
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHEN GREEDY WINS: EMERGENT EXPLOITATION
BIAS IN META-BANDIT LLM TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

While Large Language Models (LLMs) hold promise to become autonomous
agents, they often explore suboptimally in sequential decision-making. Recent
work has sought to enhance this capability via supervised fine-tuning (SFT) or
reinforcement learning (RL), improving regret on the classic multi-armed bandit
task. However, it remains unclear how these learning methods shape exploration
strategies and how well they generalize. We investigate both paradigms by train-
ing LLMs with SFT on expert trajectories and RL with a range of tailored reward
signals including a strategic, regret-shaped reward to reduce variance, and an algo-
rithmic reward that enables oracle imitation. The resulting agents outperform pre-
trained models and achieve performance comparable to Upper Confidence Bound
(UCB) and Thompson Sampling, with robust generalization to 6× longer hori-
zons and across bandit families. Behavioral analysis reveals that gains often stem
from more sophisticated but greedier exploitation: RL/SFT agents are more prone
to early catastrophic failure than pre-trained models, prematurely abandoning ex-
ploration. Furthermore, agents trained to imitate UCB learn to outperform their
teacher by adopting more exploitative variants. Our findings clarify when each
training paradigm is preferable and advocate tailored reward design and evalua-
tion beyond average regret to promote robust exploratory behavior. 1

1 INTRODUCTION

A fundamental challenge in sequential decision-making problems lies in the exploration-exploitation
trade-off, where an agent must balance exploiting known good actions with exploring new ones to
discover potentially better options. The multi-armed bandit (MAB) problem serves as a classic,
formalized testbed for studying this critical behavior. Despite their sophisticated capabilities, Large
Language Models (LLMs) often struggle here, defaulting to short-sighted, greedy behavior that
over-exploits known rewards at the expense of exploration (Krishnamurthy et al., 2024; Schmied
et al., 2025). While certain prompting configurations can elicit better performance from frontier
models like GPT-4, this inherent suboptimal bias remains a significant hurdle for most models.

To address this, two primary training paradigms have emerged for shaping LLM exploration be-
havior: Supervised Fine-Tuning (SFT) and RL. SFT teaches the LLM to mimic the behavior of an
optimal exploration algorithm, such as Upper Confidence Bound (UCB), by training on trajectories
of expert demonstrations. In contrast, RL enables the model to learn an effective policy directly
from environmental rewards. When trained to solve bandit instances that differ from those they
encountered during training, LLMs effectively become meta-bandit agents, acquiring meta-policy
capable of exploring novel environments (Kveton et al., 2020). Prior works suggest that both meth-
ods can improve exploration capabilities in LLMs on in-distribution tasks, with SFT showing more
consistent results (Nie et al., 2024; Schmied et al., 2025). However, a deeper understanding of how
these training methods shape an agent’s strategy is lacking. It is unclear whether the policies induced
by SFT and RL differ mechanistically. More critically, how do these policies generalize to longer
horizons and out-of-distribution environments?

In this work, we train LLMs to perform MAB tasks using both SFT on expert trajectories and RL
with a spectrum of task-specific reward signals. We evaluate the performance of learned policies

1We will release all the code, model checkpoints for training and evaluation upon acceptance.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

on a range of MAB environments, under length generalization and cross-distribution transfer (e.g.,
Gaussian to Bernoulli). In addition to the standard stochastic reward of bandits, we propose two
additional reward signals: a strategic reward based on the notion of regret to reduce training vari-
ance, and an algorithmic reward, which incentivizes imitation learning of an oracle policy like
UCB via RL. We find that both SFT and RL improve the base model’s performance on MAB tasks
in achieving lower regret and higher rewards, achieving comparable performance to theoretical op-
timal baselines like UCB and Thompson Sampling. For RL, the strategic reward improves training
efficiency in high-variance environments, while the algorithmic reward consistently outperforms
other learned policies due to the ease of credit assignment. Moreover, RL policies yield more robust
generalization across different bandit families compared to SFT. The policies also exhibit strong
generalization on 6× longer (compared to training) and out-of-distribution environments.

While achieving lower regret is the canonical measure of success in MAB, classical literature cau-
tions that relying solely on this aggregate statistic can obscure important characteristics of the agent’s
behavior (Lattimore & Szepesvári, 2020). An agent might achieve a superior average performance
with a high-risk policy prone to catastrophic failure, a nuance that the expected outcome can over-
look. This prompts a deeper question: does a lower average regret achieved by the LLM policies
indicate the acquisition of a robust exploration strategy?

To answer this question, we analyze the agents’ action patterns and compare them to pre-trained
models and baselines like UCB and Greedy policies. We utilize surrogate statistics such as suf-
fix failure rate, which is highly suggestive of the long-term prospects of the agent (Krishnamurthy
et al., 2024). We find that the agents’ impressive improvements in performance are linked to learning
more sophisticated forms of exploitative behavior. For instance, agents trained via RL to imitate an
optimal UCB policy often outperform their teacher by implementing variants of UCB that can pre-
maturely stop exploring an action after unsatisfactory short-term rewards. This suggests that while
the training process maximizes average performance with reasonable generalization, it incentivizes
short-term reward seeking that can be counterproductive in the long run. The suitability of these
learned policies ultimately depends on whether an application prioritizes long-term robustness over
immediate returns, or average performance over worst-case scenarios.

In summary, we present a unified study of how SFT and RL shape LLM exploration in MAB, treat-
ing trained models as meta-bandit agents. We introduce two principled reward designs—strategic
(regret-shaped) rewards that stabilize learning in high-variance settings and algorithmic rewards that
enable efficient RL-based imitation of oracle policies, which both improve over baselines from prior
work (Schmied et al., 2025), with algorithmic rewards yielding the most consistent gains. Eval-
uations demonstrate robust generalization to 6× longer horizons and across bandit families, with
RL policies transferring more reliably than SFT. Beyond aggregate regret, our behavioral analysis
reveals mechanistic differences: learned policies often implement exploitative strategies that boost
average returns but can sacrifice long-term robustness.

2 RELATED WORK

The multi-armed bandit problem, despite being a classical abstraction, embodies the fundamental
exploration-exploitation trade-off central to sequential decision-making and has wide real-world
applications (Bouneffouf et al., 2020; Bouneffouf & Feraud, 2025). As LLMs are increasingly
deployed in interactive settings, the MAB problem has become a key testbed for evaluating their
ability to incrementally gather information and improve over time, a paradigm known as In-Context
Reinforcement Learning (ICRL) (Moeini et al., 2025).

Bandit problems have long been used to evaluate the generalizable ICRL capabilities of sequential
models like RNNs and Transformers (Duan et al., 2016; Laskin et al., 2023; Lee et al., 2023). In
the LLM era, initial benchmarks found that pre-trained models exhibit unsatisfactory exploratory
behavio without careful prompt engineering (Krishnamurthy et al., 2024; Monea et al., 2024). Sub-
sequent work has sought to address this through fine-tuning (Tajwar et al., 2025). Nie et al. (2024)
uses supervised fine-tuning (SFT) on expert trajectories to improve performance, demonstrating suc-
cessful generalization to different reward distributions within the same bandit class. More recently,
Schmied et al. (2025) applies reinforcement learning (RL) to train LLMs for bandit tasks, showing
positive but weaker in-distribution results compared to SFT.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Our work provides a systematic comparison of these two learning paradigms. We demonstrate that
RL-trained agents, while matching SFT performance in-distribution, generalize more effectively to
out-of-distribution environments. More importantly, we move beyond simple performance compar-
isons to conduct a behavioral analysis that uncovers subtle but critical failure modes in how LLMs
learn to explore, highlighting previously unaddressed challenges.

3 METHODOLOGY Prompt with summary statistics

In a 5-armed bandit problem, here are
the results of previous arm pulls:
Arm 0: 1 pull, avg. reward -0.249
Arm 1: 2 pulls, avg. reward 0.281
Arm 2: 7 pulls, avg. reward 0.790
Arm 3: 3 pulls, avg. reward 0.279
Arm 4: 7 pulls, avg. reward 1.015
Which arm should be pulled next?
Show your reasoning in <think>
</think> tags and your final answer

in <answer> </answer> tags.

Figure 1: An instruction provided to
the LLM agent for the MAB task.

