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Abstract

We propose a theoretical framework for study-
ing the imitation of stochastic, non-Markovian,
potentially multi-modal expert demonstrations in
nonlinear dynamical systems. Our framework
invokes low-level controllers - either learned or
implicit in position-command control - to stabilize
imitation policies around expert demonstrations.
We show that with (a) a suitable low-level sta-
bility guarantee and (b) a stochastic continuity
property of the learned policy we call “total varia-
tion continuity” (TVC), an imitator that accurately
estimates actions on the demonstrator’s state dis-
tribution closely matches the demonstrator’s dis-
tribution over entire trajectories. We then show
that TVC can be ensured with minimal degrada-
tion of accuracy by combining a popular data-
augmentation regimen with a novel algorithmic
trick: adding augmentation noise at execution
time. We instantiate our guarantees for policies
parameterized by diffusion models and prove that
if the learner accurately estimates the score of the
(noise-augmented) expert policy, then the distribu-
tion of imitator trajectories is close to the demon-
strator distribution in a natural optimal transport
distance. Our analysis constructs intricate cou-
plings between noise-augmented trajectories, a
technique that may be of independent interest.
We conclude by empirically validating our algo-
rithmic recommendations.

1. Introduction

Training dynamic agents from datasets of expert examples,
known as imitation learning, promises to take advantage of
the plentiful demonstrations available in the modern data
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environment, in an analogous manner to the recent successes
of language models conducting unsupervised learning on
enormous corpora of text (Thoppilan et al., 2022; Vaswani
et al., 2017). Imitation learning is especially exciting in
robotics, where mass stores of pre-recorded demonstrations
on Youtube (Abu-El-Haija et al., 2016) or cheaply collected
simulated trajectories (Mandlekar et al., 2021; Dasari et al.,
2019) can be converted into learned robotic policies.

An outstanding challenge for imitation learning is that
demonstrator policies correlate with past actions in sophisti-
cated ways. Multi-modal trajectories present a key example.
Consider a robot navigating around an obstacle; because
there is no difference between navigating around the ob-
ject to the right and around to the left, the dataset of expert
trajectories may include examples of both options. This
bifurcation of good trajectories can make it difficult for the
agent to effectively choose which direction to go, possibly
even causing the robot to oscillate between directions and
run into the object instead of going around it (Chi et al.,
2023). Crucially, human demonstrators correlate current
actions with the past in order to commit to either a right
or left path, which makes even formulating the idea of an
“expert policy” a conceptually challenging one.

In this paper, we develop a theory of imitation learning flex-
ible enough to imitate non-Markovian (e.g. multi-modal
or bifurcated as in the above example) demonstrations in
smooth, nonlinear control systems. As in previous work,
we formalize imitation learning in two stages: at train-time,
we learn a map from observations to distributions over ac-
tions, supervised by (state, action)-pairs from expert demon-
strations, while at zest-time, the learned map, or policy, is
executed on random initial states (distributed identically to
initial training states). What makes imitation learning more
challenging than supervised learning is the problem of com-
pounding errors, which may bring the agent to regions of
state space not seen during training. Unless one is permitted
to collect data adaptively (Laskey et al., 2017; Ross et al.,
2011), it is understood that some form of “stability” is re-
quired so that the agent navigates back from deviations (Tu
et al., 2022; Havens & Hu, 2021).

Contributions. We propose a hierarchical formulation of
stability to analyze imitation learning. During training, the



learner synthesizes sequences of primitive controllers - time-
varying affine control policies which locally stabilize around
each demonstration trajectory. We break these {demonstra-
tor trajectory, primitive controller} pairs into sub-trajectories
we call “chunks.” Building on (Chi et al., 2023), we use
DDPMs to estimate the conditional distribution of primitive
controller chunks conditioned on recent states from the pre-
vious chunk. We also adopt a popular data-augmentation
technique that corrupts trajectories (but not supervising ac-
tions) with a small amount of Gaussian noise (Ke et al.,
2021; Laskey et al., 2017; Ross et al., 2011). Unlike prior
work, we propose adding noise back into the policies at
inference time, a technique which is both both provably
indispensable in our analysis, and which our simulations
suggest yields considerable benefit over the conventional
approach of not adding noise at inference time.

We prove that the learner can approximate the expert’s trajec-
tory distribution provided three conditions hold: along each
expert trajectory, (a) the dynamics are sufficiently smooth;
(b) one can synthesize primitive controllers that stabilize
the Jacobian-linearized dynamics; and (c) one can approxi-
mately sample from conditional distributions over sequences
of primitive controllers. For concreteness, we formulate
part (c) in the language of Denoising Diffusion Probabilistic
Models (DDPMs), although our results hold for arbitrary
generative models. Our notion of trajectory approximation
is a natural optimal transport metric, which considers a
Wassertstein-like distance between the marginal distribu-
tions of visited states, which is strong enough to ensure
closeness of Lipschitz trajectory costs which decompose
across time-steps.

Our analysis reformulates our setting as imitation in a com-
posite MDP, where composite states s, corresponds to tra-
jectory chunks, and composite-actions aj, correspond to sub-
sequences of primitive controllers. A learner’s policy maps
composite-states to distributions over composite-actions,
and a marginalization trick lets us represent non-Markovian
demonstrator trajectories in the same format. The primi-
tive controller sequences aj, provide the requisite stability,
and we show that noising the learner policy at inference
time ensures continuity in the total variation distance (TVC).
Our proof is inspired by the notion of replica symmetry in
statistical physics (Mezard & Montanari, 2009): we show
that by noising at inference time, we consistently estimate
a “replica” policy, which, up to the stability of controllers,
has marginals over states and actions close to those of the
expert policy. The proof constructs a sophisticated coupling
between the learned policy, replica policy, and other inter-
polating sequences; this construction is enabled by subtle
measure-theoretic arguments demonstrating consistency of
our couplings. We also establish stability guarantees for
sequences of primitive controllers in non-linear control sys-
tems, which may be of independent interest. Finally, we

empirically validate the benefits of our proposed augmenta-
tion strategy in simulated robotic manipulation tasks.

Abridged Related Work. Due to space, we defer a full
comparison to past work to Appendix B. DDPMs, proposed
in (Ho et al., 2020; Sohl-Dickstein et al., 2015), along with
their relatives have seen success in image generation (Song
& Ermon, 2019; Ramesh et al., 2022), along with imitation
learning (without data augmentation) (Janner et al., 2022;
Chi et al., 2023; Pearce et al., 2023), which is the start-
ing point of our work. Data augmentation is ubiquitous
in modern imitation learning (Laskey et al., 2017) and our
approach corresponds to that of (Ke et al., 2021) but with
noise added at inference time. Despite the benefits of adap-
tive data collection (Ross et al., 2011; Laskey et al., 2017),
adaptive demonstrations are more expensive to collect. Pre-
vious analyses of imitation learning without adaptive data
collection have focused on classical control-theoretic no-
tions of stability, notably incremental stability, (Tu et al.,
2022; Havens & Hu, 2021; Pfrommer et al., 2022), which
require continuity, Markovianity, and often determinism,
and preclude the bifurcations permitted in our setting.

Organization. In Section 2 we formally introduce our set-
ting as well as some preliminary notation and our main
desideratum. We then state our assumptions and our pro-
posed algorithm, TODA before giving our main guarantee
(Theorem 1) in Section 3. In Section 4 we describe our
proof techniques and provide a high level overview before
concluding with some experiments in Section 5. The orga-
nization of our many appendices is given in Appendix A.

2. Setting

Notation and Preliminaries. Appendix A gives a full re-
view of notation. Bold lower-case (resp. upper-case) denote
vectors (resp. matrices). We abbreviate the concatenation
of sequences via z1.,, = (21, ...,2,). Norms || - || are Eu-
clidean for vectors and operator norms for matrices unless
otherwise noted. Rigorous probability-theoretic prelimi-
naries are provided in Appendix C. In short, all random
variables take values in Polish spaces X (which include
real vector spaces), the space of Borel distributions on X’ is
denoted A(X'). We rely heavily on couplings from optimal
transport theory: given measures X ~ P and X' ~ P’
on X and X" respectively, € (P, P’) denotes the space of
joint distributions u € A(X x X”) called “couplings” such
that (X, X’') ~ p has marginals X ~ P and X' ~ P.
A(X | ) denotes the space of kernels Q : ) — A(X)
; Appendix C rigorously justifies that, in our setting, all
conditional distributions can be expressed as kernels (which
we do throughout the paper without comment).

Dynamics and Demonstrations. We consider a discrete-
time, control system with states x; € X’ := R4 and inputs



u; € U := R%, obeying the following nonlinear dynamics

Xep1 = f(xe, ), t>1 2.0

Given length T' € N, we call sequences pr =
(X1.741,u1.7) € Pr = XTHL x UT trajectories. For
simplicity, we assume that (2.1) deterministic and address
stochastic dynamics in Appendix J. Though the dynamics
are Markov and deterministic, we consider a stochastic and
possibly non-Markovian demonstrator, which allows for the
multi-modality described in the Section 1.

Definition 2.1 (Expert Distribution). Let Deyx, € A(Zr)
denote an expert distribution over trajectories to be im-
itated. Dy, denotes the distribution of x; under p; =

(XI:TJrla ul:T) ~ Dexp~

Primitive Controllers and Synthesis Oracle. Let /C denote
the space of affine mappings X — U (redundantly) param-
eterized as x — 1 + K(x — x); we call these primitive
controllers. We say k1.7 € KT is consistent with a trajec-
tory p = (x1.741,u1.7) € Prif x4 = x; and uy = wy
for all ¢ € [T]; note that this implies that x;(x;) = u;
for all t. A synthesis oracle synth maps Zr — KT
such that, for all p; € Pr, k1.7 = synth(py) is con-
sistent with pp. For our theory, we assume access to a
synthesis oracle at training time, and assume the ability to
estimate conditional distributions over joint sequences of
primitive controllers; Appendix G explains how this can be
implemented by solving Ricatti equations if dynamics are
known (e.g. in a simulator), smooth, and stabilizable. In
our experimental environment, control inputs are desired
robot configurations, which the simulated robot executes by
applying feedback gains.

Chunking Policies and Indices. The expert distribu-
tion Dy, may involve non-Markovian sequences of ac-
tions. We imititate these sequences via chunking poli-
cies. Fix a chunk length 7. € N and memory length
Tm < Te, and define time indices t;, = (h — 1)7. + 1.
For simplicity, we assume 7. divides 7', and set H =
T/1.. Given a py € P, define the trajectory-chunks
Pen = (Xtn_ritn> Uty _y:t,—1) € Pr. and memory-
chunks Pm,p = (Xtp =t 1:tn s Uty — 7ot 1t —1) € Pr—1
forh > 1,and p.; = p,, 1 = x1. We call 7.-length se-
quences of primitive controllers composite actions a;, =
Kt € A:= K™. A chunking policy = = (r},) con-
sists of functions 7, mapping memory chunks p,, ; to dis-
tributions A(A) over composite actions and interacting with
the dynamics (2.1) by a5, = fig,,:t,,_, ~ Th(Pm p)> and exe-
cuting u; = k¢(x;). The chunking scheme is represented in
Figure 1 in Section 4, alongside the abstraction we use in
our analysis.

Desideratum. The quality of imitation of a deterministic
policy is naturally measured in terms of step-wise closeness
of state and action (Tu et al., 2022; Pfrommer et al., 2022).

In stochastic settings, however, two rollouts of even the
same policy can visit different states. We propose measur-
ing distributional closeness via couplings introduced in the
preliminaries above. We define the following losses:

Definition 2.2. Given € > 0 and a (chunking) policy 7, the
imitation 10ss Lrarg - () is defined to be
exp €xXp

inf { P X7 4]l >el,P
{2%12 { #[HXt+1 Xl 5] [y

—uf[| > €]}
where the infimum is over all couplings i between the dis-
tribution of P under Dey, and that induced by the policy 7
as described above, such that P, [x7*” = xT] = 1. Also de-
fine Lan(m) = inf, P, [|[x7F; — xF | > €], the loss
restricted to the final states under each distribution.

Under stronger conditions (whose necessity we estab-
lish), we can also imitate joint distributions over actions
(Appendix I). Observe that Lane < Lmarg,e, and that
both losses are equivalent to Wasserstein-type metrics on
bounded domains (and correspond to total variation ana-
logues of shifted Renyi divergences (Altschuler & Talwar,
2022; Altschuler & Chewi, 2023)). While empirically eval-
uating these infima over couplings is challenging, Lyarg <
upper bounds the difference in expectation between any
bounded and Lipschitz control cost decomposing across
time steps, states and inputs, and Lg, . upper bounds differ-
ences in bounded, Lipschitz final-state costs; see Appendix I
for further discussion.

Diffusion Models. Our analysis provides imitiation guaran-
tees when chunking policies 7, select a;, via a sufficiently
accurate generative model. Given their recent success, we
adopt the popular Denoising Diffusion Probabilistic Models
(DDPM) framework (Chen et al., 2022; Lee et al., 2023)
that allows the learner to sample from a density ¢ € A(R?)
assuming that the score Vlogq is known to the learner.
More precisely, suppose the learner is given an observation
Ppn,;, and wishes to sample a5, ~ q(:|py, ;) for some family
of probability kernels ¢(-|-). A DDPM starts with some
ay sampled from a standard Gaussian noise and iteratively
“denoises” for each DDPM-time step 0 < j < J:

e Seah(agl_17 pm,}wj) +2 'N(07 0421),
2.2)

A = 3

where s, (a?, Pmp,J) estimates the true score
Se.h(ans Pm s @j), formally defined for any contin-
uous argument ¢ < Ja to be Sen(a, Pmpit) =
Valogq(a | Pu.n)» Where g (-|py, ) is the distribution
of e‘tago) + V1 —e~?ty with aﬁlo) ~ q(-|Pm,,) and
~ ~ N(0,I) is a standard Gaussian. We will denote
by DDPM(sg, P, ;) the law of a; sampled according
to the DDPM using sg(:, Py, ,,*) @S a score estimator.
Preliminaries on DPPMs are detailed in Appendix H.



3. Algorithm and Results

We show that trajectories of the form given in Definition 2.1
can be efficiently imitated if (a) we are given a synthesis
oracle that locally stabilizes chunks of the trajectory with
primitive controllers and (b) the score of the following con-
ditional distributions (whose existence is guaranteed by Ap-
pendix C) lies in a class O of bounded statistical complexity.

Formal Assumptions. We say trajectory p, =
(X1:741, W14r) € P, is feasible if it obeys the dynam-
ics in (2.1). We assume that the transition map f takes the
form of an Euler-like discretization

F(xe,u) = x¢ +nfy(xe,ur)

for a small step size n > 0 and say p, is
(Rdyn, Layn, Mayn)-regular if, for any t € |[r] and
(x},u;) € R x R such that ||x, — x| V |[u; —
u;|| < Rayn, it holds that ||V f, (x}, u})|lop < Layn and
V2 fy (%), 0}) lop < Mayn.' The Jacobian linearizations
along a path p. = (X1.r41,u1.;) € &, are matrices
Aip,) = a%f(xt,ut) and By(p,) = a%f(:vt,ut) for
t € [7]. Given p, € &2, and primitive controllers %1.,, €x-
pressed as r¢(x) = Ky (x — %;) + (), we say (p,, F1.r)
are (Rstab, Bstab, Lstab )-Jacobian stable if (a) k1., is con-
sistent with p, (b) maxe(r) [Kel| V [%i]| V [ < Raa,
and (c) the linearized closed-loop transition operator has
exponential decay:

i

H(I)cl,k,j”op < Bstab(]- —

Lstab

Dop; = T+nAar—1) T+nAcr—2) - (IT+nAa,),

where above Aq r = Ak(p,) + Br—1(p,)Ki—1. Our first
two assumptions are as follows.

Assumption 3.1. The p; ~ Dey, is feasible and
(Rdyn, Layn, Mayn)-regular with probability 1.

Assumption 3.2. With probability 1 over py ~ Deyp, and
k1.7 = synth(py), the chunk-action pairs (. j,11,2n)
are (Rstab, Bstab, Lstab)-Jacobian Stable for 1 < h < H.

Assumption 3.1 enforces smoothness of the dynamics, but
not smoothness or continuity of the underlying policy. As-
sumption 3.2 generalizes popular quantifications of stability
(e.g. strong stability (Cohen et al., 2019)), and is satis-
fied when primitive controllers are synthesized via Ricatti
equations of dynamics with stabilizable linearizations (Ap-
pendix G). Finally, we require access to a class of score
functions rich enough to represent the deconvolution condi-
tionals, defined as follows.

Definition 3.1 (Deconvolution Conditionals). For h € [H],
let 73, ;, € A(A| P, 1) denote a conditional distribution

"Here, |V 2f,(x;,u})|lop denotes the operator-norm of a
three-tensor.

of ap = H:th:th+1—1 | ﬁm,}'w where pT ~ DeXpa Ri1.T =
synth(pr), and p,,  is the memory chunk of p;- at step
h,and p,, ;, ~ N (P 1, 0°T) augments P, ;, With noise.

Assumption 3.3. For h € [H]letm},. ;, 1y € A(A|Z7, 1)
denote gy as defined below (2.2) for ¢ = 77, ;, the decon-
volution policy defined above. For fixed o, > 0 and
J € N, lets, p 5] denote the score function of 7§ ; (-
We suppose that for any J € N and o, 0 > 0, we are given a
class of scores © = O(7¢, Tm,0) = {Sg, 1.0} = Uje[J] 0,
such that (a) for all 1 < j < J, 8, 45[a;) € ©O; and
(b) a Rademacher-like complexity of ©;, R,(©;) (de-
fined in Appendix H) has polynomial decay R, (©;) <
Co(1/a)’n~" forsome v > 1 and Co = Co (0, Te, ).

As justified in Appendix H, the above assumption is a nat-
ural for statistical learning, the decay condition on R, (O)
holds for most common function classes (often with v < 2
and even more benign dependence on J, o), and our results
extend to approximate realizability. R,,(©) depends implic-
itly on chunk and memory lengths 7., 7,, > 0 and problem
dimension through the specification of s, 1, 5 [oj- Realiz-
ability is motivated by the approximation power of deep
neural networks (Bartlett et al., 2021).

Algorithm. Our proposed algorithm, TODA (Algorithm 1)
combines DDPM-learning of chunked policies as in (Chi
et al., 2023) with a popular form of data-augmentation (Ke
et al., 2021). We collect N, expert trajectories, synthe-
size gains, and segment trajectories into memory chunks
P, and composite actions aj as described in Section 2.
We perturb each p,, ;, to form N, chunks p,, ;, as well
as horizon indices j € [J] and inference noises v ~
N (an, (ajn)?T), and add these tuples (an, Pp, 1, Jhs Vs 1)
to our data ®. We end the training phase by minimizing the
standard DDPM loss (Song & Ermon, 2019) Lypem (6, D):

Z H’Yh —S¢,n (e_ajah + V1 —e 2%y, 6m,h7jh)‘

3.1

2

b

where the sum is over (an, P, jn, Yn,h) € ®.  Our
algorithm differs subtly from past work in Line 8: we
add augmentation noise back in at test time. Here, the
notation DDPM(sg 1, ) © N(py, ,, 0°1) means, given p,,, 5,
we perturb it to p,,, ;, ~ N(py, 4 o?1), and sample a;, ~
DDPM(8g,1; P, ,)- The motivation for this is that adding
noise at inference time removes distribution shift coming
from training on augmented data; this simple observation is
crucial for our theoretical guarantees.

Theoretical Guarantee. We now state our main theorem,
which bounds the imitation losses of TODA trained on ex-
pert demonstrations. Let d = 7.(d; + d, + d.d,,), and
let cy,...,c5 denote terms given in Appendix G that are
polynomial in the parameters in Assumptions 3.1 and 3.2.



Algorithm 1 Trajectory Optimization with Data
Augmentation (TODA)

1: Initialize Synthesis oracle synth, sample sizes
Newp, Nawg € N, 0 > 0, DDPM step size o > 0,
DDPM horizon J, function class {sp }gco, gain magni-
tude R > 0, empty data buffer © <« 0.

% For no augmentation, set o = 0 and
Nauwg =1

2: forn =1,2,... Noyp do

3: Sample pr = (Z1.741,u1.r) ~ Dexp and set

k1.7 = synth(p)
% Segment p ;. from p;r and ai.z from

R1.T

4: fori =1,2,...,Nyygand h=1,2,...,H do

5: Sample p,, ;, ~ N (P 1, 0?1), jn ~ Unif([J])
and v, ~ N (ap, (jna)*I).

6: D  D.append ({(an, Pe,p, Jns Yn, 1)})

7: Fit 6 € argmingcg Lpppm (6, D)

8 return 7, = (f1.g), where 7 o(Pm ) =
DDPM(Sg,h, ") © N (ppy 1, 0°1).

Theorem 1. Consider running TODA for o > 0 with pa-
rameters J, . polynomial in the parameters given in As-
sumptions 3.1 and 3.2 specified in Appendix H. Suppose
that Assumptions 3.1 to 3.3 hold and further suppose the
chunk length satisfies 7. > c3/n. Given 0,6 > 0, se-
lect any € > 0 for which 5d, + 2log (42) < ¢3/(1602).
If Newy, > poly (Co, /0, Rega, d, log(H/5))”, then for
Tty the policy output by TODA, it holds with probability
1 — & over the training data that both Lyarg e, (7o) and
Lén e, (7o) are upper bounded by

3 4 _ n(re=7m)
H (5 + 605\/5dz +2log (;7)6 g s ) (3.2)
g

where €1 = ¢ + 4cs0 - (5d, + 2log (4?‘7))1/2 and 5 =
I + 4056_nTc/LstabU . (5d$ + 21Og (4?0'))1/2'

Theorem 1 guarantees imitation of the distribution of
marginals and final states of Deyp,. Each term in (3.2) can
be made small by decreasing the amount of noise ¢ in the
augmentation, increasing the number of trajectories, and
increasing the chunk length 7.. Increasing 7. comes at
the (implicit) expense of requiring a more expressive score
class © (requiring greater Ny, ); similarly, as expressed
in Appendix H, the scores s, 1, 5 [o;] May become harder
to learn o decreases. Note that the contribution of the ad-
ditive o-term in e9, used for the final-state loss Ly ¢, is
exponentially-in-7. smaller than that in ;. Interestingly,
our theory suggest no benefit to increasing 7, (corrobo-
rated empirically in (Chi et al., 2023)). Appendix I gives
guarantees for imitating joint trajectories under the further
assumptions that (a) the demonstrator has memory (or, more

generally, a mixing time) of at most 7y,,, and (b) either the
demonstrator distribution happens to satisfy a certain conti-
nuity property, or o = 0 and instead the learned 7 satisfies
that same property.

Theorem 1 leverages statistical learning guarantees for
DPPMs to show our learned policy approximately sam-
ples from 7}, ;, in a truncated Wasserstein distance (Ap-
pendix H). These steps are combined with a general template
for imitation learning developed in Section 4, with the final
proof deferred to Appendix I . In Appendix F we show that
this framework is essentially tight and thus suboptimality in
Theorem 1 comes from looseness in conditional sampling
guarantees. If we were above to approximately sample from
T e, iD total variation, rather than a truncated Wasserstein
distahce, the imitation learning problem would be trivialized
(Appendix I). Appendix H explains that the needed assump-
tions for this stronger sense of approximate sampling do not
hold in our setting, because expert distributions over actions
typically lie on low-dimensional manifolds.

Stability, limitations, and future work. We never explic-
itly model bifurcations; rather, we allow expert demonstra-
tions to be sufficiently rich as to permit them. Eschewing
global stability, 7. ensures that trajectories are long enough
for the strictly local stability assumptions in Assumption 3.2
to provide benefit. Thus, non-Markovianity is challenging
only insofar as it relates to the difficulty of local stabilization.
A key limitation of our work is that, to take advantage of
local stability, we rely on either synthesized primitive con-
trollers (in our analysis) or low-level stabilizing controllers
built into problem environments (in our experiments). De-
veloping a more comprehensive approach to stability (per-
haps one that does not require explicit gain synthesis, and
extends to non-smooth systems) is an exciting direction for
future work. Appendix B compares our hierarchical ap-
proach to stability to more standard notions, which we show
rule out the possibility for bifurcated demonstrations.

4. Analysis

Our analysis abstracts away the vector-valued dynamics
into a deterministic MDP with composite-states s € S and
composite-actions a € A, with dynamics

Sh+1 :Fh(shaah)a h e {172>7H} (41)

A composite-policy w is a sequence of kernels
T, T2, ..., TH S — A(A). We let Py, denote
the distribution of initial state s;, and D, denote the
distribution of (s1.g41,a1.4) subject to s; ~  Pipit,
ap | si:h,a1:m—1 ~ wh(sn), and the composite-dynamics
(4.1). We assume that we have an optimal policy 7* to be
imitated, and define P as the marginal distribution of s,
under D«.

Structure of the proof. We begin by explaining key objects,



stability and continuity properties required in the composite
MDP. Then, Section 4.1 relates the composite MDP to our
original setting by taking composite-states s, = p, j, as
chunks, and taking composite actions as sequences of prim-
itive controllers ap, = K¢,,.4,,, 1 as in Section 2. We also
explain why relevant stability and continuity conditions are
met. Finally, we derive Theorem 1 from a generic guaran-
tee for smoothed imitiation learning in the composite MDP,
Theorem 2, and from sampling guarantees in Appendix H.

We consider two pseudometrics on the space S: ds, dryc :
S? = R0, and a function d 4 : A% — R>g. For conve-
nience, do not require d 4 to satisfy the axioms of a pseudo-
metric. We use ds and d 4 to measure error between states
and actions, respectively, and dryc(-, -) for a probabilistic
continuity property described below. In terms of ds and d 4,
we consider three measures of imitation error: error on the
(i) joint distribution of trajectories (I'joint,c) (ii) marginal
distribution of trajectories (I'marg ) and (iii) one-step error
in actions (dgs ). Formally:

Definition 4.1 (Imitation Errors). Given an error param-
eter ¢ > 0, define the joint-error T'joine (7 || 7*) :
infm PM [maxhe[H] max{dg(s,*l+1, §h+1); dA(a’;L, éh)} >

where the first infimum is over trajectory cou-
plings ((S1:m41,31:m), (i1 aly))  ~ €
¢ (D#,Dr+) satisfying P, &7 = s = 1
Define the marginal error Tang (7 I
7T*) = maxpe[H) {infm PHI [dS(S;H_l, §h+1) >

el,inf,, P, [da(aj,an) > €]} to be the same as the
to joint-gap, with the “max” outside the probability
and inf over couplings. Lastly, define the one-step error
dos,e (Tr(s) || 7 (s)) := inf,, Py, [da(4n,a}) < €], where
the infimum is over (a}, a5) ~ w2 € € (7n(s), 7 (s)).

Stability. Our hierarchical approach offloads stability of
stochastic 7* onto that of its composite-actions aj,, instanti-
ated as primitive controllers (not raw inputs!). This allows
us to circumvent more challenging incremental senses of
stability (see Appendix B for further discussion).

Definition 4.2 (Input-Stability). A trajectory (s1.p7+1,21.5)
is input-stable if all sequences s| = s; and s) ; =
F}L(S;w a;z) satiSfy dS (S;LJrl? sh—i—l) \% dTVC (S;L+17 Sh+1) <
maxi<;<pda (a;.,aj) , Vh € [H]. A policy 7 is input-
stable if (s1.;7,a1.5) ~ Dy is input-stable almost surely.

TVC. Continuity of probability kernels and policies in TV
distance are measured in terms of dyyc.

Definition 4.3. For a measure-space X and non-decreasing
v : R>o — R>g, we call a probability kernel W : S —
A(X) ~-total variation continuous (v-TVC) if, for all
s,s € S, TV(W(s),W(s')) < v(drvc(s,s’)). A policy
misy-TVC if my, : S — A(A) is v-TVC Vh € [H].

Smoothing. In Appendix D, we show that under the strong
condition that the learned policy 7 is y-TVC, then TODA

with no data augmentation (¢ = 0) learns the distribution.
Frequently, however, 7 may not satisfy this condition, such
as when the ground truth 7* is not also TVC. We circumvent
this by introducing a smoothing kernel W, : S — A(S)
that corresponds to the data augmentation; in TODA we let
the kernel be a Gaussian, sending p,, , to N'(p,, 5, 0°I) €
A(Py,. ). We will thus be able to replace TVC of 7 with
TVC of W,. We now introduce a few key objects.

Definition 4.4. Given a policy 7, we define its smoothed
policy ™ o W, via components (7 o W, ), = 7, o W, :
S — A(A). For 7* fixed, define the augmented distibu-
tion P} . ;, as the joint distribution over (s}, ~ Pj,aj ~
77 (sy), 5y, ~ Wy(sy,)), with aj L S} | sj.. The deconvolu-
tion policy mj,. is defined by letting 77, ;, (s) denote the
distribution of aj | §;; = sp, where aj, §; are drawn from
Piue - Finally, the replica policy is 775 = 7}, o W,.

*
aug,

The operator m o W, composes m with the smoothing ker-
nel. The deconvolution policy 7}, captures the distribution
of actions under 7* given an augmented state, and corre-
sponds to .. = (74, ). We argue that if a policy
7 approximates 7., at each step, then 7 o W,, imitates
e = Thee © Wo. We explain the “replica policy”, and
importance of imitating it, after we state our main theorem.
First, we define a notion of stability to smoothing, taking
drye, ds, d 4 as given.

Definition 4.5. For a non-decreasing maps ips,1, Vips,2 :
R>9 — R>¢ a pseudometric dips : S x S — R (pos-
sibly other than ds or dryc), and rps > 0, we say
a policy 7 i (Vips,1, Vies,2, ips, Tips ) -input-&-process sta-
ble (IPS) if the following holds for any r € [0, 7).
Consider any sequence of kernels Wy,... , Wy : § —
A(S) satisfying maxy ses Psow,, s) [dies (5,5) < 7] = 1,
and define a process s; ~ Pinit, S ~ Wp(sp),an ~
7r (), and sp1 := Fy(sp,a). Then, almost surely, (a)
the sequence (s1.5+1,a1.5) is input-stable w.r.t (ds,d4)
(b) maXpe[H] deve(Fn(Sn, an), sny1) < ’YIPs,l(T') and (¢)
maxye (] ds(Fr(8nyan), 1) < Vs 2(r)-

Condition (a) means that the policy 7 defined by 7, = 7, ©
W,, is input-stable. In the appendix, we instantiate W1. g
not as W, but as (a truncation of) replica kernels Wg , for
which 7%, = 7 o W . We show that the replica kernel
inherits any concentration satisfied by W,,, ensuring (via
truncation) that Ps_w, (s)[dips(3,5)] < 7. Conditions (b &
¢) merely require that one-step dynamics are robust to small
changes in state, measured in terms of both dry¢ and ds.

4.1. Instantiation for control

Here we explain the mapping from the control set-
ting of interest to the composite MDP; in so doing
we distinguish between the case h > 1 and h
1 with reference to composite-states. In the former
case, s, = (Xt,_yity, Wty _y:itn—1) € .., and ap
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Figure 1. Schematic depicting the composite MDP. States x and stabilizing gains ~ are chunked into composite states s and composite
actions a (control inputs u not depicted). The distance labels correspond to the domain over which each distance is evaluated. Note that
ap, begins at the same time that s, does, an indexing convention that we adopt to make the notation in the proofs simpler.

Kty:tni1—1 (as in Section 2). Importantly, a, are prim-
itive controllers, which allows us to meet the strong
stability condition in Definition 4.2. Figure 1 pro-
vides a visual aid for the subtle indexing. For sh,sﬁl,
we define ds(sp,s,) = maxecp, ., lIxe — x| V
maxye(t, ,:t,—1] |[us—ugl|, which measures distance on the
full subtrajectory, drvc(sn,s,) = maXeefr, —ritn] IXe —
Xi|| V max;er, —r.:t,—1] [0 — ugl|, which measures dis-
tance on the last 7, steps, and dips(sp, sj,) = [|x¢, — X, ||
which is only on the last step. In the latter case, when
h =1,welets; = x; € X, and we let ds, dryc, dips
all denote the Euclidean distance on X. In all cases, the
transition dynamics F}, are induced by the dynamics (2.1)
with u; = ¢ (x;). Finally, fora = (1iy.,,, X1.r., K1.r, ) and
a' = (0].,,,X].,.. K/... ), we choose a d 4 that takes value
0o when primitive controllers are too far apart as d 4(a,a’)
defined to be

e1 max ([ay, - W[l + 1%k — X5 [+ Ky — Ki[]) 4.2)

+1p,{€},

where we define £ := {maxi <<, max{|[ty—a|, ||Xx—
x|l [ Kk — K5 ||} < 2}, Io oo is the indicator taking in-
finite value when the event fails to hold, and ¢; and ¢ are
constants depending polynomially on all problem parame-
ters, given in Appendix G.

We let the expert policy 7* be the concatenation of poli-
cies 7, each of which is defined to be the distribution of
ay, conditioned on P, under Dy, (see Appendix I for a
rigorous definition). As noted above, we take the smoothing
kernel W, to map p,,, 5 to a N'(py, ,,0°I) € AP, ),
which that same appendix shows is %—TVC (w.r.t. dpye
defined above). We note that under these substitutions, the
deconvolution policy 7}, = (7i.., WL s precisely as
defined in Definition 3.1.

Appendix G shows that Assumptions 3.1 and 3.2 imply

that 7* enjoys the IPS property in the composite MDP thus
instantiated, along with many more granular stability guar-
antees for time-varying affine feedback in nonlinear control
systems, which may be of independent interest.

Proposition 4.1. Let c3,cq4,c5 > 0 be as given in Ap-
pendix G (and polynomial in relevant quantities). Suppose
Te 2> c3/n, and let s = Ca, Yips,1(u) = csuexp(—n(rc —
Tm)/Lstab)> 'YIPS,Q(U) = csu. Then, for ds,dryc,dps as
above, we have that ™ is (Yips,1, Vips,2, drps s T1ps )-IPS.

4.2. A Guarantee in the Composite MDP Stability, and
the derivation of Theorem 1

With the substitutions in Section 4.1, it suffices to prove an
imitation guarantee in the composite MDP, assuming 7 is
IPS, and 7 is close to 7}, in the appropriate sense.

Theorem 2. Suppose 7 is (s, 1, Yirs,2, dps, T1es ) -IPS and
W, is 75-TVC. Let ¢ > 0, r € (0, %TIPS],‘ define p, =
sup Py ow, (s)[dies(s',5) > 7] and €' := & + s 2(2r).
Then, for any policy 7, both Tiging (7 o W, || 75) and
Tiarg,e (T 0 Wq || ©) are upper bounded by

H (2}% + 3o (maX{fa 'YIPs,l(QT)}))

H n g~ ~
+ 2 he1 Espopr Bar o, (1) dos e (R (S3) || 73ec (57))-

Deriving Theorem 1 from Theorem 2. A full proof is given
in Appendix I, using the subtley that 7* as described above
yields trajectories with the same marginals (but possibly
different joint distributions) as py ~ Deyp; thus, to bound
losses in Definition 2.2, it suffices to bound the imitation
gaps in Definition 4.1 w.r.t. 7*. Using the analysis in Ap-
pendix H, we show that our DDPM training precisely en-
sures that 7, = 7oW,, in TODA minimizes (an upper bound
on) the term ZhH=1 EszwszgzNWU(s;’)dosﬁ(7?(}1(52) H
7500 (5%)). Finally, we combine the guarantees of Proposi-
tion 4.1, the aforementioned TVC-bound on W, and Gaus-
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Figure 2. Performance of baseline 7 and noise-injected 7 o W, TODA policy for different . We use 4 training seeds with 50 and 22 test
trajectories per seed for PushT and Can and Square Environments respectively. Mean and standard deviation of the test performance on
the 3 best checkpoints across the 4 seeds are plotted. The o values correspond to noise in the normalized [—1, 1] range.

sian concentration to bound p,. with the bound in Theorem 2
to conclude. O

Proof Sketch of Theorem 2. The proof draws inspiration
from the notion of replica symmetry in statistical physics
(hence, the name replica) (Mezard & Montanari, 2009). We
construct a coupling between a trajectory over (sho, a%) sam-
pled using the replica policy 75, and a trajectory (Sy,4ap)
sampled from 7,. We introduce teleporting trajectories
s = Fu(sy,ay), and siel, = F, (i, ale!), where
sffl is sampled from the replica distribution of stel and
atel ~ 77 (sth); in words, st¢! teleports to an 1ndependent
and identically distributed copy conditional on the noise
agumentation, and draws an action from the replica policy

evaluated on the new state.

