFT. Although the UCB policy is it-
self greedy in construction, student policies
trained under UCB teacher often amplify this
tendency. This partially explains why LLM
policies trained to imitate UCB decisions can
sometimes perform better than the oracle. To
analyze this phenomenon, we compare how of-
ten the choices of each UCB-mimicking pol-
icy diverge from the oracle’s decision given the
same state, a metric we refer to as the “match
rate”. For SFT policies that explicitly calcu-
late confidence-bound values, we additionally
report the absolute difference between the pol-
icy’s predicted UCB value and the correspond-
ing oracle value, averaged across the arms.

As shown in when both policies

trained with UCB supervision in the same en-
vironment Gaussian5_Varl_MeanNO, the
SFT policy maintains a higher match rate than
the RL policy from the beginning, indicating

6). Direct measurement of greedy-arm selec-
tion frequency further confirms that the learning agents reach the exploitation phase more quickly
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Figure 5: Match rates of the RL-ALG policy
against decisions of the oracle UCB and a UCB-
like algorithm discovered in LLM rationales, at
different timesteps. SFT policy shows a jump in
calculation errors at the 51st step.

that it more faithfully imitates the teacher’s decisions. Both sustain a high match rate above 80%
in the first 50 steps in-distribution, with the SFT policy tracks the oracle’s UCB decisions more
closely. However, this stronger imitation capability also makes the SFT policy more susceptible to
overfitting, meaning its high match rates are only guaranteed when evaluation conditions closely

resemble the training data.
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This sensitivity becomes apparent when training on different data. While the SFT policy trained
on Gaussian5_Varl MeanNO sustains high match rates across all tested environments, an SFT
policy trained on Bernoulli5_Uniform achieves this only within the same Bernoulli family of
tasks (Figure 16). We find this failure is a result of systematic errors in simple calculations involving
negative rewards, which are unseen during training—a sign of catastrophic forgetting of basic arith-
metic skills (Chu et al.|, 2025} Shenfeld et al., 2025)). The agent frequently miscalculates the UCB
values and subsequently disregards its own calculations. This leads to asymmetric generalization,
where performance degrades sharply outside the training distribution, consistent with the higher
worst-case regret we previously observed in[Figure 3] These results highlight the critical importance
of training data selection to balance imitation fidelity with robustness.

What incentivizes RL-ALG to prioritize exploitation over imitation? The adaptive behavior
of the RL—-ALG policy is a subtle consequence of the bandit learning structure and a fundamental
change in the UCB teacher’s behavior over an episode. Initially, the UCB algorithm balances high
uncertainty (exploration) and high observed rewards (exploitation). As an episode progresses, the
uncertainty bounds shrink, and the teacher’s policy converges. Its decisions become increasingly
dominated by the empirical means, causing it to select the greedy arm. In this regime, the RL
objective, though formally defined in terms of imitation, becomes highly correlated with a reward
for exploitation. The agent discovers that it can optimize more easily by directly picking the greedy
arm, rather than faithfully internalizing the teacher’s complex exploration logic.

LLM rationales reveal flawed, exploitative heuristics. The LLM’s generated rationales can re-
veal its underlying decision-making process. RL policies trained on bandit rewards converge to
templated heuristics that most oftenly compare and choose the arm with the highest mean reward.
Their explorative actions are driven by rationales that explicitly evaluate the uncertainty of the
arms, sometimes with UCB-like calculation. RL-ALG trained in Gaussian5_Varl_MeanNO
however converges to a UCB-like algorithm and mentions in its rationales 98% of the time:

Qi(a) +C x 4/ %. In the standard UCB algorithm, the numerator of the exploration term

log(t) grows with the total number of pulls, ensuring that no action is ever abandoned permanently.
In contrast, this learned variant’s exploration term depends only on N;(a), the pulls of a specific
arm. This allows the policy to prematurely stop exploring an action if it appears unprofitable in the
short run, embodied an exploitative tendency.

shows that this UCB-like algorithm describes the LLM policy better than the oracle UCB.
However, the LLM does not follow the algorithm strictly, as its decisions are also affected by fre-
quent numerical inaccuracies such as miscalculating the log term. We can also observe that when
the policy diverges from the UCB variant’s decisions, it opts for the greedy action more than 86%

of the time. In Bernoulli5_Uniform, the LLM converges to another variant Q:(a) + \/]\(;17()
t(a

with similar greedy behavior. These findings reveal that the RL-ALG policy learns approximate,
error-tolerant variants of UCB, blending imitation with opportunistic exploitation that lowers regret
in certain environments. Intriguingly, we observe that the LLM generates the correct UCB formula
with inaccurate calculations during early training stages. Its eventual convergence to greedy variants
suggests failures in credit assignment.

