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On the Imitation of Non-Markovian Demonstrations: From Low-Level Stability
to High-Level Planning

Anonymous Authors1

Abstract
We propose a theoretical framework for study-
ing the imitation of stochastic, non-Markovian,
potentially multi-modal expert demonstrations in
nonlinear dynamical systems. Our framework
invokes low-level controllers - either learned or
implicit in position-command control - to stabilize
imitation policies around expert demonstrations.
We show that with (a) a suitable low-level sta-
bility guarantee and (b) a stochastic continuity
property of the learned policy we call “total varia-
tion continuity” (TVC), an imitator that accurately
estimates actions on the demonstrator’s state dis-
tribution closely matches the demonstrator’s dis-
tribution over entire trajectories. We then show
that TVC can be ensured with minimal degrada-
tion of accuracy by combining a popular data-
augmentation regimen with a novel algorithmic
trick: adding augmentation noise at execution
time. We instantiate our guarantees for policies
parameterized by diffusion models and prove that
if the learner accurately estimates the score of the
(noise-augmented) expert policy, then the distribu-
tion of imitator trajectories is close to the demon-
strator distribution in a natural optimal transport
distance. Our analysis constructs intricate cou-
plings between noise-augmented trajectories, a
technique that may be of independent interest.
We conclude by empirically validating our algo-
rithmic recommendations.

1. Introduction
Training dynamic agents from datasets of expert examples,
known as imitation learning, promises to take advantage of
the plentiful demonstrations available in the modern data
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environment, in an analogous manner to the recent successes
of language models conducting unsupervised learning on
enormous corpora of text (Thoppilan et al., 2022; Vaswani
et al., 2017). Imitation learning is especially exciting in
robotics, where mass stores of pre-recorded demonstrations
on Youtube (Abu-El-Haija et al., 2016) or cheaply collected
simulated trajectories (Mandlekar et al., 2021; Dasari et al.,
2019) can be converted into learned robotic policies.

An outstanding challenge for imitation learning is that
demonstrator policies correlate with past actions in sophisti-
cated ways. Multi-modal trajectories present a key example.
Consider a robot navigating around an obstacle; because
there is no difference between navigating around the ob-
ject to the right and around to the left, the dataset of expert
trajectories may include examples of both options. This
bifurcation of good trajectories can make it difficult for the
agent to effectively choose which direction to go, possibly
even causing the robot to oscillate between directions and
run into the object instead of going around it (Chi et al.,
2023). Crucially, human demonstrators correlate current
actions with the past in order to commit to either a right
or left path, which makes even formulating the idea of an
“expert policy” a conceptually challenging one.

In this paper, we develop a theory of imitation learning flex-
ible enough to imitate non-Markovian (e.g. multi-modal
or bifurcated as in the above example) demonstrations in
smooth, nonlinear control systems. As in previous work,
we formalize imitation learning in two stages: at train-time,
we learn a map from observations to distributions over ac-
tions, supervised by (state, action)-pairs from expert demon-
strations, while at test-time, the learned map, or policy, is
executed on random initial states (distributed identically to
initial training states). What makes imitation learning more
challenging than supervised learning is the problem of com-
pounding errors, which may bring the agent to regions of
state space not seen during training. Unless one is permitted
to collect data adaptively (Laskey et al., 2017; Ross et al.,
2011), it is understood that some form of “stability” is re-
quired so that the agent navigates back from deviations (Tu
et al., 2022; Havens & Hu, 2021).

Contributions. We propose a hierarchical formulation of
stability to analyze imitation learning. During training, the
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learner synthesizes sequences of primitive controllers - time-
varying affine control policies which locally stabilize around
each demonstration trajectory. We break these {demonstra-
tor trajectory, primitive controller} pairs into sub-trajectories
we call “chunks.” Building on (Chi et al., 2023), we use
DDPMs to estimate the conditional distribution of primitive
controller chunks conditioned on recent states from the pre-
vious chunk. We also adopt a popular data-augmentation
technique that corrupts trajectories (but not supervising ac-
tions) with a small amount of Gaussian noise (Ke et al.,
2021; Laskey et al., 2017; Ross et al., 2011). Unlike prior
work, we propose adding noise back into the policies at
inference time, a technique which is both both provably
indispensable in our analysis, and which our simulations
suggest yields considerable benefit over the conventional
approach of not adding noise at inference time.

We prove that the learner can approximate the expert’s trajec-
tory distribution provided three conditions hold: along each
expert trajectory, (a) the dynamics are sufficiently smooth;
(b) one can synthesize primitive controllers that stabilize
the Jacobian-linearized dynamics; and (c) one can approxi-
mately sample from conditional distributions over sequences
of primitive controllers. For concreteness, we formulate
part (c) in the language of Denoising Diffusion Probabilistic
Models (DDPMs), although our results hold for arbitrary
generative models. Our notion of trajectory approximation
is a natural optimal transport metric, which considers a
Wassertstein-like distance between the marginal distribu-
tions of visited states, which is strong enough to ensure
closeness of Lipschitz trajectory costs which decompose
across time-steps.

Our analysis reformulates our setting as imitation in a com-
posite MDP, where composite states sh corresponds to tra-
jectory chunks, and composite-actions ah correspond to sub-
sequences of primitive controllers. A learner’s policy maps
composite-states to distributions over composite-actions,
and a marginalization trick lets us represent non-Markovian
demonstrator trajectories in the same format. The primi-
tive controller sequences ah provide the requisite stability,
and we show that noising the learner policy at inference
time ensures continuity in the total variation distance (TVC).
Our proof is inspired by the notion of replica symmetry in
statistical physics (Mezard & Montanari, 2009): we show
that by noising at inference time, we consistently estimate
a “replica” policy, which, up to the stability of controllers,
has marginals over states and actions close to those of the
expert policy. The proof constructs a sophisticated coupling
between the learned policy, replica policy, and other inter-
polating sequences; this construction is enabled by subtle
measure-theoretic arguments demonstrating consistency of
our couplings. We also establish stability guarantees for
sequences of primitive controllers in non-linear control sys-
tems, which may be of independent interest. Finally, we

empirically validate the benefits of our proposed augmenta-
tion strategy in simulated robotic manipulation tasks.

Abridged Related Work. Due to space, we defer a full
comparison to past work to Appendix B. DDPMs, proposed
in (Ho et al., 2020; Sohl-Dickstein et al., 2015), along with
their relatives have seen success in image generation (Song
& Ermon, 2019; Ramesh et al., 2022), along with imitation
learning (without data augmentation) (Janner et al., 2022;
Chi et al., 2023; Pearce et al., 2023), which is the start-
ing point of our work. Data augmentation is ubiquitous
in modern imitation learning (Laskey et al., 2017) and our
approach corresponds to that of (Ke et al., 2021) but with
noise added at inference time. Despite the benefits of adap-
tive data collection (Ross et al., 2011; Laskey et al., 2017),
adaptive demonstrations are more expensive to collect. Pre-
vious analyses of imitation learning without adaptive data
collection have focused on classical control-theoretic no-
tions of stability, notably incremental stability, (Tu et al.,
2022; Havens & Hu, 2021; Pfrommer et al., 2022), which
require continuity, Markovianity, and often determinism,
and preclude the bifurcations permitted in our setting.

Organization. In Section 2 we formally introduce our set-
ting as well as some preliminary notation and our main
desideratum. We then state our assumptions and our pro-
posed algorithm, TODA before giving our main guarantee
(Theorem 1) in Section 3. In Section 4 we describe our
proof techniques and provide a high level overview before
concluding with some experiments in Section 5. The orga-
nization of our many appendices is given in Appendix A.

2. Setting
Notation and Preliminaries. Appendix A gives a full re-
view of notation. Bold lower-case (resp. upper-case) denote
vectors (resp. matrices). We abbreviate the concatenation
of sequences via z1:n = (z1, . . . , zn). Norms ‖ · ‖ are Eu-
clidean for vectors and operator norms for matrices unless
otherwise noted. Rigorous probability-theoretic prelimi-
naries are provided in Appendix C. In short, all random
variables take values in Polish spaces X (which include
real vector spaces), the space of Borel distributions on X is
denoted ∆(X ). We rely heavily on couplings from optimal
transport theory: given measures X ∼ P and X ′ ∼ P′

on X and X ′ respectively, C (P,P′) denotes the space of
joint distributions µ ∈ ∆(X × X ′) called “couplings” such
that (X,X ′) ∼ µ has marginals X ∼ P and X ′ ∼ P.
∆(X | Y) denotes the space of kernels Q : Y → ∆(X )
; Appendix C rigorously justifies that, in our setting, all
conditional distributions can be expressed as kernels (which
we do throughout the paper without comment).

Dynamics and Demonstrations. We consider a discrete-
time, control system with states xt ∈ X := Rdx , and inputs
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ut ∈ U := Rdu , obeying the following nonlinear dynamics

xt+1 = f(xt,ut), t ≥ 1. (2.1)

Given length T ∈ N, we call sequences ρT =
(x1:T+1,u1:T ) ∈ PT := X T+1 × UT trajectories. For
simplicity, we assume that (2.1) deterministic and address
stochastic dynamics in Appendix J. Though the dynamics
are Markov and deterministic, we consider a stochastic and
possibly non-Markovian demonstrator, which allows for the
multi-modality described in the Section 1.

Definition 2.1 (Expert Distribution). Let Dexp ∈ ∆(PT )
denote an expert distribution over trajectories to be im-
itated. Dx1

denotes the distribution of x1 under ρT =
(x1:T+1,u1:T ) ∼ Dexp.

Primitive Controllers and Synthesis Oracle. LetK denote
the space of affine mappings X → U (redundantly) param-
eterized as x 7→ ū + K̄(x − x̄); we call these primitive
controllers. We say κ1:T ∈ KT is consistent with a trajec-
tory ρ = (x1:T+1,u1:T ) ∈ PT if x̄t = xt and ūt = ut
for all t ∈ [T ]; note that this implies that κt(xt) = ut
for all t. A synthesis oracle synth maps PT → KT
such that, for all ρT ∈ PT , κ1:T = synth(ρT ) is con-
sistent with ρT . For our theory, we assume access to a
synthesis oracle at training time, and assume the ability to
estimate conditional distributions over joint sequences of
primitive controllers; Appendix G explains how this can be
implemented by solving Ricatti equations if dynamics are
known (e.g. in a simulator), smooth, and stabilizable. In
our experimental environment, control inputs are desired
robot configurations, which the simulated robot executes by
applying feedback gains.

Chunking Policies and Indices. The expert distribu-
tion Dexp may involve non-Markovian sequences of ac-
tions. We imititate these sequences via chunking poli-
cies. Fix a chunk length τc ∈ N and memory length
τm ≤ τc, and define time indices th = (h − 1)τc + 1.
For simplicity, we assume τc divides T , and set H =
T/τc. Given a ρT ∈ PT , define the trajectory-chunks
ρc,h := (xth−1:th ,uth−1:th−1) ∈ Pτc and memory-
chunks ρm,h := (xth−τm+1:th ,uth−τm+1:th−1) ∈Pτm−1

for h > 1, and ρc,1 = ρm,1 = x1. We call τc-length se-
quences of primitive controllers composite actions ah =
κth:th−1

∈ A := Kτc . A chunking policy π = (πh) con-
sists of functions πh mapping memory chunks ρm,h to dis-
tributions ∆(A) over composite actions and interacting with
the dynamics (2.1) by ah = κth:th−1

∼ πh(ρm,h), and exe-
cuting ut = κt(xt). The chunking scheme is represented in
Figure 1 in Section 4, alongside the abstraction we use in
our analysis.

Desideratum. The quality of imitation of a deterministic
policy is naturally measured in terms of step-wise closeness
of state and action (Tu et al., 2022; Pfrommer et al., 2022).

In stochastic settings, however, two rollouts of even the
same policy can visit different states. We propose measur-
ing distributional closeness via couplings introduced in the
preliminaries above. We define the following losses:

Definition 2.2. Given ε > 0 and a (chunking) policy π, the
imitation loss Lmarg,ε(π) is defined to be

max
t∈[T ]

inf
µ

{
Pµ
[
‖xexp

t+1 − xπt+1‖ > ε
]
, Pµ [‖uexp

t − uπt ‖ > ε]
}

where the infimum is over all couplings µ between the dis-
tribution of ρT under Dexp and that induced by the policy π
as described above, such that Pµ[xexp

1 = xπ1 ] = 1. Also de-
fine Lfin,ε(π) := infµ Pµ

[
‖xexp

T+1 − xπT+1‖ > ε
]
, the loss

restricted to the final states under each distribution.

Under stronger conditions (whose necessity we estab-
lish), we can also imitate joint distributions over actions
(Appendix I). Observe that Lfin,ε ≤ Lmarg,ε, and that
both losses are equivalent to Wasserstein-type metrics on
bounded domains (and correspond to total variation ana-
logues of shifted Renyi divergences (Altschuler & Talwar,
2022; Altschuler & Chewi, 2023)). While empirically eval-
uating these infima over couplings is challenging, Lmarg,ε

upper bounds the difference in expectation between any
bounded and Lipschitz control cost decomposing across
time steps, states and inputs, and Lfin,ε upper bounds differ-
ences in bounded, Lipschitz final-state costs; see Appendix I
for further discussion.

Diffusion Models. Our analysis provides imitiation guaran-
tees when chunking policies πh select ah via a sufficiently
accurate generative model. Given their recent success, we
adopt the popular Denoising Diffusion Probabilistic Models
(DDPM) framework (Chen et al., 2022; Lee et al., 2023)
that allows the learner to sample from a density q ∈ ∆(Rd)
assuming that the score ∇ log q is known to the learner.
More precisely, suppose the learner is given an observation
ρm,h and wishes to sample ah ∼ q(·|ρm,h) for some family
of probability kernels q(·|·). A DDPM starts with some
a0
h sampled from a standard Gaussian noise and iteratively

“denoises” for each DDPM-time step 0 ≤ j < J :

ajh = aj−1
h − α · sθ,h(aj−1

h ,ρm,h, j) + 2 · N (0, α2I),

(2.2)

where sθ,h(ajh,ρm,h, j) estimates the true score
s?,h(ah,ρm,h, αj), formally defined for any contin-
uous argument t ≤ Jα to be s?,h(a,ρm,h, t) :=
∇a log q[t](a | ρm,h), where q[t](·|ρm,h) is the distribution

of e−ta(0)
h +

√
1− e−2tγ with a

(0)
h ∼ q(·|ρm,h) and

γ ∼ N (0, I) is a standard Gaussian. We will denote
by DDPM(sθ,ρm,h) the law of aJh sampled according
to the DDPM using sθ(·,ρm,h, ·) as a score estimator.
Preliminaries on DPPMs are detailed in Appendix H.
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3. Algorithm and Results
We show that trajectories of the form given in Definition 2.1
can be efficiently imitated if (a) we are given a synthesis
oracle that locally stabilizes chunks of the trajectory with
primitive controllers and (b) the score of the following con-
ditional distributions (whose existence is guaranteed by Ap-
pendix C) lies in a class Θ of bounded statistical complexity.

Formal Assumptions. We say trajectory ρτ =
(x1:τ+1,u1+τ ) ∈ Pτ is feasible if it obeys the dynam-
ics in (2.1). We assume that the transition map f takes the
form of an Euler-like discretization

f(xt,ut) = xt + ηfη(xt,ut)

for a small step size η > 0 and say ρτ is
(Rdyn, Ldyn,Mdyn)-regular if, for any t ∈ [τ ] and
(x′t,u

′
t) ∈ Rdx × Rdu such that ‖x′t − xt‖ ∨ ‖ut −

u′t‖ ≤ Rdyn, it holds that ‖∇fη(x′t,u
′
t)‖op ≤ Ldyn and

‖∇ 2fη(x′k,u
′
t)‖op ≤Mdyn.1 The Jacobian linearizations

along a path ρτ = (x1:τ+1,u1:τ ) ∈ Pτ are matrices
At(ρτ ) := ∂

∂xf(xt, ut) and Bt(ρτ ) := ∂
∂uf(xt, ut) for

t ∈ [τ ]. Given ρτ ∈Pτ and primitive controllers κ1:τ , ex-
pressed as κt(x) = K̄t(x− x̄t) + ūt(x), we say (ρτ , κ1:τ )
are (Rstab, Bstab, Lstab)-Jacobian stable if (a) κ1:τ is con-
sistent with ρτ (b) maxt∈[τ ] ‖K̄t‖ ∨ ‖x̄t‖ ∨ ‖ūt‖ ≤ Rstab,
and (c) the linearized closed-loop transition operator has
exponential decay:

‖Φcl,k,j‖op ≤ Bstab(1− η
Lstab

)k−j

Φcl,k,j := (I + ηAcl,k−1) · (I + ηAcl,k−2) · · · (I + ηAcl,j),

where above Acl,k = Ak(ρτ ) + Bk−1(ρτ )Kk−1. Our first
two assumptions are as follows.

Assumption 3.1. The ρT ∼ Dexp is feasible and
(Rdyn, Ldyn,Mdyn)-regular with probability 1.

Assumption 3.2. With probability 1 over ρT ∼ Dexp and
κ1:T = synth(ρT ), the chunk-action pairs (ρc,h+1, ah)
are (Rstab, Bstab, Lstab)-Jacobian Stable for 1 ≤ h ≤ H .

Assumption 3.1 enforces smoothness of the dynamics, but
not smoothness or continuity of the underlying policy. As-
sumption 3.2 generalizes popular quantifications of stability
(e.g. strong stability (Cohen et al., 2019)), and is satis-
fied when primitive controllers are synthesized via Ricatti
equations of dynamics with stabilizable linearizations (Ap-
pendix G). Finally, we require access to a class of score
functions rich enough to represent the deconvolution condi-
tionals, defined as follows.

Definition 3.1 (Deconvolution Conditionals). For h ∈ [H],
let π?dec,h ∈ ∆(A|Pτm−1) denote a conditional distribution

1Here, ‖∇ 2fη(x
′
t,u

′
t)‖op denotes the operator-norm of a

three-tensor.

of ah = κth:th+1−1 | ρ̃m,h, where ρT ∼ Dexp, κ1:T =
synth(ρT ), and ρm,h is the memory chunk of ρT at step
h, and ρ̃m,h ∼ N (ρm,h, σ

2I) augments ρm,h with noise.

Assumption 3.3. For h ∈ [H] let π?dec,h,[t] ∈ ∆(A|Pτm−1)
denote q[t] as defined below (2.2) for q = π?dec,h the decon-
volution policy defined above. For fixed σ, α > 0 and
j ∈ N, let s?,h,σ,[j] denote the score function of π?dec,h,[αj].
We suppose that for any J ∈ N and α, σ > 0, we are given a
class of scores Θ = Θ(τc, τm, σ) = {sθ,1:H} =

⋃
j∈[J] Θj

such that (a) for all 1 ≤ j ≤ J , s?,h,σ,[αj] ∈ Θj and
(b) a Rademacher-like complexity of Θj , Rn(Θj) (de-
fined in Appendix H) has polynomial decay Rn(Θj) ≤
CΘ(1/α)νn−1/ν for some ν ≥ 1 andCΘ = CΘ(σ, τc, τm).

As justified in Appendix H, the above assumption is a nat-
ural for statistical learning, the decay condition onRn(Θ)
holds for most common function classes (often with ν ≤ 2
and even more benign dependence on J, α), and our results
extend to approximate realizability. Rn(Θ) depends implic-
itly on chunk and memory lengths τc, τm > 0 and problem
dimension through the specification of s?,h,σ,[αj]. Realiz-
ability is motivated by the approximation power of deep
neural networks (Bartlett et al., 2021).

Algorithm. Our proposed algorithm, TODA (Algorithm 1)
combines DDPM-learning of chunked policies as in (Chi
et al., 2023) with a popular form of data-augmentation (Ke
et al., 2021). We collect Nexp expert trajectories, synthe-
size gains, and segment trajectories into memory chunks
ρm,h and composite actions ah as described in Section 2.
We perturb each ρm,h to form Naug chunks ρ̃m,h, as well
as horizon indices j ∈ [J ] and inference noises γ ∼
N (ah, (αjh)2I), and add these tuples (ah, ρ̃m,h, jh,γh, h)
to our data D. We end the training phase by minimizing the
standard DDPM loss (Song & Ermon, 2019) LDDPM(θ,D):∑∣∣∣∣∣∣γh − sθ,h

(
e−αjah +

√
1− e−2αjγh, ρ̃m,h, jh

)∣∣∣∣∣∣2 ,
(3.1)

where the sum is over (ah, ρ̃c,h, jh,γh, h) ∈ D. Our
algorithm differs subtly from past work in Line 8: we
add augmentation noise back in at test time. Here, the
notation DDPM(sθ,h, ·) ◦ N (ρm,h, σ

2I) means, given ρm,h,
we perturb it to ρ̃m,h ∼ N (ρm,h, σ

2I), and sample ah ∼
DDPM(sθ,h, ρ̃m,h). The motivation for this is that adding
noise at inference time removes distribution shift coming
from training on augmented data; this simple observation is
crucial for our theoretical guarantees.