The key fact of the replica distribution is that it preserves
marginals, meaning that all s{*! and 5{¢! both have marginals
according to P;. We show that s}f tracks the teleporting
trajectories, up to the IPS terms ~ips ; and concentration of
the kernel, due to total variation continuity of W,. Because
the marginals of s“31 are distributed according to P}, we can
argue that a (fictitious) action a:°"™" ~ 7 (st¢!) is close to

tel (by the data processing inequality, it is bounded by the
closeness of 7, and 7y, , on 5 ~ W, (s}, sjeh ~ Pj).
We then use total variation continuity to relate to another

fictious action aO inter ¢, ay). Finally, we use input-stability

and TVC again, to relate a5, "™ to actions a;, ~ 7, (55).

Our couplings are summarlzed in the following diagram:

(ao o atel) N ( tel o étel mter)

learning and sampling

~rve and induction
_ (étel,lnter o é() 1nter) N (éo,lnter PN é) )

“rve and induction

~rve and induction

We construct conditional couplings between pairs of the
aforementioned trajectories, each of which corresponds to a

certain optimal transport cost. That past trajectories can be
associated to optimal couplings measurably is non-trivial,
and proven in Proposition C.3. To conclude, we apply a
measure theoretic result (Lemma C.2) to “glue” the pairwise
couplings together and establish the main result. The full
proof is given in Appendix E, relying on measure-theoretic
details in Appendix C. O

5. Simulation Study of Test-Time
Noise-Injection

We empirically evaluate the effect on policy performance of
our proposal to inject noise back into the dynamics at infer-
ence time. We consider three challenging robotic manipula-
tion tasks studied in prior work: PushT block-pushing (Chi
et al., 2023); Robomimic Can Pick-and-Place and Square
Nut Assembly (Mandlekar et al., 2021). We explain the
environments in greater detail, along with all training and
computational details in Appendix K. The learned diffusion
policy generates state trajectories over a 7. = 8 chunking
horizon using fixed feedback gains provided by the synth
oracle to perform position-tracking of the DDPM model
output. We direct the reader to Chi et al. (2023) for an
extensive empirical investigation into the performance of
diffusion policies in the noiseless o = 0 setting. We display
the results of our experiments in Figure 2. Observe that the
performance degredation of the replica policy from the un-
smoothed o = 0 variant is minimal across all environments
and even leads to a slight but noticeable improvement in the
small-noise regime for PushT (and low-data Can Pick and
Place). In the presence of non-negligible noise TODA sig-
nificantly outperforms the conventional policy 7 (obtained
by adding augmentation at training but not test time), as
predicted by our theory.
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A. Notation, Organization of Appendix, and Full Related Work

In this appendix, we collect the notation we use throughout the paper, as well as providing a high level organization of the
appendices.

A.1. Notation Summary

In this section, we summarize some of the notation used throughout the work, divided by subject.

Measure Theory We always let X’ denote a Polish space, #(X') the Borel-algebra on X', and A(X) the set of borel
probability measures on X'. For a random variable X on X, we let P x denote the law of X. For random variables X, Y,
we let € (Px, Py) denote the set of couplings of these measures and for laws Py, P5. We write P; ® P5 for the product
measure. We will generally reserve P to denote measure, Q and W for probability kernels, and p for a joint measure on
several random variables.

When Pq,P2 € A(X) are laws on the sampe space, we let TV(P1,P2) denote the total variation distance. We write
P, <« Ps if Py is absolutely continuous with respect to P5. Given a Polish space X’ and element z € X, we let §,, € A(X)
denote the dirac-delta measure supported on the set {x} € ZB(X) (note that, in a Polish space, the singleton {z} set is
closed, and therefore Borel).

Norms and linear algebra notation. We use bold lower case vector z to denote vectors, and bold upper case Z to denote
matrices. We let 1.5 = (21,...,2) and Z1.x = (Z1, ..., Zk) denote concatenations. The norms || - || denote Euclidean
norms on vectors and operator norms on matrices. We identify the spaces &7, with Euclidean vectors in the standard sence.
Given a Euclidean vector z € R%, A(z, 0%I) denote the multivariate normal distribution on R? with covariance oI.

Control notation. We let x, € R% denote control states, u; € R% denote control inputs, and p,. € &, denotes
trajectories (X1.r41,U1.7). T denotes the time horizon of imitation, so pp ~ 2. Our dynamics are x;11 = f(X¢, us);
for our main results (Section 3), we suppose f(x,u) = x + nf,(x, u), parametrizing dynamics in the form of an Euler
discretization with step n > 0.

Recall that primitive controllers « take the form x(x) = K(x — X) + @, where terms with (-), K, X, @, denote parameters
of the primitive controller. The space of these is .

We also recall the chunk-length 7. and memory length 7, satisfying 0 < 7,,, < 7. We recall the definition of the trajectory-
chunk p.. , and memory-chunk in p,, ,, in Section 2, which introduced the indexing h, such that ¢, = (h — 1)7. + 1. Recall
also the composite actions ap, = (¢, :¢, +1_1) € A = K" as the concatenation of 7. primitive controllers.

Abstractions in the composite MDP. The composite MDP is a deterministic MDP with composite-states s € S and
composite-actions a € A, and (possibly time-varying) deterministic transition dynamics F}, : S x A — Sfor1 < h < H.
The goal is to imitate a policy 7* = (7} )1<n<m, in terms of imitation gaps I'joint,c and I'marg - defined in Definition 4.1.
We refer the reader to Section 4 for the relevant terminology, and to Section 4.1 for its instantiation in our original control
setting.

A.2. Organization of the Appendix

‘We now describe the organization of our many appendices. In Appendix B, we expand on our abbreviated discussion of
related work in the body as well as provide a more detailed comparison of our notion of stability Definition 4.5 with those
found in prior work.

After the preliminaries on organization, notation, and related work, we divide our appendices into two parts. In the first
part, we expand on and provide rigorous proofs of statements and results pertaining to the composite MDP as considered in
Section 4. We begin by providing a detailed background in Appendix C on the requisite measure theory we use to make
our arguments rigorous. In particular, we provide definitions of probability kernels and couplings, as well as measurability
properties of optimal transport couplings. In Appendix D, we provide a warmup to the proof of Theorem 2. In particular,
the argument substantially simplifies if we consider the case of no added augmentation (when o = 0 in TODA) and we
present a coupling construction that implies the analogous bound in the presence of an additional assumption. The heart of
the first part of our appendices is Appendix E, where we rigorously prove a generalization of Theorem 2 by constructing a



sophisticated coupling between the imitator and demonstrator trajectories. We conclude the first part of our appendices by
proving a number of lower bounds in the composite MDP setting in Appendix F, which demonstrate the tightness of our
arguments in Appendix E.

We continue our appendices in the second part, which is concerned with the instantiation of the composite MDP in the
control setting of interest. In Appendix G, we provide a detailed proof that the control setting considered in Section 2
satisfies the stability properties required by our analysis of the composite MDP and prove Proposition 4.1. Of particular
note are Definition G.7, which provide explicit dependence of the relevant constants in Theorem 1 on the parameters of
interest, and Appendix G.8, which explains how to synthesize stabilizing gains, as assumed in Section 2. With the stability
properties thus proven, we proceed in Appendix H to instantiate our conditional sampling guarantees with DDPMs. In
particular, by applying earlier work, we state and prove Theorem 6, which guarantees that with sufficiently many samples,
in our setting we can ensure that the learned DDPM provides samples close in the relevant optimal transport distance to the
expert distribution. We also explain in Remark H.5 why stronger total variation guarantees on sampling are unrealistic in
our setting. The heart of the second part of our appendices is Appendix I, which provides the final, end-to-end guarantees
and the proof of Theorem 1. In that section, we prove a reduction from imitation learning to conditional sampling and derive
Theorem 1 as a corollary. We also provide a number of variations on this result, including stronger guarantees on imitation
of the joint trajectories (Appendix 1.3), guarantees on TODA under the aassumption that sampling is close in total variation
(Appendix 1.4), and imitation with no augmentation (Appendix 1.5). We also show in Proposition 1.5 that most natural cost
funtions have similar expected values on imitator and demonstrator trajectories assuming that the imitation losses are small.

We provide a number of extensions of our main results in Appendix J, including to the setting of noisy dynamics (Ap-
pendix J.1). Finally, in Appendix K, we expand the discussion of our experiments, including training and compute details,
environment details, and a link to our code for the purpose of reproducibility.

B. Complete Related Work

Imitation Learning. Over the past few years, there has been a significant surge of interest in utilizing machine learning
techniques for the execution of exceedingly intricate manipulation and control tasks. Imitation learning, whereby a policy is
trained to mimic expert demonstrations, has emerged as a highly data efficient and effective method in this domain, with
application to self-driving vehicles (Hussein et al., 2017; Bojarski et al., 2016; Bansal et al., 2018), visuomotor policies (Finn
et al., 2017; Zhang et al., 2018), and navigation tasks (Hussein et al., 2018). A widely acknowledged challenge of imitation
learning is distribution shift: since the training and test time distributions are induced by the expert and trained policies
respectively, compounding errors in imitating the expert at test-time can lead the trained policy to explore out-of-distribution
states (Ross & Bagnell, 2010). This distribution shift has been shown to result in the imitator making incorrect judgements
regarding observation-action causality, often with catastrophic consequences (De Haan et al., 2019). Prior work in this
domain has predominantly attempted to mitigate this issue in the non-stochastic setting via online data augmentation
strategies, sampling new trajectories to mitigate distribution shift (Ross et al., 2011; Ross & Bagnell, 2010; Laskey et al.,
2017). Among this class of methods, the DAgger algorithm in particular has seen widespread adoption (Ross & Bagnell,
2010; Sun et al., 2023; Kelly et al., 2019). These approaches have the drawback that sampling new trajectories or performing
queries on the expert is often expensive or intractable. Due to these limitations, recent developments have focused on
novel algorithms and theoretical guarantees for imitation learning in an offline, non-interactive environment (Chang et al.,
2021; Pfrommer et al., 2022). Our work is similarly focused on the offline setting, but is capable of handling stochastic,
non-Markovian demonstrators. Unlike (Pfrommer et al., 2022), we do not require our expert demonstrations to be sampled
from a stabilizing expert policy, instead utilizing a synthesis oracle to stabilize around the provided demonstrations. This is
a significantly weaker requirement and enables the development of high-probability guarantees for human demonstrators,
where sampling new trajectories and reasoning about the stability properties is not possible.

Denoising Diffusion Probabilistic Models. Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020) and their variant, Annealed Langevin Sampling (Song & Ermon, 2019), have seen enourmous
empirical success in recent years, especially in state-of-the-art image generation (Ramesh et al., 2022; Nichol & Dhariwal,
2021; Song et al., 2020a). More relevant to this paper is their application to imitation learning, where they have seen success
even without the proposed data augmentation in Janner et al. (2022); Chi et al. (2023); Pearce et al. (2023). DDPMs rely
on learning the score function of the target distribution, which is generally accomplished through some kind of denoised
estimation (Hyvérinen & Dayan, 2005; Vincent, 2011; Song et al., 2020b). On the theoretical end, annealed Langevin
sampling has been studied with score estimators under a variety of assumptions including the manifold hypothesis and some



form of dissapitivity (Raginsky et al., 2017; Block et al., 2020a;b), although these works have generally suffered from an
exponential dependence on ambient dimension, which is unacceptable in our setting. Of greatest relevance to the present
paper are the concurrent works of Chen et al. (2022); Lee et al. (2023) that provide polynomial guarantees on the quality
of sampling using a DDPM assuming that the score functions are close in an appropriate mean squared error sense. We
take advantage of these latter two works in order to provide concrete end-to-end bounds in our setting of interest. To our
knowledge, ours is the first work to consider the application of DDPMs to imitation learning under a rigorous theoretical
framework, although we emphasize that this does not constitute a strong technical contribution as opposed to an instantiation
of earlier work for the sake of completeness and concreteness.

Smoothing Augmentations. Data augmentation with smoothing noise has become such common practice, its adoption is
essentially folklore. While augmentation of actions which noise is common practice for exploration (see, e.g. (Laskey et al.,
2017)), it is widely accepted that noising actions in the learned policy is not best practice, and thus it is more common to add
noise to the states at training time, preserving target actions as fixed (Ke et al., 2021). Our work gives an interpretation of
this decision as enforcing that the learned policy obey the distributional continuity property we term TVC (Definition 4.3),
so that the policy selects similar actions on nearby states. Previous work has interpreted noise augmentation as providing
robustness. Data augmentation has been demonstrated to provide more robustness in RL from pixels (Kostrikov et al., 2020),
adaptive meta-learning (Ajay et al., 2022), in more traditional supervised learning as well (Hendrycks et al., 2020).

B.1. Comparison to prior notions of Stability.

Prior work in guarantees for imitation learning focuses either on constraining the learned policy to be stable (Havens & Hu,
2021; Tu et al., 2022) or assume the expert policy is suitably stable (Pfrommer et al., 2022).

The principal notion of stability used in these prior works is incremental-input-to-state stability of the closed-loop system
under a deterministic controller 7:

Definition B.1 (Incremental Input-to-State Stability). There exists class /C function ~y and class JCL function 3 such that
for any two initial conditions &;1,&; € X, the closed-loop dynamics under policy 7w : X — U given by fu(x¢, Ay) =
flae, m(xe) + Ay) satisfies:

lwe(§1: {As}izo) — we(&2; {0} ezo)ll < Bl — &2l) + ( max ||As||> ;

0<s<t—1

where z;(&; {A,}1Z3) is the state at time ¢ under f. with 29 = ¢ and input perturbations {A,}.Z5.

This notion of stability is quite restrictive, as the S-term necessitates that the dynamics converge irrespective of initial
condition. Without time-varying dynamics this can only be achieved by a policy which stabilizes to an equilibrium point, as
a policy which tracks a reference trajectory is unable to “forget” the initial condition. Constraining learned policies such that
they satisfy this notion of stability is also challenging. Tu et. al. (Tu et al., 2022) attempt to do so through regularization
while Haven et. a. (Havens & Hu, 2021) use matrix inequalities to satisfy this stability property under linear dynamics.
Pfrommer et. at. (Pfrommer et al., 2022) avoid this difficulty by relaxing the incremental stability to a local variant of
stability:

Definition B.2 (-Local Incremental Input-to-State Stability). There exists class K function -y such that for any £ € X, the
closed-loop dynamics under policy 7 : X — U given by fa(xs, At) = f(z, w(x) + Ay) satisfies:

o065 £ Foca) = 1065 0}l <, max 11 )

0<s<i—
for all {As}._, where maxp<s<: [|As]] < 7.

This weaker notion of incremental stability simply postulates the existence of a (local) input-perturbation to state-perturbation
gain function . Since this stability property does not necessitate convergence across with different initial conditions and
only under input perturbations of magnitude < 7, this only necessitates that the expert policy can correct from small input
perturbations.

We further weaken this assumption, which we formalize in Assumption 3.2 and abstract to the composite MDP through
Definition G.4, by only requiring that a locally stabilizing controller can be synthesized per-demonstration. Through the
introduction of a synthesis oracle which can generate locally stabilizing primitive controllers, we decouple the stability
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Augmentations

Figure 3. Instance of bifurcation, where augmentation is necessary for stability. The example on the left has an expert demonstrator
bifurcating around a circular obstacle. The example on the right demonstrates the utility of augmentations, allowing for trajectories that
navigate around the object in the direction farther from their starting point.

properties of the expert from the stabilizability of the underlying dynamical system. This allows for reasoning about
generalization in the presence of bifurcations or conflicting demonstrations, which is precluded by Definition B.2 since an
expert policy cannot simultaneously stabilize to multiple branches of a bifurcation. For a concrete example, consider Figure 3.
Indeed, continuity is the sine qua non of stability and the example given demonstrates the necessity of augmentation to
enforce the former. In detail, the figure illustrates an example where an agent is navigating around an obstacle, providing
a bifurcation. Without augmentation, the demonstrator trajectories always navigate around the obstacle in the direction
closer to their starting point, leading to a sharp discontinuity along a bisector of the obstacle. On the other hand, the data
augmentations allow for the policy to have some probability of navigating around the obstacle in the “wrong” direction,
which leads to the notion of continuity we consider: total variation continuity.

Because our notion of stability is applied in chunks, our theory is sufficiently flexible so as to allow for the learned policy to
switch between expert demonstrations in a manner preserving the marginal distributions but not consistent with the joint
distribution across the entire trajectory. This flexibility is illustrated in Figure 4, where we suppose that the demonstrator
distribution consists both of trajectories traversing a figure “8” consistently in either a clockwise or counter-clockwise
manner, with both orientations represented in the data set. Due to the multi-modality at the critical point in the trajectory,
there is ambiguity about which loop to traverse next; specifically, there may exist a policy that randomly select which loop to
traverse each time the critical point is visited in such a way that the marginal distributions on states and actions is the same
as that induced by the demonstrator. Such a policy will, by definition, preserve the correct marginal distributions across
states and actions; at the same time, this policy has a different joint distribution across all time steps from the demonstrator
due to the possibility of traversing the same loop twice in a row.

Part I
Composite MDP

C. Measure-Theoretic Background

In this section, we introduce the prerequisite notions from probability theory that we use to formally construct the couplings
in Appendices D and E. We begin by introducing general preliminaries, followed by kernels, regular conditional probabilities
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Figure 4. Instance where 7, and 7* induce the same marginals and joint distributions (left), but in the presence of expert demonstration
trajectories that traverse the figure eight both clockwise and counterclockwise directions, 7, may switch with some probability between
demonstrations where they overlap.

and a “gluing” lemma in Appendix C.1. We then show that optimal transport costs commute in an appropriate sense with
conditional probabilities (Proposition C.3 in Appendix C.2). We use the preliminaries in the previous sections to derive
certain optimal-transport and data processing inequalities in Appendix C.3. We prove Proposition C.3 in Appendix C.4.
Finally, we state a simple union bound lemma (Lemma C.11 in Appendix C.5) of use in later appendices.

General preliminaries. We rely extensively on the exposition in Durrett (2019) and refer the reader there for a more
thorough introduction. Throughout, we assume there is a Polish space €2 such that all random variables of interest are
mappings X : Q2 — X, where X is also Polish. Here, the o-algebras are always the Borel algebras (the o-algebra generated
by open subsets), denoted Z(Q)) and B(X).

The space of (Borel) probablity distributions on X is denoted A(X'), and measurability is meant in the Borel sense. Given a
measure y on a space X x ), we say that X ~ Px under p if, forall A € ZB(X), (X € A) = Px(A).

We adopt standard information theoretic notation to denote joint, marginal, and conditional distributions on vectors of
random variables. In particular, if random variables X, Y are distributed according to P, we denote by P x as the marginal
over X, P x|y as the conditional of X'|Y" under P, and Px y as the joint distribution when this needs to be empasized.
Definition C.1 (Couplings). Let X', ) be Polish spaces and let Px € A(X) and Py € A(Y). The set of couplings
% (Px, Py) denotes the set of measure ;1 € A(X x V) such that, (X,Y) ~ p has marginals X ~ Px and Y ~ Py.? We
let Px ® Py € €(Px, Py) denote the indepent coupling under which X and Y are independent.

It is standard that Px ® Py is always a valid coupling, and hence (P x, Py’) is nonempty. Couplings have the advantage
that they can be used to design many probability-theoretic distances. Through the paper, we use the total variation distance.

Definition C.2 (Total Variation Distance). Let Py, Py € A(X). We define the total variation distance TV (P1,P3) :=
SUpac(x) [P1(4) — P2(A4)]

The total variation distance can be expressed in terms of couplings as follows (Polyanskiy & Wu, 2022+).

*More pedantically, for all Borel sets A; € B(X), (A1 x V) = Px (A1) all Borel sets A> € B(X), (X x Az) = Pa(Az).



Lemma C.1. Let Py, Py € A(X). Then,

TV(P,,Py) = inf P Xy £ Xo)
( 1, 2) ME%”I(I%H,PQ) (X1,X2) 1{ 1# 2}

Moreover, there exists a coupling (i, attaining the infinum.

Support and absolute continuity. We will also require the definition of the support of a measure.

Definition C.3. Given a measure x on a Borel space (€2, F), we define the support supp(p) to be the closure in the topology
given by the metric of the set {w € Q|u(Uf) > 0 for all open U > w}.

In addition, we require the definition of absolute continuinty.
Definition C.4 (Absolute Continuity). We say that P € A(X) is absolutely continuous with respect to law P’ € A(X),
written P < P/, if for A € Z(X), P'(A) = 0 implies P(4) = 0.

We now go into greater detail on the kinds of couplings that we consider.

C.1. Kernels, Regular Conditional Probabilities and Gluing

One key technical challenge in proving results in the sequel is the fact that we need to “glue” together multiple different
couplings. Specifically, while it may be the case that there exist pairwise couplings which satisfy desired properties, there
exists a coupling such that the probability of the relevant event is small, it is not obvious that there exists a single coupling
such that all of these probabilities are small simultaneously. There are two natural ways to due this gluing: the first, using
regular conditional probabilities we provide here. The second, involving a sophisticated construction of Angel & Spinka
(2019) requires stronger assumptions on the pseudo-metric, but generalizing beyond Polish spaces, we simply remark can be
substituted with a loss of a constant factor.

Kernels. We begin by introducing the notion of a kernel.

Definition C.5 (Kernels). Let (2, P) be a probability space and let X denote a random variable on this space. For a given
o-algebra G, and map @ : Q x G — [0, 1], we say that ) is a probability kernel if the following two conditions are satisfied:

1. For all measurable events A, the map w — Q(w, A) is measurable.
2. For almost every w € €2, the map A — Q(w, A) is a probability measure.

We can combine a probability kernel with a probabilty measure on ) to yield joint distributions over X' x ).

Definition C.6. Given an Py € A()), we define the probability measure law(Qx|y;Py) € A(X x V) such that
1 = law(Qx|y; Py) satisfies’®

(A x B) =Ey.p, [Qxy (A| Y)I{Y € B})], VA€ B(X),Be BY). 1)
We let Qx|y o Py € A(X) denote the measure for which 1 = Q x|y o Py satisfies

1(A) =Eyep, [Qxy(4]Y)], VA€ B(X)

From these, we define the space of conditional couplings as follows.

Definition C.7 (Kernel Couplings). Let Py € A(Y), and Qx,|y € A(X | V) fori € {1,2}. Welet Gp, (Qx,|v, Qx,|v)
denote the space of measures ;1 € A(X] x X3 x ) over random variables (X1, X»,Y’) such that (X;,Y") ~ law(Qx|y; Py)
fori € {1,2}.

Note that a similar construction to the independent coupling ensures %p,, (Qx, |y, Qx,|y) is nonempty, namely considering
the measure f1(A; X Ay X By) = Eypy [Qux, |y (A1 | Y)Qux, |y (A2)I{Y € B}].

3Recall that B(X x ) is generated by sets A x B € B(X) x B(Y), so (C.1) defines a unique probability measure



Regular Conditional Probabilities. 'We now recall a standard result that conditional probabilities can be expressed
through kernels in our setting.

Theorem 3 (Theorem 5.1.9, Durrett (2019)). If Q) is a Polish space and P is a probability measure on the Borel sets of (),
such that random variables (X,Y) ~ P in spaces X and ), then there exists a kernel Q(- | -) € A(X | V) such that, for all
A € B(X) and P-almost every y, the (standard) conditional probability P[X € A | Y] = Q(A | y). We can Q(- | ) the
regular conditional probability measure.

Regular conditional probabilities allow one to think of conditional probabilities in the most intuitive way, i.e., for two
random variables X, Y, the map Y — P(X € A | Y) is a probability kernel. This will be the essential property that we use
below.

Gluing. Finally, regular conditional probabilities allow us to “glue together” couplings which share a common random
variable.

Lemma C.2 (Gluing Lemma). Suppose that X,Y, Z are random variables taking value in Polish spaces X,Y, Z. Let i1 €
A(X xXY), pe € AY % Z) be couplings of (X,Y') and (Y, Z) respectively. Then there exists a coupling n € A(X XY x Z)
on (X,Y, Z) such that under p1, (X,Y) ~ py and (Y, Z) ~ ps.

Proof. Let Q(- | Y') be a regular conditional probability for Z given Y under us (who existence is ensured by Theorem 3).

We construct . by first sampling (X,Y) ~ uq and then sampling Z ~ Q(- | Y'); observe that by the second property in
Definition C.5, this is a valid construction. It is immediate that under p, we have (X,Y") ~ uq and thus we must only show
that (Y, Z) ~ g to conclude the proof. Let A, B be two measurable sets and we see that

P, ((Y.Z) € Ax B) = Eyny [Pu (Y. Z) € A x BJY)]
= ]EYNM []E(Y,Z)Nu [I[Y S A] . I[Z S BHYH
=By, [I[Y € 4] E,[I[Z € B|Y]
= By~ [I[lY € A]-B,,(Z € B]Y))
=ux((Y,Z) € Ax B),
where the first equality follows from the tower property of expectations, the second follows by definition of conditional
probability, the third follows from the definition of conditional expectation, the fourth follows by the first property from

Definition C.5, and the last follows from the fact that the marginals of Y under i and under 5 are the same. The result
follows. O

C.2. Optimal Transport and Kernel Couplings

As shown above for the TV distance, many measures of distributional distance can be quantified in terms of optimal transport
costs; these are quantities expressed as infima, over all couplings, of the expectation of a certain lower-semicontinuous
functions. We show that if the optimal transport costs between two kernels Y — A(AX;) are controlled pointwise, then for
any Py € A(Y), is a there exists a joint distribution over (X1, X5, Y") which attains the minimal transport cost.

Proposition C.3. Let Xy, X5, be Polish spaces, and let Py € A(Y), and Q; € A(X; | Y). fori € {1,2}. Finally, let
¢ : X1 X Xy — R be lower semicontinuous and bounded below. Then, the following function

Y(y) ?f Ex, x)~ould(X1, X2)]

= i
HEF(Q1(y),Q2(y))

is a measurable function of y and there exists some (i, € Gp, (Q1, Q2) such that
E(x,,x5,7)~op, [0(X1, X2)] = Ey oy 9(Y).
In particular it holds pi-almost surely that

Ep [o(X1, Xo)[Y] = 9(Y).

We prove the above proposition in Appendix C.4. One useful consequence is the following identity for the total variation
distance.



Corollary C.1. Let X,) be Polish spaces, and let Py € A(Y), and Q; € A(X | V), fori € {1,2}. Then, there exists a
coupling 1 € 6p, (Q1, Q2) such that

P [X1 # Xo] = Eyop, TV(Qu1(- | V), Q2(- | V),

with the left-hand side integrand being measurable.

Proof. Using Lemma C.1, we can represent total variation as an optimal transport cost with ¢(x1, z5) = I{x1 # x5 }. Note
that ¢(z1, x2) is lower semicontinuous, being the indicator of an open set. Thus, the result follows from Proposition C.3
with X = X} = A5, and ¢($1, 1‘2) = I{J?l 75 1‘2}. L]

C.3. Data Processing Inequalities

We now derive two inequalities. First, we recall the classical version for the total variation distance, and check that a
well-known identity holds in our setting.

Lemma C.4 (Data Processing for Total Variation). Let Py,, Py, € A(Y) and let Qx € A(X | V). Then,

TV(Qx o Py,,Qx o Py,) < TV(law(Qx; Py, ),1aw(Qx; Py,)) = TV(Py,, Py,).

Proof. The first inequality is just the data processing inequality (Polyanskiy & Wu, 2022+, Theorem 7.7), which also shows
that TV(law(Qx; Py, ),law(Qx; Py,)) > TV(Py,, Py, ). To prove the reverse inequality, we use Lemma C.1 to find a
coupling p1y such that (Py,, Py, ) such that E[I{Y; # Y2}] = TV(Y1,Ys).

Define a probability kernel in A(X x X' | Y1 x Vo) via defining the set B— {(z1,22) € X X X : 21 = 25} C X X X, and
define for A € (X x X),

Qx (m (AN B2) | y1) Y1 = Yo

Q(A | 91792) = {QX(' | y1) ®QX(' | y2)(A) otherwise

In a Polish space, Lemmas C.6 and C.7 imply that A — Qx (w1 (AN B=) | y1) for eacy y; is a valid measure, and it is
standard that the product measures Qx (- | y1) ® Qx (- | y2)(A) are valid. Moreover, this construction ensures that for
p=law(Q; py),

]P)[L[{Yl = }/2} and {X1 7é XQ}] =0. (C2)

Lastly, one can check that under u = law(Q; py ), that (X1,Y7) ~ law(Qx; Py, ) and (X2, Y2) ~ law(Qx; Py, ). Thus, u
can be regarded as an element of € (law(Qx; Py, ), law(Qx; Py, )). Hence, Lemma C.1 implies that

TV(law(Qx; Py, ), law(Qx; Py;)) < TV(PL[(X1, Y1) # (X2, Y2)]
=Pu[Y1 # Vo] + P, [{Y1 = Y2} and {X; # X }]

=Py, [Y1 # Yo (Eq.(C.2))

= P(Y17Y2)NHY [Yl 74‘ YQ]

= TV(Py,,Py,). (construction of fiy-)
O

Next, we derive a general data processing inequality for optimal costs. This result is a corollary of Proposition C.3.

Lemma C.5 (Another Data Processing Inequality for Optimal Transport). Let Xy, X, Y be Polish spaces, and let Py €
A(Y), and Q; € A(Y | X,). fori € {1,2}. Denote by Q; o Py the marginal of X; under (X;,Y) ~ law(Q;; Py). Then,

inf E (X1, Xo) < Eyo inf Ex, xy~w d(X1, X )
h (@ uopyy XXV Xa) < B (we%(al(y)on(Y)) XXt 9 2)>



Proof. One can check that any coupling in y € €(Q1 o Py, Q2 o Py) can be obtained by marginalizing Y in a certain
coupling of i/ € € (law(Q1; Py),law(Q1; Py)), and any coupling in the latter can be marginalized to a coupling in the
former. Hence,

Ex, x,~n®(X1, X2) = X1, X2,v1, Yo ®(X1, X2)

inf inf E
pEE(Q10Py ,Q20Py) ne€ (law(Q1;Py ),law(Q1;Py)

Moreover, to every measure i € up, (Q1, Q) over (X7, X2,Y’), Lemma C.8 implies that there exists a coupling p/ €
€ (law(Q1; Py ), law(Qq; Py)) over (X7, X2, Y1, Ya) such (X1, X2) have the same marginals under ¢ and p’. Therefore,

inf E (X7, Xo) < inf E ~un®( X1, X2).
et (@ B @y ) XX Ve 0K Xo) < B v, Xo)

Finally, the right hand side is equal to Ey .. (inf,c(Q, (v)0Qs(v)) Ex1, X2~ #(X1, X2)) by Proposition C.3. O

C.3.1. DEFERRED LEMMAS FOR THE DATA PROCESSING INEQUALITIES

Lemma C.6. Let X be a Polish space. Then, the set {(x1,22) € X x X : w1 # 22} isopenin X x X.

Proof. The diagonal is closed in any Polish space by definition of the topology. The result follows. O

Lemma C.7. Let X be a Polish space, and let 1,75 : X X X denote the projection mappings onto each coordinate. Then,
Sforany A € B(X x X), m1(A) and wo(A) are in B(X).

Proof. The projection map is open so the result follows immediately by definition of the Borel algebra. O
Lemma C.8. Let X', be Polish spaces, and let ;1 € A(X x V). Then, there is a measure ' € A(X x Y x V) satisfying
W(AXY) = p(A), VAe BX x )

and

1 (X x {(y1,92) sy =12}) =1

Proof. Define the set B— = {(y1,¥2) : ¥y1 = y2}. One can check that p/(A x B) = p(A x m1(B N B=), where
w1 Y x Y — Y is the projection onto the first coordinate, is a valid measure. O

C4. Proof of Proposition C.3

In the case that ¢(-,-) is continuous, the result follows from Villani et al. (2009, Corollary 5.22). For general lower-
semicontinuous ¢, our argument adopts the strategy of “Step 3” of the proof of Villani (2021, Theorem 1.3). This shows that
there exists a sequence ¢,, T ¢ pointwise, such that each ¢,, is uniformly bounded. Define

" = inf E ~oulPn (X1, X2)].
Unl8) 1= @it ugyy B X~ P (K0, X))

Then, for each n, the continuous case implies that there exists a measure (i, ,, € 6, (Q1, Q2) such that

Ey vy ¥n(Y) = Ex, x0,v )~ [0n (X1, X2)] (C.3)

Recall now the definition

2 HEF(Qu(r)Qaly) P uld(X1, X2)]

Claim C.9. ) (y) is measurable and satisfies ¥, (y) T ¥ (y) pointwise.



Proof. We can write

sup ¥ (y) = su inf E(x, Xy o [én (X1, X
”Zpow ) o HEE(Q (1) Qaw)) D) uldn (X1, X5)]
i) .
= inf E (X1, Xo)] = .

HEF(Qu (1) Qa(y)) ) ul¢(X1, Xo)] = 4 (y)

—~

Here, (i) follows from the “Step 3” in the proof of Villani (2021, Theorem 1.3), which shows that any optimal transport
cost C of a lowersemicontinuous ¢ is equal to a limit of the costs C,, of any bounded continuous ¢,, T ¢. In our case, we
fix each y, so C = ¢(y) and C,, = ¥, (y). It is clear that v, (y) is increasing, so for each y, ¥,,(y) T ¥ (y). As ¥ is the
pointwise monotone limit of 1),,, it is measurable. O

Claim C.10. The set of couplings of €p,. (X1, X2) is compact in the weak topology.

Proof. Recall that A(Y x X; x X») denote the set of Borel measures on ) x X; x Xo. This set is also a Polish space in the
weak topology. The subset 6p,. (X1, X2) C A(Y x X1 x Xy) is compact if and only if it is relatively compact and closed.

To show relative compactness, Prokhorov’s theorem means that it suffices to show that pp, (Q1, Q2) is tight, i.e. for all
€ > 0, there exists a compact K, C Y x X x X; such that for any o € 6p, (X1, X2), P,[(Y, X1, X2) € K] > 1—e.
This follows by setting £ = Ky x Kx 1. x Kx 2., where the sets are such that Pp [Y ¢ Ky, > 1 —¢/3 and
Pq,[Xi ¢ Kx,i.e] > 1 —¢/3, where Q; is the marginal of X; givenby Y ~ Py, X; ~ P;(- | Y) (such sets exist because
Xy, Xp, ) are Polish).