A MAB problem B = (A, R) is defined as a set of arms
A = {1, . . . ,K}, where each arm i ∈ A is associated
with a reward distribution Ri and mean µi. The goal
of the agent is to maximize the expected cumulative re-
ward E[

∑T
t=1 rt] over T trials. During training, the agent

learns from bandit instances sampled from an unknown
task distribution D. We can evaluate the learning agent’s
performance in-distribution by sampling bandit instances
from D or out-of-distribution (OOD) on instances from
a different distribution D′. In training an agent to solve
various bandit instances from a task distribution, we are
effectively searching for a meta-bandit policy (Kveton
et al., 2020), which is a reinforcement learning problem.

3.1 REINFORCEMENT LEARNING OF META-BANDIT LLM AGENTS

At each bandit turn t, the LLM agent takes as input the interaction history consisting of past actions
and rewards in the observation ot, and generates a sequence of tokens st which contains the action
of the next arm to pull at. The environment then returns the stochastic reward rt ∼ Rat

. The
interaction history is then updated with ot+1 = f(ot, at, rt), where f can be a simple concatenation
or, in our case, a summarizer that extracts sufficient statistics as shown in Figure 1. The process is
repeated for T turns for each episode. As the agent learns over a history to build its belief about
the environment (e.g., distribution family and variance), this process forms a Partially Observable
Markov Decision Process (POMDP). It can be trained using on-policy RL to maximize episodic
return and thus learns an amortized exploration strategy over histories.

Unlike traditional RL policies that directly select actions, LLM agents operate in the token space.
This implementation converts the problem into a two-level hierarchical MDP (Hauskrecht et al.,
2013; Xue et al., 2025), where a high-level policy operates at the turn level to select a local policy that
generates the entire response st and receives the external reward rt. The low-level policy operates
at the token level to implement the selected local policy. The probability of generating the token st,j
at position j is given by: πθ(st,j |ot, st,<j) where st,<j is the sequence of tokens generated in turn t
up to position j− 1. At turn t, the token index j ranges from Jt,start = |ot|+1 to Jt,end = |ot|+ |st|.
We pass rt as the reward signal to the low-level policy at Jt,end, while there is no reward signal for
intermediate tokens.

To learn πθ, we adopt PPO (Schulman et al., 2017) and compute token-level advantages with a dual-
(γ, λ) Generalized Advantage Estimator (Schulman et al., 2016). We use separate discount factors
and trace-decay coefficients for intra-turn and inter-turn steps, denoted γintra, γinter and λintra, λinter,
respectively. For simplicity, we define the token-level state at step j as ht,j = (ot, st,<j). The
one-step temporal difference (TD) error for each generated token index j is:

δt,j =

{
γintraV (ht,j+1)− V (ht,j) if Jt,start ≤ j < Jt,end

rt + γinterV (ot+1)− V (ht,j) if j = Jt,end
(1)

For the final token at index Jt,end, the error incorporates the external reward rt and bootstraps from
the value of the next turn’s initial state, V (ot+1), using the inter-turn discount factor γinter. In prac-
tice, since we can only optimize over a truncated horizon for this infinite-horizon problem, we infer
the value of one more turn, V (oT+1) for the last turn T .

The GAE advantage for token index j now accumulates TD errors over all subsequent generated-
token positions across the entire episode. Let κ(τ) denote the starting generated-token index in turn

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

τ as seen from (t, j): κ(τ) =
{
j if τ = t

Jτ,start if τ > t
. Define the step-weighting product from (t, j) to

(τ, k) as:

P (t, j, τ, k) =

τ−1∏
p=t

(λinterγinter)

Jp,end−1∏
u=κ(p)

λintraγintra

 k−1∏
u=κ(τ)

λintraγintra

 .

The token-level GAE advantage for (t, j) is then:

Ât,j =

T∑
τ=t

Jτ,end∑
k=κ(τ)

P (t, j, τ, k) δτ,k.

With token-level advantages defined only for generated tokens, the clipped PPO objective is:

LPPO(θ) = Êt,j

[
min

(
rt,j(θ) Ât,j , clip(rt,j(θ), 1− ϵ, 1 + ϵ) Ât,j

)]
,

where the per-token probability ratio is rt,j(θ) =
πθ(st,j |ht,j)
πθold (st,j |ht,j)

. Here θold is the reference policy
parameter at the previous iteration. This objective trains the policy at token level using the two-scale
GAE that respects intra-turn and inter-turn dynamics. We intentionally omit the KL-divergence
term, which is often employed in PPO as we find it to be unnecessary for our setting without a
learned reward model.

3.2 REWARD DESIGN

As described above, the meta-bandit agent relies solely on the past interaction history ot to generate
the next action. The interaction history ot is a summary of the past actions and rewards, which is tied
to the stochastic bandit rewards rt and cannot be changed. We can however opt for a different reward
signal for the PPO optimization in Equation 1. The original bandit rewards (RL-OG), although a
natural choice of reward signal for PPO optimization, contribute to credit assignment difficulty and
learning inefficiency due to their intrinsic stochasticity.

On the other hand, we can more accurately measure the optimality of an action based on the notion
of immediate regret. At each time step, the immediate regret is defined as the difference between
the expected reward of the optimal arm and the expected reward of the arm selected by the agent.
∆t = µ∗ − µAt

. We define the strategic reward (RL-STR) based on the immediate regret of the
agent’s action:

r̃t = 1− ∆t

∆max
=

µAt −mini µi

µ∗ −mini µi
∈ [0, 1].

This reward signal directly optimizes an action’s utility, which simplifies credit assignment. Using
the realized regret as the reward is a form of baseline subtraction (Kveton et al., 2020). We further
use the (pseudo) regret, which is analogous to introducing a control variate. While this approach
reduces variance, it theoretically does not alter the optimal policy to which the agent converges.

A third approach moves beyond extrinsic environmental rewards, instead using a reward function
optimized by an expert oracle (Ciosek, 2022). While this reward function often needs to be learned
via inverse reinforcement learning (Abbeel & Ng, 2004), we can bypass this by deriving it directly
from well-established optimal algorithms for MAB. We select the Upper Confidence Bound (UCB)
algorithm as the oracle policy, as its deterministic and distribution-agnostic properties provide a con-
sistent and unambiguous learning signal. We therefore define the algorithmic reward (RL-ALG)
as a binary signal rt = 1 if the agent’s action matches the oracle’s decision πoracle(ot), and rt = 0
otherwise. Because the UCB oracle is a reactive algorithm, this myopic reward is sufficient for
on-policy learning and sidesteps the need for return-based credit assignment. This imitation learn-
ing setup leaves the agent free to discover its own internal algorithm for processing the interaction
history to match the oracle’s choice at each step, without any supervision on the reasoning process.

On top of these task specific rewards, we also consider a reward shaping term that encourages the
LLM agent to generate valid responses. Specifically, we set reward to zero if our parser cannot
extract a valid action and rationale from the response. For the stochastic reward setting (RL-OG),
because the unbounded reward is sometimes negative, we subtract 0.5 from the reward as the penalty
for invalid responses.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Demonstration of UCB calculation

<think> Let me calculate the UCB value for each arm after (1 + 2 + 7 + 3 + 7) = 20 pulls:

Arm 0: Uncertainty bonus =
√

ln(20)/1 ≈
√

2.996/1 ≈ 1.731; UCB = −0.249+1/2×1.731 = 0.616

Details of Arm 1-3 omitted for brevity.

Arm 4: Uncertainty bonus =
√

ln(20)/7 ≈
√

2.996/7 ≈ 0.654; UCB = 1.015 + 1/2× 0.654 = 1.342

Based on these calculations, I choose arm 4 as it has the highest UCB value. </think>
<answer> Arm 4 </answer>

Figure 2: An example of the UCB calculations for the state in Figure 1, used in SFT.

3.3 SUPERVISED LEARNING

We also consider a supervised fine-tuning (SFT) baseline, where the LLM agent is trained on
observation-response pairs. The response includes synthetic CoT demonstrations to explicitly cal-
culate UCB values and the UCB action (Figure 2). Here, both the rationales and the actions are
directly supervised. Since the states embodied by the observation are sampled from the UCB policy,
the learning process is off-policy.

4 EXPERIMENTAL SETUP

Language Model Configuration. We use Qwen 2.5 3B and 7B Instruct (Qwen et al., 2024) as
the base model for fine-tuning. The observation at each time step consists of a natural language
instruction of the MAB task and the interaction history presented as a summary of the number of
pulls and average reward for each arm (Figure 1). We use this sufficient statistics to summarize the
interaction history, which has been shown to be more effective than using a cumulative context, e.g.,
a raw list of actions and rewards (Krishnamurthy et al., 2024). In the instruction, the agent is asked
to think step-by-step using chain-of-thought reasoning, which is critical for eliciting the sequential
decision-making ability of LLMs (Yao et al., 2023).