Theoretical Guarantee. We now state our main theorem,
which bounds the imitation losses of TODA trained on ex-
pert demonstrations. Let d = τc(dx + du + dxdu), and
let c1, . . . , c5 denote terms given in Appendix G that are
polynomial in the parameters in Assumptions 3.1 and 3.2.
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Algorithm 1 Trajectory Optimization with Data
Augmentation (TODA)

1: Initialize Synthesis oracle synth, sample sizes
Nexp, Naug ∈ N, σ ≥ 0, DDPM step size α > 0,
DDPM horizon J , function class {sθ}θ∈Θ, gain magni-
tude R > 0, empty data buffer D← ∅.
% For no augmentation, set σ = 0 and
Naug = 1

2: for n = 1, 2, . . . Nexp do
3: Sample ρT = (x1:T+1, u1:T ) ∼ Dexp and set
κ1:T = synth(ρ)

% Segment ρm,1:H from ρT and a1:H from
κ1:T

4: for i = 1, 2, . . . , Naug and h = 1, 2, . . . ,H do
5: Sample ρ̃m,h ∼ N (ρm,h, σ

2I), jh ∼ Unif([J ])
and γh ∼ N (ah, (jhα)2I).

6: D← D.append
(
{(ah, ρ̃c,h, jh,γh, h)}

)
7: Fit θ ∈ arg minθ∈Θ LDDPM(θ,D)
8: return π̂σ = (π̂1:H), where π̂h,σ(ρm,h) =

DDPM(sθ,h, ·) ◦ N (ρm,h, σ
2I).

Theorem 1. Consider running TODA for σ > 0 with pa-
rameters J, α polynomial in the parameters given in As-
sumptions 3.1 and 3.2 specified in Appendix H. Suppose
that Assumptions 3.1 to 3.3 hold and further suppose the
chunk length satisfies τc ≥ c3/η. Given σ, δ > 0, se-
lect any ε > 0 for which 5dx + 2 log

(
4σ
ε

)
≤ c24/(16σ2).

If Nexp ≥ poly (CΘ, ε/σ,Rstab, d, log(H/δ))
ν , then for

π̂σ the policy output by TODA, it holds with probability
1 − δ over the training data that both Lmarg,ε1(π̂σ) and
Lfin,ε2(π̂σ) are upper bounded by

H

(
3ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e
− η(τc−τm)

Lstab

)
(3.2)

where ε1 = ε + 4c5σ · (5dx + 2 log
(

4σ
ε

)
)1/2 and ε2 =

ε+ 4c5e
−ητc/Lstabσ · (5dx + 2 log

(
4σ
ε

)
)1/2.

Theorem 1 guarantees imitation of the distribution of
marginals and final states of Dexp. Each term in (3.2) can
be made small by decreasing the amount of noise σ in the
augmentation, increasing the number of trajectories, and
increasing the chunk length τc. Increasing τc comes at
the (implicit) expense of requiring a more expressive score
class Θ (requiring greater Nexp); similarly, as expressed
in Appendix H, the scores s?,h,σ,[αj] may become harder
to learn σ decreases. Note that the contribution of the ad-
ditive σ-term in ε2, used for the final-state loss Lfin,ε, is
exponentially-in-τc smaller than that in ε1. Interestingly,
our theory suggest no benefit to increasing τm (corrobo-
rated empirically in (Chi et al., 2023)). Appendix I gives
guarantees for imitating joint trajectories under the further
assumptions that (a) the demonstrator has memory (or, more

generally, a mixing time) of at most τm, and (b) either the
demonstrator distribution happens to satisfy a certain conti-
nuity property, or σ = 0 and instead the learned π̂ satisfies
that same property.

Theorem 1 leverages statistical learning guarantees for
DPPMs to show our learned policy approximately sam-
ples from π?dec,h in a truncated Wasserstein distance (Ap-
pendix H). These steps are combined with a general template
for imitation learning developed in Section 4, with the final
proof deferred to Appendix I . In Appendix F we show that
this framework is essentially tight and thus suboptimality in
Theorem 1 comes from looseness in conditional sampling
guarantees. If we were above to approximately sample from
π?dec,h in total variation, rather than a truncated Wasserstein
distance, the imitation learning problem would be trivialized
(Appendix I). Appendix H explains that the needed assump-
tions for this stronger sense of approximate sampling do not
hold in our setting, because expert distributions over actions
typically lie on low-dimensional manifolds.

Stability, limitations, and future work. We never explic-
itly model bifurcations; rather, we allow expert demonstra-
tions to be sufficiently rich as to permit them. Eschewing
global stability, τc ensures that trajectories are long enough
for the strictly local stability assumptions in Assumption 3.2
to provide benefit. Thus, non-Markovianity is challenging
only insofar as it relates to the difficulty of local stabilization.
A key limitation of our work is that, to take advantage of
local stability, we rely on either synthesized primitive con-
trollers (in our analysis) or low-level stabilizing controllers
built into problem environments (in our experiments). De-
veloping a more comprehensive approach to stability (per-
haps one that does not require explicit gain synthesis, and
extends to non-smooth systems) is an exciting direction for
future work. Appendix B compares our hierarchical ap-
proach to stability to more standard notions, which we show
rule out the possibility for bifurcated demonstrations.

4. Analysis
Our analysis abstracts away the vector-valued dynamics
into a deterministic MDP with composite-states s ∈ S and
composite-actions a ∈ A, with dynamics

sh+1 = Fh(sh, ah), h ∈ {1, 2, . . . ,H} (4.1)

A composite-policy π is a sequence of kernels
π1, π2, . . . , πH : S → ∆(A). We let Pinit denote
the distribution of initial state s1, and Dπ denote the
distribution of (s1:H+1, a1:H) subject to s1 ∼ Pinit,
ah | s1:h, a1:h−1 ∼ πh(sh), and the composite-dynamics
(4.1). We assume that we have an optimal policy π? to be
imitated, and define P?h as the marginal distribution of sh
under Dπ? .

Structure of the proof. We begin by explaining key objects,
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stability and continuity properties required in the composite
MDP. Then, Section 4.1 relates the composite MDP to our
original setting by taking composite-states sh = ρc,h as
chunks, and taking composite actions as sequences of prim-
itive controllers ah = κth:th+1−1 as in Section 2. We also
explain why relevant stability and continuity conditions are
met. Finally, we derive Theorem 1 from a generic guaran-
tee for smoothed imitiation learning in the composite MDP,
Theorem 2, and from sampling guarantees in Appendix H.

We consider two pseudometrics on the space S: dS , dTVC :
S2 → R≥0, and a function dA : A2 → R≥0. For conve-
nience, do not require dA to satisfy the axioms of a pseudo-
metric. We use dS and dA to measure error between states
and actions, respectively, and dTVC(·, ·) for a probabilistic
continuity property described below. In terms of dS and dA,
we consider three measures of imitation error: error on the
(i) joint distribution of trajectories (Γjoint,ε) (ii) marginal
distribution of trajectories (Γmarg,ε) and (iii) one-step error
in actions (dos,ε). Formally:
Definition 4.1 (Imitation Errors). Given an error param-
eter ε > 0, define the joint-error Γjoint,ε(π̂ ‖ π?) :=
infµ1

Pµ1

[
maxh∈[H] max{dS(s?h+1, ŝh+1), dA(a?h, âh)} > ε

]
,

where the first infimum is over trajectory cou-
plings ((ŝ1:H+1, â1:H), (s?1:H+1, a

?
1:H)) ∼ µ1 ∈

C (Dπ̂,Dπ?) satisfying Pµ1 [̂s1 = s?1] = 1.
Define the marginal error Γmarg,ε(π̂ ‖
π?) := maxh∈[H]{infµ1

Pµ1
[dS(s?h+1, ŝh+1) >

ε], infµ1
Pµ1

[dA(a?h, âh) > ε]} to be the same as the
to joint-gap, with the “max” outside the probability
and inf over couplings. Lastly, define the one-step error
dos,ε(π̂h(s) ‖ π?h(s)) := infµ2 Pµ2 [dA(âh, a

?
h) ≤ ε], where

the infimum is over (a?h, âh) ∼ µ2 ∈ C (π̂h(s),π?h(s)).

Stability. Our hierarchical approach offloads stability of
stochastic π? onto that of its composite-actions ah, instanti-
ated as primitive controllers (not raw inputs!). This allows
us to circumvent more challenging incremental senses of
stability (see Appendix B for further discussion).
Definition 4.2 (Input-Stability). A trajectory (s1:H+1, a1:H)
is input-stable if all sequences s′1 = s1 and s′h+1 =
Fh(s′h, a

′
h) satisfy dS(s′h+1, sh+1) ∨ dTVC(s′h+1, sh+1) ≤

max1≤j≤h dA
(
a′j , aj

)
, ∀h ∈ [H]. A policy π is input-

stable if (s1:H , a1:H) ∼ Dπ is input-stable almost surely.

TVC. Continuity of probability kernels and policies in TV
distance are measured in terms of dTVC.
Definition 4.3. For a measure-space X and non-decreasing
γ : R≥0 → R≥0, we call a probability kernel W : S →
∆(X ) γ-total variation continuous (γ-TVC) if, for all
s, s′ ∈ S, TV(W(s),W(s′)) ≤ γ(dTVC(s, s′)). A policy
π is γ-TVC if πh : S → ∆(A) is γ-TVC ∀h ∈ [H].

Smoothing. In Appendix D, we show that under the strong
condition that the learned policy π̂ is γ-TVC, then TODA

with no data augmentation (σ = 0) learns the distribution.
Frequently, however, π̂ may not satisfy this condition, such
as when the ground truth π? is not also TVC. We circumvent
this by introducing a smoothing kernel Wσ : S → ∆(S)
that corresponds to the data augmentation; in TODA we let
the kernel be a Gaussian, sending ρm,h to N (ρm,h, σ

2I) ∈
∆(Pρm,h

). We will thus be able to replace TVC of π̂ with
TVC of Wσ . We now introduce a few key objects.
Definition 4.4. Given a policy π, we define its smoothed
policy π ◦ Wσ via components (π ◦ Wσ)h = πh ◦ Wσ :
S → ∆(A). For π? fixed, define the augmented distibu-
tion P?aug,h as the joint distribution over (s?h ∼ P?h, a

?
h ∼

π?h(s?h), s̃?h ∼ Wσ(s?h)), with a?h ⊥ s̃?h | s?h. The deconvolu-
tion policy π?dec is defined by letting π?dec,h(s) denote the
distribution of a?h | s̃?h = sh, where a?h, s̃

?
h are drawn from

P?aug,h. Finally, the replica policy is π?	 = π?dec ◦Wσ .

The operator π ◦Wσ composes π with the smoothing ker-
nel. The deconvolution policy π?dec captures the distribution
of actions under π? given an augmented state, and corre-
sponds to π?dec = (π?dec,h)Hh=1. We argue that if a policy
π̂ approximates π?dec at each step, then π̂ ◦ Wσ imitates
π?	σ = π?dec ◦Wσ. We explain the “replica policy”, and
importance of imitating it, after we state our main theorem.
First, we define a notion of stability to smoothing, taking
dTVC, dS , dA as given.
Definition 4.5. For a non-decreasing maps γIPS,1, γIPS,2 :
R≥0 → R≥0 a pseudometric dIPS : S × S → R (pos-
sibly other than dS or dTVC), and rIPS > 0, we say
a policy π is (γIPS,1, γIPS,2, dIPS, rIPS)-input-&-process sta-
ble (IPS) if the following holds for any r ∈ [0, rIPS].
Consider any sequence of kernels W1, . . . ,WH : S →
∆(S) satisfying maxh,s∈S Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1,
and define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼
πh(̃sh), and sh+1 := Fh(sh, ah). Then, almost surely, (a)
the sequence (s1:H+1, a1:H) is input-stable w.r.t (dS , dA)
(b) maxh∈[H] dTVC(Fh(̃sh, ah), sh+1) ≤ γIPS,1(r) and (c)
maxh∈[H] dS(Fh(̃sh, ah), sh+1) ≤ γIPS,2(r).

Condition (a) means that the policy π̃ defined by π̃h = πh ◦
Wh is input-stable. In the appendix, we instantiate W1:H

not as Wσ , but as (a truncation of) replica kernels W?
	,h for

which π?	σ,h = π?h ◦W?
	,h. We show that the replica kernel

inherits any concentration satisfied by Wσ, ensuring (via
truncation) that Ps̃∼Wh(s)[dIPS (̃s, s)] ≤ r. Conditions (b &
c) merely require that one-step dynamics are robust to small
changes in state, measured in terms of both dTVC and dS .

4.1. Instantiation for control

Here we explain the mapping from the control set-
ting of interest to the composite MDP; in so doing
we distinguish between the case h > 1 and h =
1 with reference to composite-states. In the former
case, sh = (xth−1:th ,uth−1:th−1) ∈ Pτm , and ah =
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Figure 1. Schematic depicting the composite MDP. States x and stabilizing gains κ are chunked into composite states s and composite
actions a (control inputs u not depicted). The distance labels correspond to the domain over which each distance is evaluated. Note that
ah begins at the same time that sh+1 does, an indexing convention that we adopt to make the notation in the proofs simpler.

κth:th+1−1 (as in Section 2). Importantly, ah are prim-
itive controllers, which allows us to meet the strong
stability condition in Definition 4.2. Figure 1 pro-
vides a visual aid for the subtle indexing. For sh, s

′
h,

we define dS(sh, s
′
h) = maxt∈[th−1:th] ‖xt − x′t‖ ∨

maxt∈[th−1:th−1] ‖ut−u′t‖, which measures distance on the
full subtrajectory, dTVC(sh, s

′
h) = maxt∈[th−τm:th] ‖xt −

x′t‖ ∨ maxt∈[th−τm:th−1] ‖ut − u′t‖, which measures dis-
tance on the last τm steps, and dIPS(sh, s

′
h) = ‖xth − x′th‖,

which is only on the last step. In the latter case, when
h = 1, we let s1 = x1 ∈ X , and we let dS , dTVC, dIPS

all denote the Euclidean distance on X . In all cases, the
transition dynamics Fh are induced by the dynamics (2.1)
with ut = κt(xt). Finally, for a = (ū1:τc , x̄1:τc , K̄1:τc) and
a′ = (ū′1:τc , x̄

′
1:τc , K̄

′
1:τc), we choose a dA that takes value

∞ when primitive controllers are too far apart as dA(a, a′)
defined to be

c1 max
k∈[τc]

(‖ūk − ū′k‖+ ‖x̄k − x̄′k‖+‖K̄k − K̄′k‖) (4.2)

+ I0,∞{E},

where we define E := {max1≤k≤τc max{‖ūk−ū′k‖, ‖x̄k−
x̄′k‖, ‖K̄k − K̄′k‖} ≤ c2}, I0,∞ is the indicator taking in-
finite value when the event fails to hold, and c1 and c2 are
constants depending polynomially on all problem parame-
ters, given in Appendix G.

We let the expert policy π? be the concatenation of poli-
cies π?h, each of which is defined to be the distribution of
ah conditioned on ρm,h under Dexp (see Appendix I for a
rigorous definition). As noted above, we take the smoothing
kernel Wσ to map ρm,h to a N (ρm,h, σ

2I) ∈ ∆(Pρm,h
),

which that same appendix shows is 1
2σ -TVC (w.r.t. dTVC

defined above). We note that under these substitutions, the
deconvolution policy π?dec = (π?dec,h)Hh=1 is precisely as
defined in Definition 3.1.

Appendix G shows that Assumptions 3.1 and 3.2 imply

that π? enjoys the IPS property in the composite MDP thus
instantiated, along with many more granular stability guar-
antees for time-varying affine feedback in nonlinear control
systems, which may be of independent interest.

Proposition 4.1. Let c3, c4, c5 > 0 be as given in Ap-
pendix G (and polynomial in relevant quantities). Suppose
τc ≥ c3/η, and let rIPS = c4, γIPS,1(u) = c5u exp(−η(τc −
τm)/Lstab), γIPS,2(u) = c5u. Then, for dS , dTVC, dIPS as
above, we have that π? is (γIPS,1, γIPS,2, dIPS, rIPS)-IPS.

4.2. A Guarantee in the Composite MDP Stability, and
the derivation of Theorem 1

With the substitutions in Section 4.1, it suffices to prove an
imitation guarantee in the composite MDP, assuming π? is
IPS, and π̂ is close to π?dec in the appropriate sense.

Theorem 2. Suppose π? is (γIPS,1, γIPS,2, dIPS, rIPS)-IPS and
Wσ is γσ-TVC. Let ε > 0, r ∈ (0, 1

2rIPS]; define pr :=
sups Ps′∼Wσ(s)[dIPS(s

′, s) > r] and ε′ := ε + γIPS,2(2r).
Then, for any policy π̂, both Γjoint,ε(π̂ ◦ Wσ ‖ π?	) and
Γmarg,ε′(π̂ ◦Wσ ‖ π?) are upper bounded by

H (2pr + 3γσ(max{ε, γIPS,1(2r)}))

+
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(s̃?h) ‖ π?dec(s̃?h)).

Deriving Theorem 1 from Theorem 2. A full proof is given
in Appendix I, using the subtley that π? as described above
yields trajectories with the same marginals (but possibly
different joint distributions) as ρT ∼ Dexp; thus, to bound
losses in Definition 2.2, it suffices to bound the imitation
gaps in Definition 4.1 w.r.t. π?. Using the analysis in Ap-
pendix H, we show that our DDPM training precisely en-
sures that π̂σ = π̂◦Wσ in TODA minimizes (an upper bound
on) the term

∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖

π?dec(̃s?h)). Finally, we combine the guarantees of Proposi-
tion 4.1, the aforementioned TVC-bound on Wσ , and Gaus-
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Figure 2. Performance of baseline π̂ and noise-injected π̂ ◦Wσ TODA policy for different σ. We use 4 training seeds with 50 and 22 test
trajectories per seed for PushT and Can and Square Environments respectively. Mean and standard deviation of the test performance on
the 3 best checkpoints across the 4 seeds are plotted. The σ values correspond to noise in the normalized [−1, 1] range.

sian concentration to bound pr with the bound in Theorem 2
to conclude.

Proof Sketch of Theorem 2. The proof draws inspiration
from the notion of replica symmetry in statistical physics
(hence, the name replica) (Mezard & Montanari, 2009). We
construct a coupling between a trajectory over (s	h , a

	
h ) sam-

pled using the replica policy π?	, and a trajectory (̂sh, âh)
sampled from π̂σ. We introduce teleporting trajectories
s	h+1 = Fh(s	h , a

	
h ), and stel

h+1 = Fh(̃stel
h , a

tel
h ), where

s̃tel
h is sampled from the replica distribution of stel

h and
atel
h ∼ π?h(̃stel

h ); in words, stel
h teleports to an independent

and identically distributed copy conditional on the noise
agumentation, and draws an action from the replica policy
evaluated on the new state.

The key fact of the replica distribution is that it preserves
marginals, meaning that all stel

h and s̃tel
h both have marginals

according to P?h. We show that s	h tracks the teleporting
trajectories, up to the IPS terms γIPS,i and concentration of
the kernel, due to total variation continuity of Wσ . Because
the marginals of stel

h are distributed according to P?h, we can
argue that a (fictitious) action âtel,inter

h ∼ π̂σ(stel
h ) is close to

atel
h (by the data processing inequality, it is bounded by the

closeness of π̂h and π?dec,h on s̃tel
h ∼ Wσ(stel

h ), stel
h ∼ P?h).

We then use total variation continuity to relate to another
fictious action â	,inter

h to a	h . Finally, we use input-stability
and TVC again, to relate â	,inter

h to actions âh ∼ π̂σ (̂sh).
Our couplings are summarized in the following diagram:

(a	 ↔ atel)︸ ︷︷ ︸
γTVC and induction

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
learning and sampling

→ (âtel,inter ↔ â	,inter)︸ ︷︷ ︸
γTVC and induction

→ (â	,inter ↔ â)︸ ︷︷ ︸
γTVC and induction

.