6 CONCLUSION

We fine-tune LLM agents via SFT and RL with novel reward signals, achieving strong performance
with lower regret and robust generalization to 6x longer horizons and new reward distributions in
the multi-armed bandit task. However, behavioral analysis reveals that training elicits short-sighted,
exploitative policies. This emergent greediness is a consequence of the fundamental imbalance in
training data, where sparse exploration signals are easily overwhelmed by frequent exploitation.
Compounded by the complex credit assignment problem, this challenge highlights the need for
methods that explicitly amplify exploration signals. Future work could explore focused replay tech-
niques that re-weight experiences based on information gain and surprise or design adversarial and
curriculum-based environments that make robust long-horizon planning a necessity for success.
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REPRODUCIBILITY

To support the reproducibility of our results, we provide more implementation details in[Appendix Al
We commit to sharing the code, pre-trained models and data to the general public upon publication.
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A IMPLEMENTATION DETAILS

We report additional details for the environment settings, the RL and SFT training of LLM policies.

A.1 ENVIRONMENT SETTINGS

Table 3: Generic families of k-armed MAB environments and a complete list of 15 parameterizations

used in our study. Asterisk indicates the training task distributions.

Family Reward Dist.  Mean Dist.

Example Instantiation

Gaussiank_Varo?_ MeanNm 1 ~ N (u;,02)  u~ N(m,o2)

Gaussian5_Varl _MeanNO*
Gaussian10_Varl_MeanNO
Gaussian5_Var3_MeanNO
Gaussian5_Varl _MeanN=+1
Gaussian5_Var3_MeanN-+1

Gaussiank_Varo?_MeanU r~N(ui,0?) u~U(0,1) Gaussian5_Varl_MeanU
Gaussian5_Var3_MeanU
Gaussian5_Var5_MeanU

Bernoullik_Uniform r~ B(u;) u~U(0,1) Bernoulli5_Uniform*
Bernoullil0_Uniform
Bernoullik_DeltaA r ~ B(u;) U = P, Bernoulli5_Delta0.2

u; =p— A, Vi #¢*  Bernoullil0_Delta0.2
Bernoulli5_Delta0. 1

We evaluate the policies on a comprehensive set of environments from the Gaussian and Bernoulli
families listed in Table [3] There are diverse types of distribution shifts in the test environments,
including changes in the mean, variance, and shape of the reward distributions. We additionally test
the policies on environments with different numbers of arms (k from 5 to 10).

A.2 RL SETTINGS

presents the hyperparameters used for PPO training of the LLM policies (RL—0G and
RL-STG). For the algorithmic-reward variant (RL—-ALG), we retain all settings except that we set the
episode-level discount factor and GAE lambda to zero, since cumulative rewards are not required.

We use VLLM (Kwon et al., |2023) for asynchronous rollouts across parallel environments and
FSDP (Zhao et al.| 2023) for fully sharded training under the VeRL framework. At the start of
each iteration, all environments are reinitialized with fresh random seeds to ensure diverse experi-
ence collection.

Model checkpoints are saved every 100 training steps. Each checkpoint is evaluated on the same set
of environments (matching the training type) to guarantee fair comparison. The checkpoint with the
lowest cumulative regret is selected as the final model.

A.3 SFT SETTINGS

We generate training data for supervised fine-tuning by sampling /N trajectories from the environ-
ment using a UCB policy. To expose the model to a broad spectrum of environment configurations
and exploration behaviors, we uniformly sample states and actions across each trajectory’s horizon.

As in our reinforcement learning experiments, we save model checkpoints at the end of every epoch
and evaluate them on the same set of environments to ensure a fair comparison.
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Table 4: Hyperparameters for the PPO training of LLM policies (RL—0G and RL—-STG).