RL Configuration. We build our RL training code on top of the VeRL framework (Sheng et al.,
2024). At each training iteration, we first sample a batch of 64 random environments from the
training task distribution D. From each environment, we collect a rollout of length T = 50, resulting
in a batch of 64× 50 transitions (ot, st, rt). This batch is then used to compute policy gradients and
perform PPO updates. We sample another set of environments for the next batch of rollouts.

Supervised Fine-Tuning (SFT). For the SFT experiments, we train the model for 6 epochs on 32k
transitions sampled from UCB rollouts in environments drawn from the training task distribution
D. Transitions are uniformly sampled across the length of training horizon T . We synthesize a
templated response for each transition by demonstrating the step-by-step UCB value calculation for
each arm and the comparison process which leads to the final action. We perform full fine-tuning
minimizing the cross-entropy loss between the predicted and ground-truth responses.

Table 1: Generic families of k-armed MAB environments and some specific parameterizations used
in our study. Asterisk indicates the training task distributions.

Family Reward Dist. Mean Dist. Example Instantiation

Gaussiank Varσ2 MeanNm r ∼ N (ui, σ
2) u ∼ N (m,σ2

u) Gaussian5 Var1 MeanN0∗

Gaussiank Varσ2 MeanU r ∼ N (ui, σ
2) u ∼ U(0, 1) Gaussian5 Var1 MeanU

Bernoullik Uniform r ∼ B(ui) u ∼ U(0, 1) Bernoulli5 Uniform∗

Bernoullik Delta∆ r ∼ B(ui) ui∗ = p,
ui = p−∆,∀i ̸= i∗

Bernoulli5 Delta0.2

Bandit Environments. We consider MAB environments listed in Table 1. The environments
can be generally grouped into two families: Gaussian and Bernoulli, based on the reward dis-

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

tribution. The Gaussian environments have continuous reward distributions, while the Bernoulli
environments have discrete binary reward distributions. We select one from each family (i.e.,
Bernoulli5 Uniform and Gaussian5 Var1 MeanN0) as the two training task distributions,
under which we train two set of policies to test out-of-distribution generalization.

Baselines. We compare learning agents against the following standard baselines:
1) Upper Confidence Bound (UCB) (Auer et al., 2002) selects the action At =

argmaxa

(
Qt(a) + C ×

√
log(t)
Nt(a)

)
, where Qt(a) is the mean reward of action a up to time

t, Nt(a) is the number of times action a has been selected up to time t, and C is a constant. 2)
Thompson Sampling (TS) (Thompson, 1933) is a Bayesian method that samples from the posterior
reward distribution of each action and selects the one with the highest sample. We use Beta and
Gaussian posteriors for Bernoulli and Gaussian rewards, respectively. 3) ϵ-Greedy chooses a
random action with probability ϵ and the action with the highest current mean reward otherwise.
While simple, its constant exploration leads to linear regret. The purely exploitative Greedy policy
is a special case where ϵ = 0.

For UCB, which sometimes serves as a teacher, we use an exploration constant of C = 0.5, which
performs well for both training environments. For ϵ-Greedy, we use a standard ϵ = 0.1; while likely
suboptimal, it provides a consistent anchor for comparison. The direct performance comparison
between learned agents and baselines is not the central focus of this study. The one exception is the
evaluation of our imitation learning agents against their UCB teacher.

Evaluation. We evaluate the policy over 64 episodes, each with a maximum of 300 steps. We use
a fixed set of 64 different seeds for initialization of evaluation environments and baseline policies.
To compare the policies and test for length generalization, we follow standard practice to report
cumulative regret at t ∈ {50, 300}. MAB instances, even when they are drawn from the same
distribution, can be quite different in terms of challenge level. Conventional empirical evaluation
aggregates from exccessive number of rollouts (e.g., ten of thousands) and long horizons, which
although provides a more stable estimate is prohibitively costly for LLM inference. We therefore
utilize distribution plots to visualize this variation in regret and focus on the typical performance in
comparison. To provide a more comprehensive evaluation, we supplement this with two additional
metrics: time-averaged reward and best arm frequency, which measure the proportion of times the
optimal arm is selected.

5 EXPERIMENTAL RESULTS

5.1 LLM AGENTS ARE META-BANDIT LEARNERS

As shown in Figure 3, across both training setups, RL-trained policies improve upon pre-trained
models to be comparable with classical baselines (UCB, TS, ϵ-Greedy), achieving lower cumulative
regret and length generalization to a 6× longer horizon (50 → 300). The time-averaged reward
(AvgReward) and best arm frequency (BestArmFreq) in Table 2 indicate steady performance gains
over time. Learning agents remain competitive under OOD evaluation, exhibiting non-trivial cross-
distribution transfer from Gaussian-trained policies to Bernoulli environments and vice versa. How-
ever, RL agents that trained on environmental feedback (i.e., RL-OG and RL-STG) show weaker
cross-distribution generalization, with greater variability in worst-case performance.

Learning from UCB signals. Overall, policies optimized using teacher UCB signals, whether
through reinforcement learning (RL-ALG) or supervised fine-tuning (SFT), consistently outperform
policies trained solely on the task reward signal (RL-OG). This underscores the difficulty of training
RL LLM policies for long-horizon exploration where credit assignment is challenging. The imita-
tion policies match or achieve lower cumulative regret compared to the teacher UCB policy in all
evaluation environments, revealing a seemingly exciting result: policies trained on expert-generated
data can ultimately outperform the very expert policy that produced the data.

Improving training with strategic rewards. To learn RL policies from environmental feedback,
while theoretically aligned with the original bandit reward signal (RL-OG), optimizing for strate-
gic rewards (RL-STG) empirically improves the performance of the policy in the Gaussian training

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0

20

40

60

80

100

120

140

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian5_Var1_MeanN0 *

0

10

20

30

40

50

60

70

Bernoulli5_Uniform

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

10

20

30

40

50

60

70

80
Gaussian5_Var1_MeanU

0

10

20

30

40

50

60

70

av
g_

cu
m

_r
eg

re
t@

30
0

Bernoulli5_Uniform * Gaussian5_Var1_MeanN0

0

25

50

75

100

125

150
200

400

600

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

20

40

60

80

Gaussian5_Var1_MeanU

Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
7b Pretrain

7b SFT
7b RL-OG

7b RL-STG
7b RL-ALG

Figure 3: Comparison of LLM policies against baselines on cumulative regret at 300 steps. The
first row shows the results of 7B models trained on Gaussian5 Var1 MeanN0, and the second
row shows the results of 7B models trained in Bernoulli5 Uniform. Evaluation is performed
both in- (first column) and out-of-distribution (other columns). The boxplots depict the median,
interquartile range (IQR) from the 25th to the 75th percentile, and whiskers extending to 1.5×IQR.
3B model results can be found in Appendix B.

setup, despite certain instabilities observed in OOD evaluation. As the variance of the reward distri-
bution decreases, RL-STG becomes equivalent to RL-OG, which explains why their performance is
more closely matched when training in the Bernoulli5 Uniform environment.

SFT vs RL for imitation. SFT with UCB expert demonstrations can achieve similar regret to UCB
in-domain, consistent with prior work (Schmied et al., 2025). We additionally find SFT policies to be
surprisingly competitive out-of-distribution. Part of the reason is that UCB is a distribution-agnostic
policy–the same calculation can be applied to different reward distributions as long as the LLM
follows the arithmetic operations. This generalization is however fragile. SFT policies can overfit
to the training distribution and cause a degradation of basic arithmetic capability. Together, these
factors lead to higher variability and worst-case regret in OOD evaluation. For example, in Figure 3,
the SFT policy trained in the Bernoulli5 Uniform environment exhibits unsatisfactory worst-
case performance in Gaussian5 Var1 MeanN0, while the RL-ALG policy based on UCB reward
signal remains robust.

0 25 50 75 100 125 150
Training iteration

0.4

0.5

0.6

0.7

0.8

Be
st

 A
rm

 Fr
eq

ue
nc

y

K=2
K=3
K=5
3b RL-STG
7b RL-STG
3b RL-ALG

Figure 4: Training perfor-
mance of RL-STG policy on
GaussianK Var1 MeanN0
with 3B and 7B models. We
additionally include RL-ALG
of 3B model (5 arms) for
comparison.