To check that 6p,. (Q1, Q2) C A(Y x Xy x Xs) is closed, it suffices to show that it is sequentially closed (as A(Y x Xy x Xs)

wea

is Polish). To this end, consider any sequence p,, € %p, (Q1, Q2) such that u, regk w €AY x Xy x Xy) in the weak
topology. By definition, this means that for any ¢ € {1,2} and any continuous and bounded f; : Y x X; — R,

hm Eunfl(Y; Xz) = Eufz(Y, Xz)

n—roo
For all p,, € 6p, (Q1, Q2), Ep, fi(Y, Xi) = Eyry Ex, o, (v fi (Y, X5). Thus,
E,fi(Y, Xs) = By cvy Ex, o, (vi) fi(Y, Xi),  for all continuous, bounded f; : Y x & — R.
Hence, the marginal distribution of (Y, X;) under x must be equal to that of (Y ~ Py, X; ~ Q;(- | Y)) fori € {1,2},
which means i € %p, (Q1, Q2). O

By compactness, there exists (passing to a subsequence if necessary) a u, € %p, (Q1, Qz2) such that p, 5, viegk 4« 1n the
weak topology. Then, as ¢, is continuous and bounded, it follows that for all m,

weak

E(x,, X5, 7)o, [0m (X1, X2)] = hgl_}SolipE(Xl,Xg,Y)~y*w[(bm(XlaXQ)] (B — )
< liTILnHSOliP E(x,, X0,V )~pin n [0n (X1, X2)] (¢m < @, forn > m)
= limﬁsup Ey ¢, (Y) ((C.3)
=Ey nh_{l;o Y (Y) (Monotone Convergence)
=Eyy(Y). (Claim C.9)

Thus, by the monotone convergence theorem,

E(x,, X0, v ), [0(X1, X2)] = E(x, X0, 7)ops ugnoo Om (X1, X2)
= n}gnoo Ex,, X5, Y )~ops [@m (X1, X2)]
< lim Eyy(Y) = Eyy(Y).

m—o0



Similarly, repeating some of the above steps,

Ey $(Y) = limsup Ey 1, (Y)

n—oo

= lmsup E(x, x,,v)~p, . [Pn (X1, X2)]

n—oo

<limsup E(x, x,,v)~ps m [0 (X7, X2)] (1% is the optimal coupling for ¢,,)

n— oo

S E(x,, X0, Y )mpig | M 0 (X1, Xo)] (monotone convergence)
’ n— oo

< Ex,, X0,V )mpie o [0( X1, X2)].

Hence, Ey9(Y) < liminf,,>1 Ex, x,.v)~p, .. [0(X1, X2)]. By assumption, ¢(X;,X3) is lower semicontinu-

ous and bounded from below. Thus, the Portmanteau theorem (Durrett, 2019) implies that, as p. m ng s

liminf,,>1 Eox, x5, v)~p, o [0(X1, X2)] = E(x, x5, 7)o, [0(X1, X2)]. Hence, Eyy(Y) < E(x, x,,v)~p, [0(X1, X2)],
proving the reverse inequality.

Proof of the last statement. To prove the last statement, we observe that if u, € %p, (Q1,Q2) then there exists a
version of (j4,)x, x|y that is a regular conditional probability and such that for almost every y it holds that (x.) x x7|, €
% (Q1(y), Q2(y)). Indeed, the existence of a version that is a regular conditional probability is immediate by Theorem 3.
To see that this version is a valid coupling of Q;(y) and Q2(y), observe that under ., the joint law of (X,Y) ~ Q;
and thus the conditional distribution under x, of XY is determined up to sets of Q;-measure 0. In particular, again by
Theorem 3, there exists a regular conditional probablity that is a version of (j4,) x|, and this must agree almost everywhere
with (Q1) x|, = Qi(y). The same argument holds for X" and thus (1.)x,x/|y € € (Q1(y), Q2(y)) for almost every y.
Thus, by definition of ¢ as an infimum, it holds for almost every y that

1/’(1/) < E(X,X/)N([L*)‘y [QS(Xa XI)}
By the second claim of the proposition, we also have that
Ep, [0(X1, Xo)] = By, [$(Y)].

Because the expectations are equal and one function is pointwise almost everywhere dominated by the other function, the
two functions must be equal almost everywhere, concluding the proof. O

C.5. A simple union-bound recursion.

Finally, we also use the following version of the union bound extensively in our recursion proofs.

Lemma C.11. For any event € and events By, Bs, . .., By, it holds that
H h—1
P(QN () Br) <P[Q]+P |3ne [H]|st [ QN () B;NB; | holds
h=1 j=1
Proof. Note that
H ¢ H ¢ H h—1
(Qﬁ ﬂBh) e <Qﬁ (mgh> ) =ovyensn 5,
h=1 h=1 h=1 j=1
The result follows by a union bound. O

D. Warmup: Analysis Without Augmentation

In this section, we give a simplified analysis that replaces the smoothing kernels W, with the assumption that the learner
policy 7 is already total variation continuous. The removal of the coupling kernel makes the coupling construction
considerably simpler while still communicating some intuition for the full proof in Appendix E.

Throughout this section, we make the following assumptions on the state and action spaces, along with their associated
metrics:



Assumption D.1. We assume that S and A are Polish spaces. This means they are metrizable, but we do not annotate their
metrics because, e.g. the metric on S may be other than ds. We further assume that

* dgs, dyyc are pseudometrics and Borel measurable function from S x § — R>g

e For any ¢ > 0, the set {(a,a’) € A x A : da(a,a’) > e} is an open subset of A x A; i.e. da(-,-) is lower

semicontinuous. In particular, this means d 4 is a Borel measurable function.

Recall the definitions of total variation continuity (TVC) and input-stability in Section 4. The main result of this section is
as follows.

Proposition D.1. Let m* be input-stable w.rt. (ds,d) and let & be y-TVC. Then, for all ¢ > 0, Djgin (7 || 7*) <
H -
Hry(e) + 2 p=y Bopopydose(Tn(sh) || 7(s3)).

Proof. The key to the proof is to construct an appropriate “interpolating sequence” of actions ai"%" to which we couple

both (s7. ,ar.r7) and (S1.g41,a1.5). This technique will be used in a significantly more so hlstlcated manner in the
LH+191:H + q g y P

sequel to prove the analogous result with smoothing.

jinter

Let F}, denote the o-algebra generated by (s7.,,,a}.,,), (81:1, a1.1), and a7, and let F, denote the o-algebra generated by
s7,51. We construct couplings of the following form:

* The initial states are generated as s] = $1 ~ Pipt.
* The dynamics are determined by F},:
She1 = Fu(sh:an),  Sne1 = Fh(Sh,an) (D.1)
In particular, sj; 11 S1.n+1 are Fj measurable.

* The conditional distributions of the primitive controllers satisfy the following

aj | Frnor ~mh(sh),  an—1 | Faor ~ #nl(Sn),  apt™ | Fp ~ #n(sh) (D.2)
Note that if 1 satisfies the above construction, then (s}, 1,57.;7) ~ Dz and ($1.511,31.5) ~ Dsx.
Specifying the rest of the coupling. It remains to specify the coupling of the terms in (D.2). We establish our coupling
sequentially. Let 1(?) denote the coupling of §; = s} ~ Pipis.

Assume we have constructed the coupling up to state h — 1.For ease, let Y, _; denote the random variable corresponding
to (S}.5,,81:, 37,15 81:h—1, allmherl) note that Y;,_; is F5,_-measurable (as Sy, s;, are determined by the dynamics (D.1)).
Observe that, by the assumption of 75, being TVC, it holds that

TV(Ps, v,y s Painter)y;, ) < y(drve(Snss7))-
Thus by Lemma C.1, there exists a coupling p(lh) between Yy, _1, 3y, 3", with ¥j,_q ~ p"=1) such that it holds that
Plan, # ;"] < Eon [v(drve (5, 7).
Similarly by Proposition C.3, there is a coupling ,u(2 ) of Y, -1, 4" ax such that

P owlda(ai" a}) > €] < Eg o0 [dos,e (7a(sh), 77 (55))]-

By the gluing lemma Lemma C.2 and a union bound, we may construct a coupling (") of Y3, ainter g% 3), such that (almost
surely),

u(h) [{d.A( mter *) > 6} U {éh 7& éinter} ‘ ]:hfl]
— P#(h)[{dA(Alnter Z) > 6} U {ah 7& Alnter} | Yh—l]
< Y(drve($n,55))] + dos.c (Tn(sy,), mh(s7)) (D.3)

Thus inductively, we may continue this construction for h < H and let pn = p().



Concluding the proof. Define the event Bj, := {d a(as, a"**") < ¢} and C;, = {ai"**" = 3,,}. Then, by Lemma C.11

Py

H H
(N mach)ﬂ SZ ﬂB NeC;)N(BLUCE)| . (D.4)

h=1
Note first that (ﬂh_l1 B; NC;) is Fr,—1 measurable. On this event, input stability at alnter =4;,1 < j < h—1,implies that
ds(sy,5n) <e.

Thus, (D.3) implies that

ﬂ B; N C;) N (B, UCE) | < Euly(drve(Snssi))H{drve($n,57) < €} + dose(Fn(sh), 73 (S3)) | Fri]

IN

v(€) + Ep [Epldos,e (7n(sh), mh(sh)) | Fr—1]]
v(€) + Epldos,e (T (s ), 75 (sh))]
v(e) + ESZNP;*IE# [dos,s (Tr(sh)s mh(sk))]s

where the first equality follows from the tower rule for conditional expectations and the second follows because sj ~ P}
under p. Summing and applying (D.4) implies that

H
P, l< A\ B c,y] < HA©) 4 3 B o o (51, 55

h=1 h=1

Again, invoking input stability and the definitions B, := {d4(an,3™") < &} and Cj, = {ai™" = a5}, (N1, Bn N Ch)°
implies that

 ax, max{ds(sy;1,5n+1),da(ay,an)} < e.

This concludes the proof.

E. Imitation in the Composite MDP

In this section, we prove our imitation guarantees in the composite MDP under the full generality of data augmentation. The
majority of this section is devoted to proving a more general version of Theorem 2 that applies to vectorized notions of
distance and helps tighten our bounds when instantiated in the control setting. In Appendix E.1, we introduce some notation
and state our most general result, Theorem 4. We then proceed to show that Theorem 2 follows from Theorem 4 and in
Appendix E.2, we provide a detailed and rigorous proof of the main result. In Appendix E.3, we show that the more general
Theorem 4 impiles Theorem 2 from the text.

Throughout, we also assume S admits a direct decomposition. This is useful to capture the fact that we only apply smoothing
on the p,,, ;, coordinates (memory chunk), not the full trajectory chunk p, ,.

Definition E.1 (Direct Decomposition). Let S = Z @ V is a direct decomposition. We let ¢ z and ¢y, denote projections
onto the Z and V components, respectively. We say that the S = Z @ V is compatible with the dynamics if F,((z,v),a) =
Fn((z,v"),a) for all v,v/ € V and z € Z, and compatible with policy 7 if m,((z,v),a) = mr((z,V'),a).; we define
compatibility of a kernel W and of a pseudometric d(-,-) : S X § = R with S = Z & V similarly.

We emphasize that compatibility of dynamics with a direct decomposition does not make v irrelevant because dg still
depends on v. For the purposes of the instantiation for control in the following appendix, we wish to control the imitation
gaps on distances that do depend on vy, even though vy, does not figure directly into the dynamics. Note that as defined, vy
does depend on the dynamics up until time & — 1 and thus it is necessary to deal with this component in order to provide
guarantees in ds.



E.1. A generalization of Theorem 2

We now state a generalization of Theorem 2, which replaces a single distance by a vector of distances of dimension K; this
will be useful for our instantiation of the composite MDP as a chunked control system in our final application (in particular,
for deriving a bound on Lg,, (). It also showcases the most general structure accomodated by our proof technique.

We begin by defining some notation:

¢ Let K € N denote a dimension

* Let £ € RE denote a vector of tolerances
e Let (15('7 -) denote a vector of pseudometrics ds ; on S

* Letd 4 denote a vector of non-negative functions d 4 ; : A? — Rx, not necessarily pseuometrics.

* Let < denote vector wise inequality, and let the symbols A and V be generalized to denote entrywise minima and
maxima. Similarly, addition of vectors is coordinate wise with scalars assumed to be broadcast appropriately.

* Weletds,; = dryc denote the metric we consider for evaluating total variation distance.

We generalize We assume the following measure-theoretic regularity conditions, generalizing Assumption D.1 as follows.

Assumption E.1. We assume that S and A are Polish spaces. This means they are metrizable, but we do not annotate their
metrics because, e.g. the metric on S may be other than ds. We further assume that

* ds,; is a pseudometric and Borel measurable function from S x & — R>g.

» For any € > 0, the set {(a,a’) € A x A : dg;(a,a’) > e} is an open subset of A x A; i.e. da;(-,-) is lower
semicontinuous. In particular, this means d 4 ; is a Borel measurable function. Note that this implies that the

{(a,a") e Ax A:dy(a,a) £ &}

is closed and thus measurable.

Note that the above assumption is the natural vectorized generalization of Assumption D.1. Next, we define vector versions
of our imitation errors.

Definition E.2 (Imitation Errors, vector version). Given error parameter £ € ngo, define

e The vector joint-error
Fjton ol || 1) = inf B, [Elh € [H] : dsGher.stoy) Vda(al,an) £ &),

where the infimum is over trajectory couplings (($1.7+1,31:5), (ST.z4+1,31.5)) ~ M1 € €(Dx,Dr+) satisfying
]P)/J'I[gl = Sﬂ =1

* The vector marginal error

Foang (7 || ) = max max {mf P |ds(Gni1,5711) 28], infPy, [da(ar, an) £ 2] }
he[H] K1 1
the same as the to joint-gap, with the “max” outside the probability and infimum over couplings.

* The vector-wise one-step error

—

os en(5) || 73()) = inf B, |daan.af) 2]

where the infimum is over (a},4;,) ~ g € G (7n(s), 75 (s)).



We now describe input stability.

Definition E.3 (Input-Stability, vector version). A trajectory (s1.g+1,a1.5) is input-stable w.r.t. (JS, d 4) if all sequences
sy =syands) | = Fj(s),,a,) satisfy

ds,i(Shy1sSht1) < 1I£JagxhdA,i (aj,a;), Vhel[H] i€ K]

Finally, define input process stability. A slight technicality is that, in our instantiation, 7* is taken to be a suitable regular
condition probability of the joint distribution De;, of expert trajectories. This means that 7* can only really satisfy desired
regularity conditions on states visited with positive probabiliy by Dey,. We address this subtlety by considering the
following definition generalizing Definition 4.5 in the body. We also restrict the kernels under consideration to those which
produce distributions absolutely continuous (Definition C.4) with respect to P}, and denoted with the < comparator. More
specifically, we only care about absolute continuity under the projections onto the Z component of S.

Definition E.4 (Input & Process Stability, vector version). Let pis € (0, 1), Aips = (71ps,i)1<i<k be a collection non-
decreasing maps vips,; : R>9 = R, letdips : S x S — R be a pseudometric (possibly other than any of the ds ;), and
ries > 0. We say a policy 7* is (Yips, dips, T1ps, Pips )-(vectorwise-input-&-process stable (vIPS) if the following holds for
any r € [0, 7ps):

Consider any sequence of kernels Wy, : S — A(S), 1 < h < H, satisfying
Vh,s €St Psow,(s)[dws(3,5) <r] =1, ¢zoWp(s) < ¢z oPj. (E.1)

Define a process s; ~ Pinit, S ~ Wy (sn),an ~ 71 (Sr), and sp4+1 := Fy(sp, ap). Then, with probability at least 1 — pyps,

(a) the sequence (s1.g+1,a1.5) is input-stable w.r.t (Hg, JA) (as defined by Definition E.3).
(b) maxpe(r) ds,i(Fn(Sh,an),shr1) < vips,i(7).

We can now state our desired generalization.

Theorem 4. Suppose that there

(a) ™ is (Yips, dips, T1ps, Pips )-vector IPS in the sense of Definition E.4.

(b) There is a direct decomposition of S = Z @&V, which associated projection maps ¢z and ¢y, and which is compatible
with the dynamics, and policies 7, 7, and smoothing kernel W, and dps.

(c) ¢z oW, is v,-TVC with respect to the pseudometric dryc = ds 1.
Let 7, be any policy which is 4-TVC, also w.r.t. dyye = ds 1. Finally, let € € RIZ(O, r € (0, %rlPS]) and define
Pr 1= SUp Py ow, (s)[dies(s,S) > 7], Emarg := €+ Jips (27).
Then,

* For any policy 7, both fjoint7g(ﬁg | %) and f:marg,a“marg (s || ©*) are upper bounded by

H

pws + H(2pr + (1) + (5 + 70) 0 Yws,1(27)) + Z ESZNP;‘LJOS,‘S_' (ﬁo,h(szel) [ Wéa,h(sﬁfl)) (E.2)
h=1

e In the special case where 7, = 7 o W, we can take ¥ = ., and obtain that fjoint,g(frg | 7%) and fmarg,anarg (7o ||
) are upper bounded by

Pivs + H (2pr + 370 (max{e, s 1(2r)}) + Xpy Ea wps Bst ow, (51 )os.e (1 (8) | Thee(35))- (E.3)

We note that Theorem 2 is a special case of Theorem 4 and prove the former assuming the latter here at the end of the
section.



E.2. Proof of Theorem 4

In this section, we prove Theorem 4. We begin with an intuitive overview of the proof and partially construct the relevant
intermediate trajectories used to define our coupling in Appendix E.2.1. In Appendix E.2.2, we prove several prerequisite
properties of the construction given in Appendix E.2.1. Finally, in Appendix E.2.3 we formally construct the coupling and
rigorously prove Theorem 4.

E.2.1. PROOF OVERVIEW AND COUPLING CONSTRUCTION

The proof proceeds by constucting a sophisticated coupling between the law of a trajectory evolving according to 7 and
a trajectory evolving according to 7y by introducing several intermediate sequences of composite states and composite
actions.

We partially specify this coupling below and formally construct it in Appendix E.2.3. Our construction is recursive and
relies on the input and process stability as well as total variation continuity to show that if the trajectories generated by
w5y and 7 are close in JOS, & evaluated on states at step h, then they will remain close at step i + 1. There are a number of
technical subtelties involved, especially those of a measure-theoretic nature, but much of the inuition can be gleaned from

the following partial specification of the coupling 1 over composite-state (3.7, 5%, sikr, 5tL) C S, composite-actions

(S, 41.1,a%L,) C K and interpolating composite-actions, (337", ;™) C A.

To define the construction, we define the probability kernels corresponding to the replica and deconvolution policies. Note
that these are slightly different from the definitions in the body due to the use of the direct decomposition; the intuition is the
same, however.

proj

Definition E.5 (Replica and Deconvolution Kernels). Let P, -,

generative process

denote the joint distribution over (z}, s}, Z;,, aj,) under the

* * * * * * * =k *
s, ~PhL, a,~mh(sh), zh =¢z(sh), Z, ~ dzoWs(sh)
Forz € Z,let W} = ,(z) denote the distribution of z}; conditioned on z = z, under PZS; ,- Given's = (z,v), define

Wéec,h(s) = Wgec,Z,h((bZ(S)) ® 64’\2(5)’
5.1(8) = Wieen © (Wo(92(5)) ©84y(5)) = Waee, 2,1 © Wo(92(5))) © 84, (s)-

where we recall the dirac-delta 8. Equivalently, W7, (s) denotes the conditional sequence of (z,v), where v = ¢y (s), and
z ~ Wiz (5); W5 5, can be expressed similarly.

We remark that Wj ., and W ;, are both kernels and by Theorem 3, we may assume that the joint distribution over

(s, 5}181) admits a regular conditional probability and thus these constructions are well-defined.

Remark E.1. Note that the kernels Wj, ., and W , are compatible with the decomposition S = Z @ V by construction.

dec,

Moreover, note that if s = (z,v), ¢y o Wi, ;(s) = ¢y o W ;, (s) is the dirac-delta distribution supported on v.

Lemma E.1. Under our the assumption that m* and W, are compatible with the direct decomposition,
* * * * * *
Wdec,h(s) =m0 Wdec,h? Woo,h(s) =m0 Wo,h

Proof. This follows imediately because 7* and W,, are compatile with the direct decomposition, and by the definition of
Definition 4.4. O

A template for the coupling. Our couplings are partially specified by the following generative process, and what remains

unspecified are couplings between random variables at each each step h. In what follows, let Fy denote the o-algebra

generatived by §; = s = s, Let F}, denote the sigma-algebra generated by (5;.1, 5(1):}1’ stel), (a%h7 §(15:h, stel atel arn),

~O,inter atel,inter
and (al:h 1 91:h )

¢ The initial states are drawn as

e — O _ ctel
S1 =S8 =% NPinit-
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Figure 5. Graphical illustration of the coupling, in the special case where Z = S for simplicity. On the left is the teleporting sequence,
with 5" ~ W 5, (s5") = Wiee., © Wo(si!). We represent the teleporting explicitly by noising s} to become (sj¢')’ by applying W,

and then applying W, ,, to complete the “teleporting” to §;¢!. We then apply aj! ~  (35¢"), and continue onto sic}, from the teleported
state §§fj_1. On the right, we illustrate the replica sequence next to the teleporting sequence. We start with sg, which is close to st! (a

consequence of our proof). We then apply the replica kernel to achieve 5/,?. Our argument uses that W5, ;, = Wy, o W, is TVC (a

consequence of TVC of W,, as shown in Lemma E.2). We depict this property pictorially: since W, is TVC and si*' and sg are close,

we can couple things in such a way that, with good probability, (si!)’ ~ W, (si¢') and (s)" ~ W, (s5,) are equal. We then extend the

coupling to that 5} = ' on the event {(s}¢")" = (s,)’}, both being drawn by applying W}, ,, to both of (sj’') = (s{’)’. We extend the
coupling once more so that ai®" ~ 7*(3}¢") and a}, ~ 7*(57) are equal on this good probability event. Using our notion of stability, IPS,
and the fact that s}f and st°! are close, the good probability event on which at®! and ag are equal implies that sg 1 remains close to 5%11-

We remark that our actual analysis never explicitly computes the (-)’-terms drawn from W, ; rather, these terms appear implicitly in our
definitions of W ;, and the verification of its TVC property.



* The dynamics satisfy

Sha1 = Fr(Sn,an), 5%1 = Fy(sy,a%), skl = Fi(8, ath)

Note that determinism of the dynamics implies that s}l‘il, sg 1 and §, 41 are Fj,-measurable.

* We generate

§7 | Fro1 ~ W5, (s5),  ay | Fro1,8y ~ mh(55),
S | Fror ~ W2 (i), apt | Faon, 830 ~ mh ().

ap | Fro1 ~ 75 (5n)

Importantly, we note that, marginalizing over §{¢' and &, respectively, a{e! | Fj,_y ~ 7%, ,(s*!) and a}) | Fj_1 ~

O
ﬂ-éa,h (Sh )
 Lastly, we select interpolating actions via

| oot~ dion(sy), a0 | Fioy ~ fon(si)

~O,inter
an
We will say p is “respects the construction” as shorthand to mean that p obeys the above equations. The coupling is
illustrated graphically in Figure 5. We now establish several key properties of the above constructions, separated into a
subsection for the sake of clarity.

E.2.2. PROPERTIES OF SMOOTHING, DECONVOLUTION, AND REPLICAS.

In this section, we establish several useful properties of smoothed and replica policies. We begin by showing that smoothed
policies are TVC.

Lemma E.2. The following hold

* Forany h, ¢z o WF, , and 75, ), are v, TVC.

e [If w is any policy compatible with the direct decomposition S = Z @ V (in the sense of Definition E.1), then m o W, is
Yo-TVC.

Proof. We observe that ¢z o W, = ¢z o Wi, © W, (s). Moreover, we observe Wy, satisfies ¢z o Wi, (s) =
Wice.z.n © ¢z, so that gz o WY = WY . =} 0z oW, (s). As ¢z o W, is TVC, the first claim is a consequence of the
data-processing inequality Lemma C.4. The second uses the fact that all listed objects involve composition of kernels with

W,. O

Next, we show that the replica construction preserves marginals.

Lemma E.3 (Marginal-Preservation). There exists a coupling P of zj, ~ ¢z o P}, z}, ~ ¢z o W (zy, -) (where (-) denotes
an irrelevant argument due to compatibility of W, with the direct decomposition), and zj, ~ ¢z o Wah(zh, \) (again, (-)
denotes an irrelevant argument) such that

N d o2y
(Zhv Zh) = (Zh7 Zh)'
In particular, for sﬁfl and §}fl as in our construction, the marginal distributions of ¢z (s}fl) and ¢z (§}fl) are the same, where
tel * ctel tel * tel
sio ~ Py and 8% | sj¢ ~ Wo’h(sh ).

Proof. By Assumption D.1 and Theorem 3, we may assume that all joint distributions’ conditional probabilities are regular
conditional probabilities and thus almost surely equal to a kernel. Moreover, since all kernels are compatible with the
direct decomposition, it suffices to prove the special case of the trivial direct-decomposition where Z = S. Fix a common



tel ztel ctel

measure [P over which s;>, 5%, and sh are defined such that st'31 ~ Px, sh ~ W, ( ) and s
measurable sets A, B, we have

~ Waec, 1 (s},). Then for any

P(si! € A, s, € B) =P(s}, € B) - Eg [I[s;, € B] - P(s}" € Alsy,)]
=P(sj, € B) - Eq [I[s}, € B] - P(3}" € Als},)]
=P € A s, €B),
where the first equality holds by the fact that we are working with regular conditional probabilities and Bayes’ rule, the

second equality holds by the definition of the deconvolution kernel above, and the last equality holds again by Bayes’ rule
and the tower rule for conditional expectations.

To prove the second statement, we apply induction, again assuming that Z = S as in the proof of the first statement.

Note that st®! ~ P% = Py, and 8{¢' ~ W 1 o P7. Thus, from the first part of the lemma, ¢z(s tel) ~ ¢z o P%. Now,

suppose the induction holds up to step h. Then, ' ~ Py, as al! ~ mj(al!), then sl | = F3, (51, i) ~ Py, Again

tel
Shely ~ Wi p1(siehy), so that §i° | has marginal W i1 0 Phy = Phy. as needed. O

We further show that W ;, can be defined to be absolutely continuous with respect to Pj.

Lemma E.4. The kernel W j, satisfies that ¢z o W ;, < ¢z o P} as laws, validating the second condition in (E.1). It
Sfurther holds that ¢z © Wgec,r, < ¢z o P7.

Proof. The first statement follows immediately from Lemma E.3 because these distributions are the same. The second
statement follows immediately from the tower law of conditional expectation and the definition of Wqec . O

Lastly, we establish that the replica kernel inherits all concentration properties from the smoothing kernel.

Lemma E.5 (Replica Concentration). Recall that
Pr = sup Py, (s)[des(s’,s) > 7).
S
We then have

PshNP;,ghNW&h(sh)[dxps(gmSh) > 2r] < 2p,

Proof. Again, all terms - W,, W7 ,, W}, and dps — are compatible with the direct decomposition, it suffices to consider

the case of the trivial direct decomp0s1t10n ‘under wheih Z = S.

Let P denote a distribution over s, ~ P}, s, ~ Wy (sy), and §, ~ W}, (s,). In this special case, we see that
Sh | sn ~ W 1, (sn)*. By a union bound,

Py, i s, (s [dies (5, 80) > 2r] < Pldues (Bnss3) > 7] + Pldues (sn,5,) > 7
= 2P[dlps(5h75/h) > r] < 2p,,

where the equality follows from the first statment of Lemma E.3. O

Remark E.2. Note that, in the previous lemma, it suffices that the following weaker condition holds:
Poups oW, (s) [dips(s’,s) > r] < py, i.e. for concentration to hold only in distribution over s ~ P, instead of uni-
formly over states.

We now proceed to formally prove Theorem 4

#Notice that, for general S = Z & V, this condition would become ¢z (31) | ¢z (sn) ~ ¢z o W ;, (¢z(sn), ), where the - argument
is irrelevant.



E.2.3. FORMAL PROOF OF THEOREM 4

Key Events.  For the random variables defined above, we define three groups of events.

* The coupling events, denoted by I3, which are controlled by carefully selecting a coupling.
¢ The inductive events, denoted by C, which we condition on when bounding the probability of the coupling events.

 The stability events, denoted by Q, which take advantage of the stability properties of the imitation policy.
Definition E.6 (Coupling Events). Define the events
Bien = {a), = aj’, ¢z(5;) = ¢z}
Bustn = {da(a™™ " ale!) £ £}
Bintern = {é‘;lel,inter _ ég,inter}
Bsp = {ég,inter _ éh}

Ball,h = Binter,h N Btel,h N Best,h N Bé,h

h
Ban,p = ﬂ Baii.n
i=1

O)SE.

Notice that each of the events above are F},-measurable. Moreover, note that on Bau, h, Maxi<j<p P1s(dj, a ;

Definition E.7 (Inductive Event). Define the events
Cep = {Js(SS,éh) = 5} )

Crel,h, = {JS(S%SZGI) = :};IPS(QT)}

Canh = Cap, N Chel

h
Call,h = ﬂ Ca,j
j=1

Notice that all the above events are F},_;-measurable, due to determinism of the dynamics. Note that also P, [Can,1] = 1 for

any /. that respects the construction (as s? =stl = §)).

Definition E.8 (Stability Events). Define the events
Qclose = {Vh € [H] : dIPS(Sgag}?) < 27‘}
Qs i= {(s%HH, agH) is input-stable w.r.t. (35, JA)}
Qus 1= {ds(Fu(5,25),5i741) < Fies o des (5757) . 1< < H}
Qanl = Qrps N Qelose-

In words, Q.josc the event on which sg and §§? ~ W6 h(s}fl) are close, and Q;sand Qps ensure consequencs of (vector)

input-stability and (vector) input process stability holds.

Steps of the proof. First, we use stability to reduce the event Cayj 41 t0 Cai N Ban i

Claim E.6 (Stability Claim). By construction,

Canlht1 C Qant N Cant,p N Baii -



Proof. Tt suffices to show that on Q.1 N Cfan’h N Ban,h, Js(ng, She1) = £and Jg (sgﬂ, s}f}rl) = Aps (2r). By applying
the event Qs to the sequence aj, = aj, and s}, = §j,, we have that on Q. C Qi that

. o A~ O ~
Vh e [H] i€ [K], ds(sp 1,5m+1) < 1I£;fi§thA’i (af,a;)

For the next point, note that the compatibility of the dynamics with the direct decomposition S = Z & V implies that there
exists a dynamics map F,LZ for which

Fh(sva) = th(d)Z(s),a).

Similarly, by applying Qips and Qcjose and the event {¢ Z(ég) 0=(3 td) tel — 3 i } on Biel , it holds that on Qan N
Call,h N Ball,h that, for all h € [H},

Il
Q|

S(S

=G

(10 Fi2 (02(35),a5))

s B 2 (02, aih) (Btel,h)
(s

s(sp,

d8(5h+17Fh(Sh »ap ))

Il
Q|
G

I
Q|

b
s(spy1: Fl (571617 a?fl))

tel
S Sp41) Sh+1)

= 1 ztel
1ps © dips (S ( ;e 7S§'e ) (Qps)

"?IPS o dips (27’) . (Qclose)
O]

INCIN
O—l

From Claim E.6, we decompose our error probability as follows:

Lemma E.7 (Key Error Decomposition). Let i respect the construction (in the sense of Appendix E.2.1). Then

P.[3h € [H] : Inax{dg(s%_l, Shi1), Bis(ay,an)} > €l
anl + Z P B, N Canh N Baitp—1]
Hence, letting inf,, denote the infinum over couplings . which respect the construction,
Fjoint.e (o | 750) V Frnarg s (i | 7°)

H
< iﬂf {Pﬂ[QSH] + Z Pu[Bayn N Canyp N Ball,hl]} (E4)

Proof. Define the events &, := C_a117h+1 N B_all,h~ Observe that the events are nested: £, D £,41, and that on £x, we have
that for all h € [H]

ds(sy,1,8n+1) V da(al, an) <V da(ay,an) (Cept1 D Cannr1 O En)
< Bann D En)

Thus,
Pu[3h € [H] - da(sy,1,8n41) Vda(ay,an)} £ 8 < Pu[EG] < Pul(Qan N Er)°] (E.5)

As (S%LH_17 a%H) ~ Dﬁgj, this shows fjoint,g(ﬁ'g | 754) < Pu[(Qan N Em)¢]. Moreover, on Qan N Ex, we have that
m}?x Jg(sg, t61) < Arps (2r),
so that, by the inequality preceeding (E.5), the following holds for all h € [H] on Q. N Ex.

—

ds(Sngl,éthl) vV JA(ag,éh) < Js(sg+l,§h+1) vV cTA(ag,éh) < é. (E.6)



tel

tel tel) Moreover, Lemma E.3 implies that s;° has the marginal distribution of

By construction, for each h, a} | Fj, ~ ﬂég’h(sh

sy ~ P7. Thus, for each h, s}fil and a}fl have the same marginals as the marginals under D . Consequently, (E.6) implies
that,

Fons e i 7% 1= o i B, [d5(6ns512) 28] Py, a0 2]
<P,[(Qan NEm)C].

where above we take inf over 1y € €' (D#,, D+ ). Summarizing our findings thus far,
f:joint,s“(fra || 760) \ fmarg’énarg (ﬁ'a || 77*) < PM[(Qall N EH)C]~

Let us conclude by bounding P,,[( Qan N Ex)€]. Using the nesting structure &, = n?=1 &;, the peeling lemma, Lemma C.11,
and a union bound, it holds that

P, [(Qan NEm)] < PH[QEH} +P[Fh € [H]st. (QanN&Er_1NE;) holds |

M=

< Pu[Qon] + ) Pu[Qan NEr—1NE; holds ]
h=1
H
=P, [Qu] + Z Py [Qan N Bani—1 N Caitn N (Banp N Canag1) holds |
h—1
H = — —
= Pu[Qam] + Z Py, [Qan N Bann—1 N Cann N By 1]
h=1
H — —
=Pu[Q%] + > _ Py [Qan N Bann—1 N Cann N By 4]
h=1
where the last step invokes Claim E.6. O

Next, we bound the contribution of P,[Q¢ ] in (E.4), uniformly over all couplings.
Lemma E.8. For all . which respect the construnction,

P#[QQH} < pies + 2Hp,.

Proof. P,[Q%ee) = Pu[3h : dips(st!, 8i¢1) > 2r] < 2Hp, by Lemma E.5 and a union bound.
Let us now bound P, [Qciose N Qfps] < Pu[Qfhs | Qelose]. Define the kernels W, (s) to be equal to the kernel W j,(s)

conditioned on the event s’ ~ W ,(s) satisfies dips(s’,s) < 2r. Then, conditional on Qgjose, We see that the sequence
(9 41 §0,;,a% ;) obeys the generative process

<O 120 O O O 0 O O =0 (O O ,0

Si STttt ~ Wals),  ay [Sipssipann_1 ~ Th(Sy), sy = Falsyap).
By construction, for each h, Py w, , (s) [dips(s’,s) > 2r] = 0. Thus, the definition of (vector) input process stability
(Definition E.4) and assumption 7 < %rlps implies that P, [Q%¢ | Qclose] < Dips- O

The remaining step of the proof is therefore to bound the second term in (E.4).
Lemma E.9. There exists a coupling (1 which respects the construction and satisfies the following for any h € [H]
B, By | Fiei]
< 50 drvelsy,80) + (4 70) © drve (555 + don.e (o (1) | T (1)), pi-almost surely
Consequently, for all h € [H],
P B, N Canyh N Bt 1]
<A + (3 +70) © w1 (27) + Eyldos.2 (o (i) | 7o (si)]

Moreover, s — dos = (7. (s) || Tty 1 (8)) is measurable.