We construct conditional couplings between pairs of the
aforementioned trajectories, each of which corresponds to a

certain optimal transport cost. That past trajectories can be
associated to optimal couplings measurably is non-trivial,
and proven in Proposition C.3. To conclude, we apply a
measure theoretic result (Lemma C.2) to “glue” the pairwise
couplings together and establish the main result. The full
proof is given in Appendix E, relying on measure-theoretic
details in Appendix C.

5. Simulation Study of Test-Time
Noise-Injection

We empirically evaluate the effect on policy performance of
our proposal to inject noise back into the dynamics at infer-
ence time. We consider three challenging robotic manipula-
tion tasks studied in prior work: PushT block-pushing (Chi
et al., 2023); Robomimic Can Pick-and-Place and Square
Nut Assembly (Mandlekar et al., 2021). We explain the
environments in greater detail, along with all training and
computational details in Appendix K. The learned diffusion
policy generates state trajectories over a τc = 8 chunking
horizon using fixed feedback gains provided by the synth
oracle to perform position-tracking of the DDPM model
output. We direct the reader to Chi et al. (2023) for an
extensive empirical investigation into the performance of
diffusion policies in the noiseless σ = 0 setting. We display
the results of our experiments in Figure 2. Observe that the
performance degredation of the replica policy from the un-
smoothed σ = 0 variant is minimal across all environments
and even leads to a slight but noticeable improvement in the
small-noise regime for PushT (and low-data Can Pick and
Place). In the presence of non-negligible noise TODA sig-
nificantly outperforms the conventional policy π̂ (obtained
by adding augmentation at training but not test time), as
predicted by our theory.
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A. Notation, Organization of Appendix, and Full Related Work
In this appendix, we collect the notation we use throughout the paper, as well as providing a high level organization of the
appendices.

A.1. Notation Summary

In this section, we summarize some of the notation used throughout the work, divided by subject.

Measure Theory We always let X denote a Polish space, B(X ) the Borel-algebra on X , and ∆(X ) the set of borel
probability measures on X . For a random variable X on X , we let PX denote the law of X . For random variables X,Y ,
we let C (PX ,PY ) denote the set of couplings of these measures and for laws P1,P2. We write P1 ⊗ P2 for the product
measure. We will generally reserve P to denote measure, Q and W for probability kernels, and µ for a joint measure on
several random variables.

When P1,P2 ∈ ∆(X ) are laws on the sampe space, we let TV(P1,P2) denote the total variation distance. We write
P1 � P2 if P1 is absolutely continuous with respect to P2. Given a Polish space X and element x ∈ X , we let δx ∈ ∆(X )
denote the dirac-delta measure supported on the set {x} ∈ B(X ) (note that, in a Polish space, the singleton {x} set is
closed, and therefore Borel).

Norms and linear algebra notation. We use bold lower case vector z to denote vectors, and bold upper case Z to denote
matrices. We let z1:K = (z1, . . . ,Z) and Z1:K = (Z1, . . . ,ZK) denote concatenations. The norms ‖ · ‖ denote Euclidean
norms on vectors and operator norms on matrices. We identify the spaces Pk with Euclidean vectors in the standard sence.
Given a Euclidean vector z ∈ Rd, N (z, σ2I) denote the multivariate normal distribution on Rd with covariance σ2I.

Control notation. We let xt ∈ Rdx denote control states, ut ∈ Rdu denote control inputs, and ρτ ∈ Pτ denotes
trajectories (x1:τ+1,u1:τ ). T denotes the time horizon of imitation, so ρT ∼ PT . Our dynamics are xt+1 = f(xt,ut);
for our main results (Section 3), we suppose f(x,u) = x + ηfη(x,u), parametrizing dynamics in the form of an Euler
discretization with step η > 0.

Recall that primitive controllers κ take the form κ(x) = K̄(x− x̄) + ū, where terms with (̄·), K̄, x̄, ū, denote parameters
of the primitive controller. The space of these is K.

We also recall the chunk-length τc and memory length τm satisfying 0 ≤ τm ≤ τc. We recall the definition of the trajectory-
chunk ρc,h and memory-chunk in ρm,h in Section 2, which introduced the indexing h, such that th = (h− 1)τc + 1. Recall
also the composite actions ah = (κth:th+1−1) ∈ A = Kτc as the concatenation of τc primitive controllers.

Abstractions in the composite MDP. The composite MDP is a deterministic MDP with composite-states s ∈ S and
composite-actions a ∈ A, and (possibly time-varying) deterministic transition dynamics Fh : S ×A → S for 1 ≤ h ≤ H .
The goal is to imitate a policy π? = (π?h)1≤h≤H , in terms of imitation gaps Γjoint,ε and Γmarg,ε defined in Definition 4.1.
We refer the reader to Section 4 for the relevant terminology, and to Section 4.1 for its instantiation in our original control
setting.

A.2. Organization of the Appendix

We now describe the organization of our many appendices. In Appendix B, we expand on our abbreviated discussion of
related work in the body as well as provide a more detailed comparison of our notion of stability Definition 4.5 with those
found in prior work.

After the preliminaries on organization, notation, and related work, we divide our appendices into two parts. In the first
part, we expand on and provide rigorous proofs of statements and results pertaining to the composite MDP as considered in
Section 4. We begin by providing a detailed background in Appendix C on the requisite measure theory we use to make
our arguments rigorous. In particular, we provide definitions of probability kernels and couplings, as well as measurability
properties of optimal transport couplings. In Appendix D, we provide a warmup to the proof of Theorem 2. In particular,
the argument substantially simplifies if we consider the case of no added augmentation (when σ = 0 in TODA) and we
present a coupling construction that implies the analogous bound in the presence of an additional assumption. The heart of
the first part of our appendices is Appendix E, where we rigorously prove a generalization of Theorem 2 by constructing a
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sophisticated coupling between the imitator and demonstrator trajectories. We conclude the first part of our appendices by
proving a number of lower bounds in the composite MDP setting in Appendix F, which demonstrate the tightness of our
arguments in Appendix E.

We continue our appendices in the second part, which is concerned with the instantiation of the composite MDP in the
control setting of interest. In Appendix G, we provide a detailed proof that the control setting considered in Section 2
satisfies the stability properties required by our analysis of the composite MDP and prove Proposition 4.1. Of particular
note are Definition G.7, which provide explicit dependence of the relevant constants in Theorem 1 on the parameters of
interest, and Appendix G.8, which explains how to synthesize stabilizing gains, as assumed in Section 2. With the stability
properties thus proven, we proceed in Appendix H to instantiate our conditional sampling guarantees with DDPMs. In
particular, by applying earlier work, we state and prove Theorem 6, which guarantees that with sufficiently many samples,
in our setting we can ensure that the learned DDPM provides samples close in the relevant optimal transport distance to the
expert distribution. We also explain in Remark H.5 why stronger total variation guarantees on sampling are unrealistic in
our setting. The heart of the second part of our appendices is Appendix I, which provides the final, end-to-end guarantees
and the proof of Theorem 1. In that section, we prove a reduction from imitation learning to conditional sampling and derive
Theorem 1 as a corollary. We also provide a number of variations on this result, including stronger guarantees on imitation
of the joint trajectories (Appendix I.3), guarantees on TODA under the aassumption that sampling is close in total variation
(Appendix I.4), and imitation with no augmentation (Appendix I.5). We also show in Proposition I.5 that most natural cost
funtions have similar expected values on imitator and demonstrator trajectories assuming that the imitation losses are small.

We provide a number of extensions of our main results in Appendix J, including to the setting of noisy dynamics (Ap-
pendix J.1). Finally, in Appendix K, we expand the discussion of our experiments, including training and compute details,
environment details, and a link to our code for the purpose of reproducibility.

B. Complete Related Work
Imitation Learning. Over the past few years, there has been a significant surge of interest in utilizing machine learning
techniques for the execution of exceedingly intricate manipulation and control tasks. Imitation learning, whereby a policy is
trained to mimic expert demonstrations, has emerged as a highly data efficient and effective method in this domain, with
application to self-driving vehicles (Hussein et al., 2017; Bojarski et al., 2016; Bansal et al., 2018), visuomotor policies (Finn
et al., 2017; Zhang et al., 2018), and navigation tasks (Hussein et al., 2018). A widely acknowledged challenge of imitation
learning is distribution shift: since the training and test time distributions are induced by the expert and trained policies
respectively, compounding errors in imitating the expert at test-time can lead the trained policy to explore out-of-distribution
states (Ross & Bagnell, 2010). This distribution shift has been shown to result in the imitator making incorrect judgements
regarding observation-action causality, often with catastrophic consequences (De Haan et al., 2019). Prior work in this
domain has predominantly attempted to mitigate this issue in the non-stochastic setting via online data augmentation
strategies, sampling new trajectories to mitigate distribution shift (Ross et al., 2011; Ross & Bagnell, 2010; Laskey et al.,
2017). Among this class of methods, the DAgger algorithm in particular has seen widespread adoption (Ross & Bagnell,
2010; Sun et al., 2023; Kelly et al., 2019). These approaches have the drawback that sampling new trajectories or performing
queries on the expert is often expensive or intractable. Due to these limitations, recent developments have focused on
novel algorithms and theoretical guarantees for imitation learning in an offline, non-interactive environment (Chang et al.,
2021; Pfrommer et al., 2022). Our work is similarly focused on the offline setting, but is capable of handling stochastic,
non-Markovian demonstrators. Unlike (Pfrommer et al., 2022), we do not require our expert demonstrations to be sampled
from a stabilizing expert policy, instead utilizing a synthesis oracle to stabilize around the provided demonstrations. This is
a significantly weaker requirement and enables the development of high-probability guarantees for human demonstrators,
where sampling new trajectories and reasoning about the stability properties is not possible.

Denoising Diffusion Probabilistic Models. Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020) and their variant, Annealed Langevin Sampling (Song & Ermon, 2019), have seen enourmous
empirical success in recent years, especially in state-of-the-art image generation (Ramesh et al., 2022; Nichol & Dhariwal,
2021; Song et al., 2020a). More relevant to this paper is their application to imitation learning, where they have seen success
even without the proposed data augmentation in Janner et al. (2022); Chi et al. (2023); Pearce et al. (2023). DDPMs rely
on learning the score function of the target distribution, which is generally accomplished through some kind of denoised
estimation (Hyvärinen & Dayan, 2005; Vincent, 2011; Song et al., 2020b). On the theoretical end, annealed Langevin
sampling has been studied with score estimators under a variety of assumptions including the manifold hypothesis and some
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form of dissapitivity (Raginsky et al., 2017; Block et al., 2020a;b), although these works have generally suffered from an
exponential dependence on ambient dimension, which is unacceptable in our setting. Of greatest relevance to the present
paper are the concurrent works of Chen et al. (2022); Lee et al. (2023) that provide polynomial guarantees on the quality
of sampling using a DDPM assuming that the score functions are close in an appropriate mean squared error sense. We
take advantage of these latter two works in order to provide concrete end-to-end bounds in our setting of interest. To our
knowledge, ours is the first work to consider the application of DDPMs to imitation learning under a rigorous theoretical
framework, although we emphasize that this does not constitute a strong technical contribution as opposed to an instantiation
of earlier work for the sake of completeness and concreteness.

Smoothing Augmentations. Data augmentation with smoothing noise has become such common practice, its adoption is
essentially folklore. While augmentation of actions which noise is common practice for exploration (see, e.g. (Laskey et al.,
2017)), it is widely accepted that noising actions in the learned policy is not best practice, and thus it is more common to add
noise to the states at training time, preserving target actions as fixed (Ke et al., 2021). Our work gives an interpretation of
this decision as enforcing that the learned policy obey the distributional continuity property we term TVC (Definition 4.3),
so that the policy selects similar actions on nearby states. Previous work has interpreted noise augmentation as providing
robustness. Data augmentation has been demonstrated to provide more robustness in RL from pixels (Kostrikov et al., 2020),
adaptive meta-learning (Ajay et al., 2022), in more traditional supervised learning as well (Hendrycks et al., 2020).

B.1. Comparison to prior notions of Stability.

Prior work in guarantees for imitation learning focuses either on constraining the learned policy to be stable (Havens & Hu,
2021; Tu et al., 2022) or assume the expert policy is suitably stable (Pfrommer et al., 2022).

The principal notion of stability used in these prior works is incremental-input-to-state stability of the closed-loop system
under a deterministic controller π:

Definition B.1 (Incremental Input-to-State Stability). There exists class K function γ and class KL function β such that
for any two initial conditions ξ1, ξ2 ∈ X , the closed-loop dynamics under policy π : X → U given by fcl(xt,∆t) =
f(xt, π(xt) + ∆t) satisfies:

‖xt(ξ1; {∆s}ts=0)− xt(ξ2; {0}ts=0)‖ ≤ β(‖ξ1 − ξ2‖) + γ

(
max

0≤s≤t−1
‖∆s‖

)
,

where xt(ξ; {∆s}t−1
s=0) is the state at time t under fcl with x0 = ξ and input perturbations {∆s}t−1

s=0.

This notion of stability is quite restrictive, as the β-term necessitates that the dynamics converge irrespective of initial
condition. Without time-varying dynamics this can only be achieved by a policy which stabilizes to an equilibrium point, as
a policy which tracks a reference trajectory is unable to “forget" the initial condition. Constraining learned policies such that
they satisfy this notion of stability is also challenging. Tu et. al. (Tu et al., 2022) attempt to do so through regularization
while Haven et. a. (Havens & Hu, 2021) use matrix inequalities to satisfy this stability property under linear dynamics.
Pfrommer et. at. (Pfrommer et al., 2022) avoid this difficulty by relaxing the incremental stability to a local variant of
stability:

Definition B.2 (η-Local Incremental Input-to-State Stability). There exists class K function γ such that for any ξ ∈ X , the
closed-loop dynamics under policy π : X → U given by fcl(xt,∆t) = f(xt, π(xt) + ∆t) satisfies:

‖xt(ξ; {∆s}ts=0)− xt(ξ; {0}ts=0)‖ ≤ γ
(

max
0≤s≤t−1

‖∆s‖
)
,

for all {∆s}ts=0 where max0≤s≤t ‖∆s‖ ≤ η.

This weaker notion of incremental stability simply postulates the existence of a (local) input-perturbation to state-perturbation
gain function γ. Since this stability property does not necessitate convergence across with different initial conditions and
only under input perturbations of magnitude ≤ η, this only necessitates that the expert policy can correct from small input
perturbations.

We further weaken this assumption, which we formalize in Assumption 3.2 and abstract to the composite MDP through
Definition G.4, by only requiring that a locally stabilizing controller can be synthesized per-demonstration. Through the
introduction of a synthesis oracle which can generate locally stabilizing primitive controllers, we decouple the stability
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Expert

Augmentations

Figure 3. Instance of bifurcation, where augmentation is necessary for stability. The example on the left has an expert demonstrator
bifurcating around a circular obstacle. The example on the right demonstrates the utility of augmentations, allowing for trajectories that
navigate around the object in the direction farther from their starting point.

properties of the expert from the stabilizability of the underlying dynamical system. This allows for reasoning about
generalization in the presence of bifurcations or conflicting demonstrations, which is precluded by Definition B.2 since an
expert policy cannot simultaneously stabilize to multiple branches of a bifurcation. For a concrete example, consider Figure 3.
Indeed, continuity is the sine qua non of stability and the example given demonstrates the necessity of augmentation to
enforce the former. In detail, the figure illustrates an example where an agent is navigating around an obstacle, providing
a bifurcation. Without augmentation, the demonstrator trajectories always navigate around the obstacle in the direction
closer to their starting point, leading to a sharp discontinuity along a bisector of the obstacle. On the other hand, the data
augmentations allow for the policy to have some probability of navigating around the obstacle in the “wrong” direction,
which leads to the notion of continuity we consider: total variation continuity.

Because our notion of stability is applied in chunks, our theory is sufficiently flexible so as to allow for the learned policy to
switch between expert demonstrations in a manner preserving the marginal distributions but not consistent with the joint
distribution across the entire trajectory. This flexibility is illustrated in Figure 4, where we suppose that the demonstrator
distribution consists both of trajectories traversing a figure “8” consistently in either a clockwise or counter-clockwise
manner, with both orientations represented in the data set. Due to the multi-modality at the critical point in the trajectory,
there is ambiguity about which loop to traverse next; specifically, there may exist a policy that randomly select which loop to
traverse each time the critical point is visited in such a way that the marginal distributions on states and actions is the same
as that induced by the demonstrator. Such a policy will, by definition, preserve the correct marginal distributions across
states and actions; at the same time, this policy has a different joint distribution across all time steps from the demonstrator
due to the possibility of traversing the same loop twice in a row.

Part I

Composite MDP
C. Measure-Theoretic Background
In this section, we introduce the prerequisite notions from probability theory that we use to formally construct the couplings
in Appendices D and E. We begin by introducing general preliminaries, followed by kernels, regular conditional probabilities
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π⋆
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Figure 4. Instance where π̂σ and π? induce the same marginals and joint distributions (left), but in the presence of expert demonstration
trajectories that traverse the figure eight both clockwise and counterclockwise directions, π̂σ may switch with some probability between
demonstrations where they overlap.

and a “gluing” lemma in Appendix C.1. We then show that optimal transport costs commute in an appropriate sense with
conditional probabilities (Proposition C.3 in Appendix C.2). We use the preliminaries in the previous sections to derive
certain optimal-transport and data processing inequalities in Appendix C.3. We prove Proposition C.3 in Appendix C.4.
Finally, we state a simple union bound lemma (Lemma C.11 in Appendix C.5) of use in later appendices.

General preliminaries. We rely extensively on the exposition in Durrett (2019) and refer the reader there for a more
thorough introduction. Throughout, we assume there is a Polish space Ω such that all random variables of interest are
mappings X : Ω→ X , where X is also Polish. Here, the σ-algebras are always the Borel algebras (the σ-algebra generated
by open subsets), denoted B(Ω) and B(X ).

The space of (Borel) probablity distributions on X is denoted ∆(X ), and measurability is meant in the Borel sense. Given a
measure µ on a space X × Y , we say that X ∼ PX under µ if, for all A ∈ B(X ), µ(X ∈ A) = PX(A).

We adopt standard information theoretic notation to denote joint, marginal, and conditional distributions on vectors of
random variables. In particular, if random variables X,Y are distributed according to P, we denote by PX as the marginal
over X , PX|Y as the conditional of X|Y under P, and PX,Y as the joint distribution when this needs to be empasized.
Definition C.1 (Couplings). Let X ,Y be Polish spaces and let PX ∈ ∆(X ) and PY ∈ ∆(Y). The set of couplings
C (PX ,PY ) denotes the set of measure µ ∈ ∆(X × Y) such that, (X,Y ) ∼ µ has marginals X ∼ PX and Y ∼ PY .2 We
let PX ⊗ PY ∈ C (PX ,PY ) denote the indepent coupling under which X and Y are independent.

It is standard that PX ⊗ PY is always a valid coupling, and hence C (PX ,PY ) is nonempty. Couplings have the advantage
that they can be used to design many probability-theoretic distances. Through the paper, we use the total variation distance.
Definition C.2 (Total Variation Distance). Let P1,P2 ∈ ∆(X ). We define the total variation distance TV(P1,P2) :=
supA⊂B(X ) |P1(A)− P2(A)|

The total variation distance can be expressed in terms of couplings as follows (Polyanskiy & Wu, 2022+).

2More pedantically, for all Borel sets A1 ∈ B(X ), µ(A1 × Y) = PX(A1) all Borel sets A2 ∈ B(X ), µ(X ×A2) = P2(A2).
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Lemma C.1. Let P1,P2 ∈ ∆(X ). Then,

TV(P1,P2) = inf
µ∈C (P1,P2)

P(X1,X2)∼µ{X1 6= X2}.

Moreover, there exists a coupling µ? attaining the infinum.

Support and absolute continuity. We will also require the definition of the support of a measure.

Definition C.3. Given a measure µ on a Borel space (Ω,F), we define the support supp(µ) to be the closure in the topology
given by the metric of the set {ω ∈ Ω|µ(U) > 0 for all open U 3 ω}.

In addition, we require the definition of absolute continuinty.