Small models struggle to learn without teachers. Figure 4
illustrates the training dynamics of the RL-STG policy on the
GaussianK Var1 MeanN0 environment using 3B and 7B pa-
rameter models, measured by the frequency of selecting the best
arm. For the 7B models, performance improves over iterations
across varying numbers of arms (K=2, 3, 5), with higher accuracy
for smaller K. In contrast, the 3B model exhibits stagnant accuracy,
starting comparably or even higher than the 7B counterpart in sim-
pler 2- and 3-arm settings pre-training but failing to improve with
RL updates. Neverthless, we observe that the 3B model can learn
with teacher guidance using RL-ALG or SFT. This highlights the
challenges of training smaller models with RL on task rewards, as
learning effective exploration policies from environmental feedback
demands long-horizon credit assignment.

We will explore in the following section why the LLM policies ex-
cel, what strategies drive their success, and how different learning
paradigms lead to different behaviors, to better understand their po-
tential and limitations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 ANALYZING LLM EXPLORATION STRATEGIES

We additionally include two surrogate statistics used in Krishnamurthy et al. (2024) as diagnostics
for long-term exploration failure: GreedyFreq@t measures the relative frequency of rounds that
selects the greedy action up to time t, and SuffixFail@t measures the frequency of suffix failures.
Specifically, in an episode of length T = 300, a suffix failure at t indicates that the policy never
selects the optimal arm again for rounds t, . . . , T .

Table 2: Analytics of baselines and 7B LLM policies trained
on Gaussian5 Var1 MeanN0, evaluated in-distribution.

Metric AvgReward BestArmFreq GreedyFreq SuffixFail

@t 50 300 50 300 50 300 50 150

Baselines

UCB 0.91 1.04 67.7 80.6 83.3 95.4 3.1 4.7
TS 0.77 1.00 55.8 78.5 67.0 85.2 0.0 0.0
ϵ-Greedy 0.76 0.90 47.9 67.6 91.3 91.6 0.0 0.0
Greedy 0.91 1.01 65.4 71.7 90.0 98.3 25.0 25.0

Learned Agents

Pretrain 0.55 0.79 45.4 63.1 48.7 65.4 0.0 0.0
SFT 0.92 1.05 69.4 81.3 83.5 95.5 6.2 6.2
RL-OG 0.81 1.01 61.1 79.8 78.3 91.7 1.6 4.7
RL-STG 0.84 1.01 63.7 81.1 83.7 95.8 3.1 6.2
RL-ALG 0.92 1.05 70.7 85.7 85.4 97.0 7.8 9.4

Learned policies exhibit greedy
tendencies. While LLM policies
achieve lower regret, our qualitative
analysis reveals concerns about sub-
optimal exploration. The first warn-
ing sign, shown in Table 2, is that the
learned agents exhibit higher suffix
failure frequency than both the pre-
trained model and theoretical optimal
policies. This indicates premature
abandonment of the best arm, a pat-
tern absent in the pretrained model.
Learning also alters the distribution
of best arm selection frequency from
an approximately normal distribution
for the pre-trained model to a bi-
modal distribution, where the agent
either almost always selects or very
rarely selects the best arm within an
episode, a characteristic of Greedy behavior (Figure 6). Direct measurement of greedy-arm selec-
tion frequency further confirms that the learning agents reach the exploitation phase more quickly
than the pre-trained model.

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
R

at
e

R
L

Gaussian5 Var1 MeanN0

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5 Uniform

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
R

at
e

S
F

T

Gaussian5 Var1 MeanN0

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5 Uniform

0.00

0.05

0.10

0.15

0.20

UCB UCB-var Avg Abs Delta

Figure 5: Match rates of the RL-ALG policy
against decisions of the oracle UCB and a UCB-
like algorithm discovered in LLM rationales, at
different timesteps. SFT policy shows a jump in
calculation errors at the 51st step.

Dissecting imitation of the UCB oracle: RL
vs. SFT. Although the UCB policy is it-
self greedy in construction, student policies
trained under UCB teacher often amplify this
tendency. This partially explains why LLM
policies trained to imitate UCB decisions can
sometimes perform better than the oracle. To
analyze this phenomenon, we compare how of-
ten the choices of each UCB-mimicking pol-
icy diverge from the oracle’s decision given the
same state, a metric we refer to as the “match
rate”. For SFT policies that explicitly calcu-
late confidence-bound values, we additionally
report the absolute difference between the pol-
icy’s predicted UCB value and the correspond-
ing oracle value, averaged across the arms.

As shown in Figure 5, when both policies
trained with UCB supervision in the same en-
vironment Gaussian5 Var1 MeanN0, the
SFT policy maintains a higher match rate than
the RL policy from the beginning, indicating
that it more faithfully imitates the teacher’s decisions. Both sustain a high match rate above 80%
in the first 50 steps in-distribution, with the SFT policy tracks the oracle’s UCB decisions more
closely. However, this stronger imitation capability also makes the SFT policy more susceptible to
overfitting, meaning its high match rates are only guaranteed when evaluation conditions closely
resemble the training data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

This sensitivity becomes apparent when training on different data. While the SFT policy trained
on Gaussian5 Var1 MeanN0 sustains high match rates across all tested environments, an SFT
policy trained on Bernoulli5 Uniform achieves this only within the same Bernoulli family of
tasks (Figure 16). We find this failure is a result of systematic errors in simple calculations involving
negative rewards, which are unseen during training—a sign of catastrophic forgetting of basic arith-
metic skills (Chu et al., 2025; Shenfeld et al., 2025). The agent frequently miscalculates the UCB
values and subsequently disregards its own calculations. This leads to asymmetric generalization,
where performance degrades sharply outside the training distribution, consistent with the higher
worst-case regret we previously observed in Figure 3. These results highlight the critical importance
of training data selection to balance imitation fidelity with robustness.

What incentivizes RL-ALG to prioritize exploitation over imitation? The adaptive behavior
of the RL-ALG policy is a subtle consequence of the bandit learning structure and a fundamental
change in the UCB teacher’s behavior over an episode. Initially, the UCB algorithm balances high
uncertainty (exploration) and high observed rewards (exploitation). As an episode progresses, the
uncertainty bounds shrink, and the teacher’s policy converges. Its decisions become increasingly
dominated by the empirical means, causing it to select the greedy arm. In this regime, the RL
objective, though formally defined in terms of imitation, becomes highly correlated with a reward
for exploitation. The agent discovers that it can optimize more easily by directly picking the greedy
arm, rather than faithfully internalizing the teacher’s complex exploration logic.

LLM rationales reveal flawed, exploitative heuristics. The LLM’s generated rationales can re-
veal its underlying decision-making process. RL policies trained on bandit rewards converge to
templated heuristics that most oftenly compare and choose the arm with the highest mean reward.
Their explorative actions are driven by rationales that explicitly evaluate the uncertainty of the
arms, sometimes with UCB-like calculation. RL-ALG trained in Gaussian5 Var1 MeanN0
however converges to a UCB-like algorithm and mentions in its rationales 98% of the time:

Qt(a) +C ×
√

log(Nt(a)+1)
Nt(a)

. In the standard UCB algorithm, the numerator of the exploration term
log(t) grows with the total number of pulls, ensuring that no action is ever abandoned permanently.
In contrast, this learned variant’s exploration term depends only on Nt(a), the pulls of a specific
arm. This allows the policy to prematurely stop exploring an action if it appears unprofitable in the
short run, embodied an exploitative tendency.

Figure 5 shows that this UCB-like algorithm describes the LLM policy better than the oracle UCB.
However, the LLM does not follow the algorithm strictly, as its decisions are also affected by fre-
quent numerical inaccuracies such as miscalculating the log term. We can also observe that when
the policy diverges from the UCB variant’s decisions, it opts for the greedy action more than 86%
of the time. In Bernoulli5 Uniform, the LLM converges to another variant Qt(a) +

C√
Nt(a)

with similar greedy behavior. These findings reveal that the RL-ALG policy learns approximate,
error-tolerant variants of UCB, blending imitation with opportunistic exploitation that lowers regret
in certain environments. Intriguingly, we observe that the LLM generates the correct UCB formula
with inaccurate calculations during early training stages. Its eventual convergence to greedy variants
suggests failures in credit assignment.