Proof Sketch. We begin by giving a high level overview of the construction, which is done recursively. The key technical
tool is Lemma C.2 above, which allows us to transform any coupling x4 between random variables (X, Y") into a probability
kernel (-] X) mapping instances of X to probability distributions on Y such that (X,Y) ~ p has the same law as
(X,Y ~ pu(-|X)). For each h, we then show that, assuming the coupling has kept the states and controls close together until
time i — 1, this will imply the following chain:

(ao o atcl) N (atcl PN étcl,intcr) N (étcl,intcr o éo,intcr) N (éo,intcr o é)7

~rve and induction learning and sampling ~rve and induction ~rve and induction

where the bidirectional arrows indicate individual couplings between the laws of the random variables that are constructed
by the method outlined in text below and the single directional arrows denote the probability kernels described above. The
full proof of the lemma is given in Appendix E.2.4. O

Concluding the proof. Here, we finish the proof of Theorem 4. Recall that we wish to bound fjointyg (7o || T55) V
T marg émang (o || 7). We begin by bounding Tioins, = (7o || 75,) V Tinarg,énane (7o || 7). In light of Lemma E.7, it
suffices to bound

H
P, [Qan] + Z P (Bgn,n N Cann N Bann—1),
h=1

where p is the coupling in Lemma E.9. Applying Lemma E.8 and Lemma E.9,

H
P, [Qan] + Z Pu[Bann N Canyn N Banh—1]
h=1

H
< pws +2Hp, + Z P B n N Cantyh N Bt 1]
h=1
H

< pvs + H(2pr +4(E1) + (7 +70) 0 s 1 (20) + Y Bty dos, 2 (Fon (557 1| 7850 (557)
h=1

To conclude, we note that for any x which respects the construction, Lemma E.3 ensures that s}fl as the marginal distribution
of s; ~ ;. Thus, the above is at most

H
Pres + H(2p +4(E1) + (3 +70) 0 ws,1(20)) + D Bap oy dos,z (o (57) || 75,1 (57)) (E.7)
h=1

which concludes the proof of (E.2) for fjoint7g(ﬁ | 7&).

To prove (E.3) for fjoint,g(fr || 7%), we consider the special case that 71, = 7 o W,,. By definition, 7, = 7 o W,. Thus,
the data-processing inequality for optimal transport (Lemma C.5)
dos,z (Fon (k) | To0n(Sh)) < Bs ow, (sz)dos,e (7(53) || Tee,n(Sh)):

for all s3. Substituting this into (E.7), and setting 4 = -, (in view of Lemma E.2), finishes the argument.

E.2.4. PROOF OF LEMMA E.9

Recall that Assumption E.1 ensures all of the general measure-theoretic guarantees of Appendix C hold true in our
setting. Notably we need the gluing lemma (Lemma C.2) and the commuting of optimal transport metrics and conditional
probabilities (Proposition C.3).

Proof strategy. Our proof follows along similar lines as that of Proposition D.1, although with the added complication
of including the smoothing. We will inductively construct u. A useful schematic for the construction at each step is the
following diagram:

(g@ o gtel)’ (ao PN atel) N (atel PN étel,inter) N (étel,inter AN éO,inter) — (éo,inter AN §)7

Btel,n Best,n Binter,h Bin



where the events under each bidirectional arrow refer to the event such ensuring that there exists a coupling such that the
objects are close. We then will apply Lemma C.2 to glue the individual couplings together. We will then use Lemma C.11
and a union bound to control the probability under our constructed coupling that any of the relevant events fail to hold,
concluding the proof.

Recursive construction of ;. Let A > 1, and suppose that we have constructed the coupling ;(1#=1) for steps
1,...,h — 1 which respects the construction. Recall that F}, denotes the sigma-algebra generated by (5.5, s?: W s'i?}l),
(ay,, 5(15 he St atel a1, and (a5 39, lnter étle}lmter) Notice that s} |, sy 't1>5h+1 are determined by F7, as well. Similarly, it
can be seen from Definition E.5 that oy (s}{il) and ¢y (§§? 1) are also determined by J, (since the replica kernel preserves
the V—components) We summarize all these aforementioned variables in a random variable Y},. Let Fy denote the filtration

generated by s = st = §;. We let Yy = (s, s, 3;).

Correspondingly, let Zj, denote the random variables (a5, ¢z (35), ¢z (35!, e, 4, ), and (5™, a5°"*") such that
the joint law of these random variables respects the construction. Our goal is then to spemfy, for each h € [H], a joint
distribution of (Y,_1, Z,). Note that Z},, Y}, determines Y}, and we call this induced law p(").

We begin by specifying joint distributions conditional on Y}, _; and subsets of Z},, then glue them together by the gluing
lemma. Below, we use use information-theoretic notation.

* By total variation continuity of ¢z o W ;, (Lemma E.2),

O 1
TV, 0y, Pozaenvi i) < Yo © drve(sy s si)-

Because a}, ~ wh(sgﬂ) and at¢! ~ 77 (5e!), and 7* is compatible with the decomposition S = Z @V (i.e. 7}:(s) is a
function of ¢z (s)) Lemma C. 4 implies that (almost surely)
O 1
TV(P(G;?@Z(S;L YMYno1 P(atel ¢Z(§§1e1)\yh—1) S Yo © dTVC(Sh s sze )

Hence, Corollary C.1 implies that there exists a coupling ,uggl) over Vi,_1, (¢2(39),a%), (¢z (351, al!) respecting the
construction such that Y5, ~ p(»~1 and such that (almost surely)

E, o [Biein | Yna] = Pugg[(%(gg) D) # (02, a) | V1] < drvelsy, si)).

Atel inter | Vi1 ~ 7on(sth). Thus, by definition of Jos,g, and the

(") of

est

* In our construction, at?! | Y},_; ~ 50 1 (Sh 1), and 3

assumption I{J A+, 1) A &} is lower semlcontmuous, Proposition C.3 implies that we may find a coupling 1

(atel] é';fl Anter 'y, ) respecting the construction such that, almost surely,

]P’#(h) [Bgst,h ‘ Yhfl] = P#(h) {a’A(éZel,inter’a‘;lel) ﬁ g| Yhfl}
est est

= dos, (fo,n (i) || Ty (SH)))-
Moreover, that same proposition ensures measurability of s — 50575 (Ton(s) | 755 4(5))-

atel,inter

A Oint
* Since &, tel) and 45T

| Fr ~ 7o n(sK ani1 | Fr ~ fravh(s%), and since 7, p(+) is 4-TVC by assumption,

TV(P,teinter tel),
h

oo Bapimeryy, ) S 70 dive(sy i

h stel,inter AO),int
i(nt)er between (3, ", ag’m " Yj,_1) such that

Corollary C.1 implies that there is a coupling p

P o [Bicnter,h | Yhfl] P (h) {é;:zl,inter 7& é%,in‘cer ‘ Yhfl} < @OdTVC(S%el,S%)

inter lnter

« Similarly, since 47"™" | Fj_1 ~ 7ty (sY) and &py1 | Fao1 ~ 7n(31), 7n(-) is 4-TVC, Corollary C.1 implies that

there is a coupling 12\ between (a7 41, Y1) such that

a

P [B5p | Yaa] =P M [ah £ e | Yh—l} < 4 0 drve(sy 8n)



We can then apply the gluing lemma (Lemma C.2) to

¢z(§?fl) a}fl, Yh-1)

tel,inter AO inter
yap Yh 1)

=
= (
Xh73 _ (at};Ll, é‘;Lel ,inter Yh—l)
Ch
( g,intor7 an, Yh—l)

with
h h h h
(Xn,1, Xn2) ~ NE61)7 (Xh,2, Xn,3) ~ /Lést), (Xn,3, Xna) ~ ui(m)er, (Xha, Xns) ~ ug ),

Lemma C.2 guarantees the existence of a coupling (™ consident with all sub-couplings NEZR’ ug’;ﬁ , ul(ft)p, ug ) Then,
p™)-almost surely (and using that Fj,_; is precisely the o-algebra generated by Y7, 1)

P [Bann | Fr-i]
<SP [Bian | Fa1] + Py [Beg nFn—1] + P Biner nFr—1] + P [Bs . Fr-1]
< 4o drve(sfs8n) + (3§ +70) 0 dive(sy s si™) + dose (Fon(si) || 7o (sh))
=4 0 drve(si3n) + (5 + %) © drve(sy,s) + dos,z (Fon (i) || 7o, (i)
This concludes the inductive construction.

For the second statement, notice that the events éan, nN Bau, h—1 are JFp measurable (thus determined by u(h’l)) and, when
they hold, ds(sh ,stel) < Fips(2r) and ds(sg, ) =< €. For our purposes, we use dpyc = ds,l(sg, stl) < ips,1(2r) and
dg(sg,éh) < &,. Hence,

e P Pou[Ban N Caih N Banp—1] < A(E1) + (3 +75) © Yws,1(21)

=+ C_i'os,g(ﬂ'o,h( tel) || 77@0 h( m))-

The result follows.

E.3. Proof of Theorem 2, and generalization to direct decompositions

In this subsection, we consider the special case dealt with in Theorem 2. Note that there always exists a trivial direct
decomposition that is compatible with all policies and dynamics simply by letting V = () and S = Z. We prove here the
version of the result that involves a possibly nontrivial direct decomposition, as we will instantiate this in our control setting
by letting Z = {p,, , } and S = {p.;, }, i.e., projecting p,, onto the last 7,, coordinates gives zj,. We further consider a
restriction of IPS to consider kernels absolutely continuous with respect to P} in their Z component.

Definition E.9 (Restricted IPS). For a non-decreasing maps 7ips,1, Vies,2 : R>0 = R>( a pseudometric dips : S X & = R
(possibly other than ds or dryc), and rps > 0, we say a policy 7 is (Yies,1, Yies,2, dies, T'es ) -restricted IPS if the following
holds for any r € [0, rps]. Consider any sequence of kernels W1, ..., Wg : § — A(S) satisfying

th%)éIP’SNWh(S ydies(3,5) <7l =1, Vs, ¢zoWp(sh) < ¢z oPj.
and define a process s; ~ Pinit, S ~ Wy(sp),an ~ mr(Sh), and sp41 := Fp(sp,an). Then, almost surely, (a)
the sequence (s1.p7y1,31:5) is input-stable w.r.t (ds,d4) (b) maxue(p) drve(Fr(n,an),sni1) < 7ws,1(r) and (c)
maxXpe[H) dS(Fh(gh, ah)v 5h+1) < ’YIPS,2(7")-

Note that the above is a slightly weaker condition than the one in Definition 4.5 in the main text and consequently, the
following theorem which uses it as an assumption implies Theorem 2 in the body.

Theorem 5. Suppose S = Z @V as in Definition E.1 and projections ¢z, ¢y, which is compatible with the dynamics
and with given policies 7, m*, smoothing kernel W, and pseudometric dips. Suppose 7 satisfies (Vips,1, Ves,2, dips, T1ps )~
restricted IPS (Definition E.9) and ¢z oW, is y,-TVC. Lete > 0, r € (0, 27"“)5] define p, := sup, Py ow, (s)[dies(s',5) > 7]



and €' := € + yips 2(2r). Then, for any policy 7, both Ujoing o (T o W, || 75) and I arg,er (7 0 Wo || ©*) are upper bounded
by

H - *  (z*
H (2p, + 37, (max{e, 7193,1(27“)})) + Zh=1 ESZNP;Eé,*I,NWU(s;)dOS,E (7th (Sh) | 7rciec(sh))'

Consider the special case K = 2 withds 1 = drye, ds o = ds,d 41 =da2 =d 4 and €= (e, ¢). In this case, applying
(E.3), we see that

]-::joint,f(ﬁ-(r || 7T(*j) V l::margfmarg (7?(-0' || 7T(*j)

H 2 - *  (ax

< pws + H (2pr + 375 (max{e, vies,1(2r)}) + 2251 Esz opr Bsx ow, (s7)dos (70 (57) || Tiec(S7))

We now observe that under this convention,

Djoint,e (7o | 75) = inf P, [max ds(8p41,55,1) V da(an, ay,) > €]
M1 he[H]

< i}}lfPM1 ;Iel?il(] (dTVC(gh-‘rla s;(z—&-l)a d5(§h+17s;+1)) v (dA(éhvaZ)7dA(éh7 a;;)) ﬁ £

= Tjoint (o || )
and similarly Tyarg e (e || 7%) < I—“marg,g+vlps(2,.)(ﬁg | 7*). From the construction of d4, however, we see that
{JA(a,a’) Al 5} = {da(a,a’) > ¢} forall a, a’ and thus for all h € [H],

dos 7 (83) || T4(55)) = inf B, |da(an.af) £ €
=infPy, [da(an,a}) > €
H2

= dos,c (n (S5 || 77,(5%))-

Plugging in to (E.3) concludes the proof.

F. Lower Bounds

In this section, we establish lower bounds against the imitation results in the composite MDP. Specifically, we show that

* In Appendix F.1 we show that Theorem 2 and Proposition D.1 are sharp in the regime where ips 1 = Yips,2 = 0.

* In Appendix F.2, we show that the marginals of an expert policy 7* and replica policy 75, can coincide, but their joint
distributions can be different. By considering & = 7. in Theorem 2, this establishes the necessity of considering the
marginal imitation gap with respect to 7*.

* In Appendix F.3, we lower bound the distance between marginal distributions over states under 7 and 7y, in the
regime where v;ps 2 7 0. This example demonstrates that the dependence of ~yps 2 in Theorem 2 is essentially sharp.

* In Appendix F.4, we show that for an expert policy 7* and smoothing kernel W, the state distributions under 7%, and
T)ec €an have different marginals (and thus different joint distributions). By considering 7# = 7 in Theorem 2, this
explains why it is necessary to smooth 7 to 7 o W,,.

Taken together, the above counterexamples show that our distinctions between joint and marginal distributions, decision to
add noise at inference time, and dependence on almost all problem quantities in Section 4 are sharp. We do not, however,
establish necessity of yips,1 in the interest of brevity; we believe this quantity is necessary. Still, the v;ps 1 term contributes a
factor exponentially small in 7. in Theorem 1, so we deem lower bounds establishing its necessity of lesser importance.

Commonalities of construction. In all but Appendix F.3, we take the action and state spaces to be
S=A=R,

which is the archetypal Polish space (Durrett, 2019). Throughout, we use 0, to denote the dirac-delta distribution on x € R.
We let ds(s’,s) = drve(s’,s) = |s' —s| and d 4(a’,a) = |a’ — a] all be the Euclidean distance.



F.1. Sharpness of Proposition D.1 and Theorem 2

Here, we demonstrate that Proposition D.1 is tight up to constant factors, and that Theorem 2 is tight up to the terms
Yips, 1, Yies,2 and concentration probability p,.. Consider the simple dynamics

Fy(s,a) = a.

Note that, as the dynamics are state-independent, we have ~ps 1 ()= %ps72(~) = 0. Furthermore, let us assume policies do
not depend on time index h. Let 7* : s — ¢ be deterministic, and let Pi,;; = 8¢ be an initial state distribution concentrated
on 0. Then, D~ is the dirac distribution on the all-zero trajectory.

Fix parameters 0 < ¢ < o, and p € (0, 1). We consider the following smoothing-kernel

50 s < 0
Weo =14 (1 2)8+ 25, se0,0]
Oy s> o,

Define the candidate policy

. (1 -p)o:+pds s<

(SIS

Proposition F.1. Foranyp € (0,1),0<¢e < g, set T = iz p.o 0 Wy . Then,
(a) T, 5, and w3 all map s — do, Py = Oo, and thus for any ™ € {7*, 7}, , Tj.. }»
Es; opi Ear ow, (s0) [dos,e (e, p,o (87,) | T(53,)] = Bz ot [dos,e (7(s7) 1| 7(s7,))] = p.
(b) The kernel W, . is v,-TVC, where v, (u) = u/o.
(¢) For a universal constant ¢ > 0,
Tjoint,e (T || 7*) = I'marg,e(7 || #7*) > cmin{l, H(p +¢/0)},

and the same holds with 7 replaced by 7, or w}...

In particular, the above proposition shows that

H
Ljoint,e (T || 7) = Piarg,e (7 [| %) Z He(e) + ZE52~P2 [dos,e (7 (sp) | 7 (s3],
h=1

verifying the sharpness of Proposition D.1 (note that 7 = 7. 5, , 0 W, is 75 TVC). Similary, our above proposition shows
that,

H
Djoint,e (7 || Wéﬁa) = Pimarg e (T || 7°) 2 HYo(e) + ZES;,NP; [dos,e (e p,o (sh) |l WEQC,}L(SZ)]’
h=1

verying that Theorem 2 is sharp up to the additional stability terms 7;ps. 1, Yips,2-

Proof. We begin with a computation. Define

ns) =1-(1-p)1-=)=p+(1-p)>



We compute

. ) s<0
F=tepo o Wye = él p)8 +pb z i 200 (1-2)80+ 28, s€(0,0]
7 S >
(1 —p)d: + pds s<0
=1 (1—n(s)0:+n(s)0s 0<s<o (F.1)
o S>>0

In particular,

7(0) = e p,o(0) = (1 — p)dc + pd,

Part (a). Notice that the support of the deconvolution and replica distributions are always in the support of P}, which is
always s = O under *. Thus, 7* = 75, = m},.. By the same token, for any policy ,

Es; ~p; [dose(m(sh) || T4 (sy)] = Pl (0)] > e].

Hence, as 7(0) = ¢ .o (0) = (1 — p)d. + pd,, and as o > ¢, part (a) follows.

Part (b). Considers,s’ € S. We can assume, from the functional form of W, ,(-), that 0 < s <’ < ¢. Then,

TVW. 1 (8). W () = TV(80(1 — 5+ (9)8.80(1 ~ 5+ (s, = B—5

g g

establishing total variation continuity.

Part (¢) In view of part (a), it suffices to bound gaps relative to 7*. Let P denote probabilities over s1.z4+1, a5 under 7.
Let A; j, denote the event that at step h, a, = ¢, and let A5 5, denote the event that a5, = o. As the state s is absoring and
as F,(s,a) = ap, the following events are equal

{3h: |ap| V |sh+1] > €} = Az 1.
Hence,
Djoint e (7 || 7) = P[Az, ).
Moreover, as A, g is measurable with respect to the marginal of az, we also have that
Ciarg,e (T || 7)) = P[Ag #].

It thus suffices to lower bound P[A2 g]. By definition of 7, the events A; 5, As j, are exhaustive: Ai » = Ao n. Moreover,
from (F.1),

PlAsht1 | A2p] =1, PlAzpyr | Arn]l =n(e), PLAL]=1-n(0)>1-n(e).
Thus,

PlAs m] = PlAs i | A2, m—1]PlA2, m—1] + PlAs i | A1 1] PlA1 H—1]
PlA2 1 1] +n(e) PlA1H-1]
PlA2, m—2] + n(e) (P[A1L -1 + P[A1,H-2])

(ZPA1}1>+PA21

277(8)< Alh)



Moreover, as sg is absorbing,
PlA1 ] = PlALn | Avp-1] PlALR—1] = (1 = n(e)) P[A1,p-1].

Combining with P[A4; 1] = (1 —p) > (1 —n(0)) > 1 — n(e), we have P[A; ;] > (1 — n(e))". Hence,

h=1

H-1
PlAz m 1] 2 () (Z(l - n(é))h>
(

(
=1-mn(e) — (1 —n()*
= Q(min{1, H(n(¢)})

as n(e) | 0. Subsituting inn(e) = p+ (1 — p)e/o = Q(p + €/0) concludes. O

F.2. 7%, and 7* induce the same marginals but different joint distributions, even with memoryless dynamics

We give a simple example where 7%, and 7* induce the same marginal distributions over trajectories, but different joints.
As we show, this example demonstrates the necessity of measuring the marginal imitation error of a smoothed policy,
I'marg,e, over the joint error, joint,c. A graphical (but nonrigorous) demonstration of this issue can be seen in Figure 4 in
Appendix B.

Again, let S = A =R, and Fj,(s,a) = a. We let
Wo () =N (,0?)
denote Gaussian smoothing. Fix some ¢ > 0. Define

0. s<0

1
Pinit = = (8_¢ + 6.4¢), *(s) = .
it 2 (6 5+ ) T <S) {68 s> 0

Thus, D+ is supported on the trajectories with (s1.11,a1.7) being either all € or all —¢, and

N 1
h — Pinit = 5(575 + 6+€)~

Hence, the replica and deconvolution map to distributions supported on {e, —¢}. Let ¢, (-) denote the Gaussian PDF with
variance o. Then,

68¢0’(s B 5) + 6—E¢U(S + 6)
¢U(S - 5) + d)a(s + 5)

Wgec h (S) =
Moreover,

(F2)

(s =E bebo(s—c+7) +5 cho(s+e+7)
OS] = BZN O | T T T A F do(st e 1 2)

One can check that for ¢ < o,

1 = ‘Sus 1-= 6—ua
W&ﬁh(ua):@(( +7) +2( z) >7 ue{-1,1}

for e <« 1. In particular, for s € {—¢, ¢}

Pa"’”éa,h,(s) [a = 75] > Q(].) (F3)



In particular, if (S<1D:H+17 a%H) ~ DW&,’ then

P[3h : d(sy, 55 1) > €] < P[Eh sy = —si, ]
<PEh:s) = —ay] =1 —exp(—Q(H)),

where in the last step we used (F.3) and the the fact that the 7T60 uses fresh randomness at each round. Moreover, as ™
always commits to either an all- or all-(—e)-trajectory, we see that for any p € €' (D« Dﬂaa) over (s}.;741,3%.5) ~ Dr+

and (S?:H+17 a?:H) ~ Dxrs .
Dioint,e (M5, 7)) 2 Pu[31 < h < H - d(s;+1,sg+1) >e] > 1 —exp(—Q(H)),

That is, the replica and expert policies have different joint state distribution.

Remark F.1. The above result demonstrates the necessity of measuring the marginal error between 7 o W, and 7* in
Theorem 2: if we apply that proposition with & = 7}, then for all €, E¢: ow,, (st)dos,e (71 (S},) || 7iec(57,)) = 0. But
then 7 o W, = 75, and we know that joing .« (775,,7%) > P,[31 < h < H : d(szﬂ,sgﬂ) >e] > 1 —exp(—Q(H)).
Thus, we cannot hope for smoothed policies to imitate expert demonstrations in joint state distributions without additional
assumptions.

Remark F.2 (Importance of chunking). Above we have shown that 75, oscillates between ¢ and —e (for actions and
subsequent states). We remark that these oscillations can have very deleterious effects on performance on real control
systems. This is why it is beneficial to predict entire sequences of trajectories. Indeed, consider a modified construction
such that S = A = R¥X, and F},(s,a) = a. Here, we interpret S as a sequence of K -control states in R, and a as sequence
of K-actions, denoting the i-th coordinate of s via s[i],

N B 6,51 5[1] S 0
) = {681 s[1] > 0,

Then, we can view the oscillations in 7, as oscillations between length K trajectories, which is essentially what happens
in our analysis for K = 7.

F.3. 75, and 7* can have different marginals, implying necessity of ~yps o

Our construction lifts the construction in Appendix F.2 to a two-dimensional state space S = R?, keeping one dimensional
actions A = R. Let s = (s[1],s[2]) denote coordinate of s € S. For some parameter v, the dynamics are

Sht1 = Fn(sn,an) = (an, v - (su[l] — an))

We let ds = dpye = dips denote the ¢; norm on S = R2. Our initial state distribution is

(8(c.0) +8(—<0))

DN | =

Pinit =
We let

7T*(S> _ 5(75,0) s<0
5(670) s>0 .

Thus, 7* induces trajectories which either stay on 8. gy or 6(_ ¢).

Ph =5 (80 +8com), Yh>1.

N | =

Let



Proposition F.2. In the above construction, we can take ~ips 2(u) < v - w in Definition 4.5, and p, satisfies the conditions in
Theorem 2 for r = 20+/log(1/p,.). Moreover, for any € < o,

Fmarg’g/ (7‘(’60_ || 7T*) Z Q(]_), 5’ = pe

Remark F.3 (Sharpness of 7ips 2). Before proving this proposition, we note that if we take ¢ = o and r = 20v/log(1/p,),

then ve = Q(7y1ps(2r)), showing that our dependence on s 2 is sharp up to logarithmic factors. Moreover, the looseness up
to logarithmic factors in the above point is an artifact of using the Gaussian smoothing W, and can be remover by replaced
W, with a truncated-Gaussian kernel.

Proof of Proposition F2. To see yps 2(u) < v-u, we have ||Fj,(s,a)—Fp,(s',a)|| = ||(a, v-(s[1]—a))—(a, v-(s'[1]—a))| =
vls[1] —s'[1])] < vdrve(s,s’). That we can take r = 20/log(1/p,) follows from Gaussian concentration.

To prove the final claim, one can directly generalize (F.2) to find that, for any b € R,

% (s) =E 8,000 (S[1] — € + Z) + 8,00 (s[1] +¢ + Z)
o,h\8) = Lzin(0,02) bo(s[l] —e+ 2Z) + ¢o(s[l] + e+ 2)

This follows form the observation that W ; and P} have the same support, and as Pj, always is support on vectors with
second coordinate zero, that the second coordinate of s in W ; (s) is uninformative. For ¢ < o, we find that

WZ},h((& b)) = 06(8,0) + (1 - 0)5(—5,0), c=Q(1),beR.
and WY, ;, ((—¢, b)) is defined symmetrically, Hence, under (S?:HH, a¥y) ~ T,
Plsi # at] > (1)

Moroever, when sy # af, we have that [s5[2]| = v|s{ — af
|s$(2)| > 2ve. Thus,

, which as 7* is supported on {8, o), d(—c,0)}, means,

P[ls5[2)] > 2ve] > Q1)
On the other hand, s ~ P} has s5[2] = 0 with probability one. Thus, for any coupling x between D+, Dﬂaﬁ,
P, [ds(s5,s3)] > 2ve] > Q(1)
Thus,

Pimarg,ve (755 | 77) = Q(1).

F4. 7%, and 7} . have different marginals, even with memoryless dynamics

Here, we show how 7, and 7. have different marginals even if the dynamics are memoryless. By considering 7 = 7},
in Theorem 2, the discussion below demonstrates why one needs to consider 7 o W,, in order to obtain small imitation gap.

For simplicity, we use a discrete smoothing kernel W, though the example extends to the Gaussian smoothing kernel in the
previous counter example. Again, let S = A = R, and F},(s,a) = a. Take

N d0_, s<0
™(s) = ) s>0

Let us consider an asymmetric initial state distribution

1 3
Pinit == 16—0' + 16—&-(%



Note then that
1 3
Vh ¥ =Pt = =0_5 + =04, F4
) h t = + 1 (F.4)
We consider a smoothing kernel,

(3+ )50+ (b= )5, 20 <52
W, (s) = ¢ 8, s> 20
5 o s < —20

The salient part of our construction of W, is that

1 3 1 3
WO—(U) == 1670- + 150—, W0<_U) = 160— + 1570—.

Denote the marginals of 7, and 77, with P ;, and P} ;. One can show via the lack of memory in the dynamics and the
structure of 7* that

6,h+1 = Wa,h © Pg,hv Wéec,h—&-l = Wéec,h © Pfiec,h’ (FS)
By the replica property (Lemma E.3), W , o P} = P} for all h. Thus, for all &, (F.4) and (E.5) imply

. , 1 3
o =Ph= 18-+ 7540 (E.6)

The following claim computes P, .

Claim F.3. Consider any distribution of the form P = (1 — p)d, + pb_,. Then

" 9 p 1 p
dec,h © P = (E - 5)50 + (ﬁ + 5)5—0-

Thus,
h—1
* 1 —1 1 1-h
dec,h—&—l[_a] = E (; 5 > + 15 .

Before proving the claim, let us remark on its implications. As h — oo,

dee T 90\1-1/5) " 10 4~ 8§

Thus,

7 1
lim Pl ) = <85 + =5 0,
hoseo | decsh = g + 8

achieving a different stationary distribution that P} = P7 ;. This shows that

1

7 1 3 1
lim Tharg,o (759 Thee) = TV(506 + =00, 160 + ié,g) =g

which implies that the deconvolution policy ;.. does approximate 775,,. From (F.6), it also follows that 75, and 7* have
identical marginals, so

1

7 1 3 1
lim Tmarg,o (7", Tiee) = TV(506 + <00, 160 + Z6,(,) =3

as well. In particular, if we take 7 = ;. in Theorem 2, we see that there is no hope to for bounding I'marg « (7*, 7); We
must bound T'yarg (7%, 7 0 W,;) (again noting that if 7 = 7}, 7 o W, = 755,,).



Proof of Claim F.3. We have that fors’ € {—0,0},

dec,s'fs = W, (')[s] - P;(s') + W, (=5)[s] - P} (—5)

With s = s’ = o, the above is

13 9
* !
1 ,h,(S :U|5:U):ﬁ:7
- iatzg 10
And
i .3 1
Wieen(s' =0 ls=—0) =355 7 =73
’ ititig 2
Hence, for any p € [0, 1],
x / 9 . p 9 . p
Wace.n(s' =0 |s==0)((1 = p)ds +pd—o) = (1 = p) 75 + )8 + (1 = (1 = )15 +5)))3
9 p L p
=(—=—2)0+(—=+32)0_s.
(10 5) +(10 * 5)
Consequently, by (F.5), we can unfold a recursion to compute
gec,thl[_O-] = Wéec,h(sl =0 | S = _U) gec,h
_ (i Pgec,h[a])
10 5

1 h—1 )
LS i P lo] 5
1=0

1 h—1 )
i > 57 4+ Pife] -5 "

1=0

1 (= 1
L —i loion
o (;5 >+45 .

Part I1
The Control Setting

G. Stability in the Control System

This section proves our various stability conditions. One wrinkle in the exposition is that we are able to derive far sharper
perturbation guarantees than are needed in our analysis. However, as the guarantees are rather technically burdensome to
derive, we endeavor to present the sharpest possible results so that we may save others from having to rederive these bounds
in future applications.

Importantly, this section also contains the definition of the constants cy, . .., c5 > 0 present in Theorem 1, Proposition 4.1,
and other main results (see Definition G.7).

The section is organized as follows:

* Appendix G.1 recalls various preliminaries.



* Appendix G.2 provides the definition of numerous problem-dependent constants, all of which are polynomial in
(Rdyn, Ldyn, Mayn) and (Rgtab, Bstab, Lstan) defined in Assumptions 3.1 and 3.2.

* Appendix G.3 gives IPS guarantees in terms of the constants in the previous section. Specifically, it provides
Definition G.7, which instantiates the constants c1, . .., c5 > 0 present in Theorem 1, Proposition 4.1, and other main
results. We then state Corollary G.1, from which we derive Proposition 4.1 used in the body. This corollary is derived
from a sharper guarantee, Proposition G.3 (whose improvements over the corollary are detailed in Remark G.2).

* The results in Appendix G.3 are derived from two building blocks in Appendix G.4: Lemma G.4 which bounds
sensitive of regular trajectories to initial state, and Proposition G.5 which addresses perturbations of control inputs and
gain.

* Proposition G.3 is derived from Proposition G.5 in Appendix G.5. Lemma G.4 and Proposition G.5 are proven in
Appendix G.7 in Appendix G.7, respectively.

* Appendix G.8 explains how to implement a synthesis oracle which produces Jacobian Stabilizing primitives controllers
from trajectories which satisfy a natural stabilizability condition.

* Finally, Appendix G.9 gives the solutions to various scalar recursions used in the proofs of Lemma G.4 and Proposi-
tion G.5.

G.1. Recalling preliminaries and assumptions.

Recall the following definitions.

* Alength-K control trajectory is denoted p = (x1.x 41, u1.5) € Py = (Ré=)E+L x (Rd)K,
» Its Jacobian linearizations are denoted Ay (p) := 2= f,(xx, ug) and By(p) := 2 f, (xx, uy,) for k € [K].
* Recalling our dynamics map f(-, ), and step size > 0, we say p is feasible if, for all k € [K],

Xipt+1 = f(xk,ux), where f(x,u) = x+ nf,(x,u).

We regular the definition of regular trajectories from Section 3.

Definition G.1. A control path p = (X1.x41, U1:x) iS (Rdyn, Ldyn, Mayn)-regular if for all k € [K] and all (x},,u},) €
R x R such that ||x}, — x| V [[ur — u} ]| < Rayn,’

IV £ (s Wi llop < Layn, 1V 2y (3 i) llop < Mayn-

We also recall the definitions around Jacobian stabilization. We start with a definition of Jacobian stabilization for feedback
gains, from which we then recover the definition of Jacobian stabilization for primitive controllers given in the body.

Definition G.2. Consider Rgiab, Lstab, Bsta, > 1. Consider sequence of gains K.x € (R%*9)K and trajectory
p = (X1.x+1,U1.x) € Pi. We say that (p, Ky.x)-is (Rstab, Bstab, Lstab)-Jacobian Stable if maxy, || Kk |lop < Bstabs
and if the closed-loop transition operators defined by

Qg = T+nAck-1) T+nAak-2) (..) IT+nAa;)
with Agy ;= Ar(p) + Bi_1(p)K—1 satisfies the following inequality

H(I)cl,k,jnop < Bstab(]- - )k7j~

stab
The definition of Jacobian stability of primitive controllers in Section 3 may be recovered as follows.
Definition G.3. Copsider Rgtab, Lstab, Bstab > 1. Consider a sequence of primitive controllers 1.5 € KX, each expressed
as ki (x) = g = E(k(xk —Xp)and p = (X1.x+1,U1.x) € Pk. We say (p, k1.x ) is Jacobian Stable if 1.k is consistent
with p, and if (p, K1.x) i8S Rstab, Lstab, Bstab > 0-Jacobian stable.

Note that in Jacobian stability (both with primitive controllers and with gain-matrices), we take all parameters to be no less
than one.

Here, ||V 2 f, (x4, u})||op denotes the operator-norm of a three-tensor.



G.1.1. PROPERTIES SATISFIED BY 7*

Finally, we show that actions produced by 7* in our control instantiation of the composite MDP satisy the assumptions in
Assumptions 3.1 and 3.2.

Lemma G.1. Suppose Assumptions 3.1 and 3.2 hold. Let 7 = (7})1<n<u denote the policy constructed as a regular
conditional probability from the conditionals of Dexp. Furthermore, let Dexp o denote the distribution over p.,
corresponding t0 Py ~ Dexp. Then, with probability one over p, j, ~ Dexpp,, , and ap ~ 75 (P, ), expressed as
Pmp = (Xtp ity —rmt1s Wty —1:tp —rm 1), GNd @y, = Kty tni1—1. Consider the unique feasible trajectory for which

_ ’ i ! _ _
Peht1 = (Xth;thﬂvuth;thﬂq)a X, = Xg,, U= Rg(Xe), tp <t <tpgr

Then,

* Pc gt B8 (Rayn, Layn, Mayn)-regular
¢ (p::,h-&-l’ chith-pl*l) is (Rstab7 Bstab, Lstab)'JaCObian stable.
Proof. Since 7* in Definition 1.3 is constructed as the regular conditional probabiliy of aj, | p,, 5, under Deyp, (an, Py 4)

is the above lemma have the same joint distribution as under Deyp,. Thus, the lemma follows from the assumptions
Assumptions 3.1 and 3.2 placed on Deyp. O

The following is a direct consequence of the above lemma.