Definition C.4 (Absolute Continuity). We say that P ∈ ∆(X ) is absolutely continuous with respect to law P′ ∈ ∆(X ),
written P� P′, if for A ∈ B(X ), P′(A) = 0 implies P(A) = 0.

We now go into greater detail on the kinds of couplings that we consider.

C.1. Kernels, Regular Conditional Probabilities and Gluing

One key technical challenge in proving results in the sequel is the fact that we need to “glue” together multiple different
couplings. Specifically, while it may be the case that there exist pairwise couplings which satisfy desired properties, there
exists a coupling such that the probability of the relevant event is small, it is not obvious that there exists a single coupling
such that all of these probabilities are small simultaneously. There are two natural ways to due this gluing: the first, using
regular conditional probabilities we provide here. The second, involving a sophisticated construction of Angel & Spinka
(2019) requires stronger assumptions on the pseudo-metric, but generalizing beyond Polish spaces, we simply remark can be
substituted with a loss of a constant factor.

Kernels. We begin by introducing the notion of a kernel.

Definition C.5 (Kernels). Let (Ω,P) be a probability space and let X denote a random variable on this space. For a given
σ-algebra G, and map Q : Ω× G → [0, 1], we say that Q is a probability kernel if the following two conditions are satisfied:

1. For all measurable events A, the map ω 7→ Q(ω,A) is measurable.

2. For almost every ω ∈ Ω, the map A 7→ Q(ω,A) is a probability measure.

We can combine a probability kernel with a probabilty measure on Y to yield joint distributions over X × Y .

Definition C.6. Given an PY ∈ ∆(Y), we define the probability measure law(QX|Y ;PY ) ∈ ∆(X × Y) such that
µ = law(QX|Y ;PY ) satisfies3

µ(A×B) = EY∼PY
[
QX|Y (A | Y )I{Y ∈ B})

]
, ∀A ∈ B(X ), B ∈ B(Y). (C.1)

We let QX|Y ◦ PY ∈ ∆(X ) denote the measure for which µ = QX|Y ◦ PY satisfies

µ(A) = EY∼PY
[
QX|Y (A | Y )

]
, ∀A ∈ B(X )

From these, we define the space of conditional couplings as follows.

Definition C.7 (Kernel Couplings). Let PY ∈ ∆(Y), and QXi|Y ∈ ∆(X | Y) for i ∈ {1, 2}. We let CPY (QX1|Y ,QX1|Y )
denote the space of measures µ ∈ ∆(X1×X2×Y) over random variables (X1, X2, Y ) such that (Xi, Y ) ∼ law(QX|Y ;PY )
for i ∈ {1, 2}.

Note that a similar construction to the independent coupling ensures CPY (QX1|Y ,QX1|Y ) is nonempty, namely considering
the measure µ(A1 ×A2 ×B2) = EY∼PY

[
QX1|Y (A1 | Y )QX2|Y (A2)I{Y ∈ B}

]
.

3Recall that B(X × Y) is generated by sets A×B ∈ B(X )×B(Y), so (C.1) defines a unique probability measure
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Regular Conditional Probabilities. We now recall a standard result that conditional probabilities can be expressed
through kernels in our setting.

Theorem 3 (Theorem 5.1.9, Durrett (2019)). If Ω is a Polish space and P is a probability measure on the Borel sets of Ω,
such that random variables (X,Y ) ∼ P in spaces X and Y , then there exists a kernel Q(· | ·) ∈ ∆(X | Y) such that, for all
A ∈ B(X ) and P-almost every y, the (standard) conditional probability P[X ∈ A | Y ] = Q(A | y). We can Q(· | ·) the
regular conditional probability measure.

Regular conditional probabilities allow one to think of conditional probabilities in the most intuitive way, i.e., for two
random variables X,Y , the map Y 7→ P(X ∈ A | Y ) is a probability kernel. This will be the essential property that we use
below.

Gluing. Finally, regular conditional probabilities allow us to “glue together” couplings which share a common random
variable.

Lemma C.2 (Gluing Lemma). Suppose that X,Y, Z are random variables taking value in Polish spaces X ,Y,Z . Let µ1 ∈
∆(X ×Y), µ2 ∈ ∆(Y×Z) be couplings of (X,Y ) and (Y,Z) respectively. Then there exists a coupling µ ∈ ∆(X ×Y×Z)
on (X,Y, Z) such that under µ, (X,Y ) ∼ µ1 and (Y,Z) ∼ µ2.

Proof. Let Q(· | Y ) be a regular conditional probability for Z given Y under µ2 (who existence is ensured by Theorem 3).

We construct µ by first sampling (X,Y ) ∼ µ1 and then sampling Z ∼ Q(· | Y ); observe that by the second property in
Definition C.5, this is a valid construction. It is immediate that under µ, we have (X,Y ) ∼ µ1 and thus we must only show
that (Y,Z) ∼ µ2 to conclude the proof. Let A,B be two measurable sets and we see that

Pµ ((Y, Z) ∈ A×B) = EY∼µ [Pµ ((Y,Z) ∈ A×B|Y )]

= EY∼µ
[
E(Y,Z)∼µ [I[Y ∈ A] · I[Z ∈ B]|Y ]

]
= EY∼µ [I[Y ∈ A] · Eµ [I [Z ∈ B] |Y ]]

= EY∼µ [I[Y ∈ A] · Pµ2(Z ∈ B|Y )]

= µ2 ((Y, Z) ∈ A×B) ,

where the first equality follows from the tower property of expectations, the second follows by definition of conditional
probability, the third follows from the definition of conditional expectation, the fourth follows by the first property from
Definition C.5, and the last follows from the fact that the marginals of Y under µ and under µ2 are the same. The result
follows.

C.2. Optimal Transport and Kernel Couplings

As shown above for the TV distance, many measures of distributional distance can be quantified in terms of optimal transport
costs; these are quantities expressed as infima, over all couplings, of the expectation of a certain lower-semicontinuous
functions. We show that if the optimal transport costs between two kernels Y → ∆(Xi) are controlled pointwise, then for
any PY ∈ ∆(Y), is a there exists a joint distribution over (X1, X2, Y ) which attains the minimal transport cost.

Proposition C.3. Let X1,X2,Y be Polish spaces, and let PY ∈ ∆(Y), and Qi ∈ ∆(Xi | Y). for i ∈ {1, 2}. Finally, let
φ : X1 ×X2 → R be lower semicontinuous and bounded below. Then, the following function

ψ(y) := inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[φ(X1, X2)]

is a measurable function of y and there exists some µ? ∈ CPY (Q1,Q2) such that

E(X1,X2,Y )∼µ? [φ(X1, X2)] = EY∼νY ψ(Y ).

In particular it holds µ?-almost surely that

Eµ? [φ(X1, X2)|Y ] = ψ(Y ).

We prove the above proposition in Appendix C.4. One useful consequence is the following identity for the total variation
distance.
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Corollary C.1. Let X ,Y be Polish spaces, and let PY ∈ ∆(Y), and Qi ∈ ∆(X | Y), for i ∈ {1, 2}. Then, there exists a
coupling µ? ∈ CPY (Q1,Q2) such that

Pµ? [X1 6= X2] = EY∼PY TV(Q1(· | Y ),Q2(· | Y )),

with the left-hand side integrand being measurable.

Proof. Using Lemma C.1, we can represent total variation as an optimal transport cost with φ(x1, x2) = I{x1 6= x2}. Note
that φ(x1, x2) is lower semicontinuous, being the indicator of an open set. Thus, the result follows from Proposition C.3
with X = X1 = X2, and φ(x1, x2) = I{x1 6= x2}.

C.3. Data Processing Inequalities

We now derive two inequalities. First, we recall the classical version for the total variation distance, and check that a
well-known identity holds in our setting.

Lemma C.4 (Data Processing for Total Variation). Let PY1 ,PY2 ∈ ∆(Y) and let QX ∈ ∆(X | Y). Then,

TV(QX ◦ PY1
,QX ◦ PY2

) ≤ TV(law(QX ;PY1
), law(QX ;PY2

)) = TV(PY1
,PY2

).

Proof. The first inequality is just the data processing inequality (Polyanskiy & Wu, 2022+, Theorem 7.7), which also shows
that TV(law(QX ;PY1), law(QX ;PY2)) ≥ TV(PY1 ,PY2). To prove the reverse inequality, we use Lemma C.1 to find a
coupling µY such that (PY1

,PY2
) such that E[I{Y1 6= Y2}] = TV(Y1, Y2).

Define a probability kernel in ∆(X ×X | Y1 ×Y2) via defining the set B= {(x1, x2) ∈ X × X : x1 = x2} ⊂ X ×X , and
define for A ∈ B(X × X ),

Q(A | y1, y2) =

{
QX (π1 (A ∩B=) | y1) y1 = y2

QX(· | y1)⊗ QX(· | y2)(A) otherwise

In a Polish space, Lemmas C.6 and C.7 imply that A 7→ QX (π1 (A ∩B=) | y1) for eacy y1 is a valid measure, and it is
standard that the product measures QX(· | y1) ⊗ QX(· | y2)(A) are valid. Moreover, this construction ensures that for
µ = law(Q;µY ),

Pµ[{Y1 = Y2} and {X1 6= X2}] = 0. (C.2)

Lastly, one can check that under µ = law(Q;µY ), that (X1, Y1) ∼ law(QX ;PY1
) and (X2, Y2) ∼ law(QX ;PY2

). Thus, µ
can be regarded as an element of C (law(QX ;PY1

), law(QX ;PY2
)). Hence, Lemma C.1 implies that

TV(law(QX ;PY1), law(QX ;PY2)) ≤ TV(Pµ[(X1, Y1) 6= (X2, Y2)]

= Pµ[Y1 6= Y2] + Pµ[{Y1 = Y2} and {X1 6= X2}]
= Pµ? [Y1 6= Y2] (Eq.(C.2))
= P(Y1,Y2)∼µY [Y1 6= Y2]

= TV(PY1 ,PY2). (construction of µY )

Next, we derive a general data processing inequality for optimal costs. This result is a corollary of Proposition C.3.

Lemma C.5 (Another Data Processing Inequality for Optimal Transport). Let X1,X2,Y be Polish spaces, and let PY ∈
∆(Y), and Qi ∈ ∆(Y | Xi). for i ∈ {1, 2}. Denote by Qi ◦ PY the marginal of Xi under (Xi, Y ) ∼ law(Qi;PY ). Then,

inf
µ∈C (Q1◦PY ,Q2◦PY )

EX1,X2∼µφ(X1, X2) ≤ EY∼µY
(

inf
µ′∈C (Q1(Y )◦Q2(Y ))

EX1,X2∼µ′φ(X1, X2)

)
.
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Proof. One can check that any coupling in µ ∈ C (Q1 ◦ PY ,Q2 ◦ PY ) can be obtained by marginalizing Y in a certain
coupling of µ′ ∈ C (law(Q1;PY ), law(Q1;PY )), and any coupling in the latter can be marginalized to a coupling in the
former. Hence,

inf
µ∈C (Q1◦PY ,Q2◦PY )

EX1,X2∼µφ(X1, X2) = inf
µ∈C (law(Q1;PY ),law(Q1;PY )

EX1,X2,Y1,Y2∼µφ(X1, X2)

Moreover, to every measure µ ∈ µPY (Q1,Q2) over (X1, X2, Y ), Lemma C.8 implies that there exists a coupling µ′ ∈
C (law(Q1;PY ), law(Q1;PY )) over (X1, X2, Y1, Y2) such (X1, X2) have the same marginals under µ and µ′. Therefore,

inf
µ∈C (law(Q1;PY ),law(Q1;PY )

EX1,X2,Y1,Y2∼µφ(X1, X2) ≤ inf
µ′∈CPY

(Q1,Q2)
EX1,X2,Y∼µφ(X1, X2).

Finally, the right hand side is equal to EY∼µY
(
infµ′∈C (Q1(Y )◦Q2(Y )) EX1,X2∼µ′φ(X1, X2)

)
by Proposition C.3.

C.3.1. DEFERRED LEMMAS FOR THE DATA PROCESSING INEQUALITIES

Lemma C.6. Let X be a Polish space. Then, the set {(x1, x2) ∈ X × X : x1 6= x2} is open in X × X .

Proof. The diagonal is closed in any Polish space by definition of the topology. The result follows.

Lemma C.7. Let X be a Polish space, and let π1, π2 : X × X denote the projection mappings onto each coordinate. Then,
for any A ∈ B(X × X ), π1(A) and π2(A) are in B(X ).

Proof. The projection map is open so the result follows immediately by definition of the Borel algebra.

Lemma C.8. Let X ,Y be Polish spaces, and let µ ∈ ∆(X × Y). Then, there is a measure µ′ ∈ ∆(X × Y × Y) satisfying

µ′(A× Y) = µ(A), ∀A ∈ B(X × Y)

and

µ′(X × {(y1, y2) : y1 = y2}) = 1

Proof. Define the set B= = {(y1, y2) : y1 = y2}. One can check that µ′(A × B) = µ(A × π1(B ∩ B=), where
π1 : Y × Y → Y is the projection onto the first coordinate, is a valid measure.

C.4. Proof of Proposition C.3

In the case that φ(·, ·) is continuous, the result follows from Villani et al. (2009, Corollary 5.22). For general lower-
semicontinuous φ, our argument adopts the strategy of “Step 3” of the proof of Villani (2021, Theorem 1.3). This shows that
there exists a sequence φn ↑ φ pointwise, such that each φn is uniformly bounded. Define

ψn(y) := inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[φn(X1, X2)].

Then, for each n, the continuous case implies that there exists a measure µ?,n ∈ CνY (Q1,Q2) such that

EY∼νY ψn(Y ) = E(X1,X2,Y )∼µ?,n [φn(X1, X2)] (C.3)

Recall now the definition

ψ(y) = inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[φ(X1, X2)].

Claim C.9. ψ(y) is measurable and satisfies ψn(y) ↑ ψ(y) pointwise.
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Proof. We can write

sup
n≥0

ψn(y) = sup
n≥0

inf
µ∈C (Q1(y),Q2(y))

E(X1,X2)∼µ[φn(X1, X2)]

(i)
= inf

µ∈C (Q1(y),Q2(y))
E(X1,X2)∼µ[φ(X1, X2)] = ψ(y).

Here, (i) follows from the “Step 3” in the proof of Villani (2021, Theorem 1.3), which shows that any optimal transport
cost C of a lowersemicontinuous φ is equal to a limit of the costs Cn of any bounded continuous φn ↑ φ. In our case, we
fix each y, so C = ψ(y) and Cn = ψn(y). It is clear that ψn(y) is increasing, so for each y, ψn(y) ↑ ψ(y). As ψ is the
pointwise monotone limit of ψn, it is measurable.

Claim C.10. The set of couplings of CPY (X1, X2) is compact in the weak topology.

Proof. Recall that ∆(Y ×X1 ×X2) denote the set of Borel measures on Y ×X1 ×X2. This set is also a Polish space in the
weak topology. The subset CPY (X1, X2) ⊂ ∆(Y × X1 ×X2) is compact if and only if it is relatively compact and closed.

To show relative compactness, Prokhorov’s theorem means that it suffices to show that µPY (Q1,Q2) is tight, i.e. for all
ε > 0, there exists a compact Kε ⊂ Y × X1 × X2 such that for any µ ∈ CPY (X1, X2), Pµ[(Y,X1, X2) ∈ Kε] ≥ 1 − ε.
This follows by setting K = KY,ε × KX,1,ε × KX,2,ε, where the sets are such that PPY [Y /∈ KY,ε] ≥ 1 − ε/3 and
PQi [Xi /∈ KX,i,ε] ≥ 1− ε/3, where Qi is the marginal of Xi given by Y ∼ PY , Xi ∼ Pi(· | Y ) (such sets exist because
X1,X2,Y are Polish).

To check that CPY (Q1,Q2) ⊂ ∆(Y×X1×X2) is closed, it suffices to show that it is sequentially closed (as ∆(Y×X1×X2)

is Polish). To this end, consider any sequence µn ∈ CPY (Q1,Q2) such that µn
weak→ µ ∈ ∆(Y × X1 × X2) in the weak

topology. By definition, this means that for any i ∈ {1, 2} and any continuous and bounded fi : Y × Xi → R,

lim
n→∞

Eµnfi(Y,Xi) = Eµfi(Y,Xi).

For all µn ∈ CPY (Q1,Q2), Eµnfi(Y,Xi) = EY∼νY EXi∼νi(·|Yi)fi(Y,Xi). Thus,

Eµfi(Y,Xi) = EY∼νY EXi∼νi(·|Yi)fi(Y,Xi), for all continuous, bounded fi : Y × X → R.

Hence, the marginal distribution of (Y,Xi) under µ must be equal to that of (Y ∼ PY , Xi ∼ Qi(· | Y )) for i ∈ {1, 2},
which means µ ∈ CPY (Q1,Q2).

By compactness, there exists (passing to a subsequence if necessary) a µ? ∈ CPY (Q1,Q2) such that µ?,n
weak→ µ? in the

weak topology. Then, as φm is continuous and bounded, it follows that for all m,

E(X1,X2,Y )∼µ? [φm(X1, X2)] = lim sup
n→∞

E(X1,X2,Y )∼µ?,n [φm(X1, X2)] (µ?,n
weak→ µ?)

≤ lim sup
n→∞

E(X1,X2,Y )∼µ?,n [φn(X1, X2)] (φm ≤ φn for n ≥ m)

= lim sup
n→∞

EY ψn(Y ) ((C.3))

= EY lim
n→∞

ψn(Y ) (Monotone Convergence)

= EY ψ(Y ). (Claim C.9)

Thus, by the monotone convergence theorem,

E(X1,X2,Y )∼µ? [φ(X1, X2)] = E(X1,X2,Y )∼µ?

[
lim
m→∞

φm(X1, X2)
]

= lim
m→∞

E(X1,X2,Y )∼µ? [φm(X1, X2)]

≤ lim
m→∞

EY ψ(Y ) = EY ψ(Y ).
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Similarly, repeating some of the above steps,

EY ψ(Y ) = lim sup
n→∞

EY ψn(Y )

= lim sup
n→∞

E(X1,X2,Y )∼µ?,n [φn(X1, X2)]

≤ lim sup
n→∞

E(X1,X2,Y )∼µ?,m [φn(X1, X2)] (µ?,n is the optimal coupling for φn)

≤ E(X1,X2,Y )∼µ?,m [ lim
n→∞

φn(X1, X2)] (monotone convergence)

≤ E(X1,X2,Y )∼µ?,m [φ(X1, X2)].

Hence, EY ψ(Y ) ≤ lim infm≥1 E(X1,X2,Y )∼µ?,m [φ(X1, X2)]. By assumption, φ(X1, X2) is lower semicontinu-

ous and bounded from below. Thus, the Portmanteau theorem (Durrett, 2019) implies that, as µ?,m
weak→ µ?,

lim infm≥1 E(X1,X2,Y )∼µ?,m [φ(X1, X2)] = E(X1,X2,Y )∼µ? [φ(X1, X2)]. Hence, EY ψ(Y ) ≤ E(X1,X2,Y )∼µ? [φ(X1, X2)],
proving the reverse inequality.

Proof of the last statement. To prove the last statement, we observe that if µ? ∈ CPY (Q1,Q2) then there exists a
version of (µ?)X,X′|Y that is a regular conditional probability and such that for almost every y it holds that (µ?)X,X′|y ∈
C (Q1(y),Q2(y)). Indeed, the existence of a version that is a regular conditional probability is immediate by Theorem 3.
To see that this version is a valid coupling of Q1(y) and Q2(y), observe that under µ?, the joint law of (X,Y ) ∼ Q1

and thus the conditional distribution under µ? of X|Y is determined up to sets of Q1-measure 0. In particular, again by
Theorem 3, there exists a regular conditional probablity that is a version of (µ?)X|y and this must agree almost everywhere
with (Q1)X|y = Q1(y). The same argument holds for X ′ and thus (µ?)X,X′|y ∈ C (Q1(y),Q2(y)) for almost every y.
Thus, by definition of ψ as an infimum, it holds for almost every y that

ψ(y) ≤ E(X,X′)∼(µ?)|Y [φ(X,X ′)].

By the second claim of the proposition, we also have that

Eµ? [φ(X1, X2)] = Eµ? [ψ(Y )].

Because the expectations are equal and one function is pointwise almost everywhere dominated by the other function, the
two functions must be equal almost everywhere, concluding the proof.