6 CONCLUSION

We fine-tune LLM agents via SFT and RL with novel reward signals, achieving strong performance
with lower regret and robust generalization to 6× longer horizons and new reward distributions in
the multi-armed bandit task. However, behavioral analysis reveals that training elicits short-sighted,
exploitative policies. This emergent greediness is a consequence of the fundamental imbalance in
training data, where sparse exploration signals are easily overwhelmed by frequent exploitation.
Compounded by the complex credit assignment problem, this challenge highlights the need for
methods that explicitly amplify exploration signals. Future work could explore focused replay tech-
niques that re-weight experiences based on information gain and surprise or design adversarial and
curriculum-based environments that make robust long-horizon planning a necessity for success.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

To support the reproducibility of our results, we provide more implementation details in Appendix A.
We commit to sharing the code, pre-trained models and data to the general public upon publication.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning.
In Carla E. Brodley (ed.), Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004, volume 69 of ACM Inter-
national Conference Proceeding Series. ACM, 2004. doi: 10.1145/1015330.1015430. URL
https://doi.org/10.1145/1015330.1015430.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Djallel Bouneffouf and Raphael Feraud. Multi-armed bandits meet large language models. arXiv
preprint arXiv: 2505.13355, 2025.

Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-armed and
contextual bandits. In 2020 IEEE congress on evolutionary computation (CEC), pp. 1–8. IEEE,
2020.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv: 2501.17161, 2025.

Kamil Ciosek. Imitation learning by reinforcement learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. URL https://openreview.net/forum?id=1zwleytEpYx.

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv: 1611.02779, 2016.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, and Craig Boutilier.
Hierarchical solution of markov decision processes using macro-actions. arXiv preprint arXiv:
1301.7381, 2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Akshay Krishnamurthy, Keegan Harris, Dylan J. Foster, Cyril Zhang, and Aleksandrs Slivkins.
Can large language models explore in-context? In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Ad-
vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
d951f73c521d069fefbb73396df01424-Abstract-Conference.html.

Branislav Kveton, Martin Mladenov, Chih-Wei Hsu, Manzil Zaheer, Csaba Szepesvari, and Craig
Boutilier. Meta-learning bandit policies by gradient ascent. arXiv preprint arXiv: 2006.05094,
2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

10

https://doi.org/10.1145/1015330.1015430
https://openreview.net/forum?id=1zwleytEpYx
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper_files/paper/2024/hash/d951f73c521d069fefbb73396df01424-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/d951f73c521d069fefbb73396df01424-Abstract-Conference.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steiger-
wald, DJ Strouse, Steven Stenberg Hansen, Angelos Filos, Ethan A. Brooks, Maxime Gazeau,
Himanshu Sahni, Satinder Singh, and Volodymyr Mnih. In-context reinforcement learning
with algorithm distillation. In The Eleventh International Conference on Learning Represen-
tations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=hy0a5MMPUv.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and
Emma Brunskill. Supervised pretraining can learn in-context reinforcement learning. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
8644b61a9bc87bf7844750a015feb600-Abstract-Conference.html.

Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and Shang-
tong Zhang. A survey of in-context reinforcement learning. arXiv preprint arXiv: 2502.07978,
2025.

Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. Llms are in-context reinforce-
ment learners. arXiv preprint arXiv: 2410.05362, 2024.

Allen Nie, Yi Su, Bo Chang, Jonathan N Lee, Ed H Chi, Quoc V Le, and Minmin Chen. Evolve:
Evaluating and optimizing llms for exploration. ArXiv preprint, abs/2410.06238, 2024. URL
https://arxiv.org/abs/2410.06238.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv
preprint arXiv: 2412.15115, 2024.

Thomas Schmied, Jörg Bornschein, Jordi Grau-Moya, Markus Wulfmeier, and Razvan Pascanu.
Llms are greedy agents: Effects of rl fine-tuning on decision-making abilities. ArXiv preprint,
abs/2504.16078, 2025. URL https://arxiv.org/abs/2504.16078.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv: 1707.06347, 2017.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning
forgets less. arXiv preprint arXiv: 2509.04259, 2025.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Fahim Tajwar, Yiding Jiang, Abitha Thankaraj, Sumaita Sadia Rahman, J Zico Kolter, Jeff
Schneider, and Ruslan Salakhutdinov. Training a generally curious agent. ArXiv preprint,
abs/2502.17543, 2025. URL https://arxiv.org/abs/2502.17543.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

11

https://openreview.net/pdf?id=hy0a5MMPUv
https://openreview.net/pdf?id=hy0a5MMPUv
http://papers.nips.cc/paper_files/paper/2023/hash/8644b61a9bc87bf7844750a015feb600-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/8644b61a9bc87bf7844750a015feb600-Abstract-Conference.html
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2504.16078
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/2502.17543


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhenghai Xue, Longtao Zheng, Qian Liu, Yingru Li, Xiaosen Zheng, Zejun Ma, and Bo An. Sim-
pletir: End-to-end reinforcement learning for multi-turn tool-integrated reasoning. arXiv preprint
arXiv: 2509.02479, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/pdf?id=WE_vluYUL-X.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch FSDP:
experiences on scaling fully sharded data parallel. Proc. VLDB Endow., 16(12):3848–3860,
2023. doi: 10.14778/3611540.3611569. URL https://www.vldb.org/pvldb/vol16/
p3848-huang.pdf.

12

https://openreview.net/pdf?id=WE_vluYUL-X
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf
https://www.vldb.org/pvldb/vol16/p3848-huang.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

We report additional details for the environment settings, the RL and SFT training of LLM policies.

A.1 ENVIRONMENT SETTINGS

Table 3: Generic families of k-armed MAB environments and a complete list of 15 parameterizations
used in our study. Asterisk indicates the training task distributions.

Family Reward Dist. Mean Dist. Example Instantiation

Gaussiank Varσ2 MeanNm r ∼ N (ui, σ
2) u ∼ N (m,σ2

u) Gaussian5 Var1 MeanN0∗
Gaussian10 Var1 MeanN0
Gaussian5 Var3 MeanN0
Gaussian5 Var1 MeanN±1
Gaussian5 Var3 MeanN±1

Gaussiank Varσ2 MeanU r ∼ N (ui, σ
2) u ∼ U(0, 1) Gaussian5 Var1 MeanU

Gaussian5 Var3 MeanU
Gaussian5 Var5 MeanU

Bernoullik Uniform r ∼ B(ui) u ∼ U(0, 1) Bernoulli5 Uniform∗

Bernoulli10 Uniform
Bernoullik Delta∆ r ∼ B(ui) ui∗ = p,

ui = p−∆,∀i ̸= i∗
Bernoulli5 Delta0.2
Bernoulli10 Delta0.2
Bernoulli5 Delta0.1

We evaluate the policies on a comprehensive set of environments from the Gaussian and Bernoulli
families listed in Table 3. There are diverse types of distribution shifts in the test environments,
including changes in the mean, variance, and shape of the reward distributions. We additionally test
the policies on environments with different numbers of arms (k from 5 to 10).

A.2 RL SETTINGS

Table 4 presents the hyperparameters used for PPO training of the LLM policies (RL-OG and
RL-STG). For the algorithmic-reward variant (RL-ALG), we retain all settings except that we set the
episode-level discount factor and GAE lambda to zero, since cumulative rewards are not required.

We use vLLM (Kwon et al., 2023) for asynchronous rollouts across parallel environments and
FSDP (Zhao et al., 2023) for fully sharded training under the VeRL framework. At the start of
each iteration, all environments are reinitialized with fresh random seeds to ensure diverse experi-
ence collection.

Model checkpoints are saved every 100 training steps. Each checkpoint is evaluated on the same set
of environments (matching the training type) to guarantee fair comparison. The checkpoint with the
lowest cumulative regret is selected as the final model.

A.3 SFT SETTINGS

We generate training data for supervised fine-tuning by sampling N trajectories from the environ-
ment using a UCB policy. To expose the model to a broad spectrum of environment configurations
and exploration behaviors, we uniformly sample states and actions across each trajectory’s horizon.

As in our reinforcement learning experiments, we save model checkpoints at the end of every epoch
and evaluate them on the same set of environments to ensure a fair comparison.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameters for the PPO training of LLM policies (RL-OG and RL-STG).

Category Hyperparameter Value
Model & Environment

Model Base Language Model Qwen/Qwen2.5-3/7b-Instruct
Max Response Length 1024 tokens
Temperature 1.0

Environment Type Various (Gaussian, Bernoulli)
Number of Arms (k) 5
Episode Length (T ) 50
Number of Parallel Environments 64

PPO Algorithm

Optimization Optimizer AdamW (Kingma & Ba, 2015)
Actor Learning Rate (απ) 1× 10−6

Critic Learning Rate (αV ) 1× 10−5

Gradient Clipping 1.00
Response-level Discount Factor (γintra) 1.00
Response-level GAE Lambda (λintra) 1.00
Episode-level Discount Factor (γinter) 0.95
Episode-level GAE Lambda (λinter) 0.95
PPO Clipping Coefficient (ϵ) 0.20
PPO Mini-batch Size 128

Regularization Weight Decay 1× 10−2

Entropy Coefficient 5× 10−4

Training Infrastructure

Training Total Training Steps 500
Hardware Number of GPUs 4

Tensor Parallelism (Rollout) 4

Table 5: Hyperparameters for Supervised Fine-Tuning (SFT).