Lemma G.2. Consider the instantiation of the composite MDP for the control setting as in Section 4.1 and in Appendix I,
with T as in Definition 1.3, and ¢ z as in Definition E.1. Suppose that W1, . .., Wy, : S — A(S) satisfy®

¢z o Wp(s) < ¢z o P, (G.1
Consider a sequence of actions s1.g 11, a1.g generated via
an ~mh(n), S~ Wi(sn), Swt1 = Fu(sn,an), s1 ~ Piit-

Let S, = (Xt),_, ity Qty_y:t,—1) and ap, = Kty :tny,—1- Then, with probability one, for each h, the unique feasible trajectory
for which

_ / / /o —
Pontt = (Xppitnirs Wpitnan—1)s Xy =Xty W= Ke(Xe), th <t <tppr.

satisfies

* Xy, =Xy, and pé7h+1 is feasible and (Rayn, Layn, Mayn)-regular
, . .
. (pc’hﬂ, Kitpitni1—1) I8 (Rstab, Bstab, Lstab)-Jacobian Stable.

Remark G.1 (On the absolute continuity constraint in (G.1)). Recall that ¢z as defined in Definition I.1 simply extracts the
memory chunk p,, , from the trajectory chunk p.. ;,. The condition supp(¢z o Wi(s)) C supp(¢z o Pj;) just means that
the distribution of the memory chunk-components from Wy, (s)is absolutely continuous with respect to the memory-chunks
pm,h under DEXP'

G.1.2. NORM NOTATION.

Lastly, given our parameter 17 > 0, we define two types of norms. First, for sequences of vectors z;.x € (R?)¥ and matrices
(X1.x) € RAaxd2)K define

K K
lzvsclle, = | 0D llzell® |0 I Xuxlleop = (9 1Kkl )
k=1 k=1
where again the standard || - || notation denotes Euclidean norm for vectors and operator norm for matrices. We also define
121:K [ max,2 = 1?}%’% lzell, X1 lmax,op = 1ISI}3SXK Xk |-

SRecall the absolute-continuity comparator < defined in Definition C.4.



G.2. Composite Problem Constants

We begin by writing down numerous problem constants, all of which are polynomial in the quantities (Rayn, Layn, Mayn)
and (Rstab, Bstabs Lstab)- First, we define the stability exponent,

Ui

stab

Bstab := (1 — ) € (0,1).

Definition G.4. Given the regularity parameters Rayn, Ldyn, Mayn, stability parameters Rgiab, Bstab, Lstab, and the step
size n > 0, we define the “little-c” constants

cu = 12Bgap v Lstadeym ck = 2Bgap + 12BstabL:~t/a2deynv ca = 6Bstan

as well as “big-C” constants

C. = mi \/ml/dyn 1
w := min i ) 2 3/2
dyn 25GBstabMdynLdyantab
1
Ca =
A7 40324B2% |, Mayn Lstan
R4 1
Cx := min = }
{ 2Rgtab Bstab 16LStabMdynR52‘tast2tab
c . 1 Cg:lLdyn
K ‘— min )
24\/mBstadeyn 8- 324BsztabMdynL§t/a2b
Ldyn
Ckx = 5 3/2 °
8-324B2 Moy L2

The “little-c” constants enter directly into our error bounds, where as the “big-C” constants function as constraints on errors,
above which we lose guarantees. We define some additional “big-C” constants which take in a radius argument Ry.

Definition G.5 (Final Stability Constants). In term of the constants in Definition G.5, we define the following final stability
constants, as functions of a parameter R:

n 1
Cstab.1(Ro) = min{C’u Ca Ry . }

"dew’ Ry 48cuca

. Bals/3Ca Ragn Bar!®
Cs o Ry) := C ; stab , yn — Mstab
tab,2(Fo) i { K ey Ry 48ckca

Rdyn
12Rgcy \% Lgtan + 3

x n 1
Cstab,4(R0) := min {C,} CK, Rdy ) }

Cstab,3(Ro) ==

CK ’ R() 12CK

G.3. IPS Guarantees & Proof of Proposition 4.1

Here we provide our main stability guarantees for the learned policy 7* under Assumptions 3.1 and 3.2, from which we
derive Proposition 4.1. This section adopts the notation from Section 4.1.
We begin by introducing a functional form for our distances.
Definition G.6 (Distances). Let 7. be given, and let 0 < 7 < 7. For h > 1 and chunk-states sp, = (X¢, _,.t,, Ut _y:t,—1) €
Proandsy = (x;, 4, 0, . 1), define
dsxr(sn,sp) i= _max |Jx; —xi
te[ty —T:tp]

d 7)) = —u,
S,u,t (sha sh) te[t;}?i}t{hfl] ”ut u, H

ds,r(sh,sy) = max {ds x,~ (Sh, 5} ): ds.u,r (Sh,Sh) }



For h =1,s; = X3 and s] = X}, we define ds(s1,s]) = ||X1 — X}||. Note therefore that
dS,TC(’v’) :dS('a')a dS,Tm—l('a') :dTVC('a')v dS,O('v') :dIPS('7')

Next, we introduce five problem-dependent constants ci,...,cs, all of which are stated in terms of the constants
in Appendix G.2; one can readily check that these are all polynomial in the constants (Rdyn,Ldyn,Mdyn) and
(Rstab, Bstabs Lstab) in Assumptions 3.1 and 3.2.

Definition G.7 (IPS Constants). In terms of constants in Appendix G.2, we define the IPS constants as follows:

Cc1 = (6 maX{Rstab(]- + 2Cu V Lstab)7 Bstab + V LstabCK})- (GZ)
min { Cstab,l (2Rstab) Cstab,Q (2Rstab) Cstab,3 (2Rstab) 1 }
4Rstab V Lstab 7 V Lstab ’ 4Rstab ’ 2Rstab ’

Co =

We further define
c3 = 3Lgtab log(ch)7 Cq = min{l, Cstab,él(QRstab)}a C5 = 2(1 + Rstab)Bstab-

In terms of the constants c1, c2 > 0 above, we introduce a family of distance-like functions ond 4 ,(a,a’ [ r) : A x A —
R>o U {00}, defined as follows.

ses : _ (a = P I (=l =/ Vel
Definition G.8. Consider a = (1.1, X1.r,, K1:r, ) and " = (0}, , %7, , K}, ).

_ _n(re=7) _
dar(a,a’ | 7) :=c1 max <||ﬁk — || + %5 — %} || +re” T K — 2”)
1<k<tc

oo { max (mo (o = e~ )L [Ke ~ Ky l}) <
where Iy o (€) is 0 if clase £ is true and oo otherwise.

In words, d 4 ,(a,a’ | 7) measures the maximal differences between 1y, — 1}, X) — X}, and K, — K/, subject to a constraint
that each of these quantities is within some bound cz. One the latter threshold is met, the dependence on | K — K} || is
scaled down by r, and is also exponentially small in 7. — 7; this latter bit is not necessary for our results, but illustrates an
interesting feature of our stability guarantees: they are far less sensitive to errors in K than to errors in 1.

In terms of d 4 ,(a,a’ | r) defined above, we can now ensure the following stability guarantee.
Corollary G.1. Suppose that 7. > c3/n and r < ¢4, and consider any sequence of kernels {Wh}ﬁzl, where Wy, : § —
A(S), and’

max Psow, (s)[dies(3,8) < 7] = 1,0z 0o Wi (s) < ¢z o Py,

for ¢z is from the direct decomposition instantiated in Definition 1.1, and where P}, denotes the law of p.. j, under Dexy, as
in Definition I.3.

Define a process si ~ Pinit, S ~ Wy(sn),an ~ 7 (3n), and sp41 := Fy(sn, an). Then, almost surely, the following hold
forall0 <1 < 7.0

_n(re=7)

e Foreachl < h < H,ds . (F},(Sh,an),sn) < csre Fstab .

* For any sequence (a}.y), the dynamics sy = s1, sp+1 = Fy (s}, a},) satisfy

! < q i .
Lmax ds.o(51,5,) < max das(ana |7)

Corollary G.1 is derived in Appendix G.3.2 from an even more granular result stated just below. Before continuing, we
explain how Proposition 4.1 follows.

Proof of Proposition 4.1. This follows directly from the above corollary notice that ¢4 is define to be at most 1, so we
always invoke the corollary with » < 1, and thus d 4 - (ap,a}, | 7) < da -(an,a), | 1) < d4. We remark that the guarantee
only applies to kernels for which O

"See Remark G.1 above for iterpretation of this condition below.



G.3.1. A MORE GRANULAR STABILITY STATEMENT

Here, we state an even more granular stability guarantee. The notation is rather onerous, but captures another nice feature of
our bound: that our stability depends not on the maximal errors over uy — ﬁ%, Xp — )‘(}c, Xp — i;‘,, but rather on ¢5-errors.
Again, not necessary for our guarantees, but it speaks to the sharpness of our perturbation bounds. See Remark G.2 at the
end of the section for more discussion.

Definition G.9 (Action Differences (inputs and gains)). Consider a = (Q1.7, X1, K1.7,) and ' = (0}, , %}, , K/, ).
We define

. 1/2
k=i =712
daue(a,2) = max nzgﬁstaé\\uj — ]
J:
. 1/2
k—jie  or 2
d.A,x,Zz (ava/) = IISI}CZ%S}ER nzjlﬁstalj)“xj - Xj”
=
K 1/2
e 1 _
dak (2,3) = max n;ﬁmﬁ K; — Kjl|
]:
We further define
dAuco(a ) = lg}gaé_c [y, — ai ]l = llarr - ﬁ/l:rCHmaXQ
dA,x,OO(a7al) = 12}%}; X% — )_(;c” = [X1:r, — ill:-rchaXQ
dA,K,OO(ava/) = lg}j%}frc ||Kkr - K ?@H = HKI:TC - Kll:'rC”max’oz)'
and
radK(a) = 1?}52;3 ||KkH = ||K1:TC||max,op-

We note further that as Sstap € (0,1) and 7 Zizo Bt = Lstab, we have

dA,u,ég (37 a/) < ||ﬁ1:7—c - ﬁll:TC”@z A V Lstab”ﬁlzrc - 1jl/ln}lenamx,Q
S ||ﬁ1:Tc - ﬁll:TC”fz /\ V LstabdA,u,oo(a7 a,) (G3)

and analogously for d 4 x ¢,(a,a’) and d 4 Kk ¢, (2, d").

Next, recall the constants {C’Stabﬂ; (Ro) ?:1 in Definition G.5, and ¢y, ck in Definition G.4, all of which are polynomial in
relevant problem parameters (Rayn, Layn, Mdyn), (Rstab, Bstab, Lstab), and argument Ry. We now define a very general
distance-like function between actions.

Definition G.10 (Action Divergences). Define, for Ry > 1, the following
da rer(an,ay | 7):=2((1 + Ro)da Ry rx(an,a% | 7) +da ry.ru(an,ay | 7)),
where
da,re,ru(@n,a) | 7) = dAuco(an,ay) + Rodax,co(@n,ay) + 27 BsgabBacay, d.AK,00(an, ay),

and where
dA,Ro,T,x(aa a/ | T) = 2Cu (dA,u,fz (aa a/) + ROdA,X,ZQ (aa a/)) + 2CKT(/BStELb) TCS_T : dA,K,ZQ (a? a/)
3
+ Io,oo{ﬂ Eclose, Ro.i} T To,00{radk (a) V radk (a’) < Ro},

i=1




where I o {€} denotes 0 if clause £ is true, and co otherwise, and where we define the clauses

gclosc,Rg,l(aa a/) - {(dA,u,Zg (a,a’) + ROdA,x,Zg (a,a’) é Cstab,l(RO)}
Eclose,RU,Q(aa a/) = {dA,K,éz (37 a/) < Cstab,Z(RO)}
Eclose, Ro,3(3,3") = {d Au,00(2,3") + Rod . x,00(a,2") < Citan 3(Ro) }-

Again, we see that asside from the I .o {-} terms, our distances d 4 g, rx(a,a’ | ) depends only on ¢5-guarantees.

We may now state our most general stability guarantee.

Proposition G.3 (Main Stability Guarantees). Suppose that
Te 2 3Lgtab 1Og(26A)/n'

In addition, fix an Ry > 0, and Tmax such that ryax < Cstab 4(Ro). Consider any sequence of kernels {\W }?_,, where
W, : S — A(S) and®

max Psow,, (s)[dies (5,8) < 7] =1, ¢z 0o Wy(s) < ¢z o P}, (G4

and define a process s; ~ Pinit, Sn ~ Wi (s1), an ~ 75 (3p), and sp41 = Fp(sp, ap). Then, almost surely, the following
hold for all 0 < 7 < 7¢.:

« Foreach1 < h < H, ds,(Fy(3n,3n)51) < 2(1 + Rytab) BswanrB5 -
* For any sequence ('), the dynamics s} = s, sp41 = Fy(s},, a),) satisfy

max  dsxr(Sn,s,) < max daryrx(@n ay|r).

1<h<H+1 1<h<H
and
/ /
max d Sn,Sy) < max d ar.a. | r).
1<h<H+1 877'( hy h) = 1<h<H A,RQ,T( hydp | )

The above proposition is proven in Appendix G.5, wher it is derived from two key guarantees given in Appendix G.4 below.

Remark G.2 (Remark on the Scaling). We now justify the extreme granularity of the above result. We demonstrate that our
guarantees satisfy the following favorable properties:

* As in Corollary G.1, the dependence of Kj, — K in the non Iy oo {-} scales down with r and with r - 65[;; ) s0

that errors in K, become less relevant as 7 — 7. and as » — 0.

* If we restrict our attention only to errors in states, captured by ds x -, the non-Iy o {-} terms depend only on ¢5-errors
rather than maximal co-norm ones.

* In the special case where Rqy,, = 00, i.e., the regularity properties in Assumption 3.2 hold globally, then all terms
Cstab,i(Ro) defined in Definition G.5 no longer need depend on Ry, as the terms in which R, appears have an
Rayn = oo in the numerator, and each Cyap ;(Ro) serves as an upper bound on a certain quantity of interest. Hence,
we can drop the dependence on Ry in all of these terms. Cytap, i (Ro) (

* In particular, the term Citap, 3 (Ro) if equal to co when Rgyn = oo. Thus, for R4y, = oo, we can drop the indictor of
Eclose, Ry,3(2,2") 1= {d A u,00(a,2") + Rod 4 x,00(3,3") < Cétan,3(Ro)}., and hence each ds x  has depends only on
{5-type errors.

The proof of Proposition G.3 is given in Appendix G.5, derived from the results in the subsection directly below. Before we
do this, we first demonstrate how Corollary G.1 follows from Proposition G.3.

8 Again, we refer to Remark G.1 for explanation of the second condition in the display (G.4)



G.3.2. DERIVING COROLLARY G.1 FROM PROPOSITION G.3
The proof is mostly notational bookkeeping.

By assumption ¢z o Wy, (s) < ¢z o P} and Lemma G.2, and the Rgap-term in (Rstab, Bstab, Lstab )-Jacobian stability, the
action aj, with radk (a) < Rgtap. Further, notice that the parameter S, used throughout this section can be bounded by at
most

Bstab = (1 -

b) < eXp(_n/Lstab)~
sta

Hence, Corollary G.1 from Proposition G.3 as soon as we show that

Va s.t.radk(a) < Rstab,  da Ry (an,ay | 7) < aAJ(a,a' | 7).

Consider the action divergences in Definition G.10. Take Ry = 2Rgtab, Where Rgtap, > 1 by assumption. and upper bound
daue, () < VLstabd A u,00(+) (as in (G.3)), and similarly for d 4 x ¢, (+,-) and d 4 k¢, (-, -). . Then,

d-A7R07T(ah7 a/h ‘ T) = 2((1 + RO)dA,Roﬁax(ah’ a;z | T) + dA7R0,T7u(ah7 a/h | T))
= dA,u,oo(aha a;l) + ROdA,x,oo(ah7 a/h) + QTBstabﬁ;C;)TdA,K,Oo(ahv alh)

Tc—T

+ 2cu(d A u,e,(a,a") + Rodax,e, (a,@")) 4+ 2ek7(Bstab) ®
3

+ IO,oo{m gclose,Rg,i} + IO,oo{radK(a) V radK(a') < Ro}
=1

' dA,K,Zz (a’ a/)

S 2Rstab(]~ + 2Cu V Lstab)<d.,4,u,oo<ah7 a;L) + d.A,x,oo(aha a;z)
_n(re—1)

+ (2Bstab + 2v/ Lstabck )T exp *Fstab d g K 00 (an, )
3

+ IO,oo{m gclose,Rg,i} + IO,oo{radK(a) V radK(al) S 2Rstab}
i=1
Cc1 _n(Te=7)
< g(dA,u,oc(a}u alh) + dA,x,oo(aha a;;) + rexp 3Estab dA,K,oo(aha a;l))

3
+ IO,oo{ﬂ 5close,R0,i} + IO,oo{radK(a) \ radK(a/) < 2Rstab}7

=1

where we recall from (G.2)

C1 = GmaX{Rstab(l + 2¢y V Lstab)a Bgtab + V LstabCK}-

Let’s now simplify the indictators. Restricting our attention to a with radk (a) < Rgtab, radk (3") < Rgtab+d A K, co(an, a},)
by the triangle inequality. Thus, we can replace Iy o {radk (a) Vradk(a’) < 2Rgap } With Ip oo {d 4 K co(an, a},) < Rgtab}-
We now recall the definitions

8C10867R071 (a’ a/) = {(dA,ng (a, a/) + ROdA,X7€2 (a, a/) < CStab,l (RO)}

Eclose, Ro,2(3,a") = {da k.0, (a,a") < Cypan2(Ro)}

ECIOSC,R0,3(33 a/) = {d.A,u,oo(a; a/) + ROd.A,x,oo(a; a/) S Cstab,3(R0)}~
Again, recall that we take Ry = 2Rg,p. Again, invoke the upper bounds of the form d 4 v ¢, (, ) < v/ Lstabd A u,00(+) (as
in (G.3)).Thus, ﬂ?:1 Eclose,Ry,i N {radk (a) V radk (a’) < 2Rgap } holds as soon as

max{dA,u,Oo(a7 a/)7 dA,x,oo(aa a/)dA,K,oo(a7 a/)} S Co,

where we recall from

Co 1= min { Ostab,l (2Rstab) Cstab,Q(QRstab) Cstab,S (2Rstab) 1 }
4Rstab Vv Lstab ’ Vv Lstab ’ 4-Rstab ’ 2-Rstab .



In sum, for any a for which radk (a) < Rgtap, we have
c _n(re=7)
d.a,Re,7(an, ay, | r) < gl(dA,u,OO(ahv ay,) + d A x,00(an; aj,) +rexp Sl d4,K,00(ah, aj))

+ IO,oo{maX{d.A,u,oo(aa al)v d.A,x,oo(a7 al)dA,K,oo(aa al)} S 02}~

To conclude, we observe that, for any nonnegative coefficients a1, az, ag > 0 and sequences vy 1.p, V2,1:n, V3, > 0in R",

E maxvl <3max§ a;v; ;.

=1 ]E[n]
Thus, if we express a = (1.7, X1.7,, I_(LTC) and a’ = (1_1/1:w 5‘/1:707 I_{’LTC), we can bound
da,ro,r(an, ), | 7) <da-(a,a’ | r)

_nlre=7) | —
= en e (Il = ]+ e ]+ e 5 R - R )

O e (LR AN AN ANy

G 4. Stability guarantees for single control (sub-)trajectories.

At the heart of the IPS guarantees in Appendix G.3 above are two building blocks: one controller the perturbation of initial
state around a regular (in the sense of Assumption 3.1) trajectory, and the second extending this guarantee to perturbations
of control inputs and gains.

Lemma G.4 (Stability to State Perturbation). Let p = (X1.x4+1,01:x) € Pk be an (Rayn, Layn, Mayn)-regular and
feasible path, and let K. be gains such that (p, K1.x ) is (Rstab, Bstab, Lstab )-stable. Assume, that Rggap, > 1, Lggap >
2n. Fix another x; and define another trajectory p via

up = 0y + Kp(xp — Xi),  Xpt1 = Xg +0fp (Xk, ug)

Then, if |[x1 — %1|| < min{(16 Ltab Mayn R, B2,) "L gie—}, then

* [Ixk1 — Xg1ll < 2Bsanllx1 — X1 (|81
* (97 Kl:K) is (Rstaba 2Bstab7 Lstab)'Stable~
* HBk(p)” < Ldyn~

This lemma is proven in Appendix G.6, and the following proposition in Appendix G.7.
Proposition G.5 (Single Trajectory Stability Guarantee). Let p = (X1.x+1, U1:x) € Pk be (Rayn, Layn, Mayn)-regular
and feasible, and let K1.xc be such that (p,Ki.x) is (Rstab, Bstab, Lstap)-stable. Assume Rgap > 1, Letap > 21, and
given another x1,x| € X, 0}, and K/, define trajectoris p = (X1.x 41, W1k ) and p' = (X, e, 1, U] )

X1 = Xk +0fp (X, ug),  up =g + Kp(xp — Xg)

Xppy1 = Xp +10.fp (X, wh), W), = ), + Ki(x), — )
Let all constants be as defined in Definition G.4, and define (recalling the stability exponent Bytap, := (1 — LLH)) ) the terms

1/2 1/2

k
k—j = —
Erry = 1:2?}}((] nzﬂstaé”uj - u;’HQ , Emrg = m[a}i,( nzgstab”K K/ H2
Jj=1

Then, the conclusions of Lemma G.4 applies to the trajectory p, and moreover, forall1 < k < K,

%41 — Xy || < cuBrra + (exErrg||xr — %1 + callxi —x4]) 8525,

provided that the following two conditions hold:



* The above error terms satisfy

Erry < Cy, Errk <Ck, |x1—x}|| <Ca, |x1—%i| <Cx, Errg|x; —xi1] < Ckx
* In addition, if R4y < 00, Retap = max{1, Rstab, maxi<;<x || K|} and Ay o := max; [|[a; — ﬁ;|| satisfy
Rdyn > (4Rstabcu Lgtap + 1)Au,oo + 4RstabCK||X1 - 5(1” + 4RstabCA”X1 - X/1||

The proofs of both this proposition and the lemma before it consist of translating the differences in trajectories into recursions
satisfying certain functional forms. Taking norms, we obtain scalar recursions whose solutions are upper bounded in a series
of technical lemmas detailed in Appendix G.9. We believe these Proposition G.5 and Lemma G.4 are useful more broadly in
the study of perturbation of non-linear control systems.

Notice that, for convenience, both the x and x’ trajectories are stabilizing around the same X. This is for convenience, and
simplifies the analysis. Indeed, difference generalizing to accomodate x’ stabilizing around X’ can be accomplished by a
change of variables in the @, which is precisely what is done in deriving Proposition G.3 in the section that follows.

G.5. Deriving Proposition G.3 from Proposition G.5

The majority of this proof is (also) notational bookkeeping, whereby we convert two trajectories (in the abstract states/actions
notation) into separate trajectories for each a sequence of h = 1,2,..., H = T'/7., to each of which we apply Proposi-
tion G.5.

Constructing the (perturbed) expert trajectory We begin by unfolding the generative process for abstract-states
S1,...,Sg in our proposition. Recall further that s, = p, ;, corresponds to the trajectory-chunk.

We let the (control) states and inputs for the corresponding sequence be denote as (X1.7+1, u1.7) be generated as follows.
Start with

X1 < S1
drawn from the inital state distribution. Assume that we have constructed the states si, . .., s;_1; this meangs in particular
that we have constructed X1.¢, , U1:t, —1, as well as the memory-chunks p,, ;,..., p,,, ;1. We extend the construction to

step h + 1 as follows:

e Define x5, 1 = x4,

* Select a perturbation of the state 5, = P, = (X¢,_,:t),, Ut,_,:t, 1), With corresponding memory-chunk p,, , =
(Xtp_ s 41t Oty — 7 +1:¢, —1)- As per the proposition, dips(sp,Sn) < r. This means that [|x;, — X, || < 7.

* Draw ap, = Kyt ity 4rm—1 ~ Th(Pm p). We express
ke(x) =0y + Ko(x — %Xy), tp <t <tpy—1,
and reindexed trajectory
Rh,k = Rty +k—1-
Denote
Xnk = X¢p+k—1, Upk = U¢y k-1, Kh,k =Ky, 1k-1
and
Pint1] = Rn,liret1, Un 1o, )

* Moreover, because we assumg ¢z o W), < ¢z o Py, we inherbit the conclusions of Lemma G.2. Hence, p,,,; such
be feasible, (Rayn, Layn, Mayn)-regular, and (py,, £p,1:7.) i be (Rgtab, Bstab; Lstab)-stable. In addition, Lemma G.2
ensures X, 1 = Xy, . Consequently, we have that the composite action map F}, satifies

Fp(Sh,an) = Ppaga) = (Xntire+1, Untir, ) (G.5)



* We execute ay, for 7, steps from our actual state x; (not X;), giving states and actions

Xep1 = f(xe,we),  wp = ke(xe), 1<t < 7.
And define

Xhk+1 = Xt +ks  Upk = U 1p—1, 1<k 70

* Finally, define the chunks the trajectories py;, 4.1 = (Xh,1:7e+15 Xh,1:7, )» Which is equal to the next abstract-state
Shil = (XnLiret 1, Wn,1ore) = (Xtpety s Utpitygr—1) (G.6)

Construction of the imitation trajectory. We now construct the imitation trajectory by setting x} = x;, and
* For each h, select aj, = (k}, 4, +r. 1) € K. Define the re-indexed primitive controllers

! o
Khk = Btp+k—1s
and express

K (x) = Kjy 1 (X = X3 ) + W), -

* Execute aj, for 7, steps, giving states and actions

And define

/ ! i /
Xpkt1 = Xppths U= 41, 1 <k< 7
* Finally, define the chunks
!

s;’L = (Xth:thﬁ_l?u;h:th_*_lfl) = (X;L,1175+17u/h,1:7'c)'

Further Notation. Let’s define the following errors analgous to Proposition G.5.

k
2 k—ji1= = 2
Errg ), = max Z; Baabl0n,; — K4 (X ;)|
iz
k
2 k—7 112 'V 2
Errg , = max nzlﬁstaﬂHKh,j - K, |l
iz

Ao, 1= max [, — 4, ;(Zn,5)]-

Importantly, in Proposition G.5, it is assumeded that other the primed and unprimed sequence stabilize to the same x, 1,
whereas here, the primed sequence stabilized to xy, ;. This is addressed by replacing the role of uj, ,, with &}, , (X ).

G.5.1. INTERPRETING THE ERROR TERMS.

First, we unpack the above error terms.

Lemma G.6. Suppose maxy, d 4 r,,rx(an,ay}, | 7) is finite. Then,

Errg j, = dax,e,(an, a),)
Errg,n < daue, (an, ay) + Rodax,e.(an, ay)
A1’1,oo,h = d.A,u,oo(ahv alh) + ROdA,x,oc(afu a;L)



Proof of Lemma G.6. The equality of Errg ; follows from the reinxing Kh,k = Ky, +—1 and the definition of Defini-
tion G.9.Next, unpacking our notation of @, @', we compute

Up,j — ki (Xng) =ty — K (X, 5 — Xnj)

. / ! ! !
=W 4k—1 — Wy k-1 — Kth+k—1(xth+k—1 - Xth+k—1)

So that as long as d 4, g, ,~x(an, a}, | 7) for all h, then | K}, ;|| < Ro. Thus

[Tn; — @l < Mg, g1 —ag, o |+ Rollxe, 461 — X4, 1l

and thus by the triangle and moving the max outside the sum,

X 1/2
= k=315 /2
Errgp = 1?}&){% nZﬂstabHth — uh7j||
<k< =~
k 1/2
< max |0 ALl sy — e
= 1<k<r — stab ntk— ntk—
j=
1/2
k /
E=J ! ’ 2
+ R max |13 ALl an1 =X, el
Jj=1
< daue(ansay) + Rodax,e,(an, ap).-
The inequality Ag oo,n < d4,u,00(an,a}) + Rod A x,00(an, aj,) follows similarly. O

G.5.2. AN INTERMEDIATE GUARANTEE.

Next, we establish an intermediate guarantee, from which Proposition G.3 is readily derived.

Lemma G.7. Suppose maxy, d A r,,-x(an,a), | r) is finite, and further that 7. > 3Lgta1, log(2ca)/n. Then,
o Forallk €{0,...,7.} and h € [H],
’ k/3
1R k41 = Xh g1 g || < max (ZCuErra,h' + QTCKEHK,h/ﬁStab)

5

e Forallh € [H]and1 <k < 7,

[%n,k — Rkl < 2BseanBgr-

Proof of Lemma G.7. First, an algebraic computation. Observe that log(1/Sstab) = log(1/(1 — 7)) = —log(1 —
L;’ab) > ﬁ Hence, if 7. > 3Lgtap log(2ca)/n, we have 7. > 3log(2ca )/ 1og(1/Bstan), so that
Te/3
caBT/E <12, (G.7)

We continue. Suppose maxy, d 4, gy, x(an,a}, | r) is finite. Then, from the definition of d 4 g, x in Definition G.10, the
constants Definition G.5, and the inequalities in Lemma G.6 above, we can check that

mgXErrﬁ,h < m}?X(dA,uxz(ah, ay) + Rodax,, (an,a},)) < Cstab,1(Ro)
m}?XErrf{,h = m}?diK@ (an,a},) < Cstap2(Ro)
m}?x Aﬁ,oo,h - In}?X d.A,u,oo(ah; a;l) S Cstab,B(RO)

7 < Cétab,a(Ro)-



We begin with an induction on states ||x5,1 — xj, ;|| for & > 1. Recall the assumption that ca BTC/ > < 1/2. We prove
inductively that

Vh > 1, HX;L,1 —xp1] < max (ZCuErrﬁyh/ + 2rcKErrK’h,ﬁgtCa/§)) (G.8)

For the base case, we have x1; = x’171. Now, suppose the result holds up to some i > 1. Using the definitions of various
constants in Definitions G.4 and G.5, and r > ||Xj, 1 — Xp,,1(|, as well as our inductive hypotheis, one can check that

Errg p < Cy, ErrKh < Ck

3
[[%n,1 = %, 1] < max (20uErrﬁ,h/ + QTCKEI‘I‘K,h/ﬂ;Ca{b> <Ca

1Xp1 — xnall < Cx,  |Xn1 — xn1l|Errk < Ck %

(4Rocu/ Lstab + 1) Ay 00 + 4Rock || X1 — Xn,1]| + 4Roca X1 — X, 1| < Rayn-

Then, by Proposition G.5,

%n 11 = Xp g1l = [1%n 1 = X5 7l

< cuErta i + (exErrg %1 — x| + calxn — x,41l) B3

< cuErrgng1 + (ekBrrg g7 + callxn — x5, 4 1]) B;“a/s (CAB;C;S < 1, as established in (G.7))

N

IN

1
cuErrg p + TCKEI'I'K hﬂbt;/s + 3 n}f}x (QCuErrmh/ + QTCKErrK,h/BSTtCa/s»

(inductive hypothesis)

N

< max (20uErrﬁ’h’ + QTCKEHI‘(,}«L/BST;&/S))

This establishes (G.8). A second invocation of Proposition G.5 gives

1%n, k41 = X gyl

_ k

< cuBrrg g1 + (exErrg s Ix1 — o] + calxng — x4 1) B0
k

< cuErrg py1 + (CKEH"K h+1T T CA”Xh 1 X?zl”) ﬁst/aSb

/
< cuErrg py + regErrg h+1ﬂ tab + = ||X;, 1 — Xh71||
3
< cubrrg py1 + rexBrrg hﬁ tab + max (cuErru n + regErrg h,ﬂ;ca/b ))

< max (QCuErrmh/ + QTCKErrKh,Bft/ﬁD)) )
Moreover, as Proposition G.5 implies that the conclusions of Lemma G.4 also hold, we further find that

%55 — Kn k|l < 2Bstan||Xnx — KnkllBiat < 2BseanrBELL,

as needed. O

G.5.3. CONCLUDING THE PROOF OF PROPOSITION G.3.

Completing the proof of Proposition G.3. Let us start with the first item, bound dsx,. We may assume that
d A, Re,rx(an,a}, | ) is finite for all h.



Controlling ds x - (sp,s; ). Notthats; =s}. Forany2 < h < H +1,
gds x, h 1 y

d sp,Sr) = ma X — X,
Sorlonsh) = _max[xi = x|

= max_[xp-1,04% — X gl (our indexing scheme)

Te—T<k<T,

k/3
< max max (QCuErrﬁ n + 2regErrg h/ﬁst/ab>
Te—T<k<71. h' ? ’

= H}Lz/xx (ZCUErrﬁW + QTCKErrKh,B(TC_T)/3>

stab

—7)/3
< max (ZCU(dA,ng2 (an, %) + Rodax.e, (ans, ap/)) + 2rexd a x o, (an, a;l)ﬁgab )/ )

(Lemma G.7)

(Lemma G.6)

< max da Rryrx(@n,ap | 1) (Definition G.10)

That is,

dSaX,T(sh’s;z) < m}?XdA,Romx(ahv a;L | T)

Bounding ds .. To bound ds -, we also need to account for differents in inputs. We have

Wk — W), g = Rk (Xnk) — K k(X k)
=y — 0y + KXk — Xng) — Ky 1 (%) — X 1)

= — W, + Knp — K o) Xnk — Xnp) + Ky (% — X — Rnp — X 1))

Where d 4 g, -x(an,a, | 7) is finite for all A, then ||K’, || = || K¢, +x—1]| < Ro. Thus,
> 40,7, h h,k h

[, — aj, |
< n ke — @, |l + Roll%n ke — X il + RollXnk — Xy gl + Kk — K lllI%n6 — Zn i
< dauco(@n,ay) + Rodax,co(an, ay,) + RollXnk — X, ol + da k00 (an, @) %05 — Xn k|

S d.A,u,oo(ahv 3;7,) + ROdA,x,oo(aha 3;1) + 2TBstab ft;éd.A,K,oo(ah7 a/) + ROHXh,k - x/h’k”
Hence,

max ds.~(sn,sp)

= maxds x.r(an, aj,) V max I N W, oy |

= max ds x.-(an,a;) + Ro max max 1%h,k+1 = Xy jog |

+max  max  (dauco(anay) + Rodax,cc(an, a)) + 2rBstanBlapd.ak 0 (an, a’))
h 71e—7<k<71.—1

= (1 + RO) m}?x ds’xﬂ—(ah, aﬁl)

+ m}?x d.A,u,oo(ahv a;I) + ROdA,x,oo(ah; a;l) + QTBStabﬂ;;Ca_deA,K,OO(aha a%)

:=maxp d4,Rg,r,ulan,a}|r)

< (14 Ro) maxda,ro,rx(an, a), | 1) + maxdaro,ru(an, ay | )

< m}?‘xz ((1 + RO)dA7R07T,X(ah7 a/h | T) + dA,Roﬂ?u(ahv a;], | 7“)) :

(G.9)

((G.9)



Bounding ds - (sh+1, Fr(Sh,an)). Next, by (G.5) and (G.6) that

dscr(Snin, Fu(3nan)) = max [xnpi1 =Xk ((G.5) and (G.6))
_ k
A 2BstabT Bstab (Lemma G.7)
= 2B B, -

Thus, We have

ds,r(sht1, Fn(Sn,an)) = r(Sht1, Fn(Sn,an)) vV max lun k41 — Qp gt

Te—T<k<To—

Vo omax |[Rp kg1 (Xnke1) — Unogr) |

)
+(Sht1, Fn(Sn,an)) Lomax
)
)

\ max ||(Kh,k+1(xh,k+1 — Xpk+1) + Up k1) — Qhkt1) ||
Te—T<k<Tc—1

ds,x,r( )
ds,x,r( )
dsx,r(Sh+1, Fn(Sn,an)
dsxr( )

IN

Vo omax Kkl xngs1 — Xngr |

Sh+1, Fh
T b Te—T<k<t.—1

i
< dsx,r(Sht1s Fa(Bn,an)) V. max  Rgeabl|Xnk+1 — Xnkt1|
Te—T<k<Tc.—1

1+ Rstab)ds,x,f(sh+1a Fh(ghv ah))

<(
< 2(1 + Rstab)BStabrﬁs(;r;b_T)

—
a2

where in (i), we used | K, x41]] < Rstab because (f_)[thl]v Kh1:7.) 18 (Rstab, Bstab, Lstab)-stable, so that the gains are
bounded in operator norm by Rtap,. O]
G.6. Proof of Lemma G.4 (state perturbation)

Define Ax,;g = X — X§. Then

Axir1 = Do + 1 (fr(xn, U + Ki(xp — Xi) — f (X, Ug))

= Ax,k —+ 77(Ak + BkKk)Ax,k + remy, (G.10)
where

remy = fp(Xp, W + Kp(xp — Xi)) — fr(Xe, tr) — (Ag + BrKy) Ay i

Claim G.8. Take Ria, > 1, and suppose ||Ax k|| < Rayn/Rstab. Then,
Xk — k|| V [0, — g < Rayn, (G.11)

and |[remy || < Mayn R | A 1>

Proof. Letuy, = uy, + Ky (x, — X;). The conditions of the claim imply ||ug — Q|| V ||xk V Xi|| < Rayn. From Taylor’s
theorem and the fact that p is (Rayn, Layn, Mayn )-regular imply that

o 1 _ _
| for (Xh, ag) — fo (X, te) || < §Mdyn(\|xk = Xp|” + [lug — Ti])
1 ) )
5 (14 Rlian) Mayn [k = %[1* < R, Mayn [ A k1%,

where again use Rgtap > 1 above. O

IN

Solving the recursion from (G.10), we have

k

Ax 1 =1 E Doy g1 jrriremy + Poppr1,18%,1-
i=1



Set Bstap = (1 — ﬁ) so that M := 57%—1 = Lgap. Further, recall Ry < Rgyn/Rstab. By assumpion, ®. 5 ; <
sta

Bstabﬁskt;g, so using Claim G.8 implies that, if max;c ] |Ax,j|l < Ry < Rayn/Rstap for all j € [k],

k

_ [ / _
HAx,k-&-lH < 772 BstabMdynRStab stalngAXJHQ + BstabﬁgtabHAXJ H
j=1

Appling Lemma G.17 with a = 0, Cy = BstabMdynthab, and Cy = Bggap, > 1 and M = Lg,p (noting Bgtap > 1/2), it
holds that for | Ay 1]| = &1 < 1/4MC1C5 = 1/4Lsta, Mayn R2, .1, B2 .1,

| Ax k1]l < 2Baan|| At ||(1 — Ln .

stab

To ensure the inductive hypothesis that max e |Ax.jll < RaynRstab, it suffices to ensure that 2 Bgap||Ax.1]| < Ro,
which is assumed by the lemma. Thus, we have shown that, if

HAx,l || < min{1/2BstabR07 1/8LstabMdynR3tasztab}v

it holds that [| Ay i1l < 2Bstab|| Bt

(1 — )% < Ry for all k.