C.5. A simple union-bound recursion.

Finally, we also use the following version of the union bound extensively in our recursion proofs.
Lemma C.11. For any event E and events B1,B2, . . . ,BH , it holds that

P[(Q∩
H⋂
h=1

Bh)c] ≤ P[Qc] + P

∃h ∈ [H] s.t.

Q∩ h−1⋂
j=1

Bj ∩ Bch

 holds


Proof. Note that (

Q∩
H⋂
h=1

Bh

)c
= Qc ∪

(
Q∩

(
H⋂
h=1

Bh

)c)
= Qc ∪

H⋃
h=1

Q∩ Bh ∩
h−1⋂
j=1

Bj .

The result follows by a union bound.

D. Warmup: Analysis Without Augmentation
In this section, we give a simplified analysis that replaces the smoothing kernels Wσ with the assumption that the learner
policy π̂ is already total variation continuous. The removal of the coupling kernel makes the coupling construction
considerably simpler while still communicating some intuition for the full proof in Appendix E.

Throughout this section, we make the following assumptions on the state and action spaces, along with their associated
metrics:
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Assumption D.1. We assume that S and A are Polish spaces. This means they are metrizable, but we do not annotate their
metrics because, e.g. the metric on S may be other than dS . We further assume that

• dS , dTVC are pseudometrics and Borel measurable function from S × S → R≥0

• For any ε ≥ 0, the set {(a, a′) ∈ A × A : dA(a, a′) > ε} is an open subset of A × A; i.e. dA(·, ·) is lower
semicontinuous. In particular, this means dA is a Borel measurable function.

Recall the definitions of total variation continuity (TVC) and input-stability in Section 4. The main result of this section is
as follows.
Proposition D.1. Let π? be input-stable w.r.t. (dS , dA) and let π̂ be γ-TVC. Then, for all ε > 0, Γjoint,ε(π̂ ‖ π?) ≤
Hγ(ε) +

∑H
h=1 Es?h∼P?hdos,ε(π̂h(s?h) ‖ π?(s?h)).

Proof. The key to the proof is to construct an appropriate “interpolating sequence” of actions âinter
1:H to which we couple

both (s?1:H+1, a
?
1:H) and (̂s1:H+1, â1:H). This technique will be used in a significantly more sophisticated manner in the

sequel to prove the analogous result with smoothing.

Let Fh denote the σ-algebra generated by (s?1:h, a
?
1:h), (̂s1:h, â1:h), and âinter

1:h , and let F0 denote the σ-algebra generated by
s?1, ŝ1. We construct couplings of the following form:

• The initial states are generated as s?1 = ŝ1 ∼ Pinit.

• The dynamics are determined by Fh:

s?h+1 = Fh(s?h, a
?
h), ŝh+1 = Fh(̂sh, âh) (D.1)

In particular, s?h+1, ŝ1:h+1 are Fh measurable.

• The conditional distributions of the primitive controllers satisfy the following

a?h | Fh−1 ∼ π?h(s?h), âh−1 | Fh−1 ∼ π̂h(̂sh), âinter
h | Fh ∼ π̂h(s?h). (D.2)

Note that if µ satisfies the above construction, then (s?1:H+1, s
?
1:H) ∼ Dπ? and (̂s1:H+1, â1:H) ∼ Dπ̂ .

Specifying the rest of the coupling. It remains to specify the coupling of the terms in (D.2). We establish our coupling
sequentially. Let µ(0) denote the coupling of ŝ1 = s?1 ∼ Pinit.

Assume we have constructed the coupling up to state h− 1.For ease, let Yh−1 denote the random variable corresponding
to (s?1:h, ŝ1:h, a

?
1:h−1, â1:h−1, â

inter
1:h−1); note that Yh−1 is Fh−1-measurable (as ŝh, s?h are determined by the dynamics (D.1)).

Observe that, by the assumption of π̂h being TVC, it holds that

TV(Pâh|Yh−1
,Pâinterh |Yh−1

) ≤ γ(dTVC (̂sh, s
?
h)).

Thus by Lemma C.1, there exists a coupling µ(h)
1 between Yh−1, âh, â

inter
h , with Yh−1 ∼ µ(h−1) such that it holds that

P[âh 6= âinter
h ] ≤ Eµ(h−1) [γ(dTVC (̂sh, s

?
h))].

Similarly by Proposition C.3, there is a coupling µ(h)
2 of Yh−1, â

inter
h , a?h such that

P
µ
(h)
2

[dA(âinter
h , a?h) ≥ ε] ≤ Es?h∼µ(h−1) [dos,ε(π̂h(s?h), π?h(s?h))].

By the gluing lemma Lemma C.2 and a union bound, we may construct a coupling µ(h) of Yh, âinter
h , a?h, âh such that (almost

surely),

Pµ(h) [{dA(âinter
h , a?h) ≥ ε} ∪ {âh 6= âinter

h } | Fh−1]

= Pµ(h) [{dA(âinter
h , a?h) ≥ ε} ∪ {âh 6= âinter

h } | Yh−1]

≤ γ(dTVC (̂sh, s
?
h))] + dos,ε(π̂h(s?h), π?h(s?h)) (D.3)

Thus inductively, we may continue this construction for h ≤ H and let µ = µ(H).
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Concluding the proof. Define the event Bh := {dA(ah, â
inter
h ) ≤ ε} and Ch = {âinter

h = âh}. Then, by Lemma C.11

Pµ

[
(

H⋂
h=1

Bh ∩ Ch)c

]
≤

H∑
h=1

Pµ

(

h−1⋂
j=1

Bj ∩ Cj) ∩ (Bch ∪ Cch)

 . (D.4)

Note first that (
⋂h−1
j=1 Bj ∩ Cj) is Fh−1 measurable. On this event, input stability at âinter

j = âj , 1 ≤ j ≤ h− 1, implies that

dS(s?h, ŝh) ≤ ε.

Thus, (D.3) implies that

Pµ

(

h−1⋂
j=1

Bj ∩ Cj) ∩ (Bch ∪ Cch)

 ≤ Eµ[γ(dTVC (̂sh, s
?
h))I{dTVC(ŝh, s

?
h) ≤ ε}+ dos,ε(π̂h(s?h), π?h(s?h)) | Fh−1]

≤ γ(ε) + Eµ [Eµ[dos,ε(π̂h(s?h), π?h(s?h)) | Fh−1]]

= γ(ε) + Eµ[dos,ε(π̂h(s?h), π?h(s?h))]

= γ(ε) + Es?h∼P?hEµ[dos,ε(π̂h(s?h), π?h(s?h))],

where the first equality follows from the tower rule for conditional expectations and the second follows because s?h ∼ P?h
under µ. Summing and applying (D.4) implies that

Pµ

[
(

H⋂
h=1

Bh ∩ Ch)c

]
≤ Hγ(ε) +

H∑
h=1

Es?h∼P?h [dos,ε(π̂h(s?h), π?h(s?h))].

Again, invoking input stability and the definitions Bh := {dA(ah, â
inter
h ) ≤ ε} and Ch = {âinter

h = âh}, (
⋂H
h=1 Bh ∩ Ch)c

implies that

max
1≤h≤H

max{dS(s?h+1, ŝh+1), dA(a?h, âh)} ≤ ε.

This concludes the proof.

E. Imitation in the Composite MDP
In this section, we prove our imitation guarantees in the composite MDP under the full generality of data augmentation. The
majority of this section is devoted to proving a more general version of Theorem 2 that applies to vectorized notions of
distance and helps tighten our bounds when instantiated in the control setting. In Appendix E.1, we introduce some notation
and state our most general result, Theorem 4. We then proceed to show that Theorem 2 follows from Theorem 4 and in
Appendix E.2, we provide a detailed and rigorous proof of the main result. In Appendix E.3, we show that the more general
Theorem 4 impiles Theorem 2 from the text.

Throughout, we also assume S admits a direct decomposition. This is useful to capture the fact that we only apply smoothing
on the ρm,h coordinates (memory chunk), not the full trajectory chunk ρc,h.

Definition E.1 (Direct Decomposition). Let S = Z ⊕ V is a direct decomposition. We let φZ and φV denote projections
onto the Z and V components, respectively. We say that the S = Z ⊕ V is compatible with the dynamics if Fh((z, v), a) =
Fh((z, v′), a) for all v, v′ ∈ V and z ∈ Z , and compatible with policy π if πh((z, v), a) = πh((z, v′), a).; we define
compatibility of a kernel W and of a pseudometric d(·, ·) : S × S → R≥0 with S = Z ⊕ V similarly.

We emphasize that compatibility of dynamics with a direct decomposition does not make v irrelevant because dS still
depends on v. For the purposes of the instantiation for control in the following appendix, we wish to control the imitation
gaps on distances that do depend on vh, even though vh does not figure directly into the dynamics. Note that as defined, vh
does depend on the dynamics up until time h− 1 and thus it is necessary to deal with this component in order to provide
guarantees in dS .
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E.1. A generalization of Theorem 2

We now state a generalization of Theorem 2, which replaces a single distance by a vector of distances of dimension K; this
will be useful for our instantiation of the composite MDP as a chunked control system in our final application (in particular,
for deriving a bound on Lfin,ε). It also showcases the most general structure accomodated by our proof technique.

We begin by defining some notation:

• Let K ∈ N denote a dimension

• Let ~ε ∈ RK≥0 denote a vector of tolerances

• Let ~dS(·, ·) denote a vector of pseudometrics dS,i on S

• Let ~dA denote a vector of non-negative functions dA,i : A2 → R≥0, not necessarily pseuometrics.

• Let � denote vector wise inequality, and let the symbols ∧ and ∨ be generalized to denote entrywise minima and
maxima. Similarly, addition of vectors is coordinate wise with scalars assumed to be broadcast appropriately.

• We let dS,1 = dTVC denote the metric we consider for evaluating total variation distance.

We generalize We assume the following measure-theoretic regularity conditions, generalizing Assumption D.1 as follows.

Assumption E.1. We assume that S and A are Polish spaces. This means they are metrizable, but we do not annotate their
metrics because, e.g. the metric on S may be other than dS . We further assume that

• dS,i is a pseudometric and Borel measurable function from S × S → R≥0.

• For any ε ≥ 0, the set {(a, a′) ∈ A × A : dA,i(a, a′) > ε} is an open subset of A × A; i.e. dA,i(·, ·) is lower
semicontinuous. In particular, this means dA,i is a Borel measurable function. Note that this implies that the

{(a, a′) ∈ A×A : ~dA(a, a′) 6� ~ε}.

is closed and thus measurable.

Note that the above assumption is the natural vectorized generalization of Assumption D.1. Next, we define vector versions
of our imitation errors.

Definition E.2 (Imitation Errors, vector version). Given error parameter ~ε ∈ RK≥0, define

• The vector joint-error

~Γjoint,~ε(π̂ ‖ π?) := inf
µ1

Pµ1

[
∃h ∈ [H] : ~dS (̂sh+1, s

?
h+1) ∨ ~dA(a?h, âh) 6� ~ε

]
,

where the infimum is over trajectory couplings ((̂s1:H+1, â1:H), (s?1:H+1, a
?
1:H)) ∼ µ1 ∈ C (Dπ̂,Dπ?) satisfying

Pµ1 [̂s1 = s?1] = 1.

• The vector marginal error

~Γmarg,~ε(π̂ ‖ π?) := max
h∈[H]

max

{
inf
µ1

Pµ1

[
~dS (̂sh+1, s

?
h+1) 6� ~ε

]
, inf
µ1

Pµ1

[
~dA(a?h, âh) 6� ~ε

]}
the same as the to joint-gap, with the “max” outside the probability and infimum over couplings.

• The vector-wise one-step error

~dos,~ε(π̂h(s) ‖ π?h(s)) := inf
µ2

Pµ2

[
~dA(âh, a

?
h) 6� ~ε

]
,

where the infimum is over (a?h, âh) ∼ µ2 ∈ C (π̂h(s),π?h(s)).
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We now describe input stability.

Definition E.3 (Input-Stability, vector version). A trajectory (s1:H+1, a1:H) is input-stable w.r.t. (~dS ,~dA) if all sequences
s′1 = s1 and s′h+1 = Fh(s′h, a

′
h) satisfy

dS,i(s
′
h+1, sh+1) ≤ max

1≤j≤h
dA,i

(
a′j , aj

)
, ∀h ∈ [H], i ∈ [K]

Finally, define input process stability. A slight technicality is that, in our instantiation, π? is taken to be a suitable regular
condition probability of the joint distribution Dexp of expert trajectories. This means that π? can only really satisfy desired
regularity conditions on states visited with positive probabiliy by Dexp. We address this subtlety by considering the
following definition generalizing Definition 4.5 in the body. We also restrict the kernels under consideration to those which
produce distributions absolutely continuous (Definition C.4) with respect to P?h, and denoted with the� comparator. More
specifically, we only care about absolute continuity under the projections onto the Z component of S.

Definition E.4 (Input & Process Stability, vector version). Let pIPS ∈ (0, 1), ~γIPS = (γIPS,i)1≤i≤K be a collection non-
decreasing maps γIPS,i : R≥0 → R≥0, let dIPS : S × S → R be a pseudometric (possibly other than any of the dS,i), and
rIPS > 0. We say a policy π? is (~γIPS, dIPS, rIPS, pIPS)-(vectorwise-input-&-process stable (vIPS) if the following holds for
any r ∈ [0, rIPS]:

Consider any sequence of kernels Wh : S → ∆(S), 1 ≤ h ≤ H , satisfying

∀h, s ∈ S : Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, φZ ◦Wh(s)� φZ ◦ P?h. (E.1)

Define a process s1 ∼ Pinit, s̃h ∼Wh(sh), ah ∼ πh(s̃h), and sh+1 := Fh(sh, ah). Then, with probability at least 1− pIPS,

(a) the sequence (s1:H+1, a1:H) is input-stable w.r.t (~dS ,~dA) (as defined by Definition E.3).

(b) maxh∈[H] dS,i(Fh(̃sh, ah), sh+1) ≤ γIPS,i(r).

We can now state our desired generalization.

Theorem 4. Suppose that there

(a) π? is (~γIPS, dIPS, rIPS, pIPS)-vector IPS in the sense of Definition E.4.

(b) There is a direct decomposition of S = Z ⊕ V , which associated projection maps φZ and φV , and which is compatible
with the dynamics, and policies π?, π̂, and smoothing kernel Wσ , and dIPS.

(c) φZ ◦Wσ is γσ-TVC with respect to the pseudometric dTVC = dS,1.

Let π̂σ be any policy which is γ̂-TVC, also w.r.t. dTVC = dS,1. Finally, let ~ε ∈ RK≥0, r ∈ (0, 1
2rIPS], and define

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r], ~εmarg := ~ε+ ~γIPS(2r).

Then,

• For any policy π̂, both ~Γjoint,~ε(π̂σ ‖ π?	) and ~Γmarg,~εmarg
(π̂σ ‖ π?) are upper bounded by

pIPS +H(2pr + γ̂(~ε1) + (γ̂ + γσ) ◦ γIPS,1(2r)) +

H∑
h=1

Es?h∼P?h
~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h )) (E.2)

• In the special case where π̂σ = π̂ ◦Wσ , we can take γ̂ = γσ , and obtain that ~Γjoint,~ε(π̂σ ‖ π?	) and ~Γmarg,~εmarg
(π̂σ ‖

π?) are upper bounded by

pIPS +H (2pr + 3γσ(max{ε, γIPS,1(2r)}) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)

~dos,~ε(π̂h(̃s?h) ‖ π?dec(̃s?h)). (E.3)

We note that Theorem 2 is a special case of Theorem 4 and prove the former assuming the latter here at the end of the
section.
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E.2. Proof of Theorem 4

In this section, we prove Theorem 4. We begin with an intuitive overview of the proof and partially construct the relevant
intermediate trajectories used to define our coupling in Appendix E.2.1. In Appendix E.2.2, we prove several prerequisite
properties of the construction given in Appendix E.2.1. Finally, in Appendix E.2.3 we formally construct the coupling and
rigorously prove Theorem 4.

E.2.1. PROOF OVERVIEW AND COUPLING CONSTRUCTION

The proof proceeds by constucting a sophisticated coupling between the law of a trajectory evolving according to π̂ and
a trajectory evolving according to π?	 by introducing several intermediate sequences of composite states and composite
actions.

We partially specify this coupling below and formally construct it in Appendix E.2.3. Our construction is recursive and
relies on the input and process stability as well as total variation continuity to show that if the trajectories generated by
π?	 and π̂ are close in ~dos,~ε evaluated on states at step h, then they will remain close at step h+ 1. There are a number of
technical subtelties involved, especially those of a measure-theoretic nature, but much of the inuition can be gleaned from
the following partial specification of the coupling µ over composite-state (̂s1:H , s

	
1:H , s

tel
1:H , s̃

tel
1:H) ⊂ S, composite-actions

(a	1:H , â1:h, a
tel
1:H) ⊂ K and interpolating composite-actions, (â	,inter

1:H , âtel,inter
1:H ) ⊂ A.

To define the construction, we define the probability kernels corresponding to the replica and deconvolution policies. Note
that these are slightly different from the definitions in the body due to the use of the direct decomposition; the intuition is the
same, however.

Definition E.5 (Replica and Deconvolution Kernels). Let Pproj
aug,hdenote the joint distribution over (z?h, s

?
h, z̃

?
h, a

?
h) under the

generative process

s?h ∼ P?h, a?h ∼ π?h(s?h), z?h = φZ(s?h), z̃?h ∼ φZ ◦Wσ(s?h)

For z ∈ Z , let W?
dec,Z,h(z) denote the distribution of z?h conditioned on z̃?h = z, under Pproj

aug,h. Given s = (z, v), define

W?
dec,h(s) = W?

dec,Z,h(φZ(s))⊗ δφV(s),

W?
	,h(s) = W?

dec,h ◦ (Wσ(φZ(s))⊗ δφV(s)) = (W?
dec,Z,h ◦Wσ(φZ(s)))⊗ δφV(s).

where we recall the dirac-delta δ. Equivalently, W?
dec,h(s) denotes the conditional sequence of (z̃, v), where v = φV(s), and

z̃ ∼W?
dec,Z,h(s); W?

	,h can be expressed similarly.

We remark that W?
dec,h and W?

	,h are both kernels and by Theorem 3, we may assume that the joint distribution over
(s?h, s̃

tel
h ) admits a regular conditional probability and thus these constructions are well-defined.

Remark E.1. Note that the kernels W?
dec,h and W?

	,h are compatible with the decomposition S = Z ⊕ V by construction.
Moreover, note that if s = (z, v), φV ◦W?

dec,h(s) = φV ◦W?
	,h(s) is the dirac-delta distribution supported on v.

Lemma E.1. Under our the assumption that π? and Wσ are compatible with the direct decomposition,

π?dec,h(s) = π? ◦W?
dec,h, π?	σ,h(s) = π? ◦W?

	,h

Proof. This follows imediately because π? and Wσ are compatile with the direct decomposition, and by the definition of
Definition 4.4.

A template for the coupling. Our couplings are partially specified by the following generative process, and what remains
unspecified are couplings between random variables at each each step h. In what follows, let F0 denote the σ-algebra
generatived by ŝ1 = s	1 = stel

1 . Let Fh denote the sigma-algebra generated by (̂s1:h, s
	
1:h, s

tel
1:h), (a	1:h, s̃

	
1:h, s̃

tel
1:h, a

tel
1:h, â1:h),

and (â	,inter
1:h , âtel,inter

1:h ).

• The initial states are drawn as

ŝ1 = s	1 = stel
1 ∼ Pinit.
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𝗌tel
h+1

𝖺tel
h
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h

(𝗌tel
h )′￼|𝗌tel

h

𝖶σ

𝖶⋆
dec,h

𝗌̃tel
h

𝖯⋆
h

𝖯aug,h
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h
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h+1

𝗌↺
h

𝗌↺
h+1
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h )′￼|𝗌↺

h

𝖺↺
h = 𝖺tel

h

𝖶↺,h

= 𝗌̃↺
h

Figure 5. Graphical illustration of the coupling, in the special case where Z = S for simplicity. On the left is the teleporting sequence,
with s̃tel ∼W?