Category Hyperparameter Value
Model & Data

Model Base Language Model Qwen/Qwen2.5-3/7b-Instruct
Data Type Various (Gaussian, Bernoulli)

Number of Arms (k) 5
Max Episode Length (T ) 50
Number of Examples (N ) 32768

Optimization

Optimizer Type AdamW
Learning Rate 1× 10−5

Betas (β1, β2) (0.9, 0.95)
Weight Decay 0.01
LR Scheduler Cosine Decay
Warmup Ratio 0.1
Gradient Clipping 1.0

Training Details

Batch Size 256
Epochs 6

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Time steps

0.0

0.2

0.4

0.6

0.8

1.0

G
au

ss
ia

n5
_V

ar
1_

M
ea

nN
0

Time-averaged Reward

0 50 100 150 200 250 300
Time steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time-averaged Best Arm Freq.

0 50 100 150 200 250
Time step t

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

Suffix Failure Freq.

0 50 100 150 200 250
#best arm selected per episode

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s

Best Arm Selection Histogram

0 50 100 150 200 250 300
Time steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Time-averaged Greedy Arm Freq.

0 50 100 150 200 250 300
Time steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Be
rn

ou
lli

5_
U

ni
fo

rm

0 50 100 150 200 250 300
Time steps

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
Time step t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
ac

tio
n

0 50 100 150 200 250
#best arm selected per episode

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 e

pi
so

de
s

0 50 100 150 200 250 300
Time steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

7b Pretrain
7b RL-OG

7b RL-STG
7b RL-ALG

7b SFT
UCB c=0.5

Greedy
Thompson Sampling

Epsilon-Greedy e=0.1

Figure 6: Comprehensive statistics of the two sets of LLM policies described in Figure 3, evaluated
in-distribution.

B DETAILS OF REGRET COMPARISON

We provide comprehensive experimental results of the LLM policies compared against baselines
over a range of environments and model sizes on cumulative regret at 50 and 300 steps. The obser-
vation is consistent with the analysis in main text.

B.1 7B MODEL COMPARISONS

The cumulative regret trends are consistent across evaluations at 50 and 300 steps. However, the
longer 300-step horizon more prominently exposes the weaknesses of simple heuristics like ϵ-
greedy. At 50 steps, the imitation learning policies (RL-ALG and SFT) show some instability,
likely due to the stronger mimicking effect of the UCB oracle in the initial exploratory phase.

When increasing the variance of the reward distribution in Gaussian5 Varσ2 MeanU environ-
ment, exploration strategies learned in low-variance settings generalize poorly, causing all policies
to perform similarly badly. Amidst this, the RL-OG policy begins to show a slight advantage. Fi-
nally, we note that the SFT policy, when trained on Bernoulli5 Uniform, consistently fails to
generalize to any Gaussian environment.

The pre-trained model struggles to perform well on environments with 10 arms (k = 10), reaching
excessive regret values due to increased action space, while the learned policies maintain a stable
performance.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0

50

100

150

200

250

av
g_

cu
m

_r
eg

re
t@

30
0

Bernoulli10_Uniform

0

10

20

30

40

50

60

70

Bernoulli5_Uniform

10

20

30

40

50

60
Bernoulli10_Delta0.2

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

5

10

15

20

25

30
Bernoulli5_Delta0.1

0

200

400

600

800

1000

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian10_Var1_MeanN0

0

20

40

60

80

100

120

140
Gaussian5_Var1_MeanN0 *

0

25

50

75

100

125

150

175
Gaussian5_Var1_MeanN-1

0

20

40

60

80

100

120

140
Gaussian5_Var1_MeanN+1

0

100

200

300

400
Gaussian5_Var3_MeanN0

0

100

200

300

400

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian5_Var3_MeanN-1

0

100

200

300

400

Gaussian5_Var3_MeanN+1

0

20

40

60

80
Gaussian5_Var1_MeanU

0

50

100

150

200

250

Gaussian5_Var3_MeanU

0

50

100

150

200

250

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
7b Pretrain

7b SFT
7b RL-OG

7b RL-STG
7b RL-ALG

Figure 7: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.

0

5

10

15

20

25

30

35

av
g_

cu
m

_r
eg

re
t@

50

Bernoulli10_Uniform

0

5

10

15

20

Bernoulli5_Uniform

4

6

8

10
Bernoulli10_Delta0.2

2

4

6

8

10
Bernoulli5_Delta0.2

1

2

3

4

5
Bernoulli5_Delta0.1

0

25

50

75

100

125

150

av
g_

cu
m

_r
eg

re
t@

50

Gaussian10_Var1_MeanN0

0

10

20

30

40

Gaussian5_Var1_MeanN0 *

0

10

20

30

40

50

60

Gaussian5_Var1_MeanN-1

0

10

20

30

40

Gaussian5_Var1_MeanN+1

0

25

50

75

100

125

150

Gaussian5_Var3_MeanN0

20

40

60

80

100

120

av
g_

cu
m

_r
eg

re
t@

50

Gaussian5_Var3_MeanN-1

0

50

100

150

200

Gaussian5_Var3_MeanN+1

0

5

10

15

20

25

Gaussian5_Var1_MeanU

0

10

20

30

40
Gaussian5_Var3_MeanU

0

10

20

30

40

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
7b Pretrain

7b SFT
7b RL-OG

7b RL-STG
7b RL-ALG

Figure 8: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0

50

100

150

200

250

av
g_

cu
m

_r
eg

re
t@

30
0

Bernoulli10_Uniform

0

10

20

30

40

50

60

70

Bernoulli5_Uniform *

10

20

30

40

50

60
Bernoulli10_Delta0.2

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

5

10

15

20

25

30
Bernoulli5_Delta0.1

0

200

400

600

800

1000

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian10_Var1_MeanN0

0

100

200

300

400

500

600

700
Gaussian5_Var1_MeanN0

0

200

400

600

800

Gaussian5_Var1_MeanN-1

0

20

40

60

80

100

120

140
Gaussian5_Var1_MeanN+1

0

100

200

300

400
Gaussian5_Var3_MeanN0

0

250

500

750

1000

1250

1500

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian5_Var3_MeanN-1

0

100

200

300

400

Gaussian5_Var3_MeanN+1

0

20

40

60

80

Gaussian5_Var1_MeanU

0

50

100

150

200

250
Gaussian5_Var3_MeanU

0

50

100

150

200

250

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
7b Pretrain

7b SFT
7b RL-OG

7b RL-STG
7b RL-ALG

Figure 9: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.

0

5

10

15

20

25

30

35

av
g_

cu
m

_r
eg

re
t@

50

Bernoulli10_Uniform

0

5

10

15

20

Bernoulli5_Uniform *

2

4

6

8

10
Bernoulli10_Delta0.2

2

4

6

8

10
Bernoulli5_Delta0.2

1

2

3

4

5
Bernoulli5_Delta0.1

0

25

50

75

100

125

150

av
g_

cu
m

_r
eg

re
t@

50

Gaussian10_Var1_MeanN0

0

20

40

60

80

Gaussian5_Var1_MeanN0

0

20

40

60

80

100

120

Gaussian5_Var1_MeanN-1

0

10

20

30

40

Gaussian5_Var1_MeanN+1

0

25

50

75

100

125

150

Gaussian5_Var3_MeanN0

0

50

100

150

200

av
g_

cu
m

_r
eg

re
t@

50

Gaussian5_Var3_MeanN-1

0

50

100

150

200

Gaussian5_Var3_MeanN+1

0

5

10

15

20

25

Gaussian5_Var1_MeanU

0

10

20

30

40
Gaussian5_Var3_MeanU

0

10

20

30

40

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
7b Pretrain

7b SFT
7b RL-OG

7b RL-STG
7b RL-ALG

Figure 10: Comparison of LLM policies (7B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 3B MODEL COMPARISONS