Lstan

Next, we adress the stability of the gains for the perturbed trajectory p. Using (Rayn; Ldyn, Mdyn )-regularity of p and
(G.11),

|A(p) + Bi(p) Kk — Ax(p) + Bi(p) K
_ ‘ [Ak(p) — Ar(P) Builp) — Bu(p)] [KIJ
_ H(an(fck,uk) =V fy(Rr, 01) [KIJ

< Magn 05~ 0 K 0~ 201 | [,

< Magn || — %/l (1 + [|Kk12,)

_ I
— Moyl ~ | g,

2
_ I _
= Mol =0l | g, || < Ml = 01+ 1)
< 2R§tabMdyn||Xk — Xy

_ _ Ui
< 4BStabRb2*tabMdyﬂHX1 - Xl”ﬁftaga Bstab = (1 - I )
stab

Invoking Lemma G.20 with SBsgan, > 1/2, || @Cl,k’ﬂ < 2Bstabﬁskt;g for all j, k provided that 4 Bstap R2 ., Mayn||x1 — X1 <
1/4Bstab Lstab, which requires ||x; — %1 || < 1/16B2,, R% ., LstabMayn.

stab

The last part of the lemma uses (Rayn, Ldyn, Mayn)-regularity of p and (G.11).

G.7. Proof of Proposition G.5 (input and gain perturbation)
Recall the trajectories X111 = Xi + 0.fy(Xg, U ), and
Xpt1 = Xg + 0 (Xe, ug), wp = 0 + Ki(xp — Xx)
X1 = Xp, + 0fy (X, wy),  wp =y, + K (x), — Xp).
Further introduce the shorthand A, = Ax(p), B, = Bi(p), Ad,k = A + By + Ky, as well as

/ —/ — /
A =X —Xp, Aurp=1, -0, Axr=K;-K

;L ~
Axp =X — Xk, Dxp =X — Xp,



Then,

Ag k1 = Dx ik +1 (f(Xk + Ay iy, + Au g+ KiAyg ) — f(xp, g + KkAx,k))

=Axr+1 (f(Xk + Asey U + A + KAy ) — f(xp, 05 + KkAx,k))

+ n(remy 1)

0 0 - _
=Axr+7 %f(xk,uk) Ax+ %f(xk, ug) (Auk + K Axp — Ax i)
M 7 Ay i
—A, =B, :

+ n(remy 1 + remy )

=Axr+17 (Acl,kAx,k + BkAu,k) + n(remy 1 + remy 2).
where, above

remy 1 = fu (X + Axp, Uk + Aup + KpAx k) — fir(Xk + Axpy U + Ay g + KAy 1)
remy o = fy (X + Asp, Uh + Aup + KeAs ) — f(xp, Uk + KeAyk)

0 0
- %f’q(xkv ug) Ak + %fn(xk, ug) (A g + Ki(Axp — Ax k).

Solving the recursion,
k

Ax 1 = Z (i)cl,k+1,j+1(BjAu,j + n(rem; 1 +rem; o)) + 111050
=

Recall that Lemma G.4 implies (K1.x, p) is (Rstab, 2Bstab, Lstab )-stable. Thus, recalling Bstap = (1 — LZ b) €[1/2,1),
we have

k
1Asc kil <0 1®etkrsjvall (Bl A,

Jj=1

| + [[remy 1 || + [[rem;o]])) + [[®err+1,1] | Ax1 ]

k
<1 2BaabBlat (Laynl| Au | + [[rem; 1 || + [[rem; |
j=1

)) + 2Bstablgi-ctado || AX,l || .

Let us now bound each of these remainder terms. The following claim, as well as all subsequent claims, is proven at the end
of the section.

Claim G.9. Suppose that it holds that for a given k, it holds that
|Ax k|l < cuErry 4+ cxErrg||x1 — X1]| + callx1 — x}|| (G.12)

Then,

< Layn [ Ak k[l (1A [l + | Asc el])

3
remy ol < 5 Mayn R || A k| + Mayn|| Au il

[remy 1|

We now proceed by strong induction on the condition in (G.12). Observe that if this condition holds for all 1 < 7 < k, we



have

k

[ A el < nz2Bstab5stab(Ldyn||A Jl
j=1

+ [[remy || + fJremy 2 ) + 2BstabBa | Ax1 |

< n2285tdbﬁstab (LdynHA gl + Magn || Al )

Jj=1

=Termy
k .
+1)_ Biiad, | 3BstanMayn [[Ase 51> + 2Bstan Layn [ Ak ][ A
= —_—— —_———
Cl CZ
k
+ 2Bstabﬁstab ||A Stabﬂstab ||AK,j || ”Ax}j || (Gl3)
j=1
Terma i

Define the terms
Cy := 3BstabMayn, C3 := 2Bgtap Layn,
o 1= 2BgtapErry (MdynErru + \/deyn)
&1 = 2Bgtap <\|Ax,1|| + 2Lit/3bEer||Ax71H)
where above

1/2 1/2

Brry := max nZﬂmbuA GIF) s B max nzﬂmbnAKJH?

We bound the two underlined terms in the above display.

Claim G.10. Recall Erry, = max¢ (k] (7] ZJ 1 &mb |Ay,;]] ) . Then, for any k,
Terml,k < o = 2BgpapErry (MdynErru + v Lstadeyn)
. : 1/2
Claim G.11. Assume Psan € [1/2,1) and recall Errk := maxye|x) (77 dim1 Bgtab”AK’j”2> . Then,
Term2 < 51ﬂstmb’ 51 = 2Bstab (HAX,ln + 2L1/2 LdynEl"I‘K”AxJ”)

stab

The previous two claims and (G.13) show that as soon as (G.12) holds for all indices 1 < j < k,

1A kinll < ot &85 +nZﬁmb (CulAxilI? + Coll Akl Ax i)
j=1

Sete; = ||Ax,;||. Note that &1 > &1, Bstap € [1/2,1), we can apply Lemma G.19 with §; + [|Ak ;|| and M <
L1 to find that

N
1-p

1A ki1l = ext1 < 3(a+&1)855)



provided it holds that (we take Lstap > 1, Bstap > 1)

1 1
2BgtanE u(M nErry Lgtan L n): < =
B \ Myt £V Bseab Bayn ) = 4= 1960 T 64Batan Mayn Loras
_ 1 1
9B (Ax 2 Lgon L2 Errge | Ay, ):* < -
tab H )1” * el rrKH 71” 1= 10801Lstab 324BstabMdyantab
1 1

Errg < < .
K= 12 V Lstab max{C’g, 1} T 24 V Lstasttadeyn
For these first two equation, it is enough that

E . \/deyn 1
Ty < min ) 3/2
Mdyn 256B§tabMdynLdyantab
1
Errg <
24\/mBstadeyn
1
Ax ]l <
81l 4-324B2 | MaynLstan
— L n
Errk||Ax 1| < 5 1 3/2
8- 324BstabMdyantab

for which Erry, < Cu, |[Ax 1] € Oa,llAx 1] < Cx, Errk < Ck, Errk||Ax.1|| < Ck x. Moreover, under the above
condition on Err,, we have

| skl < 3(a+20)8L5
S ]-QBstab \/deynErru + 2Bstab (”Ax,l H + 2Lit/jbLdynErrK HAx,l ||> 5k/3

stab

A k
< 12Bgtab V LstadeynErru + 2Bgtab (”Ax,l H + 2Lit/a2deynErrKHAX,1H> ﬂ /3

stab
< cuBrry + (cxErric| A | + callAxill) B3
This in turn shows that the inductive hypothesis (G.12) holds, completing the induction.

G.7.1. DEFERRED CLAIMS

Proof of Claim G.9. We argue in steps. Recall also Ryal, be such that Rgg,1, > maxy { | Kx||, [|K4|l, 1}.

Ensuring within radius of regularity. Our first step is to establish that the maximum of the following three terms is at
most Rqyn:
1%k + D Wk + Au ke + KiAs k) — (R, W) |
V[ + A, T + Ay + KA ) — (i, ) |
V[ (ks up) = (Rk, 0x) || < Rayn
First, we observe
16k + Doer T+ Au i + Ki A k) — (R, )|
<160k + Aeer Wi+ Auie + K As ) = (R 0 || + | A 1 | A |
< 1%k + Asis T + Aue + KA ) — (R, W) | + [ Ak e[| Akl + 18K K| A,
< ek + Ao B + A + KD e) — (X, W) |+ 1A% 1 A ||+ 1Ak sl Aol + 1K 1 Ao
< (e 0+ KieBsere) — (i, W) |+ (14 18k kD1 Asci [+ ARk Aol + K A el] + ([ Al
< Akl + KD + (1 + [ Ak el + 1Kk DI Ascrll + [ Bscil] + 1Akl
< (L Kkl + 1Ak kDU Akl + A ll) + 1 Aux]
< (2Rstab + max [Ky, — K51 (1Al + 1B,k l) + [[Aur]




Recall the notation

AK oo = max 1K; —Kjll, Aueo = max la; — o).

Hence, it is enough that
(2Rstab + AK,OO)(”Ax,kH + ||Ax,kH) + Au,oo < Rdyn~

Thus, since || Ax k|| < cuErry + (cxErrg — QBstab)HAx,lH + cal|Ax,1|| due to (G.12) and ||Ax,k|| < 2Bstab||5x71|| by
Lemma G.4

HAx,k” S CuErru + CKErrKHAxJ” + CA”Ax,lH

Hence, it is enough that
Rdyn Z (2Rstab + AK,()o)(CuEITu + CKErrKHAx,IH + CAHAX,].H)) + AU,OCH

We can bound 2Rgiap + Ak, 0o < 4R5tab, and solving the geometric series, bound Erry < v/LgiapAy,co and Errg <
V LstabAK 00 < 2v/ Lgtab Rstan. Thus, it is enough that

Rdyn > (4Rstabcu V Lgtap + 1)Au,oo + 4RstabCK”Ax,1 H + 4RstabCAHAx,1||~
which is ensured by Proposition G.5.

Controlling the first remainder. Using that the relevant terms are within the radius of regularity,

[remy 1] = || £ (X5 + Ak, Tk + Aup + KpAx k) = (% + Axp, g + Ay + KiAxp)||
< Laya (K}, — Ki) Ax i
< Lagn A k([ As |l + [ Ax k)

Controlling the first remainder.  Using the definitions of x;, = Xi, + Ax ; u; = Uy, + KA 1, and the fact that (xy,, uy)
is in the radius of regularity around (X, Qg ), a Taylor expansion implies

[remy o] = H F %k + D B + Aue + KAy ) — £, T + KAy ) H

L fo (X ) Aty + 2 f (3, W) (A + Ki(Ax gk — Ax i)
_ H fn(Xk+Axk,ﬁk+Auk+KkAx k) — f (%K, ug) ’
=2 o (h Wk A + 2 fo (x5, we) (B + Ay e + KpAg p — uy)
Mayn
< 0 (Al + g+ A KiBe — i)’

M n _ 2
= 02 (Al + 18ur + KBk = D))
(
((

Mdyn )

1A% k* + |Aur + KiAx,

Mdyn

= §MdynRstabHAX,k”2 + MdynHAU,k||2
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Proof of Claim G.10. Recall Erry = max¢(k] (n Zj 1 ﬁsmbHAu 5l )

k
i
Terml,k =n Z 2-Bstab Sta[j) (Ldyn”Au,j H + Mdyn”Au,j ||2)

Jj=1

< QBstab

< 2Bstab

< 2Bstaub

S 2Bstab

MaynErr2 + Layn -

MaynErr2 4 Layn

MaynErr2 + Layn -

MaynErr2 + Layn

U Z Bl Au

k

S BV Zﬂswbimu]u )12

j=1

(n

stab

-

1

J

B ])1/2Err

1
: (7717)1/2]31"%

B;tab -1
———

=Lstab

= 2BgtapErry (MdynErru + v Lstadeyn)

Proof of Claim G.11.

Ldyn(Tlerrn2 k— 2BStasttab ”AX 1 H =1 Z 2BStabﬁstab ‘AKJ H ||Ax7j

k

j=1

= nZQBstabﬁsmb Bleanll Ak i1 A1 |

j=1

= QBbtdeAx 1|| nzﬁstab

k
E_q1, -
= 2Bgtab sztab ||Ax71|| : UZB

E,l _ X
< 2Baan By 1Bl < [0 Bl

Ak |

Jj=1
(k—’)/2 /2
stabj :tab |AK7J ”
j=1
N - 1/2
1Y Blian | Ax I
j=1 j=1
& 1/2 X 1/2

E_q1 - .
S 2BStab siab ||AX,1|| S nzﬁgtab

1/2

< 2Bstaﬂothab

S ZJLBstaLbLl/2

stab

=1

1Y Bhanll Ak 51

j=1

stab HAXlH nzﬁstab |AK7.7||2

1/2

stabErrK ”Ax 1 H

=Errg

(ﬁstab Z 1/2)



Thus,

2 % A :
Teer,k < 4BstadeynL;t/ab SztabErrK”Ax,l H + 2Bstabﬁ§tab”Ax,l ||

k _
< Btan (4Layn Beta Ll Erracl| B | + 2Butanl| A

G.8. Ricatti synthesis of stabilizing gains.

In this section, we show that under a certain stabilizability condition, it is always possible to synthesize primitive controllers
satisfying Assumption 3.2 with reasonable constants. We begin by defining our notion of stabilizability; we adopt the
formulation based on Jacobian linearizations of non-linear systems the discrete analogue of the senses proposed in which is
consistent with (Pfrommer et al., 2023; Westenbroek et al., 2021).

Definition G.11 (Stabilizability). A control trajectory p = (X1.x+1,U1.5x) € Pk is Ly-Jacobian-Stabilizable if
maxy Vi (p) < Ly, where for k € [K + 1], Vi (p) is defined by

K

Vi(p) i= sup | inf [[Recpr]|* + 0 ) [I1%5]° + (18]
£i]lg<1 \ WS j=k

st.Xp =&, X =% +1(A;(p)%X; + B;(p)w,),

Here, for simplicity, we use Euclidean-norm costs, though any Mahalanobis-norm cost induced by a positive definite matrix
would suffice. We propose to synthesize gain matrices by performing a standard Ricatti update, normalized appropriately to
take account of the step size n > 0 (see, e.g. Appendix F in (Pfrommer et al., 2023)).

Definition G.12 (Ricatti update). Given a path p € &, with A, = Ak(p), Br = Bi(p) we define

WP =L Pi(p) = T+ nAax(p)) "PiSi(p) I+ nAai(p)) +n(I+ Ki(p)Ki(p) ")
Ki“(p) = (I+ 7B P51 (0)Br) ' (B{ Pisa () (I + As)
4%(P) = Ar + BiKi(p).

The main result of this section is that the parameters ( Rstab, Bstab, Lstab) in Assumption 3.2 can be bounded in terms of
Lgyn in Assumption 3.1, and the bound Ly, defined above.

Proposition G.12 (Instantiating the Lyapunov Lemma). Let Lgyn,Ly > 1, and let p = (X1.x41,U1.Kx) be
(Rdyn, Ldayn, Mayn)-regular and Ly-Jacobian Stabilizable. Suppose further that n < 1/5L(21ynLv- Then, (p, K. )-
is (Rstab, Bstab, Lstab )-Jacobian Stable, where

4
Raab = 5 Ly Layn, Bgtab = V5LaynLy,  Lstab = 2Ly

Proposition G.12 is proven in Appendix G.8.1 below. A consequence of the above proposition is that, given access to a
smooth local model of dynamics, one can implement the synthesis oracle by computing linearizations around demonstrated
trajectories, and solving the corresponding Ricatti equations as per the above discussions to synthesize the correct gains.

G.8.1. PROOF OF PROPOSITION G.12 (RICATTI SYNTHESIS OF GAINS)

Throughout, we use the shorthand Ay, = A, (p) and B, = By (p), recall that || - || denotes the operator norm when applied
to matrices. We also recall our assumptions that Lgyn, Ly > 1. We begin by translating our stabilizability assumption
(Definition G.11) into the the P-matrices in Definition G.12. The following statement recalls Lemma F.1 in (Pfrommer
et al., 2023), an instantiation of well-known solutions to linear-quadratic dynamic programming (e.g. (Anderson & Moore,
2007)).

Lemma G.13 (Equivalence of stabilizability and Ricatti matrices). Consider a trajectory (X1.x,U1.x ), and define the
parameter © := (Ajac(Xk, Ux), Bjac(Xk, Ur))re[x)- Then, for all k € [K],

Vk € (K], Vi(p) = Px(©)]lop



Hence, if p is Ly -stabilizable,

PL(O)|o, < Ly.
kéﬁ?ﬁ]” k(©)]lop < Ly

Lemma G.14 (Lyapunov Lemma, Lemma F.10 in (Pfrommer et al., 2023)). Let X1.x, Y1.x be matrices of appropriate
dimension, and let Q = L and Y, = 0. Define A1.x 1 as the solution of the recursion

Agi1=Q, Ap=X A1 X +7Q+ Yy

Define the operator ®,1 1, = X - X,_1,- - - Xy, with the convention ®y, ;, = L. Then, if maxy, |[I — Xgl||op < k1 for
some k < 1/2n,

1

maxpe (1] [|Avxa

®. 1> < max{1,2x} ma A1 =na) ™ o=
5] < max{L, 26} _max A1 o)

Claim G.15. If p is (0, Layn,00)-regular, then for all k, Ap = Ai(p) and B = By(p) satisfy
maXe[K] maX{||Ak||7 HBkH} < Ldyn~

Proof. For any k € [K],

0
%f(ikaﬁk)

)

0
(A Bl = e { | 50 )

} < IV £(Re, @) | < Lagn,

where the last inequality follows by regularity. O

Claim G.16. Recall K}*(p) = (I + 7B, P}, (p)Bi) " (BL P, (p))(I+ nAg). Then, if p is Ly-stabilizable and
(0, Layn, 00)-regular, and if n < 1/3Lqyn,

i 4
1K (p)ll < gLVLdyn

Proof. We bound

K5 () < 1Bl [PES 1 (p)II(1 + nll Ax)

< Layn(1 +nLayn) |P5S 1 (0) ] (Claim G.15)

< Ly Layn(1 4+ nLayn) (Lemma G.13, Ly, > 1)
4

< gLdeyn (77 < 1/3[/dyn~)

O

Proof of Proposition G.12. We want to show that K39 (p) is (Rstab, Bstab, Lstab )-stabilizing.Claim G.16 has already
established that maxe () [ Ki(p)|| < Rstab = 3Ly Layn.

To prove the other conditions, we apply Lemma G.14 with Y, = K;(©)K(0©), Q =1, and X;, = I+ nA 1 (©). From
Definition G.12, let have that the term A in Lemma G.14 is precise equal to P (®). From Lemma G.13,

Pi(O)op = Vi(p) < Ly.
kéﬁ?’iu” k(©)|lop el k(p) < Ly

This implies that if maxy, | X, — I|| < kn < 1/2, we have

J—k
1B, (@) = (X, - X1 - Xp)]| < max{L, 2%} Ly (1 - ) .



It suffices to find an appropriate upper bound . We have

X =TI = [nAcr(©) < n(l|Ax] + B[ Kx(©)])
< nLayn(1 + [[Kx(©)]])

4
< Layn(1+ 5 Layn L) (Claim G.16)
7
< 30Lmly (Ly, Layn > 1)

Setting x = L(QiynLV., we have that as n < ﬁ < min{m7 3L —} (recall Layn, Ly > 1), we can bound
vn

14
max{1, 2k} < max {1 3 LdynLV} < max {1, 5LdynLV} = 5Ldyn

where again recall Ly, Lgyn, > 1. In sum, for n < we have

1
2
5L3,,Lv’

n\ "
|®erll? < SL2nL3 (1LV) .

Hence, using the elementary inequality /1 — a < (1 — a/2),

n (§—k)/2 j—k
|®erjnll < VBLagnLy (1 — -~ <V5LagnLy (1 — —— ;
Ty 2Ly

which shows that we can select Bgiap = \/ngynLv and Lgtap, = 2Ly. O

G.9. Solutions to recursions

This section contains the solutions to various recursions used in the proof of the two two results in Appendix G.4:
Proposition G.5 (whose proof is given in Appendix G.7 ) and Lemma G.4 (whose proof is given in Appendix G.6).

Lemma G.17 (First Key Recursion). Let C7 > 0,Co > 1/2, Bytan € (0, 1), and suppose €1, €2, . .. is a sequence satisfying
g1 < &y, and

k

ko= k—j 2

er+1 < Cofgapér + C1n E :ﬁstabgj
=1

Then, as long as Cy < (1 — B)/2n, it holds that ej, < QCgﬁft;gél for all k.

Proof. Consider the sequence v = 2C5 ﬁf‘t;éél. Since Cy > 1/2, we have v; > &; > 1. Moreover,

CaBlianer + Ch Z Biaii = CoBliane1 +2C1Cy Z BL e

Jj=1 Jj=1

2C
- CQ/Bstabgl I+ 71 Z /Bstab

20
< CoflnEr (1 + Ui )

AL —5)

Hence, for C; < B(1 — 8)/2n, we have Co8E &1 + C1 Z?:l B Tv; < 20985, < vjy1. This shows that the (i)
sequence dominates the (£;) sequence, as needed. O



Lemma G.18 (Second Key Recursion). Let ¢, A;n > 0, Bstap € (0,1) and let e1, 9, . .. satisfy 1 < cand

k
k k—1 E
Ek+1 S Cﬁstab + CnAﬁstab Ej'
=1

Then, if A < 2020 ey < 2¢Bk, forall k.

Proof. Consider the sequence vy, = 2c% 1. Since e, < ¢, v; > ;. Moreover,

k

Cﬁatab + CnAﬁbtab Z vy < C/BStab + 2C nAﬁstab /Bstab
Jj=1 Jj=1

1
< cﬂbtab + 20 nAﬁstabiﬂ

< eBtan (1 * Mm—m) '

Hence, for A < 8 (;;f ) the above is at most QCﬁbtab < Vg41. This shows that the (1) sequence dominates the (ei)
sequence, as needed. O

Lemma G.19 (Third Key Recursion). Let C1,Csy > 0, a > 0, Bstab € (1/2,1), and let €1, €3, ..., and 61,02, . ..
€1 > €1 and be a sequence of real numbers satisfying

,, and

Epy1 St UZﬁstab 015 + Cog;jd5) + 5st/a?;)51
j=1

Defin, Errs := maxy 1 Zj 1 Bsfab])éjg and M = n/(1 — B). Then, as long as

1 1 1

< —, < ———, Emrs< )
— 1801 M 108C1 M ° 12\/Mmax{02, 1}

the following holds for all k > 0:

- ok
ert1 < 3a+ 36155433.

Proof of Lemma G.19. Consider a sequence

k= 1/3
Vg1 = 0 + G B761,  an = 3a, ¢ = 3, B = Bilay,

defined for k > 0, for some o, > «, B, € (8,1), and ¢, > 1. Then, vy > &1, > ¢;. Let us define the term By, via

Bk_a+nzﬁstab Cll/ +C2Vj )+6§ta?l))§1

Jj=1

S \1/2
It suffices to show B, < vy for all k. Introduce Term,; = (772;?:1 Bft;ﬁy?) and Errs =

1/2
maxy (77 Z?:l B~ 62) Then, by Cauch-Schwartz,

stab

By = a+n25stab Cll/ + Cgl/j )+Bstab51
j=1

<a+ ClTerm,%,k + CyTerm,, ;Errs + Bftﬁél.



We now bound

k
2 k—j 2
Termy, ,, =7 E ﬁstabyj

j=1
k .
=1 Bl +eEpit)
j—l
_ 2(j—1
< 2nzﬂstaba +27}C €1 Zﬂstab *(] )
7j=1
k
< 2na? onc2e2 S g g2
_1*ﬂ+ 770*512 stab/M* :
j=1
. 1/3
Now, recalling 3, = /., we have
3k—3j p2(i—1) _ 3k—j—2
Zﬁ%ab Y g Zﬂ ha
j=1
k
= By BT =Yy
j=1 j>0
_ 34 —2/3
< 3ﬂ3k ? Zﬂf] = 3ﬂfk/65taé bta.b
j=0 3>0
_ 3
_ 62kﬁ 2/3 < Ek.
6 * Pstab B( 6)

Thus, adopting the shorthand M = n/(1 — ), and using the assumption Sgtan, > 1/2,
Term?,yk < 202M + 12M 223 8%F.
Thus,
By, <a+ ClTermz’k + CyTerm,, Errs + ﬁf’tabél
<a+2C102M + 1201Mcféfﬁfk + ErrsCoV2M oy + Err502mc*51ﬁf + Bst/;igl

stab/™*

2
— o (1 n 201%M + C(;*Err(;Cg\/ZM> + Bk, (1201Mcfﬁf5‘1 + EsV12Me, + 53 —’“)

2
a (1 + 201%M + O;‘Err(;C’g\/QM> + Bk (1201Mc351 + E(;\/12Mc*>

1/3

where in the last line, we use 3, = 8./, < 1. Recalling a, = 3cv and ¢ = 3, we have By, < o, + 0*516 = Vj41 S SOOn

as

2
1> 200 M v S BrrsCoV2M V 120, M2, + EsvV/12Me,
« (0%

= 18aC1 M V 3ErrsCov2M V 108C1 Méy + 3EsV12M
= 18aC1 M Vv 108C1 Mé&1 V EI"I‘(;(?)CQ\/ 2M V 3V 12M).

Thus, it suffices that

1 1 1
a<—, &< ——, Errs < )
— 1801 M 108C1 M ° 12\/MH1&X{02, 1}

as needed.



Lemma G.20 (Matrix Product Perturbation). Define matrix products
By =Xpo1 - Xppo-- Xy, B =X Xj_,- X

Letn, A,c > 0 and ﬂstab € (0,1). If (a) ®y,; < Bstabfor all j <k (b) |X; — X < nAﬁstabfor all j > 1 and (c)
A< 2028 @51l < 2e85

stab

Proof. Without loss of generally, take j = 1. Then, letting A, = (X, — X),

LINERED VED VEPEEED ¢
— X/ /
= Ak'I’k,1 + X @
= Ak@;c,l + XkAkfI(I);qu,l =+ Xka,1Q>;€72’1
=P 1 k18P + Prr kAr 1P _oq + Pri1 Pl oy

k
= Z (I)k+1,j+1qu);‘71 +Ppy1,1-
j=1
Thus,
125 41,1 llop < en Zﬁbtabllxj = X5 11®5 411 + cBlia,

< cnﬂstabA Z ||¢ 1” + cﬂftab‘ (HX X/ || < nAﬁstab
Define £; = ||®” ,||. Then, e; = 1 < ¢, so Lemma G.18 implies that for A < %, @) 1| := e < 2¢BE,, forall
k. O

H. Sampling and Score Matching

In this section, we provide a rigorous guarantee on the quality of sampling from the learned DDPM under Assumption 3.3.
We organize the section as follows:

* In Definition H.1 we provide the main notion of function class complexity, a vectorized Rademacher complexity that
also appears in some form in Block et al. (2020a); Maurer (2016).

* We then state the main result of the section, Theorem 6, which provides a high probability upper bound on the number
of samples n required in order to sample from DDPM trained on a given score estimate such that the sample is close in
our optimal transport metric to the target distribution.

¢ In particular, in (H.1), we give the exact polynomial dependence of the sampling parameters o and J on the parameters
of the problem.

* We break the proof of Theorem 6 into two sections. First, in Appendix H.1, we recall a result of Chen et al. (2022);
Lee et al. (2023) that shows that it suffices to accurately learn the score in the sense that if the score estimate is accurate
in the appropriate sense, then the DDPM will adequately sample from a distribution close to the target.

* In Remark H.5, we emphasize the conditions that would be required to sample in total variation and explain why they
do not hold in our setting.

* Then, in Appendix H.2, we apply statistical learning techniques, similar to those in Block et al. (2020a), to show that
with sufficiently many samples, we can effectively learn the score. We detail in Remark H.7 how the realizability part
of Assumption 3.3 can be relaxed.



* Finally, we conclude the proof of Theorem 6 by combining the two intermediate results detailed above.

To begin, we define our notion of statistical complexity:

Definition H.1 (Complexity of © Complexity). Define the vector- Rademacher complexity of a function class {sg|6 € ©;}
by:

n

d
RH(GJ) = Sup - Zsk ZSQ ak? pm,k:?.j)
0€0; n k=11=1

where sg ") denotes the it coordinate of s¢ and the expectation is over (x, p,,, 5,) ~ ¢}y and independent Rademacher random

variables €y, ;, with gz as in Section 2.

‘th

‘We now state the main result of this section.

Theorem 6. Fix 1 < h < H and suppose that (a;, Py, M) ~ q are independent for 1 < i < n Suppose that the projection
of q onto the first coordinate has support (as defined in Definition C.3) contained in the euclidean ball of radius R > 1 in
R%. Fore > 0, set

BRYR + V)t log (42 8
g= LR +‘Q Og(a), a=e—— (H.1)
£ d2R2(R + v/d)?

for some universal constant ¢ > 0. Suppose that for all 1 < j < J, the following hold:

* There exists a function class © ; containing some 07 such that s,(-, -, ja) = Sor (- ja) = Viog qpo (-
is defined in Section 2.

\), where q(;

e The following holds for some § > 0:

d*(R+ /dlog (m))2
sup 1563, P 1) = 8003, P s t)]| < € S

8
0,0'cO, €

lallv|[a'|| <R+ /d1og(252)

Pm,h

s Assumption 3.3 holds and thus, for all j € [J), it holds that R.,(©;) < Cen™/" for some v > 2 and all n € N.

e The parameter 0 = 0. is defined to be the empirical minimizer of Lyppy from Section 3.

If

. (C@dR(R v V) 1og(dn)>4” . <d6(R4 V dlog? (4R)) d2> v

o4 224
then with probability at least 1 — 6, it holds that

E P asy~p (|0 —2" ||>5)} < 3e.

Pm,n~p 1 1 |: inf
’ " | HEE (DDPM(S5,Pm 1 )>d(: [P, k)

Remark H.1. We emphasize that the exact value of the polynomial dependence (and in particular its pessimism) stem from
the guarantees of Chen et al. (2022); Lee et al. (2023) regarding the quality of sampling with DDPMs. We remark below that
the learning process itself does not incur such poor polynomial dependence except via these guarantees. Furthermore, we do
not expect the sampling guarantees of those two works to be tight in any sense and such a poor polynomial dependence is not
observed in practice. Rather, we include the bounds of Chen et al. (2022); Lee et al. (2023) so as to provide a fully rigorous
end-to-end guarantee showing that polynomially many samples suffice to do imitation learning under our assumptions.



Remark H.2. A subtle difference between the presentation in the body and that here is the dependence of the complexity of
O on the parameter . We phrase the complexity guarantee as we did in the body in order to emphasize the dependence on
the algorithmic parameter. If we let CJ; denote a constant such that R,,(0) < Cg(a/n)~1/¥, then the sample complexity
above becomes

4v
>e (C'@ log(dn))4u Y <d2(R2 Vv d?log® (Z‘if))) .
o 0216
Remark H.3. We observe that while at first it may seem that the upper bound on the osculation of sy is limiting, and,
indeed, it is not obvious that this assumption does not contradict the realizability assumption immediately preceding it,
it follows immediately from Lemma H.2 that if the preceding assumptions are satisfied, then the true score function s,
automatically satisfies the bound on osculation. Moreover, the boundedness of the function class is only assumed for the
sake of convenience and could be substantially relaxed to an assumption requiring finiteness of moments of the envelope of
the class (Wainwright, 2019; Rakhlin et al., 2017). For the sake of simplicity, we do not further remark on this.

Critically, the guarantee of the quality of our DDPM is not in TV, but rather an optimal transport distance tailored to the
problem at hand. As remarked in Section 3, it is precisely this weaker guarantee that makes the problem challenging.

We begin by recalling the basic motivation for Denoising Diffusion Probabilistic Models (DDPMs) and explain how we
train them. We then apply results from Chen et al. (2022) to show that if we have learned the conditional score function,
then sampling can be done efficiently. While Block et al. (2020a) demonstrated that unconditional score learning can be
learned through standard statistical learning techniques, we generalize these results to the case of conditional score learning
and conclude the section by proving that with sufficiently many samples, we can efficiently sample from a distribution close
to our target. In this section, we drop the subscript & for clarity, as our theoretical analysis treats each sy 5, separately; while
empirically one sees better success in training the score estimates jointly, the focus of this paper is not on sampling and
score estimation and so we make the simplifying assumption for the sake of convenience.