	,h(s
tel
h ) = W?

dec,h ◦Wσ(s
tel
h ). We represent the teleporting explicitly by noising stelh to become (stelh )′ by applying Wσ

and then applying W?
dec,h to complete the “teleporting” to s̃telh . We then apply atelh ∼ π?h(̃stelh ), and continue onto stelh+1 from the teleported

state s̃telh+1. On the right, we illustrate the replica sequence next to the teleporting sequence. We start with s	h , which is close to stelh (a
consequence of our proof). We then apply the replica kernel to achieve s̃	h . Our argument uses that W?

	,h = W?
dec,h ◦Wσ is TVC (a

consequence of TVC of Wσ as shown in Lemma E.2). We depict this property pictorially: since Wσ is TVC and stelh and s	h are close,
we can couple things in such a way that, with good probability, (stelh )′ ∼Wσ(s

tel
h ) and (s	h )

′ ∼Wσ(s
	
h ) are equal. We then extend the

coupling to that s̃	h = s̃telh on the event {(stelh )′ = (s	h )
′}, both being drawn by applying W?

dec,h to both of (stelh )′ = (s	h )
′. We extend the

coupling once more so that atelh ∼ π?(̃stelh ) and a	h ∼ π
?(s̃	h ) are equal on this good probability event. Using our notion of stability, IPS,

and the fact that s	h and stelh are close, the good probability event on which atelh and a	h are equal implies that s	h+1 remains close to stelh+1.
We remark that our actual analysis never explicitly computes the (·)′-terms drawn from Wσ; rather, these terms appear implicitly in our
definitions of W?

	,h and the verification of its TVC property.
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• The dynamics satisfy

ŝh+1 = Fh(̂sh, âh), s	h+1 = Fh(s	h , a
	
h ), stel

h+1 = Fh(s̃tel
h , a

tel
h )

Note that determinism of the dynamics implies that stel
h+1, s	h+1 and ŝh+1 are Fh-measurable.

• We generate

s̃	h | Fh−1 ∼W?
	,h(s	h ), a	h | Fh−1, s̃

	
h ∼ π

?
h(̃s	h ),

s̃tel
h | Fh−1 ∼W?

	,h(stel
h ), atel

h | Fh−1, s̃
tel
h ∼ π?h(̃stel

h ).

âh | Fh−1 ∼ π̂σ (̂sh)

Importantly, we note that, marginalizing over s̃tel
h and s̃	h , respectively, atel

h | Fh−1 ∼ π?	σ,h(stel) and a	h | Fh−1 ∼
π?	σ,h(s	h ).

• Lastly, we select interpolating actions via

â	,inter
h | Fh−1 ∼ π̂σ,h(s	h ), âtel,inter

h | Fh−1 ∼ π̂σ,h(stel
h )

We will say µ is “respects the construction” as shorthand to mean that µ obeys the above equations. The coupling is
illustrated graphically in Figure 5. We now establish several key properties of the above constructions, separated into a
subsection for the sake of clarity.

E.2.2. PROPERTIES OF SMOOTHING, DECONVOLUTION, AND REPLICAS.

In this section, we establish several useful properties of smoothed and replica policies. We begin by showing that smoothed
policies are TVC.

Lemma E.2. The following hold

• For any h, φZ ◦W?
	,h and π?	σ,h are γσ TVC.

• If π is any policy compatible with the direct decomposition S = Z ⊕ V (in the sense of Definition E.1), then π ◦Wσ is
γσ-TVC.

Proof. We observe that φZ ◦W?
	,h = φZ ◦W?

dec,h ◦Wσ(s). Moreover, we observe W?
dec,h satisfies φZ ◦W?

dec,h(s) =
W?

dec,Z,h ◦ φZ , so that φZ ◦W?
	,h = W?

dec,Z,h ◦ φZ ◦Wσ(s). As φZ ◦Wσ is TVC, the first claim is a consequence of the
data-processing inequality Lemma C.4. The second uses the fact that all listed objects involve composition of kernels with
Wσ .

Next, we show that the replica construction preserves marginals.

Lemma E.3 (Marginal-Preservation). There exists a coupling P of zh ∼ φZ ◦ P?h, z′h ∼ φZ ◦Wσ(zh, ·) (where (·) denotes
an irrelevant argument due to compatibility of Wσ with the direct decomposition), and z̃h ∼ φZ ◦W?

	,h(zh, ·) (again, (·)
denotes an irrelevant argument) such that

(zh, z
′
h)

d
= (z̃h, z

′
h).

In particular, for stel
h and s̃tel

h as in our construction, the marginal distributions of φZ(stel
h ) and φZ(s̃tel

h ) are the same, where
stel
h ∼ P?h and s̃tel

h | stel
h ∼W?

	,h(stel
h ).

Proof. By Assumption D.1 and Theorem 3, we may assume that all joint distributions’ conditional probabilities are regular
conditional probabilities and thus almost surely equal to a kernel. Moreover, since all kernels are compatible with the
direct decomposition, it suffices to prove the special case of the trivial direct-decomposition where Z = S. Fix a common
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measure P over which stel
h , s̃

tel
h , and s′h are defined such that stel

h ∼ P?h, s′h ∼Wσ(stel
h ), and s̃tel

h ∼Wdec,h(s′h). Then for any
measurable sets A,B, we have

P(stel
h ∈ A, s′h ∈ B) = P(s′h ∈ B) · Es′h

[
I[s′h ∈ B] · P(stel

h ∈ A|s′h)
]

= P(s′h ∈ B) · Es′h

[
I[s′h ∈ B] · P(̃stel

h ∈ A|s′h)
]

= P
(
s̃tel
h ∈ A, s′h ∈ B

)
,

where the first equality holds by the fact that we are working with regular conditional probabilities and Bayes’ rule, the
second equality holds by the definition of the deconvolution kernel above, and the last equality holds again by Bayes’ rule
and the tower rule for conditional expectations.

To prove the second statement, we apply induction, again assuming that Z = S as in the proof of the first statement.
Note that stel

1 ∼ P?1 = Pinit, and s̃tel
1 ∼ W?

	,1 ◦ P?1. Thus, from the first part of the lemma, φZ(stel
1 ) ∼ φZ ◦ P?1. Now,

suppose the induction holds up to step h. Then, s̃tel
h ∼ P?h, as atel

h ∼ π?h(atel
h ), then stel

h+1 = Fh(̃stel
h , a

tel
h ) ∼ P?h+1. Again

s̃tel
h+1 ∼W?

	,h+1(stel
h+1), so that s̃tel

h+1 has marginal W?
	,h+1 ◦ P?h+1 = P?h+1, as needed.

We further show that W	,h can be defined to be absolutely continuous with respect to P?h.

Lemma E.4. The kernel W	,h satisfies that φZ ◦W	,h � φZ ◦ P?h as laws, validating the second condition in (E.1). It
further holds that φZ ◦Wdec,h � φZ ◦ P?h.

Proof. The first statement follows immediately from Lemma E.3 because these distributions are the same. The second
statement follows immediately from the tower law of conditional expectation and the definition of Wdec,h.

Lastly, we establish that the replica kernel inherits all concentration properties from the smoothing kernel.

Lemma E.5 (Replica Concentration). Recall that

pr := sup
s

Ps′∼Wσ(s)[dIPS(s
′, s) > r].

We then have

Psh∼P?h ,̃sh∼W?
	,h(sh)[dIPS (̃sh, sh) > 2r] ≤ 2pr

Proof. Again, all terms – Wσ,W
?
	,h,W

?
dec,h and dIPS – are compatible with the direct decomposition, it suffices to consider

the case of the trivial direct decomposition under whcih Z = S.

Let P denote a distribution over sh ∼ P?h, s′h ∼ Wσ(sh), and s̃h ∼ W?
dec,h(s′h). In this special case, we see that

s̃h | sh ∼W?
	,h(sh)4. By a union bound,

Psh∼P?h ,̃sh∼W?
	,h(sh)[dIPS(sh, s̃h) > 2r] ≤ P[dIPS (̃sh, s

′
h) > r] + P[dIPS(sh, s

′
h) > r]

= 2P[dIPS(sh, s
′
h) > r] ≤ 2pr,

where the equality follows from the first statment of Lemma E.3.

Remark E.2. Note that, in the previous lemma, it suffices that the following weaker condition holds:
Ps∼P?h,s′∼Wσ(s)[dIPS(s

′, s) > r] ≤ pr, i.e. for concentration to hold only in distribution over s ∼ P?h, instead of uni-
formly over states.

We now proceed to formally prove Theorem 4

4Notice that, for general S = Z ⊕V , this condition would become φZ (̃sh) | φZ(sh) ∼ φZ ◦W?
	,h(φZ(sh), ·), where the · argument

is irrelevant.
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E.2.3. FORMAL PROOF OF THEOREM 4

Key Events. For the random variables defined above, we define three groups of events.

• The coupling events, denoted by B, which are controlled by carefully selecting a coupling.

• The inductive events, denoted by C, which we condition on when bounding the probability of the coupling events.

• The stability events, denoted by Q, which take advantage of the stability properties of the imitation policy.

Definition E.6 (Coupling Events). Define the events

Btel,h =
{
a	h = atel

h , φZ (̃s	h ) = φZ (̃stel
h )
}

Best,h =
{
~dA(âtel,inter

h , atel
h ) 6� ~ε

}
Binter,h =

{
âtel,inter
h = â	,inter

h

}
Bâ,h =

{
â	,inter
h = âh

}
Ball,h = Binter,h ∩ Btel,h ∩ Best,h ∩ Bâ,h

B̄all,h =

h⋂
j=1

Ball,h

Notice that each of the events above are Fh-measurable. Moreover, note that on B̄all,h, max1≤j≤h φIS(âj , a
	
j ) ≤ ε.

Definition E.7 (Inductive Event). Define the events

Cŝ,h =
{
~dS(s	h , ŝh) � ~ε

}
,

Ctel,h =
{
~dS(s	h , s

tel
h ) � ~γIPS(2r)

}
Call,h := Cŝ,h ∩ Ctel,h

C̄all,h =

h⋂
j=1

Call,j

Notice that all the above events are Fh−1-measurable, due to determinism of the dynamics. Note that also Pµ[C̄all,1] = 1 for
any µ that respects the construction (as s	1 = stel

1 = ŝ1).

Definition E.8 (Stability Events). Define the events

Qclose :=
{
∀h ∈ [H] : dIPS(s

	
h , s̃

	
h ) ≤ 2r

}
QIS :=

{
(s	1:H+1, a

	
1:H) is input-stable w.r.t. (~dS ,~dA)

}
QIPS :=

{
~dS(Fh(̃s	h , a

	
h ), s	h+1) ≤ ~γIPS ◦ dIPS

(
s̃	h , s

	
h

)
, 1 ≤ j ≤ H

}
Qall := QIPS ∩Qclose.

In words, Qclose the event on which s	h and s̃	h ∼ W?
	,h(stel

h ) are close, and QISand QIPS ensure consequencs of (vector)
input-stability and (vector) input process stability holds.

Steps of the proof. First, we use stability to reduce the event C̄all,h+1 to C̄all,h ∩ B̄all,h:

Claim E.6 (Stability Claim). By construction,

C̄all,h+1 ⊂ Qall ∩ C̄all,h ∩ B̄all,h.
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Proof. It suffices to show that on Qall ∩ C̄all,h ∩ B̄all,h, ~dS(s	h+1, ŝh+1) � ~ε and ~dS(s	h+1, s
tel
h+1) � ~γIPS(2r). By applying

the event QIS to the sequence a′h = âh and s′h = ŝh, we have that on Qall ⊂ QIS that

∀h ∈ [H], i ∈ [K], dS,i(s
	
h+1, ŝh+1) ≤ max

1≤j≤h
dA,i

(
a	j , âj

)
For the next point, note that the compatibility of the dynamics with the direct decomposition S = Z ⊕ V implies that there
exists a dynamics map FZh for which

Fh(s, a) = FZh (φZ(s), a).

Similarly, by applying QIPS and Qclose and the event {φZ (̃s	h ) = φZ(s̃tel
h ), atel

h = a	h } on Btel,h, it holds that on Qall ∩
C̄all,h ∩ B̄all,h that, for all h ∈ [H],

~dS(s	h+1, Fh(̃s	h , a
	
h )) = ~dS(s	h+1, F

Z
h (φZ (̃s	h ), a	h ))

= ~dS(s	h+1, F
Z
h (φZ (̃stel

h ), atel
h )) (Btel,h)

= ~dS(s	h+1, Fh(̃stel
h , a

tel
h ))

= ~dS(s	h+1, s
tel
h+1)

≤ ~γIPS ◦ dIPS

(
stel
j , s̃

tel
j

)
(QIPS)

≤ ~γIPS ◦ dIPS (2r) . (Qclose)

From Claim E.6, we decompose our error probability as follows:

Lemma E.7 (Key Error Decomposition). Let µ respect the construction (in the sense of Appendix E.2.1). Then

Pµ[∃h ∈ [H] : max{dS(s	h+1, ŝh+1), φIS(a
	
h , âh)} > ε]

≤ Pµ[Qcall] +

H∑
h=1

Pµ[Bcall,h ∩ C̄all,h ∩ B̄all,h−1]

Hence, letting infµ denote the infinum over couplings µ which respect the construction,

~Γjoint,~ε (π̂σ ‖ π?	σ) ∨ ~Γmarg,~εmarg
(π̂σ ‖ π?)

≤ inf
µ

{
Pµ[Qcall] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1]

}
(E.4)

Proof. Define the events Eh := C̄all,h+1 ∩ B̄all,h. Observe that the events are nested: Eh ⊃ Eh+1, and that on EH , we have
that for all h ∈ [H]

~dS(s	h+1, ŝh+1) ∨ ~dA(a	h , âh) � ~ε ∨ ~dA(a	h , âh) (Cŝ,h+1 ⊃ C̄all,h+1 ⊃ Eh)

� ~ε. (B̄all,h ⊃ Eh)

Thus,

Pµ[∃h ∈ [H] : ~dA(s	h+1, ŝh+1) ∨ ~dA(a	h , âh)} 6� ~ε] ≤ Pµ[EcH ] ≤ Pµ[(Qall ∩ EH)c] (E.5)

As (s	1:H+1, a
	
1:H) ∼ Dπ?	 , this shows ~Γjoint,~ε(π̂σ ‖ π?	σ) ≤ Pµ[(Qall ∩ EH)c]. Moreover, on Qall ∩ EH , we have that

max
h

~dS(s	h , s
tel
h ) ≤ ~γIPS(2r),

so that, by the inequality preceeding (E.5), the following holds for all h ∈ [H] on Qall ∩ EH .

~dS(s	h+1, ŝh+1) ∨ ~dA(a	h , âh) ≤ ~dS(s	h+1, ŝh+1) ∨ ~dA(a	h , âh) ≤ ~ε. (E.6)
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By construction, for each h, atel
h | Fh ∼ π?	σ,h(stel

h ). Moreover, Lemma E.3 implies that stel
h has the marginal distribution of

s?h ∼ P?h. Thus, for each h, stel
h+1 and atel

h have the same marginals as the marginals under Dπ? . Consequently, (E.6) implies
that,

~Γmarg,~εmarg
(π̂σ ‖ π?) := max

h∈[H]
max

{
inf
µ1

Pµ1

[
~dS(ŝh+1, s

?
h+1) 6� ~ε

]
, inf
µ1

Pµ1

[
~dA(a?h, âh) 6� ~ε

]}
≤ Pµ[(Qall ∩ EH)c].

where above we take inf over µ1 ∈ C (Dπ̂σ ,Dπ?). Summarizing our findings thus far,

~Γjoint,~ε (π̂σ ‖ π?	σ) ∨ ~Γmarg,~εmarg
(π̂σ ‖ π?) ≤ Pµ[(Qall ∩ EH)c].

Let us conclude by bounding Pµ[(Qall∩EH)c]. Using the nesting structure Eh =
⋂h
j=1 Ej , the peeling lemma, Lemma C.11,

and a union bound, it holds that

Pµ [(Qall ∩ EH)c] ≤ Pµ[Qcall] + P [∃h ∈ [H] s.t. (Qall ∩ Eh−1 ∩ Ech) holds ]

≤ Pµ[Qcall] +

H∑
h=1

Pµ [Qall ∩ Eh−1 ∩ Ech holds ]

= Pµ[Qcall] +

H∑
h=1

Pµ
[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ (B̄all,h ∩ C̄all,h+1)c holds

]
= Pµ[Qcall] +

H∑
h=1

Pµ
[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ B̄call,h

]
= Pµ[Qcall] +

H∑
h=1

Pµ
[
Qall ∩ B̄all,h−1 ∩ C̄all,h ∩ Bcall,h

]
,

where the last step invokes Claim E.6.

Next, we bound the contribution of Pµ[Qcall] in (E.4), uniformly over all couplings.
Lemma E.8. For all µ which respect the construnction,

Pµ[Qcall] ≤ pIPS + 2Hpr.

Proof. Pµ[Qcclose] = Pµ[∃h : dIPS(s
tel
h , s̃

tel
h ) > 2r] ≤ 2Hpr by Lemma E.5 and a union bound.

Let us now bound Pµ[Qclose ∩ QcIPS] ≤ Pµ[QcIPS | Qclose]. Define the kernels Wh(s) to be equal to the kernel W	,h(s)
conditioned on the event s′ ∼ W	,h(s) satisfies dIPS(s

′, s) ≤ 2r. Then, conditional on Qclose, we see that the sequence
(s	1:H+1, s̃

	
1:H , a

	
1:H) obeys the generative process

s̃	h | s̃
	
1:h−1, s

	
1:h, a

	
1:h−1 ∼Wh(s), a	h | s̃

	
1:h, s

	
1:h, a

	
1:h−1 ∼ π

?
h(̃s	h ), s	h+1 = Fh(s	h , a

	
h ).

By construction, for each h, Ps′∼W	,h(s)[dIPS(s
′, s) > 2r] = 0. Thus, the definition of (vector) input process stability

(Definition E.4) and assumption r ≤ 1
2rIPS implies that Pµ[QcIPS | Qclose] ≤ pIPS.

The remaining step of the proof is therefore to bound the second term in (E.4).
Lemma E.9. There exists a coupling µ which respects the construction and satisfies the following for any h ∈ [H]

Pµ[Bcall,h | Fh−1]

≤ γ̂ ◦ dTVC(s	h , ŝh) + (γ̂ + γσ) ◦ dTVC(s	h , s
tel
h ) + ~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h )), µ-almost surely

Consequently, for all h ∈ [H],

Pµ[Bcall,h ∩ C̄all,h ∩ B̄all,h−1]

≤ γ̂(~ε1) + (γ̂ + γσ) ◦ γIPS,1(2r) + Eµ[~dos,~ε (π̂σ,h(stel
h ) ‖ π?	σ,h(stel

h ))]

Moreover, s 7→ ~dos,~ε (π̂σ,h(s) ‖ π?	σ,h(s)) is measurable.
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Proof Sketch. We begin by giving a high level overview of the construction, which is done recursively. The key technical
tool is Lemma C.2 above, which allows us to transform any coupling µ between random variables (X,Y ) into a probability
kernel µ(·|X) mapping instances of X to probability distributions on Y such that (X,Y ) ∼ µ has the same law as
(X,Y ∼ µ(·|X)). For each h, we then show that, assuming the coupling has kept the states and controls close together until
time h− 1, this will imply the following chain:

(a	 ↔ atel)︸ ︷︷ ︸
γTVC and induction

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
learning and sampling

→ (âtel,inter ↔ â	,inter)︸ ︷︷ ︸
γTVC and induction

→ (â	,inter ↔ â)︸ ︷︷ ︸
γTVC and induction

,

where the bidirectional arrows indicate individual couplings between the laws of the random variables that are constructed
by the method outlined in text below and the single directional arrows denote the probability kernels described above. The
full proof of the lemma is given in Appendix E.2.4.

Concluding the proof. Here, we finish the proof of Theorem 4. Recall that we wish to bound ~Γjoint,~ε (π̂σ ‖ π?	σ) ∨
~Γmarg,~εmarg

(π̂σ ‖ π?). We begin by bounding ~Γjoint,~ε (π̂σ ‖ π?	σ) ∨ ~Γmarg,~εmarg
(π̂σ ‖ π?	). In light of Lemma E.7, it

suffices to bound

Pµ[Qcall] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1],

where µ is the coupling in Lemma E.9. Applying Lemma E.8 and Lemma E.9,

Pµ[Qcall] +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1]

≤ pIPS + 2Hpr +

H∑
h=1

Pµ[B̄call,h ∩ C̄all,h ∩ B̄all,h−1]

≤ pIPS +H(2pr + γ̂(~ε1) + (γ̂ + γσ) ◦ γIPS,1(2r)) +

H∑
h=1

Estelh ∼µ
~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h ))

To conclude, we note that for any µ which respects the construction, Lemma E.3 ensures that stel
h as the marginal distribution

of s?h ∼ π?h. Thus, the above is at most

pIPS +H(2pr + γ̂(~ε1) + (γ̂ + γσ) ◦ γIPS,1(2r)) +

H∑
h=1

Es?h∼P?h
~dos,~ε (π̂σ,h(s?h) ‖ π?	σ,h(s?h)) (E.7)

which concludes the proof of (E.2) for ~Γjoint,~ε(π̂ ‖ π?	).