Consistent with our main findings, smaller models benefit less from reinforcement learning op-
timized for direct environmental reward signals. The RL-OG and RL-STG policies perform on
par with the pre-trained model at 50 steps and achieve only insignificant gains at 300 steps. Con-
versely, both the RL-ALG and SFT policies show a significant improvement over the pre-trained
model. The SFT policy, in particular, emerges as the top-performing method, achieving reliably
lower regret across nearly all environments. This suggests that, even in the imitation learning set-
ting, smaller models struggle with reinforcement learning optimization. The exception to this strong
performance is the previously noted generalization failure of the SFT policy to transfer from the
Bernoulli5 Uniform environment to Gaussian environments.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0

50

100

150

200

av
g_

cu
m

_r
eg

re
t@

30
0

Bernoulli10_Uniform

0

20

40

60

80

Bernoulli5_Uniform

0

10

20

30

40

50

60
Bernoulli10_Delta0.2

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

5

10

15

20

25

30
Bernoulli5_Delta0.1

0

200

400

600

800

1000

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian10_Var1_MeanN0

0

100

200

300

400

Gaussian5_Var1_MeanN0 *

0

100

200

300

400

Gaussian5_Var1_MeanN-1

0

100

200

300

400

500

Gaussian5_Var1_MeanN+1

0

200

400

600

800

1000

1200

1400
Gaussian5_Var3_MeanN0

0

200

400

600

800

1000

1200

1400

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian5_Var3_MeanN-1

0

200

400

600

800

1000

1200
Gaussian5_Var3_MeanN+1

0

25

50

75

100

125

150

Gaussian5_Var1_MeanU

0

50

100

150

200

Gaussian5_Var3_MeanU

0

50

100

150

200

250

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
3b Pretrain

3b SFT
3b RL-OG

3b RL-STG
3b RL-ALG

Figure 11: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.

0

10

20

30

40

av
g_

cu
m

_r
eg

re
t@

50

Bernoulli10_Uniform

0

5

10

15

20

25

30

Bernoulli5_Uniform

4

6

8

10
Bernoulli10_Delta0.2

0

2

4

6

8

10
Bernoulli5_Delta0.2

1

2

3

4

5
Bernoulli5_Delta0.1

0

25

50

75

100

125

150

175

av
g_

cu
m

_r
eg

re
t@

50

Gaussian10_Var1_MeanN0

0

20

40

60

80

100

Gaussian5_Var1_MeanN0 *

0

20

40

60

80

100

120

140
Gaussian5_Var1_MeanN-1

0

25

50

75

100

125

150

Gaussian5_Var1_MeanN+1

0

50

100

150

200

250

300

350

Gaussian5_Var3_MeanN0

0

50

100

150

200

250

300

av
g_

cu
m

_r
eg

re
t@

50

Gaussian5_Var3_MeanN-1

0

50

100

150

200

250

300

350
Gaussian5_Var3_MeanN+1

0

10

20

30

40

50
Gaussian5_Var1_MeanU

0

10

20

30

40

Gaussian5_Var3_MeanU

0

10

20

30

40

50
Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
3b Pretrain

3b SFT
3b RL-OG

3b RL-STG
3b RL-ALG

Figure 12: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0

50

100

150

200

av
g_

cu
m

_r
eg

re
t@

30
0

Bernoulli10_Uniform

0

20

40

60

80

100

Bernoulli5_Uniform *

0

10

20

30

40

50

60
Bernoulli10_Delta0.2

0

10

20

30

40

50

60
Bernoulli5_Delta0.2

0

5

10

15

20

25

30
Bernoulli5_Delta0.1

0

200

400

600

800

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian10_Var1_MeanN0

0

100

200

300

400

Gaussian5_Var1_MeanN0

0

100

200

300

400

500

600

Gaussian5_Var1_MeanN-1

0

100

200

300

400

500

600
Gaussian5_Var1_MeanN+1

0

200

400

600

800

1000

1200

1400
Gaussian5_Var3_MeanN0

0

250

500

750

1000

1250

1500

1750

av
g_

cu
m

_r
eg

re
t@

30
0

Gaussian5_Var3_MeanN-1

0

250

500

750

1000

1250

1500
Gaussian5_Var3_MeanN+1

0

25

50

75

100

125

150

175

Gaussian5_Var1_MeanU

0

50

100

150

200

250

Gaussian5_Var3_MeanU

0

50

100

150

200

250

Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
3b Pretrain

3b SFT
3b RL-OG

3b RL-STG
3b RL-ALG

Figure 13: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
300 steps (outliers are trimmed). Results on training environment has a colored border.

0

10

20

30

40

av
g_

cu
m

_r
eg

re
t@

50

Bernoulli10_Uniform

0

10

20

30

Bernoulli5_Uniform *

2

4

6

8

10
Bernoulli10_Delta0.2

2

4

6

8

10
Bernoulli5_Delta0.2

1

2

3

4

5
Bernoulli5_Delta0.1

0

25

50

75

100

125

150

175

av
g_

cu
m

_r
eg

re
t@

50

Gaussian10_Var1_MeanN0

0

20

40

60

80

100

120
Gaussian5_Var1_MeanN0

0

20

40

60

80

100

120

Gaussian5_Var1_MeanN-1

0

25

50

75

100

125

150

Gaussian5_Var1_MeanN+1

0

50

100

150

200

250

300

350
Gaussian5_Var3_MeanN0

0

100

200

300

400

av
g_

cu
m

_r
eg

re
t@

50

Gaussian5_Var3_MeanN-1

0

100

200

300

400
Gaussian5_Var3_MeanN+1

0

10

20

30

40

50
Gaussian5_Var1_MeanU

0

10

20

30

40

Gaussian5_Var3_MeanU

0

10

20

30

40

50
Gaussian5_Var5_MeanU

Agent
Epsilon-Greedy e=0.1
Thompson Sampling

UCB c=0.5
3b Pretrain

3b SFT
3b RL-OG

3b RL-STG
3b RL-ALG

Figure 14: Comparison of LLM policies (3B base model) against baselines on cumulative regret at
50 steps (outliers are trimmed). Results on training environment has a colored border.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C DETAILS OF IMITATION LEARNING ANALYSIS

We investigate why an imitation learning policy might outperform its teacher by analyzing its ad-
herence to key decision-making heuristics. This section expands upon the main text by presenting
results from a complete set of experimental environments.

A key finding is that both imitation learning policies (RL-ALG and SFT) make fewer (imitation)
errors in high-variance environments. This is attributed to the teacher UCB policy (C=0.5) itself
behaving more greedily in these settings, matching the exploitative bias of the imitation learning
policies.

We find that the SFT agent’s mistakes reveal errors in both simple arithmetic (summation, sub-
traction) and complex calculations (logarithms, square roots). A prominent failure mode emerges
when the Bernoulli-trained policy observes negative rewards: it often struggles with summations
involving these numbers and subsequently disregards its own UCB calculations. For instance, in the
Gaussian5 Var3 MeanN0 environment, the agent chooses an arm different from the one with
the highest calculated UCB value 78% of the time. This divergence is sensitive to the reward dis-
tribution; lowering the environment’s mean reward by 1 increases this deviation rate to 89%, while
raising the mean by 1 reduces it to 44%. This behavior indicates a regression in the LLM’s ca-
pabilities, leading to hallucinations in its reasoning. Future work can explore mixed training with
mathematical data to alleviate this issue.

We previously discovered that the RL-ALG agents converge to suboptimal variants of the UCB al-
gorithm. This finding is both interesting and disappointing. On one hand, it demonstrates that agents
can discover novel solutions from sparse reward signals received only at the end of a response. On
the other hand, it suggests that either the oracle policy is not encountered during RL exploration or
that credit assignment is a significant challenge. By manually inspecting rollouts from early train-
ing iterations, we find that the correct UCB formula did appear, but its calculations were frequently
incorrect due to the base model’s weakness in complex operations like square roots and logarithms
(Figure 19). This points to a credit assignment issue, where the agent incorrectly attributes poor
outcomes to the formula itself, rather than to flawed calculations or suboptimal hyper-parameter
choices. Future work could explore more fine-grained RL signals to address this problem.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Bernoulli10_Uniform

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Uniform

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli10_Delta0.2

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Delta0.2

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Delta0.1

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Gaussian10_Var1_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN-1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN+1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Gaussian5_Var3_MeanN-1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanN+1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanU

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanU

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var5_MeanU

0.0

0.1

0.2

0.0

0.1

0.2

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.3

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

Time Step in Trajectory

Error Rate Avg. Abs. Delta

Figure 15: 7B SFT agent trained on Gaussian environments: UCB error by step.