Category Hyperparameter Value
Model & Environment
Model Base Language Model Qwen/Qwen2.5-3/7b-Instruct
Max Response Length 1024 tokens
Temperature 1.0
Environment Type Various (Gaussian, Bernoulli)
Number of Arms (k) 5
Episode Length (1) 50
Number of Parallel Environments 64
PPO Algorithm
Optimization Optimizer AdamW (Kingma & Ba, [2015)
Actor Learning Rate (cv;) 1x107°
Critic Learning Rate (ay/) 1x107°
Gradient Clipping 1.00
Response-level Discount Factor (7inea) 1.00
Response-level GAE Lambda (Ajpra) 1.00
Episode-level Discount Factor (“inter) 0.95
Episode-level GAE Lambda (Ajyer) 0.95
PPO Clipping Coefficient (¢) 0.20
PPO Mini-batch Size 128
Regularization = Weight Decay 1x1072
Entropy Coefficient 5x 1074
Training Infrastructure
Training Total Training Steps 500
Hardware Number of GPUs 4
Tensor Parallelism (Rollout) 4
Table 5: Hyperparameters for Supervised Fine-Tuning (SFT).
Category Hyperparameter Value
Model & Data
Model Base Language Model Qwen/Qwen2.5-3/7b-Instruct
Data Type Various (Gaussian, Bernoulli)
Number of Arms (k) 5
Max Episode Length (7" 50
Number of Examples (V) 32768
Optimization
Optimizer Type AdamW
Learning Rate 1x107°
Betas (31, 32) (0.9, 0.95)
Weight Decay 0.01
LR Scheduler Cosine Decay
Warmup Ratio 0.1
Gradient Clipping 1.0
Training Details
Batch Size 256
Epochs 6
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Figure 6: Comprehensive statistics of the two sets of LLM policies described in[Figure 3] evaluated
in-distribution.

B DETAILS OF REGRET COMPARISON

We provide comprehensive experimental results of the LLM policies compared against baselines
over a range of environments and model sizes on cumulative regret at 50 and 300 steps. The obser-
vation is consistent with the analysis in main text.

B.1 7B MODEL COMPARISONS

The cumulative regret trends are consistent across evaluations at 50 and 300 steps. However, the
longer 300-step horizon more prominently exposes the weaknesses of simple heuristics like e-
greedy. At 50 steps, the imitation learning policies (RL-ALG and SFT) show some instability,
likely due to the stronger mimicking effect of the UCB oracle in the initial exploratory phase.

When increasing the variance of the reward distribution in Gaussian5_Varo?_MeanU environ-
ment, exploration strategies learned in low-variance settings generalize poorly, causing all policies
to perform similarly badly. Amidst this, the RL-OG policy begins to show a slight advantage. Fi-
nally, we note that the SFT policy, when trained on Bernoulli5_Uniform, consistently fails to
generalize to any Gaussian environment.

The pre-trained model struggles to perform well on environments with 10 arms (k¥ = 10), reaching
excessive regret values due to increased action space, while the learned policies maintain a stable
performance.
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Figure 7: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 8: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 9: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 10: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.
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B.2 3B MODEL COMPARISONS

Consistent with our main findings, smaller models benefit less from reinforcement learning op-
timized for direct environmental reward signals. The RL-0G and RL-STG policies perform on
par with the pre-trained model at 50 steps and achieve only insignificant gains at 300 steps. Con-
versely, both the RL—ALG and SFT policies show a significant improvement over the pre-trained
model. The SFT policy, in particular, emerges as the top-performing method, achieving reliably
lower regret across nearly all environments. This suggests that, even in the imitation learning set-
ting, smaller models struggle with reinforcement learning optimization. The exception to this strong
performance is the previously noted generalization failure of the SFT policy to transfer from the
Bernoulli5_Uniform environment to Gaussian environments.