To prove (E.3) for ~Γjoint,~ε(π̂ ‖ π?	), we consider the special case that π̂σ = π̂ ◦Wσ. By definition, π̂σ,h = π̂ ◦Wσ. Thus,
the data-processing inequality for optimal transport (Lemma C.5)

~dos,~ε (π̂σ,h(s?h) ‖ π?	σ,h(s?h)) ≤ Es′h∼Wσ(s?h)
~dos,~ε (π̂(s′h) ‖ π?dec,h(s′h)),

for all s?h. Substituting this into (E.7), and setting γ̂ = γσ (in view of Lemma E.2), finishes the argument.

E.2.4. PROOF OF LEMMA E.9

Recall that Assumption E.1 ensures all of the general measure-theoretic guarantees of Appendix C hold true in our
setting. Notably we need the gluing lemma (Lemma C.2) and the commuting of optimal transport metrics and conditional
probabilities (Proposition C.3).

Proof strategy. Our proof follows along similar lines as that of Proposition D.1, although with the added complication
of including the smoothing. We will inductively construct µ. A useful schematic for the construction at each step is the
following diagram:

(̃s	 ↔ s̃tel), (a	 ↔ atel)︸ ︷︷ ︸
Btel,h

→ (atel ↔ âtel,inter)︸ ︷︷ ︸
Best,h

→ (âtel,inter ↔ â	,inter)︸ ︷︷ ︸
Binter,h

→ (â	,inter ↔ â)︸ ︷︷ ︸
Bâ,h

,
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where the events under each bidirectional arrow refer to the event such ensuring that there exists a coupling such that the
objects are close. We then will apply Lemma C.2 to glue the individual couplings together. We will then use Lemma C.11
and a union bound to control the probability under our constructed coupling that any of the relevant events fail to hold,
concluding the proof.

Recursive construction of µ. Let h ≥ 1, and suppose that we have constructed the coupling µ(1:h−1) for steps
1, . . . , h − 1 which respects the construction. Recall that Fh denotes the sigma-algebra generated by (̂s1:h, s

	
1:h, s

tel
1:h),

(a	1:h, s̃
	
1:h, s̃

tel
1:h, a

tel
1:h, â1:h), and (â	,inter

1:h , âtel,inter
1:h ). Notice that stel

h+1, s
	
h+1, ŝh+1 are determined by Fh as well. Similarly, it

can be seen from Definition E.5 that φV (̃stel
h+1) and φV (̃s	h+1) are also determined by Fh (since the replica kernel preserves

the V-components). We summarize all these aforementioned variables in a random variable Yh. Let F0 denote the filtration
generated by s	1 = stel

1 = ŝ1. We let Y0 = (s	1 , s
tel
1 , ŝ1).

Correspondingly, let Zh denote the random variables (a	h , φZ(s̃	h ), φZ (̃stel
h ), atel

h , âh), and (â	,inter
h , âtel,inter

h ) such that
the joint law of these random variables respects the construction. Our goal is then to specify, for each h ∈ [H], a joint
distribution of (Yh−1, Zh). Note that Zh, Yh−1 determines Yh, and we call this induced law µ(h).

We begin by specifying joint distributions conditional on Yh−1 and subsets of Zh, then glue them together by the gluing
lemma. Below, we use use information-theoretic notation.

• By total variation continuity of φZ ◦W?
	,h (Lemma E.2),

TV(PφZ (̃s	h )|Yh−1
,PφZ (̃stelh )|Yh−1

) ≤ γσ ◦ dTVC(s	h , s
tel
h ).

Because a	h ∼ π?h(̃s	h+1) and atel
h ∼ π?h(̃stel

h ), and π? is compatible with the decomposition S = Z ⊕ V (i.e. π?h(s) is a
function of φZ(s)) Lemma C.4 implies that (almost surely)

TV(P(a	h ,φZ (̃s	h )|Yh−1
,P(atelh ,φZ (̃stelh )|Yh−1

) ≤ γσ ◦ dTVC(s	h , s
tel
h ).

Hence, Corollary C.1 implies that there exists a coupling µ(h)
tel over Yh−1, (φZ (̃s	h ), a	h ), (φZ (̃stel

h ), atel
h ) respecting the

construction such that Yh ∼ µ(h−1) and such that (almost surely)

E
µ
(h)
tel

[Btel,h | Yh−1] = P
µ
(h)
tel

[(φZ(s̃	h ), a	h ) 6= (φZ(s̃tel
h ), atel

h ) | Yh−1] ≤ dTVC(s	h , s
tel
h )].

• In our construction, atel
h | Yh−1 ∼ π?	σ,h(stel

h ), and âtel,inter
h | Yh−1 ∼ π̂σ,h(stel

h ). Thus, by definition of ~dos,~ε, and the

assumption I{~dA(·, ·) 6� ~ε} is lower semicontinuous, Proposition C.3 implies that we may find a coupling µ(h)
est of

(atel
h , â

tel,inter
h , Yh−1) respecting the construction such that, almost surely,

P
µ
(h)
est

[
Bcest,h | Yh−1

]
= P

µ
(h)
est

[
~dA(âtel,inter

h , atel
h ) 6� ~ε | Yh−1

]
= ~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h ))].

Moreover, that same proposition ensures measurability of s→ ~dos,~ε (π̂σ,h(s) ‖ π?	σ,h(s)).

• Since âtel,inter
h | Fh ∼ π̂σ,h(stel

h ) and â	,inter
h+1 | Fh ∼ π̂σ,h(s	h ), and since π̂σ,h(·) is γ̂-TVC by assumption,

TV(Pâtel,interh |Yh−1
,Pâ	,interh |Yh−1

) ≤ γ̂ ◦ dTVC(s	h , s
tel
h ).

Corollary C.1 implies that there is a coupling µ(h)
inter between (âtel,inter

h , â	,inter
h , Yh−1) such that

P
µ
(h)
inter

[Bcinter,h | Yh−1] = P
µ
(h)
inter

[
âtel,inter
h 6= â	,inter

h | Yh−1

]
≤ γ̂ ◦ dTVC(stel

h , s
	
h )

• Similarly, since â	,inter
h | Fh−1 ∼ π̂h(s	h ) and âh+1 | Fh−1 ∼ π̂h(̂sh), π̂h(·) is γ̂-TVC, Corollary C.1 implies that

there is a coupling µ(h)
â between (â	,inter

h , âh, Yh−1) such that

P
µ
(h)
â

[Bcâ,h | Yh−1] = P
µ
(h)
â

[
âh 6= â	,inter

h | Yh−1

]
≤ γ̂ ◦ dTVC(s	h , ŝh)
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We can then apply the gluing lemma (Lemma C.2) to

Xh,1 = (φZ (̃stel
h ), atel

h , Yh−1)

Xh,2 = (φZ (̃s	h ), a	h , Yh−1)

Xh,3 = (atel
h , â

tel,inter
h , Yh−1)

Xh,4 = (âtel,inter
h , â	,inter

h , Yh−1)

Xh,5 = (â	,inter
h , âh, Yh−1)

with

(Xh,1, Xh,2) ∼ µ(h)
tel , (Xh,2, Xh,3) ∼ µ(h)

est , (Xh,3, Xh,4) ∼ µ(h)
inter, (Xh,4, Xh,5) ∼ µ(h)

â .

Lemma C.2 guarantees the existence of a coupling µ(h) consident with all sub-couplings µ(h)
tel , µ(h)

est , µ
(h)
intp, µ

(h)
â . Then,

µ(h)-almost surely (and using that Fh−1 is precisely the σ-algebra generated by Yh−1)

Pµ(h) [Bcall,h | Fh−1]

≤ Pµ(h) [Bctel,h | Fh−1] + Pµ(h) [Bcest,hFh−1] + Pµ(h) [Bcinter,hFh−1] + Pµ(h) [Bcâ,hFh−1]

≤ γ̂ ◦ dTVC(s	h , ŝh) + (γ̂ + γσ) ◦ dTVC(s	h , s
tel
h ) + ~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h ))

= γ̂ ◦ dTVC(s	h , ŝh) + (γ̂ + γσ) ◦ dTVC(s	h , s
tel
h ) + ~dos,~ε (π̂σ,h(stel

h ) ‖ π?	σ,h(stel
h ))

This concludes the inductive construction.

For the second statement, notice that the events C̄all,h ∩ B̄all,h−1 are Fh measurable (thus determined by µ(h−1)) and, when
they hold, ~dS(s	h , s

tel
h ) � ~γIPS(2r) and dS(s	h , ŝh) � ~ε. For our purposes, we use dTVC = dS,1(s	h , s

tel
h ) � γIPS,1(2r) and

dS(s	h , ŝh) � ~ε1. Hence,

max
h∈[H]

Pµ[Bcall,h ∩ C̄all,h ∩ B̄all,h−1] ≤ γ̂(~ε1) + (γ̂ + γσ) ◦ γIPS,1(2r)

+ ~dos,~ε (π̂σ,h(stel
h ) ‖ π?	σ,h(stel

h )).

The result follows.

E.3. Proof of Theorem 2, and generalization to direct decompositions

In this subsection, we consider the special case dealt with in Theorem 2. Note that there always exists a trivial direct
decomposition that is compatible with all policies and dynamics simply by letting V = ∅ and S = Z . We prove here the
version of the result that involves a possibly nontrivial direct decomposition, as we will instantiate this in our control setting
by letting Z =

{
ρm,h

}
and S =

{
ρc,h

}
, i.e., projecting ρc,h onto the last τm coordinates gives zh. We further consider a

restriction of IPS to consider kernels absolutely continuous with respect to P?h in their Z component.

Definition E.9 (Restricted IPS). For a non-decreasing maps γIPS,1, γIPS,2 : R≥0 → R≥0 a pseudometric dIPS : S × S → R
(possibly other than dS or dTVC), and rIPS > 0, we say a policy π is (γIPS,1, γIPS,2, dIPS, rIPS)-restricted IPS if the following
holds for any r ∈ [0, rIPS]. Consider any sequence of kernels W1, . . . ,WH : S → ∆(S) satisfying

max
h,s∈S

Ps̃∼Wh(s)[dIPS(s̃, s) ≤ r] = 1, ∀s, φZ ◦Wh(sh)� φZ ◦ P?h.

and define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼ πh(s̃h), and sh+1 := Fh(sh, ah). Then, almost surely, (a)
the sequence (s1:H+1, a1:H) is input-stable w.r.t (dS , dA) (b) maxh∈[H] dTVC(Fh(̃sh, ah), sh+1) ≤ γIPS,1(r) and (c)
maxh∈[H] dS(Fh(̃sh, ah), sh+1) ≤ γIPS,2(r).

Note that the above is a slightly weaker condition than the one in Definition 4.5 in the main text and consequently, the
following theorem which uses it as an assumption implies Theorem 2 in the body.

Theorem 5. Suppose S = Z ⊕ V as in Definition E.1 and projections φZ , φV , which is compatible with the dynamics
and with given policies π̂, π?, smoothing kernel Wσ, and pseudometric dIPS. Suppose π? satisfies (γIPS,1, γIPS,2, dIPS, rIPS)-
restricted IPS (Definition E.9) and φZ◦Wσ is γσ-TVC. Let ε > 0, r ∈ (0, 1

2rIPS]; define pr := sups Ps′∼Wσ(s)[dIPS(s
′, s) > r]



2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

and ε′ := ε+ γIPS,2(2r). Then, for any policy π̂, both Γjoint,ε(π̂ ◦Wσ ‖ π?	) and Γmarg,ε′(π̂ ◦Wσ ‖ π?) are upper bounded
by

H (2pr + 3γσ(max{ε, γIPS,1(2r)})) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖ π?dec(̃s?h)).

Consider the special case K = 2 with dS,1 = dTVC, dS,2 = dS , dA,1 = dA,2 = dA and ~ε = (ε, ε). In this case, applying
(E.3), we see that

~Γjoint,~ε(π̂σ ‖ π?	) ∨ ~Γmarg,~εmarg
(π̂σ ‖ π?	)

≤ pIPS +H (2pr + 3γσ(max{ε, γIPS,1(2r)}) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)

~dos,~ε(π̂h(̃s?h) ‖ π?dec(̃s?h))

We now observe that under this convention,

Γjoint,ε(π̂σ ‖ π?	) = inf
µ1

Pµ1
[ max
h∈[H]

dS (̂sh+1, s
?
h+1) ∨ dA(âh, a

?
h) > ε]

≤ inf
µ1

Pµ1

[
max
h∈[H]

(
dTVC (̂sh+1, s

?
h+1), dS (̂sh+1, s

?
h+1)

)
∨ (dA(âh, a

?
h), dA(âh, a

?
h)) 6� ~ε

]
= ~Γjoint,~ε(π̂σ ‖ π?	)

and similarly Γmarg,ε′(π̂σ ‖ π?) ≤ ~Γmarg,~ε+γIPS(2r)(π̂σ ‖ π?). From the construction of ~dA, however, we see that{
~dA(a, a′) 6� ~ε

}
= {dA(a, a′) > ε} for all a, a′ and thus for all h ∈ [H],

~dos,~ε(π̂h(̃s?h) ‖ π?h(̃s?h)) = inf
µ2

Pµ2

[
~dA(âh, a

?
h) 6� ~ε

]
= inf

µ2

Pµ2 [dA(âh, a
?
h) ≥ ε]

= dos,ε(π̂h(̃s?h) ‖ π?h(s̃?h)).

Plugging in to (E.3) concludes the proof.

F. Lower Bounds
In this section, we establish lower bounds against the imitation results in the composite MDP. Specifically, we show that

• In Appendix F.1 we show that Theorem 2 and Proposition D.1 are sharp in the regime where γIPS,1 = γIPS,2 = 0.

• In Appendix F.2, we show that the marginals of an expert policy π? and replica policy π?	σ can coincide, but their joint
distributions can be different. By considering π̂ = π?dec in Theorem 2, this establishes the necessity of considering the
marginal imitation gap with respect to π?.

• In Appendix F.3, we lower bound the distance between marginal distributions over states under π? and π?	σ in the
regime where γIPS,2 6= 0. This example demonstrates that the dependence of γIPS,2 in Theorem 2 is essentially sharp.

• In Appendix F.4, we show that for an expert policy π? and smoothing kernel Wσ , the state distributions under π?	σ and
π?dec can have different marginals (and thus different joint distributions). By considering π̂ = π?dec in Theorem 2, this
explains why it is necessary to smooth π̂ to π̂ ◦Wσ .

Taken together, the above counterexamples show that our distinctions between joint and marginal distributions, decision to
add noise at inference time, and dependence on almost all problem quantities in Section 4 are sharp. We do not, however,
establish necessity of γIPS,1 in the interest of brevity; we believe this quantity is necessary. Still, the γIPS,1 term contributes a
factor exponentially small in τc in Theorem 1, so we deem lower bounds establishing its necessity of lesser importance.

Commonalities of construction. In all but Appendix F.3, we take the action and state spaces to be

S = A = R,

which is the archetypal Polish space (Durrett, 2019). Throughout, we use δx to denote the dirac-delta distribution on x ∈ R.
We let dS(s′, s) = dTVC(s′, s) = |s′ − s| and dA(a′, a) = |a′ − a| all be the Euclidean distance.
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F.1. Sharpness of Proposition D.1 and Theorem 2

Here, we demonstrate that Proposition D.1 is tight up to constant factors, and that Theorem 2 is tight up to the terms
γIPS,1, γIPS,2 and concentration probability pr. Consider the simple dynamics

Fh(s, a) = a.

Note that, as the dynamics are state-independent, we have γIPS,1(·) = γIPS,2(·) ≡ 0. Furthermore, let us assume policies do
not depend on time index h. Let π? : s→ δ0 be deterministic, and let Pinit = δ0 be an initial state distribution concentrated
on 0. Then, Dπ? is the dirac distribution on the all-zero trajectory.

Fix parameters 0 < ε < σ, and p ∈ (0, 1). We consider the following smoothing-kernel

Wε,σ =


δ0 s ≤ 0

(1− s
σ )δ0 + s

σδσ s ∈ [0, σ]

δσ s > σ,

Define the candidate policy

π̂ε,p,σ(s) :=

{
(1− p)δε + pδσ s ≤ ε

2

δσ s > ε
2

Proposition F.1. For any p ∈ (0, 1), 0 < ε < σ, set π̄ = π̂ε,p,σ ◦Wσ,ε. Then,

(a) π?, π?	σ and π?dec all map s→ δ0, P?h = δ0, and thus for any π̃ ∈ {π?, π?	σ, π?dec},

Es?h∼P?hEs′h∼Wσ(s?h)[dos,ε(π̂ε,p,σ(s′h) ‖ π̃(s′h)] = Es?h∼P?h [dos,ε(π̄(s?h) ‖ π̃(s?h))] = p.

(b) The kernel Wσ,ε is γσ-TVC, where γσ(u) = u/σ.

(c) For a universal constant c > 0,

Γjoint,ε(π̄ ‖ π?) = Γmarg,ε(π̄ ‖ π?) ≥ cmin{1, H(p+ ε/σ)},

and the same holds with π? replaced by π?	σ or π?dec.

In particular, the above proposition shows that

Γjoint,ε(π̄ ‖ π?) = Γmarg,ε(π̄ ‖ π?) & Hγσ(ε) +

H∑
h=1

Es?h∼P?h [dos,ε(π̄(s?h) ‖ π?(s?h)],

verifying the sharpness of Proposition D.1 (note that π̄ = π̂ε,p,σ ◦Wσ is γσ TVC). Similary, our above proposition shows
that,

Γjoint,ε(π̄ ‖ π?	σ) = Γmarg,ε(π̄ ‖ π?) & Hγσ(ε) +

H∑
h=1

Es?h∼P?h [dos,ε(π̂ε,p,σ(s?h) ‖ π?dec,h(s?h)],

verying that Theorem 2 is sharp up to the additional stability terms γIPS,1, γIPS,2.

Proof. We begin with a computation. Define

η(s) = 1− (1− p)(1− s

σ
) = p+ (1− p) s

σ
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We compute

π̄ = π̂ε,p,σ ◦Wσ,ε =

{
(1− p)δε + pδσ s ≤ ε

2

δσ s > ε
2

◦


δ0 s ≤ 0

(1− s
σ )δ0 + s

σδσ s ∈ [0, σ]

δσ s ≥ σ.

=


(1− p)δε + pδσ s ≤ 0

(1− η(s))δε + η(s)δσ 0 ≤ s ≤ σ
δσ s > σ.

(F.1)

In particular,

π̂(0) = πε,p,σ(0) = (1− p)δε + pδσ

Part (a). Notice that the support of the deconvolution and replica distributions are always in the support of P?h, which is
always s = 0 under π?. Thus, π? = π?	σ = π?dec. By the same token, for any policy π,

Es?h∼P?h [dos,ε(π(s?h) ‖ π̃?(s?h)] = P[|π(0)| > ε].

Hence, as π̄(0) = π̂ε,p,σ(0) = (1− p)δε + pδσ , and as σ > ε, part (a) follows.

Part (b). Consider s, s′ ∈ S. We can assume, from the functional form of Wε,σ(·), that 0 ≤ s ≤ s′ ≤ σ. Then,

TV(Wε,σ(s),Wε,σ(s′)) = TV(δ0(1− s

σ
) + (

s

σ
)δσ, δ0(1− s′

σ
) + (

s′

σ
)δσ =

|s′ − s|
σ

,

establishing total variation continuity.

Part (c) In view of part (a), it suffices to bound gaps relative to π?. Let P denote probabilities over s1:H+1, ah under π̄.
Let A1,h denote the event that at step h, ah = ε, and let A2,h denote the event that ah = σ. As the state s0 is absoring and
as Fh(s, a) = ah, the following events are equal

{∃h : |ah| ∨ |sh+1| > ε} = A2,H .