H.1. Denoising Diffusion Probabilistic Models

We begin by motivating the sampling procedure described in (2.2), which is derived by fixing a horizon 7" and considering
the continuum limit as « | 0 and J = % More precisely, consider a forward process satisfying the stochastic differential
equation (SDE) for 0 <t < T*

dat = —aldt + V2dB;, a°~gq,

where B, is a Brownian motion on R? and a" is sampled from the target density. Applying the standard time reversal to this
process results in the following SDE:

dal’~" = (a'_ +2Vloggr_.(al)) dt + vV2dB,, al ~ qr,

where ¢; is the law of a®. Because the forward process mixes exponentially quickly to a standard Gaussian, in order to
approximately sample from g, the learner may sample a0 ~ A/(0,I) and evolving 3 according to the SDE above. Note
that the classical Euler-Maruyama discretization of the above procedure is exactly (2.2), but with the true score V log g7
replaced by score estimates sg(-, 7 — t) : R — R?; we may hope that if s¢(-, 7 — ) ~ V log g7_; as functions, then the
procedure in (2.2) produces a sample close in law to ¢. Indeed, the following result provides a quantitative bound:

Theorem 7 (Corollary 4, Chen et al. (2022)). Suppose that a distribution q on R? is supported on some ball of radius R > 1.
Let C be a universal constant, fix ¢ > 0, and let o, J be set as in (H.1). If we have a score estimator sg : R? x [1] — R¢
such that

maXEaNQ[aﬂ [HSg(a,j) — Vlog Qo] (a)HQ} < €4a

jelJ]
then
sup Esnvaw(a’) [f(3)] = Barng [f(a")] < €%,
P oo VIV £l o <1
where a” is sampled as in (2.2).



Remark H.4. As a technical aside, we note that Chen et al. (2022, Corollary 4) applies to an “early stopped” DDPM, in the
sense that the denoising is stopped in slightly fewer than J steps. On the other hand, for the choice of « given above, Chen
et al. (2022, Lemma 20 (a)) demonstrates that this distribution is £2-close in Wasserstein distance to the sample produced by
using all J steps and so by multiplying C' above by a factor of 2 the guarantee is preserved. Because in practice we do not
stop the DDPM early, we phrase Theorem 7 in the way above as opposed to the more complicated version with the early
stopping.

Remark H.5. While (Chen et al., 2022; Lee et al., 2023) show that if sy is close to the s, 5, in LQ(q[aj]) and ¢ satisfies mild
regularity properties, then the law of a ,JL will be close in total variation to ¢q. Unfortunately, the required regularity of ¢, that
the score is Lipschitz, is too strong to hold in many of our applications, such as when the data lie close to a low-dimensional
manifold. In such cases, Chen et al. (2022) provided guarantees in a weaker metric on distributions. We emphasize that even
with full dimensional support, the Lipschitz constant of V log g is likely large and thus the dependence on this constant
appearing in Chen et al. (2022, Theorem 2) is unacceptable. In particular, this subtle point is what necessitates the intricate
construction of our paper; as remarked in Section 3, if we could expect the score to be sufficiently regular and producing a
sample close in total variation to the target distribution were feasable, the problem would be trivial.

While Theorem 7 applies to unconditional sampling, it is easy to derive conditional sampling guarantees as a corollary.

Corollary H.1. Suppose that q is a joint distribution on actions a and observations P, j, € RY. Further assume that the
marginals over R are fully supported in a ball of radius R > 1. Then there exists a universal constant C' such that for all
small € > 0, if J and « are set as in (H.1) and

, 2
Eo,. n~do, » Lﬂé%anM(-pm,h) [HSG(B,J, Pun) — V10g a1 (alpm.n) || H <&t (H.2)
then
E ~ inf Py, ([@—a%| >¢e)| <3¢
e Gem, Le%(mw(sé),p,,,,h),qcpm,m Gy (I =] )]
Proof. We begin by showing an intermediate result,
Eo,. ~do,. sup Egoopuss,p,n 1) [f @) = Earna(lp,,, [F(@5)]] < 3¢% (H.3)
LI VIV Il o <1
using Theorem 7. Let
) 2
A= {jfg?;ﬁ]Ea~qm'pm,h> 806213 ) = V108 g1 (2l )||’] < 52}~
By Markov’s inequality and (H.2), it holds that
4
. €
Ppm,thPm,h (‘A ) < 572 =¢?
and thus
Eo,. n~ao, » sup Es~poem(se,ppm 1) [f@)] - Eavq(1pm.n) [f(@")]
LI e VIV fIl o <1
=B, ~ap,,, [TA sup Eaooen(sg,0,) [F ()] = Barng(p,,. ) [F(27)]
’ Pl oo VIV oo <1
+Eo, i~y [1A7] sup Esooen(se,pp 1) [f(3)] = Barng(lp,, ) [F(27)]
Pl oo VIV F oo <1

S ]Epm,h,“‘qpm,h |:I['A] q,eiil(fRd) W2<Q('|pm,h)? q/> + TV (q/a LaW(WT)>:| + 252'



For each p,, ;,, we may apply Theorem 7 and observe that for p,, ;, € A,

sup E5~DDPM(sg,pm_h) [f(ﬁ)] - ]Ea*Nq(-\pm’h) [f(a*)] < 52a
T VIV A o <1 '

which proves (H.3). Now, for any fixed p,,, ;,, by Markov’s inequality and the definition of Wasserstein distance,

~ W1(DDPM(Sg, Ppup)> 4(-|Prmi))
Paa )~ ([[3—a"[ > €) < : )

inf
WEE (DDPM(S6,P1n, 1), (*|Pr,n))

The result follows. O

Note that the guarantee in Corollary H.1 is precisely what we need to control the one step imitation error in Theorem 2; thus,
the problem of conditional sampling has been reduced to estimating the score. In the subsequent section, we will apply
standard statistical learning techniques to provide a nonasymptotic bound on the quality of a score estimator.

H.2. Score Estimation

In the previous section we have shown that conditional sampling can be reduced to the problem of learning the conditional
score. While there exist non-asymptotic bounds for learning the unconditional score (Block et al., 2020a), they apply to a
slightly different score estimator than is typically used in practice. Here we upper bound the estimation error in terms of the
complexity of the space of parameters ©.

Observe that in order to apply Corollary H.1, we need a guarantee on the error of our score estimate in L? (o)) forall j € [J].
Ideally, then, for fixed p,,, ;, and ¢ = aj, we would like to minimize E,q,, [| |so(a, Py pst) — Viog g (al o p)| ﬂ , where

the inner norm is the Euclidean norm on R¢. Unfortunately, because qt] itself is unkown, we cannot even take an empirical
version of this loss. Instead, through a now classical integration by parts (Hyvérinen & Dayan, 2005; Vincent, 2011; Song &
Ermon, 2019), this objective can be shown to be equivalent to minimizing
1 2
\/ =il ’
1-e

Se (e_ta + v 1- e—2t,7’ pm,hat) +
Because we are really interested in the expectation over the joint distribution (a, p,,, ;,), we may take the expectation over
P, and recover (3.1) as the empirical approximation. We now prove the following result for a single time step ¢:

Lonem (0, a, Pm,» t) = Ea""][t] [

Proposition H.1. Suppose that q is a distribution such that q(-|p,, ;) is supported on a ball of radius R for g-almost
every Py, - For fixed j € [J] and o from (H.1), let t = jo and suppose that there is some 0* € ©; such that s, (-, -, t) =
so= (-, -, t) = Vlogqu(-|-), i.e., s is rich enough to represent the true score at time t. Suppose further that the class of

functions {sg|0 € ©;} satisfies for all 0 € O,
d*(R + y/dlog (222))?
sup Hse(a>pm,hat) _SQ’(a/7pm,hat>H <c

0,0'€O; e8
lal|v||a"]|<R
Pm,n

for some universal constant ¢ > 0. Recall the Rademacher term R.,(© ;) defined in Definition H.1, and let

n
0 € arg minz Lopem (0, 2i; P ist)
geo =

for independent and identically distributed (a;, p,, ;) ~ q. Then it holds with probability at least 1 — § over the data that

Earspyy iy ||[85(3t: 0 t) = V108 g (ael o )]

- 1 — e 2t 8




Before we provide a proof, we recall the following result:

Lemma H.2. Suppose that q is supported in a ball of radius R and lett > o for o as in (H.1). Then Vlogqp(-|-) is
L-Lipschitz with respect to the first parameter for

dR?*(R Vv Vd)?
L == —8.
€
In particular,

sup ‘|Vlogq[t](a|pm7h) Viog qi(a’lpm.n) H <2LR
llalIv]|a"||[<R
Pm,h

and there exists some assignment of © and sy that satisfies the boundedness condition in Proposition H. 1.

Proof. The first statement follows from eplacing the € in Chen et al. (2022, Lemma 20 (c)) by 2. The second statement
follows immediately from the first. O

We also require the following standard result:
Lemma H.3. If R, (©,) is defined as in Definition H.1, then

n

1
E‘Yla-~77n Qseugv E ’ Z <Sg(a Pm, 13.] > V 7T10g dTL Rn
J 1=1
1<5;<J

Proof. This statement is classical and follows immediately from the fact that the norm of a Gaussian is independent from its
sign as well as the fact that E [max; ;(v;);] < /7 log(dn) by classical Gaussian concentration. See Van Handel (2014) for
more details. O

Proof of Proposition H.1. Let P,, denote the empirical measure on n independent samples { (ai, P is 'yi) } and let a =
e ta; + 1 — e 2ty,. Let Cy = /1 — e—2t and observe that by definition and realizability,

P, <HCfS§(at7 pm,/wt) - ’YHQ) <P, ("CtvlogQ[t](at|prn,h) - 7”2) . (H4)

We embhasize that by Lemma H.2, realizability does not make the result vaccuous. Adding and subtracting
CyVlog qpyj(a*|pyy 1,) from the left hand inequality, expanding and rearranging, we see that

CEP (HS ', Pnst) — Viog gy (atlppp) H)<20t w ((5(a", P s 1) — Viog gy (1P ), 7))

<2C;- (:up so(a’ s Pmopot) — VIOgQ[t](at|Pm,h)v’Y>> :
€0;

We now claim that with probability at least 1 — 4, it holds that

Pn Sup <59(at7pm,ha) Vlqu ( ‘pmh 7>>
0€0;

5. dlog (%)’
\ n

d(R + \/dlog (224))?
= (%) (H.5)

Pn (;ug <Se(at7 pm,h’ t) -V IOg Q[t] (at‘pm,h)7 7>> < E
€

where




for some universal constant ¢ > 0. To see this, we claim that with probability at least 1 — £, it holds that ||al|| <

c (R + 4/dlog (22”1)> for all 1 < ¢ < n. Indeed, this follows by Gaussian concentration in Jin et al. (2019, Lemmata

1 & 2). We may now apply Lemma H.2 to a bound on the osculation of sy — V log g4 in the ball of the above radius.
Conditioning on the event that ||a%|| is bounded by the above, we may argue as in Wainwright (2019, Theorem 4.10) that if
we let the function

G = G(ala pm,17 <oy an, pm,n) = P” <gsu®p <S‘9(at? pm,h7t) - VIogq[t](at|pm,h)77>> )
€9;

then for any i, on the event of bounded norm, replacing (a;, p,, ;) with (aj, p;m) and leaving other terms unchanged changes

ensures that |G — G'| < 2B+,. Thus by Jin et al. (2019, Corollary 7) and a union bound, the claim holds. Because ~ is
mean zero, we have

E {Pn (sup (so(a’, ooy ) — Vlog gy (at|pm,h>,~y>)} <E {Pn (sup (so(a, pm,h,t>n>)]
0ce 0cO

< /rlog(dn) - R.(©;),

where the last inequality follows by Lemma H.3 and the fact that ¢ = j.J. Summing up the argument until this point and
rearranging tells us that with probability at least 1 — 4, it holds that

B dlog (2%‘1)

2
P, (||S§(at, P ) — Vlong[tl(at\Pm,hHIQ) < am.nn(@) + o )

with B given in (H.5). We now use a uniform norm comparison between population and empirical norms to conclude the
proof. Indeed, it holds by Rakhlin et al. (2017, Lemma 8.i & 9) that there exists a critical radius

< eBlog®(n)R,.(0;)?
such that with probability at least 1 — 4,

E(af,pm,h)wqm |:’ ‘S§(3t7 pm,h? t) -V 1Og q[t] (at|pm,h) ’ ’2]

log () + log1
=2 F (‘|S§(at’ Punpt) = VIOgQ[t](at\Pm,h)Hz) +crptc %8 (3) —; 8 ogny

where again c is some universal constant. Combining this with our earlier bound on the empirical distance and a union
bound, after rescaling ¢, we have that

2B dlog (%)

4
E(aﬁpm,h)w[q “ |S§(ata Pm,pst) — Viog Q[t](at|pm,h)||2} < a\/ﬂlog(nd) “Rn(©;,) + oA . -

" clog (2) + loglog(n)
n

+ cBlog®(n) - R2(0;
with probability at least 1 — §. This concludes the proof. O

Remark H.6. For the sake of simplicity, in the proof of Proposition H.1 we applied uniform deviations and recovered
the “slow rate” of R,,(©), up to logarithmic factors. Indeed, if we were to further assume that the score function class is
star-shaped around the true score, we could recover a faster rate, as was done in the case of unconditional sampling in Block
et al. (2020a) with a slightly different loss. While in our proof the appeal to Rakhlin et al. (2017) to control the population
norm by the empirical norm could be replaced with a simpler uniform deviations argument because we have already given
up on the fast rate, such an argument is necessary in the more refined analysis. As the focus of this paper is not on the
sampling portion of the end-to-end analysis, we do not include a rigorous proof of the case of fast rates for the sake of
simplicity and space.



Remark H.7. While we assumed for simplicity that the score was realizable with respect to our function class for every
time ¢ = «, this condition can be relaxed to approximate realizability in a standard way. In particular, if the score is e-far
away from some function representable by our class in a pointwise sense, then we can add an ¢ to the right hand side of
(H.4) with minimal modification to the proof.

With Proposition H.1, and a union bound, we recover the following result:

Proposition H.4. Suppose that the conditions on sy in Proposition H.1 continue to hold. Let J and o be as in (H.1) and
suppose that o < % Then, with probability at least 1 — 6 over D', it holds that

, 2
Eopn~om ;%?}?Ea"’(ﬂaj]('lpm,h) {HS@(aJ’pm,h) = Viog gja;)(alom,p)|| H

JAR(RY Vd) log(dn)
< =i

d* (R? + dlog (")) [dlog (42E
Rn(@)+6 ( +512Og( de )) Ogsl oe )

In particular if
Rn(0;) < Con™'/"

for some v > 2 and all j € |J], then for

- (C@dR(R v Vd) 1og(dn)>4” y (czﬁ(R‘l vV d?log” (%42)) d2> v

o4 -24
it holds that with probability at least 1 — 6,

. 2
B ~tom s ng?ﬁﬁaw[a,-](-pm,h) [[156(2.5: P ) = V108 oz (210 )| H <<t

Proof. We begin by noting that
l—eZ>1-¢e2*>q
because 20 < 1. We now apply Proposition H.1 and take a union bound over j € [J]. The result follows. O

We note that in our simplified analysis, we have assumed that N,,4 = 1, i.e., for each sample, we take a single noise
level from the path. In practice, we use many augmentations per sample. Again, as the focus of our paper is not on score
estimation and sampling, we treat this as a simple convenience and leave open to future work the problem of rigorously
demonstrating that multiple augmentations indeed help with learning. Finally, for a discussion on bounding R,,(©), see
Wainwright (2019).

Proof of Theorem 6. We note that the proof follows immediately from combining Corollary H.1 with Proposition H.4. [

I. End-to-end Guarantees and the Proof of Theorem 1

In this section, we provide a number of end-to-end guarantees for the learned imitation policy under various assumptions.
The core of the section is Theorem 8, which provides the basis for the final proof of Theorem 1 in the body by uniting the
analysis in the composite MDP from Appendix E, the control theory from Appendix G, and the sampling guarantees from
Appendix H. We now summarize the organisation of the appendix:

* In Appendix I.1, we recall the association between the control setting and the composite MDP presented in Section 4,
as well as rigorously instantiating the direct decomposition and the expert policy.

* In Appendix 1.2, we state a reduction from imitation learning to conditional sampling, which we then use to derive a
proof of Theorem 1.



* In Appendix 1.3, we demonstrate that if the demonstrator policy is assumed to be TVC, then we can recover stronger
guarantees than those provided in Theorem 1 without this assumption; in particular, we show that we can bound the
Jjoint imitation loss as well as the marginal and final versions.

* In Appendix 1.4, we show that if we were able to produce samples from a distribution close in total variation to the
expert policy distribution, as opposed to the weaker optimal transport metric that we consider in the rest of the paper,
then without any further assumptions, imitation learning is easily achievable.

 In Appendix 1.5, we show that if we remove the data augmentation from TODA, i.e., we set o = 0, then we can recover
similar guarantees under the assumption that the imitator policy 7 is TVC. In this way, we show that in some sense,
total variation continuity is the important property imparted by smoothing.

 In Appendix 1.6, we demonstrate the utility of our imitation losses, showing that for Lipschitz cost functions decompos-
ing in natural ways, our imitation losses as defined in Definition 2.2 provide control over the difference in expected
cost under expert and imitated distributions.

* Finally, in Appendix 1.7, we collect a number of useful lemmata that we use throughout the appendix.

I.1. Preliminaries

Here, we state various preliminaries to the end-to-end theorems. For simplicity, to avoid complications with the boundary
effects at h = 1, we re-define h = 1-memory chunks p,, ; as elements &, 1 by prepending the necessary zeros — i.e.
Pm1 = (0,0,...,0,x;)- and similarly modifying p.; € &7 by prepending zeros. We first recall the definitions of
the composite-states and -actions from Section 4. The prepending of zeros in the h = 1 case is mentioned above. For
h > 1, recall that s;, = (X¢,_,:t,,,Us,_,:t,—1) and that a5, = ry, ., ,—1, Where we again emphasize that a;, begins at
the same ¢ that sj, 1 does. We further recall that ds(sn,s),) = maxiep, ,:¢,] |[%: — X4 V maxeeqr, v, —17 |[1e — ul],
drve(Sh, S),) = MaXee(r, —rpity) [1Xe — Xi|| V Maxyepr, 7, —1) |1 — wi], and dips(sp, sj,) = ||xt, — x4, ||- Finally, for
a = (Ui, X1:r, Kiir, ) and ' = (0], , X}, , K., ), recall from (4.2) that

da(a,a’) = cr max (uy — 0] + % = %5 + Ky — Ki[]) +To.o{€},

where we £ = {max; <<, max{||ay — ||, ||Xx — X, ||, |[Kr — K}||} < c2}, Io,c is the indicator taking infinite value
when the event fails to hold, and ¢; and cs are given in Definition G.5.

Direct Decomposition and Smoothing Kernel. This section will invoke the generalizations Theorem 2 which requires
TVC only subspace of the state space. This invokes the direct decomposition explained in Appendix E.
Definition I.1 (Direct Decomposition and Smoothing Kernel). We consider the decomposition of S = Z & V, where

Z = P, -1 are the coordinates of p ;, corresponding to the memory chunk p,, ;,, and ) are all remaining coordinates We
let oz : S — Z denote the projection onto the coordinates in Z. We instantiate the smoothing kernel W, as follows: For

s=p.p € Pr,., welet
o’z 0
WO’(S) :N (pc,ha |: OZ 0 )

where Iz denotes the identity supported on the coordinates in Z as described above.

We note that the above direct decomposition satisfies the requiste compatibility assumptions explained in Appendix E. Note
also that djpg and W, are compatible with the above direct decomposition.

Chunking Policies. We continue by centralizing a definition of chunking policies.

Definition 1.2 (Policy and Initial-State Distributions). Given an chunking policy = = (m)F_, with 7, : 2. _1 — A(A),
we let D denote the distribution over p7 and a;.yr induced by selecting aj, ~ 7, (p,, ,), and rolling out the dynamics as
described in Section 2. We extend chunking policies to maps 7, : S = &, — A(A) by expressing 7, = 7 0 ¢z (i.e.,
projection P, Onto its P, n-components). Further, we let Pj,;; denote the distribution of x; under py ~ Deyyp.

Remark I.1. The notation D, denotes the special case of chunking policies in the control setting of Section 2, whereas we

reserve the seraf font D, for the distribution induced by policies in the abstract MDP. For composite MDPs instantiated as in
Section 4.1, the two exactly coincide.



Construction of 7* for composite MDP. We now explain how to extract 7* from Dy, in the composite MDP.

Definition L.3 (Policies corresponding to Dey,,). Define the following sequence kernels 7 = (77)fL, and 7}, =
(Thec., n)iL, via the following process. Let p ~ Dexp, and letay.y; = synth(py); further, let p,, ;. be the corresponding
memory-chunks from p;. Let

s () : Pr,—1 — Adenote aregular conditional probability corresponding to the distribution over a, given p,, ; in
the above construction.

* Tiec, n() 1 Pr.—1 — Adenote a regular conditional probability corresponding to the distribution over aj, given an
augmented P, ,, ~ N (py, ,0°T).

Finally, for 7* as constructed above, P} denotes the distribution over Pe.h under D,~. By Lemma 1.6, this is in fact equal to
the distribution over p, ;, under Dey;,. Notice further, therefore, that ¢z o P} is precisely the distribution of p,,, , under
Dexp-

Remark 1.2. We remark that by Theorem 3, 7 is unique up to a measure zero set of p,,, ;, as distributed as above, and
T jec., 18 Unique almost surely for p,, ,, distributed as above. In particular, since the latter has density with respect to the
Lebesgue measure and infinite support, TJec,p 18 Unique in a Lebesgue almost everywhere sense.

Instantiation of the distance d 4 for pairs of actions. We recall the instantiation of the distance d 4:
Definition 1.4 (Instantiation of d 4). Werecalld4 : A X A — Rx( as defined in (4.2):

da(aa) = e max (i — gl + % — %+ K — Ky )+ Toe €,

where we define € := {max;<x<,, max{||tx — }|, [|Xr — X ||, K — K, ||} < c2}, Io,o0 is the indicator taking infinite
value when the event fails to hold, and c; and cy are constants depending polynomially on all problem parameters, given in
Definition G.7.

1.1.1. PRELIMINARIES FOR JOINT-DISTRIBUTION IMITATION.

This section introduces a further joint imitation gap, which we can make small under a stronger bounded-memory assumption
on Dey,, stated below.
Definition I.5 (Joint Imitation Gap). Given a chunking polcy 7/, we let

exp exp

Lioint,e () := iﬂf]P)/t g%m%{llxm - X?—&-l”v [u;™ — uf”} >el,

where the infimum is over all couplings between the distribution of p under Dy, and that induced by the policy .

Controlling Ljint, (7) requires various additional stronger assumptions (which we do not require in Theorem 1), one of
which is that the demonstrator has bounded memory:

Definition 1.6. We say that the demonstration distribution, synthesis oracle pair (Dexp, synth) have 7-bounded memory if
under pp = (X1.741,U1:7) ~ Dexp and a;.y = synth(py), the conditional distribution of a;, and x1.4, — -, 1.4, — - are
conditionally independence given (X¢, —r41:, , Uty —r+1:t,—1)-

We note that enforcing Definition 1.6 can be relaxed to a mixing time assumption (see Remark 1.4). Moreover, we stress that
we do not need the condition in Definition 1.6 if we only seek imitation of marginal distributions (as captured by Liarg.c
and Ly ), as in Theorem 1.

1.1.2. TRANSLATING CONTROL IMITATION LOSSES TO COMPOSITE-MDP IMITATION GAPS

Lemma L.1. Recall the imitation losses Definitions 2.2 and 1.5, and the compsite-MDP imitation gaps Definition 4.1.
Further consider, the substitutions defined in Section 4.1, with 7* instantiated as in Definition 1.3. Given policies m = ()
withmy, : P; 1 — A, we can extend 7wy, - S = .. — A by the natural embedding of -, _1 into P._. Then, for any
>0,

Lrmarg,e(T) < Tmarg,e (7 [| 7).



If we instead consider the the substitutions defined in Section 4.1, but set ds to equal d,ps, which only measures distance in
the final coordinate of each trajectory chunk p. y,

‘CﬁmE(ﬂ-) S I—‘r‘ﬂ'a»rg,es('rr || 7T*), dS('7 ) — dIPS('a ) (Il)
Finally, if Dexp, has T < Ty, -bounded memory,

Lioint,e () < Tioing,e (7 || 7).

Proof. Let’s start with the first bound, let superscript exp denote objects from Dy, and superscript 7 from Dy, the
distribution induced by chunking policy 7. Letting inf,, denote infima over couplings between the two, we have

Lo () 1= mcint (B, (1538 7ol > €] B 0™ = wF | > o]}
= max inf {Py [IIx738 = x0a |V [uy™ —uf|| > €] }
< s inf (£, | max 52, —xf, v o ui?, g, |
< g nf (P ool 0]}

From Lemma 1.6, pexlo has the same marginal distribution as pC 1, the distribution induced by 7* in Definition I.3. Note the
subtlety that the Jomt distribution of these may defer because 7* has limited trajectories. Still, letting inf,,, denote infimum
over couplings between D,. and D, equality of marginals suffices to ensure

Lo (m) = mas inf (B, [ds (0T 7)) |

he[H] p
which is at most I'yare (7 || 7*) by definition Definition 4.1.

For the final-state imitation loss,

Loin,e(m) = f Py [[x7Y) = x| > ]

< i f{P |:d E‘XP7 o i|}7
7}{2%3{}12 u IPS(PC,;,, pc,h)

where again dps only measures error in the final state of p, ;. The corresponding bound in (I.1) follows similarly.

Finally, we have

Cyan o) = B, [ {25 — <l o™ = [} > <]

When Dey, has 7 < 7, -bounded memory, then, the expert and 7*-induced trajectories are identically distributed. Therefore,
directly from this observation and Definition 4.1,

oo o) =it B, [ { Iy = <l o = w1} > ] < Dyl | 7°),

L.2. Proof of Theorem 1 and a general reduction

We now state a reduction from which Theorem 1 is readily derived from our statistical learning analysis of score estimation.

Theorem 8 (Reduction from trajectory imitation to conditional sampling). Consider applying TODA with o > 0, and let
d € (0,1), and define

Ah( ) Epm hNDexpEﬁm,th(Pm,h-ﬁzl) ll’lf ~ ]P)(a,a’)wp, [dA(a, a’)]. (12)

Ne%(ﬂ'sec,h,(pm,h)vﬁ'h(pm,h))

where d 4 is as in Definition 1.4, p,, ;, ~ Dexp is shorthand for pp ~ Dexp, and p,, j, denotes the corresponding h-th
memory chunk of Deyy,. Consider the following setup:



* Suppose that Assumptions 3.1 and 3.2 hold.

e Letcy,...,cs be the constants defined Definition G.7, which we recall are polynomial in the terms in Assumptions 3.1
and 3.2

* Define d = 1.(dy, + dy + dydy).
* Suppose that . > c3/1

* The parameters €,0 > 0 satisfy 5d, + log (42) < ¢3/(165?),

For all we have

Acmargﬁl (ﬁ'a) \4 ‘Cﬁn,éz (ﬁ-U)

H
2e 4o\ _nGe=mm)
<H|—+6 5d, + 21 — Lsta A
< <J+ C5\/ + og(g)e b >+§ n(€)

where

4
£1 =€ +4deso - \/5d$ +2log (E") (13)
_ _NTc 40’
€9 =€ + dcgoe Towab - \/5dz + 2log (5)

We first demonstrate how Theorem 1 follows from Theorem 8 and Theorem 6:

Proof of Theorem 1. From Theorem 8, it suffices to show that with probability at least 1 — ¢, it holds that A; < %5 for
all h € [H]. Note that by Assumption 3.2 it holds Deyp-almost surely that ||aj|| < Rstab and thus the condition on ¢ in
Theorem 6 holds for R = Rgtap,. Moreover, for d = 7.(d, + d,, + d.d,), we have that a € R4, By Assumption 3.3, the
conditions on the score class sy hold for us to apply Theorem 6. Note that by assumption,

N o [ CotBURY VD) log(dn) 4”v dO(RYV dlog? (502 4”7
(/o) (e/o)?

where we note that the right hand side is poly (Ce, /0, Rstab, d,log(H/§))"”, and J and « are set as in (H.1). Taking a
union bound over h € [H] and applying Theorem 6 tells us that with probability at least 1 — §, for all A € [H], it holds that

e
E ~ inf P o a—a"l|>¢e/o)| < —
pm)h qpm?h [Me(g(DDPM(S§7pm,h)v‘]("pm,h)) ( (H || / >} O—

Thus it holds that with probability at least 1 — 6,

Ap(e/o) <

uMm
\
9 m

Plugging this in to Theorem 8 concludes the proof. O

Proof of Theorem 8. Lets begin by bounding L,are (7). Recall the definitions of ds, drvc, dips in Section 4, and let
s1.z741 and s1. ;741 denote the composite states corresponding to a trajectory (xTn +1,uf) under 7 and (X7, 1, ulp),
respectively, under the instantiation of the composite MDP in Section 4.1. We can view 7* and 7 (which depend only on
memory chunks p,, ;) as policies in the composite MDP which are compatible with the decomposition Definition E.1. We
make the following points:



* In light of Lemma I.1,

Lmarg,e: (7 | 7) < Tmarg,e, (7 [| 7).

¢ By Lemma 1.8, a consequence of Pinsker’s inequality, it holds that the Gaussian kernel W, used in TODA is v,-TVC

(W.r.t. drye) with v, (u) = u\/;?ﬁ

* Note that dips(sp, s},) = ||x¢, — X}, || measures Euclidean distance between the last x-coordinates of s, sj,. Moreover,
if s, ~ W, (sp,) the last coordinate x}, of s’ is distributed as N'(x,,0*I). By Lemma 1.7 with d = d,,, that for

r=20-4/5d; + 2log (%)
HDs’~WC,(s) [dips (s, S/) > 7] <p.

* As (a) s}, corresponds to P, ;, from pp ~ Dexp, (b) as 7, 7y, are functions of p,, 5, and (c) by recalling the definition
of dos - in Definition 4.1,

Es; pi Esx ow, (s1)os,e (M1 (53) || Tec (7))

= Epm,hNDexpEﬁm,h~N(pm1h,a2l) (a,a/)wu[dA(a, a’) > 6],

inf P
#e%(wécc(ém,h)vﬁ(ﬁm,h))
which is at most Ay (g¢) by assumption.

* Finally, Proposition 4.1 ensures that under our assumption 7. > c3 /7, and let rps = ¢4, Yips,1(u) = csuexp(—n(7e —
Tm)/ Lstab)> Yes,2(1) = csu for ¢3, ¢4, ¢5 given in Definition G.7. Then, for ds, dryc, dips as above, we have that 7* is

(’Ylps,l, Yips, 25 dips, TIPS)‘IPS

Consequently, for r = 20 - 1/5d, + 2log (4?") € (0, %rlps), Theorem 5 (which, we recall, generalizes Theorem 2 to account
for the direct decomposition structure) implies

Lmarg,e+2r05 (7?(0) = Emarg,s-{—Qrcs (7}0 || 77'*) S Fmarg,s+2rcs (ﬁ-a H 77*)
3 _nlre=mm)
< HV21y, — 1 (; + % <max {5,2?"656 s }))
g g

H - . =
+ 2 h=1 Espopp Esp ow, (s7)dos,e (T (55) || Tiec(51))

H

2 4 _ n(re=mm)
§H\/2Tm1< i +605\/5dz+210g< J)e o ) +ZAh(€)
h

a 3
=1

Substituting in €1 = € + 2rcs = € + 4cs0 - /5d + 21og (22) the bound on Lyyarg,, is proved.

To show Ly ., (7,) satisfies the same bound, we replace ds in the above argument (as defined in Section 4.1) with
ds(:,-) = dis(-, -), where again we recall that dyps (s, s};) = [|x¢, —X}, || measures differences in the final associated control
state. From Corollary G.1, which is a a generalization of Proposition 4.1, it follows that we can replace %ps,g(u) = c5u

as used above with the considerable smaller quantity ~ips 2(u) = csue Lns:-:b. Thus, we can replace €1 above with
€3 1= + dese e/ Lstab g - (5d,, + 21og (1))1/2. This concludes the proof that

_n(Te=7m) 2
Emarg752 (frg) < HV21y, — 1 (605\/56& + 2log (4?0)6 2 Lstab 4 ;) ,

as needed. O



L.3. Imitation of the joint trajectory under total variation continuity of demonstrator policy

Here, we show that if the demonstrator policy satisfies a certain continuity property in total variation distance, then we
can imitate the joint distribution over trajectories, not just marginals. Recall the joint imitation loss from Ljoin¢,. from
Definition L.5.

Theorem 9. Consider the setting Theorem 8, with Ay, (¢) as in (1.2), and suppose all the assumptions of that theorem are
met. Suppose that, in addition, there is a strictly increasing function (-) such that for all Pum,h> P/m,h € P 1,

TV (Pop)> T (Prn)) < YU Pmn — Prnll)s

where * is defined is the conditional in Definition 1.3. Further, suppose that Dexp has T < Ty bounded memory

(Definition 1.6). Then, with €1 := € + 4cs50 - 4/ 5d,; + 2log (4?”) as in (1.3),

Lioint,e; (To) < H - ERRTVC(0,7)

4 (T¢—=7m)
+HW< +6C5\/5dx + 2log (:) s ) + ZAh

where we define dy = Tidy + (Tm — 1)dy, and ug = v(80/dg log(9)), and
260—\/> linear v(u) = c- u,c >0
ERRTVC(0,7) = 1 v(u) ' 04
up + f T du general y(-)
In particular, under Assumption 3.3, if
4v ny
CodR(R V V/d)log(dn) dS(R* v d?log® (Hndliey)
Nexp >c \Vi . d 7
(e/o)* (e/0)?

then with probability at least 1 — 6, it holds that

4 _n(re—7m)
Liointe; (7o) < H - ERRTVC(0,7) + HV 27y, — ( + 6c5 \/de + 2log (U)e Lstab ) .
€

Remark 1.3. The second term in our bound on Ejoim)g(ﬂ') is identical to the bound in Theorem 8. The term ERRTVC
captures the additional penalty we pay to strengthen for imitation of marginals to imitation of joint distributions. Notice that
if lim,, 0 y(u) — 0 and ~(u) is sufficiently integrable, then, lim,_,o Err(c,y) = 0. This is most clear in the linear ~y(-)
case, where Err(o,v) = O (o).

The proof is given in Appendix 1.3.1; it mirrors that of Theorem 8, but replaces Theorem 2 with the following imitation
guarantee in the composite MDP abstraction of Section 4, which bounds the joint imitation gap relative to 7* if 7* is TVC.

Proposition 1.2. Consider the set-up of Section 4, and suppose that the assumptions of Theorem 5, but that, in addition, the
expert policy 7* is 4(-)-TVC with respect to the pseudometric dryc, where 7 : R>o — Rxq is strictly increasing. Then, for
all parameters as in Theorem 2, and any 7 > 0,

Tioint,e (o W,y || ) < H/ max Py ow, (s)[drve (s, s') > :y*l(u)/2]du
0 S

H al o ok
+ H (2p, + 37, (max{e, ’YIPS,l(QT)})) + Zh:l ES;LNP;E.E.;vaU(s,*,)dOS,E(7Th(52) [ ﬂ-gec(sh))7
where the term in color on the first line is the only term that differs from the bound in Theorem 2.