18



Under review as a conference paper at ICLR 2026

Bernoullil0_Uniform Bernoulli5_Uniform Bernoullil0_Delta0.2 Bernoulli5_Delta0.2 Bernoulli5_Delta0.1
60 =] 60 30{— -
200 T = 5572
s 80 50 B so 25
a 22 —
©1s0 60 20 | 20 20
5 | |} R B —_
2 B T |
£100 30 R 30 15
§ ° il K
3 B 20 — 10
g so T B <5 T
g 20 2 _
® — T [ |} l 10 5 l il
Tk | == = ; 10 - :
0 0 [ o
4
Gaussian10_Varl_MeanNO Gaussian5 Varl MeanNO® Gaussian5_Varl_MeanN-1 Gaussian5_Varl_MeanN+1 Gaussian5_Var3_MeanNO
1000 400 1400
s 400 0 1200
8 800
300 400
e 300 1000
5 600 300 800
5 200 200 600
§ 400 200
' 400
T Ul i R #y - %
] == — = T
T F= 1l = ol L == T F= = =l = =l
Gaussian5_Var3_MeanN-1 Gaussian5_Var3_MeanN+1 Gaussian5_Varl_MeanU Gaussian5_Var3_MeanU Gaussian5_Var5_MeanU
1400 1200 200 250
150
g 1200 1000
2 125 150 200
© 1000 800
g
2 800 100 150
5 600 75 100
£ 600
g 400 | ] 100
o 400 50 50 ||
g — —
b ””TT g -EraiL Tl "Il
ot T= 1l = 0 = ot o oL
Agent
Epsilon-Greedy e=0.1 ~ msss= UCB c=0.5 B 3b SFT [mm 3b RL-STG

Thompson Sampling wmmm 3b Pretrain  EEE 3bRL-OG [ 3b RL-ALG

Figure 11: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 12: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 13: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.
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Figure 14: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.
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C DETAILS OF IMITATION LEARNING ANALYSIS

We investigate why an imitation learning policy might outperform its teacher by analyzing its ad-
herence to key decision-making heuristics. This section expands upon the main text by presenting
results from a complete set of experimental environments.

A key finding is that both imitation learning policies (RL-ALG and SFT) make fewer (imitation)
errors in high-variance environments. This is attributed to the teacher UCB policy (C=0.5) itself
behaving more greedily in these settings, matching the exploitative bias of the imitation learning
policies.

We find that the SFT agent’s mistakes reveal errors in both simple arithmetic (summation, sub-
traction) and complex calculations (logarithms, square roots). A prominent failure mode emerges
when the Bernoulli-trained policy observes negative rewards: it often struggles with summations
involving these numbers and subsequently disregards its own UCB calculations. For instance, in the
Gaussianb5_Var3_ MeanNO environment, the agent chooses an arm different from the one with
the highest calculated UCB value 78% of the time. This divergence is sensitive to the reward dis-
tribution; lowering the environment’s mean reward by 1 increases this deviation rate to 89%, while
raising the mean by 1 reduces it to 44%. This behavior indicates a regression in the LLM’s ca-
pabilities, leading to hallucinations in its reasoning. Future work can explore mixed training with
mathematical data to alleviate this issue.

We previously discovered that the RL—ALG agents converge to suboptimal variants of the UCB al-
gorithm. This finding is both interesting and disappointing. On one hand, it demonstrates that agents
can discover novel solutions from sparse reward signals received only at the end of a response. On
the other hand, it suggests that either the oracle policy is not encountered during RL exploration or
that credit assignment is a significant challenge. By manually inspecting rollouts from early train-
ing iterations, we find that the correct UCB formula did appear, but its calculations were frequently
incorrect due to the base model’s weakness in complex operations like square roots and logarithms
(Figure T9). This points to a credit assignment issue, where the agent incorrectly attributes poor
outcomes to the formula itself, rather than to flawed calculations or suboptimal hyper-parameter
choices. Future work could explore more fine-grained RL signals to address this problem.
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Figure 15: 7B SFT agent trained on Gaussian environments: UCB error by step.
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Figure 16: 7B SFT agent trained on Bernoulli environments: UCB error by step.
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RL with Algorithmic Reward (7B Gaussian; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 2 pulls, average reward -1.421
Arm 1: 60 pulls, average reward 1.110
Arm 2: 2 pulls, average reward -2.903
Arm 3: 3 pulls, average reward -1.197
Arm 4: 1 pulls, average reward -1.842

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the highest
upper confidence bound, which is the sum of the estimated mean reward and an exploration

term. The formula for UCB is: UCB = average reward + C' x 4/ @ where ( n ) is the
number of times the arm has been pulled, and ( C ) is a tuning parameter typically set to 1 or 2.
Let’s calculate the UCB for each arm using (C =1 ):

For Arm 0: UCBy = —1.421 + 1 x /8% ~ 1491 4 0.549 ~ —0.872

:

:

For Arm 1: UCB; = 1.110 + 1 x 1/ 280%D ~ 1110 4 0.040 ~ 1.150

For Arm 2: UCBy = —2.903 + 1 x 1/ 8% ~ _9.903 + 0.549 ~ —2.354

For Arm 3: UCB3 = —1.197 + 1 x /284D ~ 1197 4 0.302 ~ —0.895

For Arm 4: UCBy = —1.842 + 1 x /804D ~ 1,849 4 0.693 ~ —1.149

B

Now, we compare the UCB values:

Arm 0: -0.872

Arm 1: 1.150

Arm 2: -2.354

Arm 3: -0.895

Arm 4: -1.149

The highest UCB value is for Arm 1, which suggests we should pull Arm 1 next.
</think> <answer> The arm that should be pulled next is Arm 1. </answer>
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RL with Algorithmic Reward (7B Bernoulli; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 19 pulls, average reward 0.541
Arm 1: 1 pulls, average reward -0.879
Arm 2: 1 pulls, average reward -2.651
Arm 3: 46 pulls, average reward 1.240
Arm 4: 1 pulls, average reward -1.374

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To determine which arm to pull next, we can use the Upper Confidence Bound
(UCB) algorithm, which balances exploration and exploitation by considering both the aver-
age reward and the uncertainty associated with each arm. The formula for UCB is: UCB =
Average Reward + Exploration Term

For simplicity, we can use a basic form where the exploration term is inversely proportional to

the square root of the number of pulls: UCB = Average Reward + ——~——— where (k) is

a constant, typically set to 1 for simplicity.
Let’s calculate the UCB for each arm:
Arm 0: UCBg = 0.541 + #9 ~ 0.541 + 0.229 ~ 0.770

Arm 1: UCB; = —0.879 + % ~ —0.879+1~0.121

Arm 2: UCB, = —2.651 + %ﬁ ~ —2.651 4+ 1~ —1.651
Arm 3: UCB3 = 1.240 + \/% ~ 1.240 + 0.120 ~ 1.360
Arm 4: UCBy = —1.374 + % ~ —1.374+ 1= —0.374

Now, we compare the UCB values: UCBj ~ 0.770
UCB; ~ 0.121

UCB; =~ —1.651
UCB3 ~ 1.360
UCB4 =~ —0.374.

Clearly, Arm 3 has the highest UCB value, indicating it is the best choice according to the UCB
algorithm. </think>
<answer> The arm that should be pulled next is Arm 3. </answer>
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RL with Algorithmic Reward (7B Gaussian; Iteration 50 Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:

Arm 0: 2 pulls, average reward -0.282
Arm 1: 10 pulls, average reward 1.723
Arm 2: 5 pulls, average reward 1.255
Arm 3: 2 pulls, average reward -1.101
Arm 4: 2 pulls, average reward 0.995

Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the high-
est upper confidence bound of the expected reward. The formula for UCB is: UCB =

log total number of pulls
Average Reward + C' x \/number of times arm was pulled *

Here, (C) is a tuning parameter that controls the trade-off between exploration and exploitation.
For simplicity, we can assume (C =1).

First, calculate the total number of pulls: 2+ 10 + 5+ 2 4 2 = 21.

Now, apply the UCB formula to each arm:

Arm 0: UCBy = —0.282 + 1 x /1821 ~ _(.282 + 0.956 = 0.674.

Arm 1: UCB; = 1.723 + 1 x /%21 ~ 1.723 + 0.302 = 2.025.

Arm 2: UCBy = 1.255 + 1 x 1/ 120 ~ 1.255 4 0.509 = 1.764.

Arm 3: UCB3 = —1.101 + 1 x /82! ~ —1.101 + 0.956 = —0.145.

Arm 4: UCB, = 0.995 + 1 x 1/ '%82% ~ 0.995 + 0.956 = 1.951.

Comparing these UCB values, Arm 1 has the highest upper confidence bound. </think>
<answer> The arm that should be pulled next is Arm 1. </answer>

Figure 19: An example generated by RL-ALG policy at iteration 50 (7B Gaussian)
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D LLM USE DISCLOSURE

Using LLMs to help with paper writing. Commercial LLMs were used to correct typos and
grammar, suggest alternative phrasings, and provide insights on the clarity and readability. All
LLM-generated text was reviewed, edited, and approved by the human authors.

Using LLMs as a research assistant. LLMs assisted with brainstorming experimental designs,
suggesting analysis approaches, searching potentially relevant prior work, and producing code scaf-
folding and completion. The human authors provided the research context, validated the literature
identified by LLMs, verfied all analysis and results, and adapted or often rewrote the LLM-generated
content before inclusion.
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