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Bernoulli10_Uniform

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Uniform

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli10_Delta0.2

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Delta0.2

0 100 200
0.00

0.25

0.50

0.75

1.00
Bernoulli5_Delta0.1

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Gaussian10_Var1_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN-1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanN+1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanN0

0 100 200
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Er
ro

r R
at

e

Gaussian5_Var3_MeanN-1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanN+1

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var1_MeanU

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var3_MeanU

0 100 200
0.00

0.25

0.50

0.75

1.00
Gaussian5_Var5_MeanU

0

5

10

0

10

20

0

2

4

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

0

5

10

0

1

2

0.0

0.5

1.0

0

1

2

3

0

1

2

3

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

Av
er

ag
e 

Ab
so

lu
te

 D
el

ta

Time Step in Trajectory

Error Rate Avg. Abs. Delta

Figure 16: 7B SFT agent trained on Bernoulli environments: UCB error by step.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Bernoulli10_Uniform

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Uniform

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli10_Delta0.2

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Delta0.2

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Delta0.1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Gaussian10_Var1_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN-1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN+1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Gaussian5_Var3_MeanN-1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanN+1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanU

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanU

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var5_MeanU

Time Step in Trajectory

Greedy UCB UCB-var

Figure 17: 7B RL-ALG agent trained on Gaussian environments to optimize UCB reward signal:

match rate by step. UCB Var here is the UCB variant Qt(a) +C ×
√

log(Nt(a)+1)
Nt(a)

, which the agent
discovered and consistently used.

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Bernoulli10_Uniform

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Uniform

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli10_Delta0.2

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Delta0.2

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Bernoulli5_Delta0.1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Gaussian10_Var1_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN-1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanN+1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanN0

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

M
at

ch
 R

at
e

Gaussian5_Var3_MeanN-1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanN+1

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var1_MeanU

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var3_MeanU

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0
Gaussian5_Var5_MeanU

Time Step in Trajectory

Greedy UCB UCB-var

Figure 18: 7B RL-ALG agent trained on Bernoulli environments to optimize UCB reward signal:
match rate by step. UCB Var here is the UCB variant Qt(a)+

C√
Nt(a)

that the agent discovered and

consistently used.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

RL with Algorithmic Reward (7B Gaussian; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:
Arm 0: 2 pulls, average reward -1.421
Arm 1: 60 pulls, average reward 1.110
Arm 2: 2 pulls, average reward -2.903
Arm 3: 3 pulls, average reward -1.197
Arm 4: 1 pulls, average reward -1.842
Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the highest
upper confidence bound, which is the sum of the estimated mean reward and an exploration

term. The formula for UCB is: UCB = average reward + C ×
√

log(n)
n where ( n ) is the

number of times the arm has been pulled, and ( C ) is a tuning parameter typically set to 1 or 2.
Let’s calculate the UCB for each arm using ( C = 1 ):

For Arm 0: UCB0 = −1.421 + 1×
√

log(2+1)
2 ≈ −1.421 + 0.549 ≈ −0.872

For Arm 1: UCB1 = 1.110 + 1×
√

log(60+1)
60 ≈ 1.110 + 0.040 ≈ 1.150

For Arm 2: UCB2 = −2.903 + 1×
√

log(2+1)
2 ≈ −2.903 + 0.549 ≈ −2.354

For Arm 3: UCB3 = −1.197 + 1×
√

log(3+1)
3 ≈ −1.197 + 0.302 ≈ −0.895

For Arm 4: UCB4 = −1.842 + 1×
√

log(1+1)
1 ≈ −1.842 + 0.693 ≈ −1.149

Now, we compare the UCB values:
Arm 0: -0.872
Arm 1: 1.150
Arm 2: -2.354
Arm 3: -0.895
Arm 4: -1.149
The highest UCB value is for Arm 1, which suggests we should pull Arm 1 next.
</think> <answer> The arm that should be pulled next is Arm 1. </answer>

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

RL with Algorithmic Reward (7B Bernoulli; Best Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:
Arm 0: 19 pulls, average reward 0.541
Arm 1: 1 pulls, average reward -0.879
Arm 2: 1 pulls, average reward -2.651
Arm 3: 46 pulls, average reward 1.240
Arm 4: 1 pulls, average reward -1.374
Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To determine which arm to pull next, we can use the Upper Confidence Bound
(UCB) algorithm, which balances exploration and exploitation by considering both the aver-
age reward and the uncertainty associated with each arm. The formula for UCB is: UCB =
Average Reward + Exploration Term
For simplicity, we can use a basic form where the exploration term is inversely proportional to
the square root of the number of pulls: UCB = Average Reward + k√

Number of Pulls
where ( k ) is

a constant, typically set to 1 for simplicity.
Let’s calculate the UCB for each arm:
Arm 0: UCB0 = 0.541 + 1√

19
≈ 0.541 + 0.229 ≈ 0.770

Arm 1: UCB1 = −0.879 + 1√
1
≈ −0.879 + 1 ≈ 0.121

Arm 2: UCB2 = −2.651 + 1√
1
≈ −2.651 + 1 ≈ −1.651

Arm 3: UCB3 = 1.240 + 1√
46

≈ 1.240 + 0.120 ≈ 1.360

Arm 4: UCB4 = −1.374 + 1√
1
≈ −1.374 + 1 ≈ −0.374

Now, we compare the UCB values: UCB0 ≈ 0.770
UCB1 ≈ 0.121
UCB2 ≈ −1.651
UCB3 ≈ 1.360
UCB4 ≈ −0.374.
Clearly, Arm 3 has the highest UCB value, indicating it is the best choice according to the UCB
algorithm. </think>
<answer> The arm that should be pulled next is Arm 3. </answer>

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

RL with Algorithmic Reward (7B Gaussian; Iteration 50 Checkpoint)

In a 5-armed bandit problem, here are the results of previous arm pulls:
Arm 0: 2 pulls, average reward -0.282
Arm 1: 10 pulls, average reward 1.723
Arm 2: 5 pulls, average reward 1.255
Arm 3: 2 pulls, average reward -1.101
Arm 4: 2 pulls, average reward 0.995
Which arm should be pulled next? Show your reasoning in <think> </think> tags and your
final answer in <answer> </answer> tags.

<think> To decide which arm to pull next, we can use the Upper Confidence Bound (UCB)
algorithm, which balances exploration and exploitation. UCB selects the arm with the high-
est upper confidence bound of the expected reward. The formula for UCB is: UCB =

Average Reward + C ×
√

log total number of pulls
number of times arm was pulled .

Here, ( C ) is a tuning parameter that controls the trade-off between exploration and exploitation.
For simplicity, we can assume ( C = 1 ).
First, calculate the total number of pulls: 2 + 10 + 5 + 2 + 2 = 21.
Now, apply the UCB formula to each arm:

Arm 0: UCB0 = −0.282 + 1×
√

log 21
2 ≈ −0.282 + 0.956 = 0.674.

Arm 1: UCB1 = 1.723 + 1×
√

log 21
10 ≈ 1.723 + 0.302 = 2.025.

Arm 2: UCB2 = 1.255 + 1×
√

log 21
5 ≈ 1.255 + 0.509 = 1.764.

Arm 3: UCB3 = −1.101 + 1×
√

log 21
2 ≈ −1.101 + 0.956 = −0.145.

Arm 4: UCB4 = 0.995 + 1×
√

log 21
2 ≈ 0.995 + 0.956 = 1.951.

Comparing these UCB values, Arm 1 has the highest upper confidence bound. </think>
<answer> The arm that should be pulled next is Arm 1. </answer>

Figure 19: An example generated by RL-ALG policy at iteration 50 (7B Gaussian)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D LLM USE DISCLOSURE

Using LLMs to help with paper writing. Commercial LLMs were used to correct typos and
grammar, suggest alternative phrasings, and provide insights on the clarity and readability. All
LLM-generated text was reviewed, edited, and approved by the human authors.

Using LLMs as a research assistant. LLMs assisted with brainstorming experimental designs,
suggesting analysis approaches, searching potentially relevant prior work, and producing code scaf-
folding and completion. The human authors provided the research context, validated the literature
identified by LLMs, verfied all analysis and results, and adapted or often rewrote the LLM-generated
content before inclusion.

27


	Introduction
	Related Work
	Methodology
	Reinforcement Learning of Meta-Bandit LLM Agents
	Reward Design
	Supervised Learning

	Experimental Setup
	Experimental Results
	LLM Agents are Meta-Bandit Learners
	Analyzing LLM Exploration Strategies

	Conclusion
	Implementation Details
	Environment Settings
	RL Settings
	SFT Settings

	Details of Regret Comparison
	7B Model Comparisons
	3B Model Comparisons

	Details of Imitation Learning Analysis
	LLM Use Disclosure