Moreover, in the special case where all of the distributions of dryc(s,s’) | s' ~ W, (s) are stochastically dominated by a
common random variable Z, and further more ¥(u) = ¢ - u for some constant ¢, then our bound may be simplified to

Tioint,« (T o W, || 7*) < 2¢HE[Z]
+ H (2pr + 370(max{57 71PS,1(27“)})) + Z,Ij:l Esiwp;Egzng(sz)dos,g(ﬁ‘h(§;) || W(’;ec(g”;)).



Proof Sketch. Proposition 1.2 is derived below in Appendix 1.3.2. It is corollary of Theorem 2, combined with adjoining the
coupling constructed therein to a TV distance coupling between 75, (whose joints we can always imitate) and 7*. Coupling
trajectories induced by 75, and 7* relies on the TVC of 7*, as well as concentration of W,,. O

Using the above proposition, we can derive the following consequences for imitation of the joint distribution.

1.3.1. PROOF OF THEOREM 9

The proof is nearly identical to that of Theorem 8, with the modifications that we replace our use of Theorem 2 with
Proposition 1.2 taking 7 < . By Lemma I.1 and the assumpton that D¢y}, has 7 < 73,,-bounded memory, it suffices to
bound the joint-gap in the composite MDP:

‘Cjoint,s(ﬂ-) é Fjoint,s(ﬂ- || 7T*)~

We bound this directly from Proposition 1.2. The final statement follows from Theorem 6 in the same way that it does in the
proof of Theorem 1.

The only remaining modification, then, is to evaluate the additional additive terms colored in purple in Proposition 1.2; we will
show that ERRTVC as defined in (I.4) suffices as an upper bound. We have two cases. In both, let dy = Tindy + (7 — 1)dy.
As dryc measures the distance between the chunks p,, ;, = ¢z(sn), P, = ¢2(8},), which have dimension dy, and since
we ¢z o W, (1) = N (-, 0%1,,), we have

dive(¢z 05,0z 08) |'s' ~Wo(s) B |lv]l, ~~N(0,0%T4) (L5)

General (). Eq. (I.5) and Lemma 1.7 imply that
Py ow, (s)[drve(s,s)] < exp(—1%/160°), 1 > dodglog(9).
Hence, if ug = v(8cdp log(9)), then
Pldrve(s,s) > 7 (u)/2] < exp(—y ™ (u)?/640%), u > uy.

Thus, as probabilities are at most one,

o0 o ’yil(u)2
/ max Py w, o [drve(s,8) > 7 (u)/2)du < ug + / o g,
0 S

uo
as needed.
Linear v(-). In the special case where (u) = c(u), Eq. (L5) implies that we can take Z = ||| where v ~ N(0, 021,,)

in the second part of Proposition 1.2. The corresponding additive term is then 2HcE[||v|]]. By Jensen’s inequality,
E[llv]]] € VE[[V]?] = Vo2dy = o+/dy, as needed. O

1.3.2. PROOF OF PROPOSITION 1.2

Define the shorthand

B = H (2p, + 37, (max{e, s 1(2r)})) + L4y Be; opt Bss ow, (51 )dos.c (7155 [| Thoe (55)),

and recall that Theorem 2 ensures I'joint,o (7 0 W, || 75, ) < B. Further, recall from Definition 4.1 that

max max{dg(sg+1,§h+1)7dA(a%éh)} >el,

o <(7 0 Wi || 75,) = inf B, | mie

where the infinum is over all couplings 1 of (S1.57+1,31.4) ~ Dsow, and (S%H_H, a%H) ~ D”SG with P, [§1 = sf)] =1.
For any coupling 111, we can consider another coupling 3 of (7.7, 1,a}.5) ~ Dr+ and (s%H+17 a¥y) ~ Dz with
P,,[sf = s7] = 1. By the “gluing lemma” (Lemma C.2), we can construct a combined coupling 1 which respects the



marginals of p1 and po. This combined coupling induces a joint coupling fi; of Dzow, and D« which, by a union bound,
satisfies P, [§; = s7] = 1. Thus, by a union bound, we can bound

Fjoint,s(ﬁ' o WJ || 71'*) S Pﬁl |:}£I€12[)£I(] max{dg(sfl+1, §h+1), dA(az,éh)} > €:|

<P, {gg% max{ds(sj, 1, 5n11),da(ay, an)} > 5]
+ Py, [(STips1,3tm) # (S?:H-H’a?:H)} .
Passing to the infinum over p1, po,

Tjoint,e (7 © W || ) < Tjoins,e (7 0 W || 755,) +inf Py, (87,741 3100) # (SDrr10a0m)]

<B

where again yo quantify couplines of (s}, ;,a}.;7) ~ D+ and (S?:HH’ a¥y) ~ Dry, with Py, [s7 = 5] = 1. Bounding

the infinum over o with Proposition 1.4, we have

H
Tioint,e (F oWy || 7) < B+ Y Be TV(mji(}), 550 4 (57))
h=1
To conclude, it suffices to show the following bound:
Claim L3. Foranys € S, h € [H], and 7 > 0, TV(m,(s), 7}, ,(s)) < Jo° maxs maxs Py.ow, (s)[drve (s, s) >

7 H(w) /2],

Proof. To show this claim, we note that we can represent (via the notation in Appendix E.3) 77, |, (s) = oWE 1, (s), where
WY ), is the replica-kernel defined in Definition E.5. Thus, we can construct a coupling of a* ~ 77 (s) and a® ~ 7%, ,,(s)
by introducing an intermediate state s’ ~ W, , (s) and a® ~ 7*(s’). By Lemma C.4, the fact that TV distance is bounded
by one, and the assumption that 7* is 4-TVC, we then have

TV(3(5), 750.4(5)) < By, 9 TV(5(5), mh(s")).

Recall the well-known formula that, for a non-negative random variable X, E[X] = [ P[X > u]du (Durrett, 2019). From
this formula, we find

V(i (8): (9D < [ T BITV(r(s), 74 (¢)) > uldu

(i) [o°
< / Pldrec(s,s) > 5~ (u)]du
0

where in (7) we used that TV (7} (s), 77 (s')) < ¥(drve(s,s’)) and that, as ¥(-) is strictly increasing, we have the equality
of events {TV(m}(s), m5(s') > u} = {drve(s,s’) > 7' (u)}. Arguing as in the proof of Lemma E.5, we have that
Py ow, (s)[drve(s,s') > 771 (u)] < maxg Py ow, (s)[drve(s,s') > 771 (u)/2]. Hence, we conclude

o0
TV(75(s), 7500 (s) < / max Py ow, () [drve(s,s’) > 77" (u)/2]du
0
which proves the first guarantee. O

With the above claim proven, we conclude the proof of the first statement of Proposition I.2. For the second statement, we
observe that under the stated stochastic domination assumption by Z, and if (u) = ¢- u, then maxs Py ww,, s)[drve (s, s") >
371 (u)/2] <P[Z > #]. Hence, by a change of variables u = -,

/ max Py o, o) [drvc(s,8) > 7 (u)/2)du < / PIZ > o] =2 / PIZ > u] = 20E[Z],
0 s 0 0

where again we invoke that Z must be nonnegative (to stochastically dominate non-negative random variables), and thus
used the expectation formula referenced above. O



I.4. Imitation in total variation distance

Here, we notice that estimating the score in TV distance fascilliates estimation in the composite MDP, with no smoothing:

Theorem 10. For a chunking policy 7, suppose that there are terms (Ah)lg h<H such that

fE NDexpTV( (pm,h)7ﬁ-(pm,h)) < Aha

Then, under no additional assumption (not even those in Section 3), we have

H
Eﬁn,s:O(ﬁ—) S Emarg e= 0 Z

In in addition ™ has T-bounded memory(Definition 1.6) for T < Ty, then for Ligint « as in Definition 1.5,

‘C_]()lnt e= 0 E

The above theorem is a direct consequence of the result below in the composite MDP, together with the correct instantiations
for control, and Lemma L.1 to convert Liarg,c and Len ¢ into Iiarg,e < Djoint,e, and Djoing ¢, respectively.

Proposition 1.4. Consider the composite MDP setting of Section 4. Then, there exists a coupling

m

TV(D#, D) <Y Ear o TV(mji(sh), 7 (sh))
h=1

Thus, there exists a a couple i € €(Dg+,Dz) of (sT.pyy1,a1.) ~ Dx+ and (S1.m41,31.5) ~ Dz such that
P, [(st.;r4153%. ) # (S1:141,381:.1)] is bounded by the right-hand side of the above display. Moreover, this coupling
can be constructed such that P, [s} = §].

Proof of Proposition 1.4. This is a direct consequence of Lemma 1.9, with Py < Pjp;, and Qp41 corresponding to the
kernel for sampling aj ~ 7*(sj ) and incrementing the dynamics s}, , = Fj, (s}, aj ), and Qj, the same for &), ~ 7 (), and
similar incrementing of the dynamics. O

L.5. Imitiation with no augmentation

Theorem 11. Let 7 be a learner policy, and define

AZ(€) = Epm,hNDexpE()m’h~N(pmyh,021) P(a,a’)Nu[dA(aa a’)],

inf
HEE (T} (P, ) 7h (Pm,n))

which we note defers from Ay (e) in Eq. (1.2) in that it measures error with respect to Ty, rather than 75 . Suppose that
there is a non-decreasing function +(-) such that for all p., ,,, Pimh € Z;

'm—1

Tv(ﬁ-(pm,h)7 7c‘-(p]/m,h)) < ’Y(Hpm,h - p;n,h”)’

where T is defined is the conditional in Definition 1.3. Then, the loss of Tt, without smoothing, is bounded by

H

Emarg,a(ﬁ—) S H’Y(E\/ 27-rn - 1) + Z AZ(€)7

h=1
Further if Deyp, has 7 < Ty, bounded memory (Definition 1.6), then it also holds that

H

Lioint,e(7) < Hy(ev2mm — 1) + Z Aj(e)

h=1



Proof. The above is a direct consequence of the following points. First, with our instantition of the composite MDP, we
can bound Lyarg () < Imarg,e (T || 7) < Tjoint,« (7 || 7*) due to Lemma I.1; and moreover, we have Ljoins« (7) <
Tjoint,e (7 || 7*) when Deyp, has 7 < 7y,-bounded memory.

Next, bounding [P, , — Ponll < V27w — Tdrve (P py Prs)> We see 7 is §(-)-TVC w.rt. dpye, where J(u) =
Y(ur/2Tm — 1). The bound now follows from Proposition D.1, and the fact that Proposition 4.1 verifies the input-stability
property. O

L.6. Consequence for expected costs

Finally, we prove Proposition 1.5, which shows that it is sufficient to control the imitation losses in Definition 2.2 if we wish
to control the difference of a Lipschitz cost function between the learned policy and the expert distribution:

Proposition L5. Recall the marginal and final imitation losses in Definition 2.2, and also the joint imitation loss in
Definition 1.5. Consider a cost function J : Zp — R on trajectories pr € Prp. Finally, let pp ~ Dexp, and let plp, ~ Dy
be under the distribution induced by m Then,

(a) If max,, |J(pr)| < B, and py is L Lipschitz in the Euclidean norm® (treating pp as Euclidean vector in
RIHVde+Tdu ) thep

.., [3(p7)] = Ep, [3(p7)]| < V2T'Le + 2BLioint. (7).

(b) If J decomposes into a sum of of costs, J(p) = ri11(X147) + Zthl li1(x¢) + € 2(0y), where Uy 1(-), €, 2(+) are
L-Lipschitz and bounded in magnitude in B. Then,

|Ep.., [3(p7)] — Ep, [3(p7)]| < 4T BLuarg,e(m) + 2T Le.
(c) J(p) = bri1,1(X74+1) depends only on X141, then
|Ep,.,[3(p7)] — Ep, [J(p7)]] < +2BLbin () + Le

Thus, for our imitation guarantees to apply to most natural cost functions used in practice, it suffices to control the imitation
losses defined above.

Proof of Proposition 1.5. Let pr = (X1.741, U1.1) ~ Dexp, and let p7. = (x}.7, 1, u.1) be under the distribution induced
by .

Part (a). For any coupling 1 between the two under which x; = x, and let & := {max ||x;11 —x}, (|| V[u;—u;|| < €}

EQ(pr)] = ER (7)) = [EulI(pr) — 3(07)]|
< Bull3(pr) —3(07)l]
< 2BP,[E] + Eu[[3(pr) — 3(o7)[{EH]
By passing to an infinum over couplings, inf,, P, [ES] < Lioint,c (7). Moreover, we observe that under i, x; = X/, and the
remaining coordinates, (Xo.741, Wi.r) and (x5, ;, u},7) are the concatentation of 27" vectors, so the Euclidean norm of

the concatenations ||pr — pp[| is at most v/27 max; [|x¢+1 — X;, | V [|u; — uj|, which on & is at most v/2T'c. Using
Lipschitz-ness of J concludes.

Part (b) . Using the adaptive discomposition of the cost and the fact that x; and x| have the same distributions,

[N\ i
M% i |

E[3(pr)] — E[F3(p7)]] (E[le1(xe41)] — E[le1(x541)) + (E[fr2(ur)] — E[l 2(u}))]

1

[E[le1 (%e11)] = E[le1(xp41)| + [E[lr 2(ur)] — E[l 2 (u})]

t

Il
—

°0f course, Lipschitznes in other norms can be derived, albeit with different 7' dependence



Applying similar arguments as in part (a) to each term, we can bound
max {[E[ly,1 (xe+1)] = E[l,1(xt 1) [E[l2(ur)] — E[ly2(u))|} < 2BLinarg,e(7) + Le.

Summing over the 27" terms concludes.
Part (¢c). Follows similar to part (b). [

1.7. Useful Lemmata
1.7.1. ON THE TRAJECTORIES INDUCED BY 7* FROM Dey,,
The key step in all of our proofs is to relate the expert distribution over trajectories p ~ Deyp, to the distribution induced by

the chunking policy 77* in Definition 1.3

Lemma L.6. There exists a sequence of probability kernels 7, mapping p,, ;, — A(A) such that the chunking policy
7 = (7} )1<h<m satisfies the following:

(a) F;(pmﬁ) is equal to the almost-sure conditional probability of ay, conditioned on p,, ), under pr ~ Dexp, and
al.g = synth(pT).

(b) The marginal distribution over each p. j, is the same as the marginals of each x; and u; under pp ~ Deyy.

(¢) If Dexp has T-bounded memory (Definition 1.6) and if T < Ty, then the joint distribution of p induced by 7 is equal
to the joint distribution over pr under Deyp.

Remark I.4 (Replacing 7-bounded memory with mixing). We can replace that 7-bounded memory condition to the
following mixing assumption. Define the chunk Pic; = (xi. 7> U j—1)~ Define the measures

Qh(pm,h) = Pal:h—lyplzth—rm—l»ah:Hﬂpt;L:TJrl|pm,h
® —
Qh (pm,h) - Palzh—l7pl;th_rm_1‘pn],h ®Pah:H7pth’:T+1‘pm,h, '

which describes the conditional distribution of the whole trajectory without p,, ;, and the product-distribution of the
conditional distributions of the before-p,, ;, part of the trajectory, and after p,,, ,-part. Under the condition

Epm,h from pTNDCXpTV (Qh(pm,h); Q%(th)) é Emix(Tm);

which measures how close the before- and after-p,,, ;, parts of the trajectory are to being conditionally independent, one can
leverage Lemma 1.9 to show that

TV(Dﬂ'* ) Dexp) § HEmix(Tm)

Lemma 1.6 corresponds to the special when when ey,;x = 0.
Proof of Lemma 1.6. We prove each part in sequence

Part (a). follows from the fact that all random variables are in real vector spaces, and thus Polish spaces. Hence, we can
invoke the existence of regular conditional probabilities by Theorem 3.

Part (b). This follows by marginalization and Markovianity of the dynamics. Specifically, let (p%., a}. ;7 be a trajectory
and composite actions induced by the chunking policy 7*, and let (p,a1.x) be the same induced by Dexp. Let pf 5,
denote memory chunks of p7., and let p,, ;, memory chunks of p; (length 7., — 1); similarly, denote by p7 ;, and p ), the
respective trajectory chunks (length 7. > 7).

We argue inductively that the trajectory chunks p7 , and p, j are identically distribued for each h. For h = 1, p ; and
P, are identically distributed according to Dx, . Now assume we have show that p , and p,. ;, are identically distributed.
As memory chunks are sub-chunks of trajectory chunks, this means that p}; , and p,, ), are identically distributed. By
part (a), it follows that (p}, ;,a};) and (p,, ,an) are identically distributed. In particular, (x7,,ap,) and (x¢,,an) are
identically distributed, where x3, (resp x;, ) these denote the ¢j,-th control state under 7* (resp. Dexpp). By Markovianity of
the dynamics, 7, ; and p,, ;. are functions of (x7, ,aj) and (x4, , an), respectively, p; , ; and p j, ;1 are identically
distributed, as needed.



Part (¢c). When Dy, has 7-bounded memory and 7 < 7, then we have the almost-sure equality

Pp..,[an € - [ X1, ur,] = Po,[an € | Pmnl = T (Pm,p)[an € ).
Finally, X, 41:),, 1> Ut;,:¢,,, —1 are determined by x;, and ay,, this inductively establishes equality of the joint-trajectory
distributions.

O

[.7.2. CONCENTRATION AND TVC OF GAUSSIAN SMOOTHING.
We now include two easy lemmata necessary for the proof. The first shows that p,. is small when r is © (o) by elementary
Gaussian concentration:

Lemma L7. Suppose that v ~ N(0,021) is a centred Gaussian vector with covariance o1 in R for some o > 0. Then
Jor all p > 0, it holds with probability at least 1 — p that

1 1
7] < 20 - \/Zdlog(Q) + 2log (p) <20 -4/bd+2log (p)

Moreover;, for r > 4o+/dlog(9), P[||v|[] > r] < exp(—r?/1602).

Proof. We apply the standard covering based argument as in, e.g., Vershynin (2018, Section 4.2). Note that

V[ = sup (y,w),
d—1

weSd—

where S is the unit sphere in R%. Let I denote a minimal (1/4)-net on S?~! and observe that a simple computation
tells us that

sup (v, w) < 2-max(w,7).
wesSd—1 wel

A classical volume argument (see for example, Vershynin (2018, Section 4.2)) tells us that |[U/| < 9¢. A classical Gaussian
tail bound tells us that for any w € S?~1, it holds that for any r > 0,
2
B((w,y) > 1) < e 57
Thus by a union bound, we have

2

,
P < Ul - IP( f)<9d- =
(1 > ) < Ul - maxP (]l > ) <9 e

Inverting concludes the proof.

The second lemma shows that the relevant smoothing kernel is TVC:

Lemma L.8. For any o > 0, let ¢z and W, be as in Definition I.1 kernel, then W, is vryc-TVC for with respect to dyc (as
defined in Section 4.1)

UN2Tm — 1
Yrve(u) = T 9y

Proof. Recall that ¢z denotes projection onto the Z-component of the direct decomposition in Definition E.1, i.e. projects
onto the memory chunk p,, ,. We apply Pinsker’s inequality (Polyanskiy & Wu, 2022+): Then, for for s,s” € R, we have

TV (62 0 Wo(6), 62 0 Wo(s) < 1/ 5 -Dic (6 0 Wols) | 62 o Wo()).



Note that for s = p ; with corresponding memory chunk p,, ,, ¢z 0 W, (s) ~ N(py, ,0°I). Similarly, for p ,
corresponding to s', ¢z o W, (s') ~ N(py, ;,,0°T). Hence,

2
/

Dk (¢z o Wq(s) || ¢z o WU(SI)) < 202

Thus, we conclude TV (¢z o W, (s), pz o W, (s')) < m. Finally, we upper bound the Euclidean norm

20
Hpm, = P hH of vectors consistening of 27, — 1 sub-vectors via dryc (which is the maximum Euclidean norm of
these subvectors) via Hpm,h — p;nth < V27 — 1dpve(s, s). O

1.7.3. TOTAL VARIATION TELESCOPING

Lemma 1.9 (Total Variation Telescoping). Let V1, ..., Yu,Yu+1 be Polish spaces. Let P1 € A(Y1), and let Qp,, Q), €
AVn | X, V1.h—1), h > 1. Define P} = P, and recursively define

Pn =law(Qn;Pr_1), P}, =law(Q};Pj_;), h > 1.

Then,

H

TV(Pa11,Phi1) € D Eviunpy TV(Quir (- | Yiin), Qiuga (- | Y1)
h=1

Moreover, there exists a coupling of u € € (P41, P}{+1) over Yi.gy1 ~ Puyy and Yi.g 1] ~ Py such that
H
PuVi=Y{]=1, PuVimt1 # Vgl €D Evinmp, TV(Qura (| Y1), Qpr (- | Yin))-
h=1

Proof. To prove the first part of the lemma, define Q; ; for2 <i < j < H +1by Q; ; = Q; define Q; ; by appending Q; ;
to Q} ;. and law(Q; ;; (+)) = law(Q};law(Q; j—1; ())). We now define

p() — 1aW(Q2+1,H+1; Pi)’

with the convenction laW(Q}{Jrz)HH; Pri1) = Pyi1. Note that pUH+1) — P41, and PO = P'41- Then, because TV
distance is a metric,

H
TV(Pra1. Phy 1) < 3 TV(PO, PEHD)
h=1

Moreover, we can write P4 = law(Q}_ 5 5 1;1aw(Q},; P;)) and Py = law(Qi41; Ps). Thus,

TV(P®, Pty = TV(aw(Q} 1o g y131aw(Qjy 15 Pi)), 1aw(Qf 4o 15 1aw(Qig 15 Pi)) (Lemma C.4)
= TV(law(Qj 1; Pi), law(Qiy1; Ps)
=Ey,.,~p, TV(Q} (Y1), Qi(Y1:1)). (Corollary C.1)

This completes the first part of the demonstration (noting symmetry of TV). The second part follows from Corollary C.1, by
letting Y < Y7, and X < Y5.571; in that lemma. O
J. Extensions and Further Results

J.1. Noisy Dynamics

We can directly extend our imitation guarantees in the composite MDP to settings with noise:

She1 ~ Fp%(sh,an,wp),  Whn ~ Pnoise,hs J.1n



where the noises are idependent of states and of each other. Indeed, (J.1) can be directly reduced to the no-noise setting by
lifting “actions” to pairs (ay,, wy, ), and policies 7 to encompass their distribution of actions, and over noise.

Another approach is instead to condition on the noises wy.z first, and treat the noise-conditioned dynamics as deterministic.
Then one can take expectation over the noises and conclude. The advantage of this approach is that the couplings constructed
thereby is that the trajectories experience identical sequences of noise with probability one.

Extending the control setting to incorporate noise is doable but requires more effort:

* If the demonstrations are noiseless, then one can still appeal to the synthesis oracle to synthesis stabilizing gains. How-
ever, one needs to (ever so slightly) generalize the proofs of the various stability properties (e.g. IPS in Proposition 4.1)
to accomodate system noise.

* If the demonstrations themselves have noise, one may need to modify the synthesis oracle setup somewhat. This
is because the synthesis oracle, if it synthesizes stabilizing gains, will attempt to get the learner to stabilize to a
noise-perturbed trajectory. This can perhaps be modified by synthesizing controllers which stabilize to smoothed
trajectories, or by collecting demonstrations of desired trajectories (e.g. position control), and stabilizing to the these
states than than to actual states visited in demonstrations.

J.2. Robustness to Adversarial Perturbations

Our results can accomodate an even more general framework where there are both noises as well adversarial perturbations.
We explain this generalization in the composite MDP.

Specifical, consider a space £ of adversarial perturbations, as well as W of noises as above. We may posite a dynamics
function F2% : S x A x W x A — S, and consider the evolution of an imitator policy # under the adversary

~ adv/a 2
Sh1 = FR"(5n,an,Wh,en), Wp ~ Proise,n
éh ~ frh(sh)
da: A
ep ~ TI'Z V(Sl:ha a1:h, Wi:h, el:h—l)a

2 adv
S1~ 75 (s1),  s1~ Pinis.

By constrast, we can model the demonstrator trajectory as arising from noisy, but otherwise unperturbed trajectories:

Sho1 ~ Fp¥(sh, af, Wi, 0), W ~ Puoise.ns  ap ~@h(sh), St~ Pinic.

To reduce the composite-MDP in Section 4, we can view the combination of adverary 724" and imitator 7 as a combined
policy, and the 7* with zero augmentation as another policy; here, we would them treat actions as 3 = (a, e). Then, one
can consider modified senses of stability which preserve trajectory tracking, as well as a modification of d 4 to a function
measuring distances between a = (a,e) and 3’ = (a’,¢’). The extension is rather mechanical, and we fit details. Note
further that, by including a 73% (s1 ), we can modify the analysis to allow for subtle differences in initial state distribution.
This would in turn require strengthening our stability asssumptions to allow stability to initial state (e.g., the definition of
incremental stability as exposited by (Pfrommer et al., 2022)).

J.3. Deconvolution Policies and Total Variation Continuity

While our strongest guarantees hold for the replica policies, where we add noise both as a data augmentation at training
time and at test time, many practitioners have seen some success with the deconvolution policies where noise is only added
at training time. We note that Proposition D.1 holds when the learned policy is TVC; without noise at training time this
certainly will not hold when the expert policy is not TVC. We show here that the deconvolution expert policy is TVC under
mild assumptions, which lends some credence to the empirical success of deconvolution policies.

Precisely, we show that, under reasonable conditions, deconvolution is total variation continuous. In particular, suppose
that u € A(R?) is a Borel probabilty measure and p is a density with respect to u. Further suppose that Q is a density
with respect to the Lebesgue measure on R?. Suppose that x ~ p, w ~ @, and let X = x + w. We will show that the
deconvolution measure p(x|X) is continuous in TV.



Proposition J.1. Let x,x’ € R? be fixed, let p : R? — R denote a probability density, and let Q : R — R denote a
function such that V*Q and ¥ log Q exist and are continuous on the set

X ={(1-t)x+tx'—z|x €supppandt € [0,1]}
Then it holds that

TV (p(:[%), p(-[x)) < [XK =% ] - sup IV Iog Qx| -

By Lemma C.4, any policy composed with the total variation kernel is thus total variation continuous with a linear ypyc;
moreover, the Lipschitz constant is given by the maximal norm of the score of the noise distribution. For example, if () is

the density of a Gaussian with variance o2, then Yrve(u) < %QHXH is dimension independent.

Remark J.1. Note that our notation is intentionally different from that in the body to emphasize that this is a general fact
about abstract probability measures. We may intantiate the guarantee in the control setting of interest by letting x = p,, 4,
and consider () to be a Gaussian (for example) kernel. In this case, we see that the deconvolution policy of Definition 3.1 is
automatically TVC.

To prove Proposition J.1, we begin with the following lemma:

Lemma J.2. Let X € R< pe fixed and suppose that V log Q(X — x) exists for all x € supp p. Then, for all x € suppp, it
holds that Vxp(x|X) exists. Furthermore,

/IIVP(Xli)IIdu(X)S2 sup [[VIeg QX —x)|[,

xEsupp p

where the gradient above is with respect to X.

Proof. We begin by noting that if V log Q(X — x) exists, then so does VQ (X — x). By Bayes’ rule,

. p(X)Q(i - x)
PO) = T — X o)
We can then compute directly that
Vp(x[%) = PV —%)  px)QX fVQ (x— X) (x)dp(x')
JQ(x —x)p(x/)dp(x’) (fo—x )2 7

where the exchange of the gradient and the integral is justified by Lebesgue dominated convergence and the assumption of
differentiability of @) and thus existence is ensured. We have now that

v S - )
R e e e
< (o Iviosa(z- X") TR i >'(1+§Q§‘§> )
= (2 g IvwsQx -0 ) o B ER

Now, integrating over x makes the second factor 1, concluding the proof. O

We will now make use of the theory of Dini derivatives ((Hagood & Thomson, 2006)) to prove a bound on total variation.



Lemma J.3. For fixed X,X’ and 0 < t < 1, let the upper Dini derivative

o e TV(p(-1x), p(Xe4n)) — TV (p(-%), p(-[x¢))
D* TV(p(-%),p(%)) = limsup "

)

where
Xy = (1 —t)x +tx'.
If Vlog Q(X; — x) exists and is finite for all x € supp p and t € [0, 1], then

TV (p(-[%), p(-[7)) < / DTV (p(-[%), p(-|%) dt. 12)
Proof. We compute:
2 [TV (p(-|%), p(-[Fe4n)) — TV (p(R), p(-[5%0)] = ‘ / Ip(xI%) — p(|Trn)]| — [p(XIF) — p(Ee)| ds(x)

< / Ip(X[Fe ) — p(x%e)] du(x)- 13)

Observe that by the assumption on () and Lemma J.2, p(x|X;) is differentiable and thus continuous in X;. We therefor see
that the function

t = TV(p(-|X), p(-|%¢))

is continuous as X; is linear in ¢t. By Hagood & Thomson (2006, Theorem 10), (J.2) holds. ]

‘We now bound the Dini derivatives:
Lemma J.4. Let X, %' € R? such that for all t € [0, 1]it holds that
d2

sup @

XEsupp p

()| = € < .

where the derivative is applied on X;. If the assumptions of Lemmas J.2 and J.4 hold, then
DT TV(p([%), p(1%:)) < [[X =X'[| - sup [[VIogQ(X: — )|

xXEsupp p
te[0,1]

Proof. By definition,

e TV(p(-1x), p(-[Xe+n)) — TV(p(:|X), p(-X¢))
DFTV(p(-[x), p(1%1)) = lim sup ) :

Fix some ¢ and some small h. By (J.3), it holds that

IV (R Rrn)) — TVICR) PR < 5 - [ Ipcfen) — plxie)| du).

By Taylor’s theorem, it holds that

2

PRrn) = pxIR) = - (xIR)) + 1 - (o)

for some ¢’ € [0, 1]. By the chain rule, we have

and thus,
p(x|Xe1n) — p(xIX0)| < h-[|X = X[ - [|Vp(x[X:) || + h*C

Now, applying Lemma J.2 and plugging into the previous computation concludes the proof. O
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Figure 6. Environment Visualizations.

We are finally ready to state and prove our main result:

Proof of Proposition J.1. Note that

d2

- (%)) = (X - )" V2p(x|%) (X — %)

and thus is bounded if and only if V2p(x|X;) is bounded. An elementary computation shows that if V2@ exists and is
continuous on &, then V2p(x|X;) is bounded in operator norm on X. Thus the assumption in Lemma J.4 holds. Applying
Lemma J.3 then concludes the proof. O

K. Experiment Details
K.1. Compute and Codebase Details

Code. For our experiments we build on the existing PyTorch-based codebase and standard environment set provided by
Chi et al. (2023) as well as the robomimic demonstration dataset Mandlekar et al. (2021). '°

Compute. We ran all experiments using 4 Nvidia V100 GPUs on an internal cluster node. For each environment running
all experiments depicted in Figure 2 took 12 hours to complete with 20 workers running simultaneously for a total of
approximately 10 days worth of compute-hours. Between all 20 workers, peak system RAM consumption totaled about 500
GB.

K.2. Environment Details

For simplicity the stabilizatin oracle synth is built into the environment so that the diffusion policy effectively only
performs positional control. See Appendix K for visualizations of the environments.

PushT. The PushT environment introduced in (Chi et al., 2023) is a 2D manipulation problem simulated using the PyMunk
physics engine. It consists of pushing a T-shaped block from a randomized start position into a target position using a
controllable circular agent. The synthesis oracle runs a low-level feedback controller at a 10 times higher to stabilize the

'The modified codebase with instructions for running the experiments is available at the following anonymous link: https:
//www.dropbox.com/s/vzwOgvklfd3yadw/diffusion_policy.zip?dl=0. We will provide a public github repository
for the final release.


https://www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0
https://www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0

agent’s position towards a desired target position at each point in time via acceleration control. Similar to Chi et al. (2023),
we use a position-error gain of k, = 100 and velocity-error gain of k, = 20. The observation provided to the DDPM model
consists of the x,y oordinates of 9 keypoints on the T block in addition to the x,y coordinates of the manipulation agent, for
a total observation dimensionality of 20.

For rollouts on this environment we used trajectories of length 7" = 300. Policies were scored based on the maximum
coverage between the goal area and the current block position, with > 95 percent coverage considered an “successful”
(score = 1) demonstration and the score linearly interpolating between 0 and 1 for less coverage. A total of 206 human
demonstrations were collected, out of which we use a subset of 90 for training.

Can Pick-and-Place. This environment is based on the Robomimic (Mandlekar et al., 2021) project, which in turn uses the
MulJoCo physics simulator. For the low-level control synthesis we use the feedback controller provided by the Robomimic
package. The position-control action space is 7 dimensional, including the desired end manipulator position, rotation, and
gripper position, while the observation space includes the object pose, rotation in addition to position and rotation of all
linkages for a total of 23 dimensions. Demonstrations are given a score of 1 if they successfully complete the pick-and-place
task and a score of 0 otherwise. We roll out 400 timesteps during evaluation and for training use a subset of up to 90 of the
200 “proficient human" demonstrations provided.

Square Nut Assembly. For Square Nut Assembly, which is also Robomimic-based (Mandlekar et al., 2021), we use
the same setup as the Can Pick and Place task in terms of training data, demonstration scoring, and low-level positional
controller. The observation, action spaces are also equivalent to the Can Pick-and-Place task with 23 and 7 dimensions
respectively.

K.3. DDPM Model and Training Details.

For our DDPM we use the same 1-D convolutional UNet-style (Ronneberger et al., 2015) architecture employed by (Chi
et al., 2023), which is in turn adapted from Janner et al. (2022). This principally consists of 3 sets of downsampling
1-dimensional convolution operations using Mish activation functions (Misra, 2019), Group Normalization (with 8 groups)
(Wu & He, 2018), and skip connections with 64, 128, and 256 channels followed by transposed convolutions and activations
in the reversed order. The observation and timestep were provided to the model with Feature-wise Linear Modulation
(FILM) (Perez et al., 2018), with the timestep encoded using sin-positional encoding into a 64 dimensional vector.

During training and evaluation we utilize a squared cosine noise schedule (Nichol & Dhariwal, 2021) with 100 timesteps.
For training we use the AdamW optimizer with linear warmup of 500 steps, followed by an initial learning rate of 1 x 10~*
combined with cosine learning rate decay over the rest of the training horizon. For PushT models we train for 800 epochs and
evaluate test trajectories every 200 epochs while for Can Pick-and-Place and Square Nut Assembly we evaluate performance
every 250 epochs and train for a total of 1500 epochs.

In both environments the diffusion models are conditioned on the previous two observations trained to predict a sequence of
16 target manipulator positions, starting at the first timestep in the conditional observation sequence. The 2rd (corresponding
to the target position for the current timestep) through 9th generated actions are emitted as the 7. = 8 length action sequence
and the rest is discarded. Extracting a subsequence of a longer prediction horizon in this manner has been shown to improve
performance over just predicting the H = 8 action sequence directly (Chi et al., 2023).

For o > 0 we generate new perturbed observations per training iteration, effectively using Nayg = Nepoch augmentations.
We find this to be easier than generating and storing V,,e augmentations with little impact on the training and validation
error. Noise is injected after the observations have been normalized such that all components lie within [—1, 1] range.
Performing noise injection post normalization ensures that the magnitude of noise injected is not affected by different units
or magnitudes. .
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