Hence,

Γjoint,ε(π̄ ‖ π?) = P[A2,H ].

Moreover, as A2,H is measurable with respect to the marginal of aH , we also have that

Γmarg,ε(π̄ ‖ π?) = P[A2,H ].

It thus suffices to lower bound P[A2,H ]. By definition of π̄, the events A1,h,A2,h are exhaustive: Ac1,h = A2,h. Moreover,
from (F.1),

P[A2,h+1 | A2,h] = 1, P[A2,h+1 | A1,h] = η(ε), P[A1,1] = 1− η(0) ≥ 1− η(ε).

Thus,

P[A2,H ] = P[A2,H | A2,H−1]P[A2,H−1] + P[A2,H | A1,H−1]P[A1,H−1]

= P[A2,H−1] + η(ε)P[A1,H−1]

= P[A2,H−2] + η(ε) (P[A1,H−1 + P[A1,H−2])

= η(ε)

(
H−1∑
h=1

P[A1,h]

)
+ P[A2,1]

≥ η(ε)

(
H−1∑
h=1

P[A1,h]

)
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Moreover, as s0 is absorbing,

P[A1,h] = P[A1,h | A1,h−1]P[A1,h−1] = (1− η(ε))P[A1,h−1].

Combining with P[A1,1] = (1− p) ≥ (1− η(0)) ≥ 1− η(ε), we have P[A1,h] ≥ (1− η(ε))h. Hence,

P[A2,H+1] ≥ η(ε)

(
H−1∑
h=1

(1− η(ε))h

)

= η(ε)
1− η(ε)− (1− η(ε))H

1− (1− η(ε))

= 1− η(ε)− (1− η(ε))H

= Ω(min{1, H(η(ε)})

as η(ε) ↓ 0. Subsituting in η(ε) = p+ (1− p)ε/σ = Ω(p+ ε/σ) concludes.

F.2. π?	σ and π? induce the same marginals but different joint distributions, even with memoryless dynamics

We give a simple example where π?	σ and π? induce the same marginal distributions over trajectories, but different joints.
As we show, this example demonstrates the necessity of measuring the marginal imitation error of a smoothed policy,
Γmarg,ε, over the joint error, Γjoint,ε. A graphical (but nonrigorous) demonstration of this issue can be seen in Figure 4 in
Appendix B.

Again, let S = A = R, and Fh(s, a) = a. We let

Wσ(·) = N (·, σ2)

denote Gaussian smoothing. Fix some ε > 0. Define

Pinit =
1

2
(δ−ε + δ+ε), π?(s) =

{
δ−ε s ≤ 0

δε s > 0
.

Thus, Dπ? is supported on the trajectories with (s1:H+1, a1:H) being either all ε or all −ε, and

P?h = Pinit =
1

2
(δ−ε + δ+ε).

Hence, the replica and deconvolution map to distributions supported on {ε,−ε}. Let φσ(·) denote the Gaussian PDF with
variance σ. Then,

W?
dec,h(s) =

δεφσ(s− ε) + δ−εφσ(s + ε)

φσ(s− ε) + φσ(s + ε)
.

Moreover,

W?
	,h(s) = EZ∼N (0,σ2)

[
δεφσ(s− ε+ Z) + δ−εφσ(s + ε+ Z)

φσ(s− ε+ Z) + φσ(s + ε+ Z)

]
. (F.2)

One can check that for ε ≤ σ,

W?
	,h(uε) = Θ

(
(1 + cε

σ )δuε + (1− cε
σ )δ−uε

2

)
, u ∈ {−1, 1}

for ε� 1. In particular, for s ∈ {−ε, ε}

Pa∼π?	σ,h(s)[a = −s] ≥ Ω(1). (F.3)
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In particular, if (s	1:H+1, a
	
1:H) ∼ Dπ?	σ , then

P[∃h : d(s	h , s
	
h+1) > ε] ≤ P[∃h : s	h = −s	h+1]

≤ P[∃h : s	h = −a	h ] = 1− exp(−Ω(H)),

where in the last step we used (F.3) and the the fact that the π?	σ uses fresh randomness at each round. Moreover, as π?

always commits to either an all-ε or all-(−ε)-trajectory, we see that for any µ ∈ C (Dπ? ,Dπ?	σ ) over (s?1:H+1, a
?
1:H) ∼ Dπ?

and (s	1:H+1, a
	
1:H) ∼ Dπ?	σ ,

Γjoint,ε(π
?
	σ, π

?) ≥ Pµ[∃1 ≤ h ≤ H : d(s?h+1, s
	
h+1) > ε] ≥ 1− exp(−Ω(H)),

That is, the replica and expert policies have different joint state distribution.

Remark F.1. The above result demonstrates the necessity of measuring the marginal error between π̂ ◦Wσ and π? in
Theorem 2: if we apply that proposition with π̂ = π?dec, then for all ε, Es̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖ π?dec(̃s?h)) = 0. But
then π̂ ◦Wσ = π?	σ, and we know that Γjoint,ε(π

?
	σ, π

?) ≥ Pµ[∃1 ≤ h ≤ H : d(s?h+1, s
	
h+1) > ε] ≥ 1 − exp(−Ω(H)).

Thus, we cannot hope for smoothed policies to imitate expert demonstrations in joint state distributions without additional
assumptions.

Remark F.2 (Importance of chunking). Above we have shown that π?	σ oscillates between ε and −ε (for actions and
subsequent states). We remark that these oscillations can have very deleterious effects on performance on real control
systems. This is why it is beneficial to predict entire sequences of trajectories. Indeed, consider a modified construction
such that S = A = RK , and Fh(s, a) = a. Here, we interpret S as a sequence of K-control states in R, and a as sequence
of K-actions, denoting the i-th coordinate of s via s[i],

π?(s) =

{
δ−ε1 s[1] ≤ 0

δε1 s[1] > 0,

Then, we can view the oscillations in π?	σ as oscillations between length K trajectories, which is essentially what happens
in our analysis for K = τc.

F.3. π?	σ and π? can have different marginals, implying necessity of γIPS,2

Our construction lifts the construction in Appendix F.2 to a two-dimensional state space S = R2, keeping one dimensional
actions A = R. Let s = (s[1], s[2]) denote coordinate of s ∈ S. For some parameter ν, the dynamics are

sh+1 = Fh(sh, ah) = (ah, ν · (sh[1]− ah))

We let dS = dTVC = dIPS denote the `1 norm on S = R2. Our initial state distribution is

Pinit =
1

2

(
δ(ε,0) + δ(−ε,0)

)
We let

π?(s) =

{
δ(−ε,0) s ≤ 0

δ(ε,0) s > 0
.

Thus, π? induces trajectories which either stay on δ(ε,0) or δ(−ε,0).

P?h =
1

2

(
δ(ε,0) + δ(−ε,0)

)
, ∀h ≥ 1.

Let

Wσ(s) = N (s′, σ2)
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Proposition F.2. In the above construction, we can take γIPS,2(u) ≤ ν · u in Definition 4.5, and pr satisfies the conditions in
Theorem 2 for r = 2σ

√
log(1/pr). Moreover, for any ε ≤ σ,

Γmarg,ε′(π
?
	σ ‖ π?) ≥ Ω(1), ε′ = νε

Remark F.3 (Sharpness of γIPS,2). Before proving this proposition, we note that if we take ε = σ and r = 2σ
√

log(1/pr),
then νε = Ω̃(γIPS(2r)), showing that our dependence on γIPS,2 is sharp up to logarithmic factors. Moreover, the looseness up
to logarithmic factors in the above point is an artifact of using the Gaussian smoothing Wσ , and can be remover by replaced
Wσ with a truncated-Gaussian kernel.

Proof of Proposition F.2. To see γIPS,2(u) ≤ ν ·u, we have ‖Fh(s, a)−Fh(s′, a)‖ = ‖(a, ν ·(s[1]−a))−(a, ν ·(s′[1]−a))‖ =

ν|s[1]− s′[1]| ≤ νdTVC(s, s′). That we can take r = 2σ
√

log(1/pr) follows from Gaussian concentration.

To prove the final claim, one can directly generalize (F.2) to find that, for any b ∈ R,

W?
	,h(s) = EZ∼N (0,σ2)

[
δ(ε,0)φσ(s[1]− ε+ Z) + δ(−ε,0)φσ(s[1] + ε+ Z)

φσ(s[1]− ε+ Z) + φσ(s[1] + ε+ Z)

]
.

This follows form the observation that W?
	,h and P?h have the same support, and as P?h always is support on vectors with

second coordinate zero, that the second coordinate of s in W?
	,h(s) is uninformative. For ε ≤ σ, we find that

W?
	,h((ε, b)) = cδ(ε,0) + (1− c)δ(−ε,0), c = Ω(1), b ∈ R.

and W?
	,h((−ε, b)) is defined symmetrically, Hence, under (s	1:H+1, a

	
1:H) ∼ π?	σ ,

P[s	1 6= a	1 ] ≥ Ω(1)

Moroever, when s	2 6= a	h , we have that |s	2 [2]| = ν|s	1 − a	1 |, which as π? is supported on {δ(ε,0), δ(−ε,0)}, means,
|s	2 (2)| ≥ 2νε. Thus,

P[|s	2 [2]| ≥ 2νε] ≥ Ω(1)

On the other hand, s?2 ∼ P?h has s?2[2] = 0 with probability one. Thus, for any coupling µ between Dπ? ,Dπ?	σ ,

Pµ[dS(s	2 , s
?
2)| ≥ 2νε] ≥ Ω(1)

Thus,

Γmarg,νε(π
?
	σ ‖ π?) ≥ Ω(1).

F.4. π?	σ and π?dec have different marginals, even with memoryless dynamics

Here, we show how π?	σ and π?dec have different marginals even if the dynamics are memoryless. By considering π̂ = π?dec

in Theorem 2, the discussion below demonstrates why one needs to consider π̂ ◦Wσ in order to obtain small imitation gap.

For simplicity, we use a discrete smoothing kernel Wσ , though the example extends to the Gaussian smoothing kernel in the
previous counter example. Again, let S = A = R, and Fh(s, a) = a. Take

π?(s) =

{
δ−σ s ≤ 0

δσ s > 0

Let us consider an asymmetric initial state distribution

Pinit =
1

4
δ−σ +

3

4
δ+σ.
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Note then that

∀h, P?h = Pinit =
1

4
δ−σ +

3

4
δσ, (F.4)

We consider a smoothing kernel,

Wσ(s) =


( 1

2 + s
4σ )δσ + ( 1

2 −
s

4σ )δσ −2σ ≤ s ≤ 2σ

δσ s ≥ 2σ

δ−σ s ≤ −2σ

The salient part of our construction of Wσ is that

Wσ(σ) =
1

4
δ−σ +

3

4
δσ, Wσ(−σ) =

1

4
δσ +

3

4
δ−σ.

Denote the marginals of π?	σ and π?dec with P?	,h and P?dec,h. One can show via the lack of memory in the dynamics and the
structure of π? that

P?	,h+1 = W?
	,h ◦ P?	,h, W?

dec,h+1 = W?
dec,h ◦ P?dec,h, (F.5)

By the replica property (Lemma E.3), W?
	,h ◦ P?h = P?h for all h. Thus, for all h, (F.4) and (F.5) imply

P?	,h = P?h =
1

4
δ−σ +

3

4
δ+σ. (F.6)

The following claim computes P?dec,h.

Claim F.3. Consider any distribution of the form P = (1− p)δσ + pδ−σ . Then

W?
dec,h ◦ P = (

9

10
− p

5
)δσ + (

1

10
+
p

5
)δ−σ.

Thus,

P?dec,h+1[−σ] =
1

10

(
h−1∑
i=0

5−i
)

+
1

4
51−h.

Before proving the claim, let us remark on its implications. As h→∞,

P?dec,h[−σ]→ 1

10

(
1

1− 1/5

)
=

1

10
· 5

4
=

1

8
.

Thus,

lim
h→∞

P?dec,h =
7

8
δσ +

1

8
δ−σ,

achieving a different stationary distribution that P?h = P?	,h. This shows that

lim
H→∞

Γmarg,σ(π?	σ, π
?
dec) ≥ TV(

7

8
δσ +

1

8
δ−σ,

3

4
δσ +

1

4
δ−σ) =

1

8
,

which implies that the deconvolution policy π?dec does approximate π?	σ. From (F.6), it also follows that π?	σ and π? have
identical marginals, so

lim
H→∞

Γmarg,σ(π?, π?dec) ≥ TV(
7

8
δσ +

1

8
δ−σ,

3

4
δσ +

1

4
δ−σ) =

1

8

as well. In particular, if we take π̂ = π?dec in Theorem 2, we see that there is no hope to for bounding Γmarg,ε(π
?, π̂); we

must bound Γmarg,ε(π
?, π̂ ◦Wσ) (again noting that if π̂ = π?dec, π̂ ◦Wσ = π?	σ).
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Proof of Claim F.3. We have that for s′ ∈ {−σ, σ},

W?
dec,s′|s =

Wσ(s′)[s] · P?h(s′)
Wσ(s′)[s] · P?h(s′) + Wσ(−s′)[s] · P?h(−s′)

With s = s′ = σ, the above is

W?
dec,h(s′ = σ | s = σ) =

3
4 ·

3
4

3
4 ·

3
4 + 1

4 ·
1
4

=
9

10
.

And

W?
dec,h(s′ = σ | s = −σ) =

1
4 ·

3
4

1
4 ·

3
4 + 3

4 ·
1
4

=
1

2
.

Hence, for any p ∈ [0, 1],

W?
dec,h(s′ = σ | s = −σ)((1− p)δσ + pδ−σ) = ((1− p) 9

10
+
p

2
)δσ + (1− ((1− p) 9

10
+
p

2
)))δσ

= (
9

10
− p

5
)δσ + (

1

10
+
p

5
)δ−σ.

Consequently, by (F.5), we can unfold a recursion to compute

P?dec,h+1[−σ] = W?
dec,h(s′ = σ | s = −σ)P?dec,h

= (
1

10
+

P?dec,h[σ]

5
)

=
1

10

h−1∑
i=0

5−i + P?dec,1[σ] · 51−h

=
1

10

h−1∑
i=0

5−i + P?1[σ] · 51−h

=
1

10

(
h−1∑
i=0

5−i
)

+
1

4
51−h.

Part II

The Control Setting
G. Stability in the Control System
This section proves our various stability conditions. One wrinkle in the exposition is that we are able to derive far sharper
perturbation guarantees than are needed in our analysis. However, as the guarantees are rather technically burdensome to
derive, we endeavor to present the sharpest possible results so that we may save others from having to rederive these bounds
in future applications.

Importantly, this section also contains the definition of the constants c1, . . . , c5 > 0 present in Theorem 1, Proposition 4.1,
and other main results (see Definition G.7).

The section is organized as follows:

• Appendix G.1 recalls various preliminaries.
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• Appendix G.2 provides the definition of numerous problem-dependent constants, all of which are polynomial in
(Rdyn, Ldyn,Mdyn) and (Rstab, Bstab, Lstab) defined in Assumptions 3.1 and 3.2.

• Appendix G.3 gives IPS guarantees in terms of the constants in the previous section. Specifically, it provides
Definition G.7, which instantiates the constants c1, . . . , c5 > 0 present in Theorem 1, Proposition 4.1, and other main
results. We then state Corollary G.1, from which we derive Proposition 4.1 used in the body. This corollary is derived
from a sharper guarantee, Proposition G.3 (whose improvements over the corollary are detailed in Remark G.2).

• The results in Appendix G.3 are derived from two building blocks in Appendix G.4: Lemma G.4 which bounds
sensitive of regular trajectories to initial state, and Proposition G.5 which addresses perturbations of control inputs and
gain.

• Proposition G.3 is derived from Proposition G.5 in Appendix G.5. Lemma G.4 and Proposition G.5 are proven in
Appendix G.7 in Appendix G.7, respectively.

• Appendix G.8 explains how to implement a synthesis oracle which produces Jacobian Stabilizing primitives controllers
from trajectories which satisfy a natural stabilizability condition.

• Finally, Appendix G.9 gives the solutions to various scalar recursions used in the proofs of Lemma G.4 and Proposi-
tion G.5.

G.1. Recalling preliminaries and assumptions.

Recall the following definitions.

• A length-K control trajectory is denoted ρ = (x1:K+1, u1:K) ∈PK = (Rdx)K+1 × (Rdu)K .

• Its Jacobian linearizations are denoted Ak(ρ) := ∂
∂xfη(xk,uk) and Bk(ρ) := ∂

∂ufη(xk,uk) for k ∈ [K].

• Recalling our dynamics map f(·, ·), and step size η > 0, we say ρ is feasible if, for all k ∈ [K],

xk+1 = f(xk,uk), where f(x,u) = x + ηfη(x,u).

We regular the definition of regular trajectories from Section 3.
Definition G.1. A control path ρ = (x1:K+1,u1:K) is (Rdyn, Ldyn,Mdyn)-regular if for all k ∈ [K] and all (x′k,u

′
k) ∈

Rdx × Rdu such that ‖x′k − xk‖ ∨ ‖uk − u′k‖ ≤ Rdyn,5

‖∇fη(x′k,u
′
k)‖op ≤ Ldyn, ‖∇ 2fη(x′k,u

′
k)‖op ≤Mdyn.

We also recall the definitions around Jacobian stabilization. We start with a definition of Jacobian stabilization for feedback
gains, from which we then recover the definition of Jacobian stabilization for primitive controllers given in the body.
Definition G.2. Consider Rstab, Lstab, Bstab ≥ 1. Consider sequence of gains K1:K ∈ (Rdu×du)K and trajectory
ρ = (x1:K+1,u1:K) ∈ PK . We say that (ρ,K1:K)-is (Rstab, Bstab, Lstab)-Jacobian Stable if maxk ‖Kk‖op ≤ Bstab,
and if the closed-loop transition operators defined by

Φcl,k,j := (I + ηAcl,k−1) · (I + ηAcl,k−2) · (. . . ) · (I + ηAcl,j)

with Acl,k = Ak(ρ) + Bk−1(ρ)Kk−1 satisfies the following inequality

‖Φcl,k,j‖op ≤ Bstab(1− η

Lstab
)k−j .

The definition of Jacobian stability of primitive controllers in Section 3 may be recovered as follows.
Definition G.3. ConsiderRstab, Lstab, Bstab ≥ 1. Consider a sequence of primitive controllers κ1:K ∈ KK , each expressed
as κk(x) = ūk = K̄k(xk − x̄k) and ρ = (x1:K+1,u1:K) ∈PK . We say (ρ, κ1:K) is Jacobian Stable if κ1:K is consistent
with ρ, and if (ρ, K̄1:K) is Rstab, Lstab, Bstab > 0-Jacobian stable.

Note that in Jacobian stability (both with primitive controllers and with gain-matrices), we take all parameters to be no less
than one.

5Here, ‖∇ 2fη(x
′
t,u

′
t)‖op denotes the operator-norm of a three-tensor.
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G.1.1. PROPERTIES SATISFIED BY π?

Finally, we show that actions produced by π? in our control instantiation of the composite MDP satisy the assumptions in
Assumptions 3.1 and 3.2.
Lemma G.1. Suppose Assumptions 3.1 and 3.2 hold. Let π? = (π?h)1≤h≤H denote the policy constructed as a regular
conditional probability from the conditionals of Dexp. Furthermore, let Dexp,ρm,h

denote the distribution over ρm,h

corresponding to ρT ∼ Dexp. Then, with probability one over ρm,h ∼ Dexp,ρm,h
and ah ∼ π?h(ρm,h), expressed as

ρm,h = (xth:th−τm+1,uth−1:th−τm+1), and ah = κth:th+1−1. Consider the unique feasible trajectory for which

ρc,h+1 = (x′th:th+1
,u′th:th+1−1), x′th = xth , ut = κt(xt), th ≤ t < th+1.

Then,

• ρ′c,h+1 is (Rdyn, Ldyn,Mdyn)-regular

• (ρ′c,h+1, κth:th+1−1) is (Rstab, Bstab, Lstab)-Jacobian stable.

Proof. Since π? in Definition I.3 is constructed as the regular conditional probabiliy of ah | ρm,h under Dexp, (ah,ρm,h)
is the above lemma have the same joint distribution as under Dexp. Thus, the lemma follows from the assumptions
Assumptions 3.1 and 3.2 placed on Dexp.

The following is a direct consequence of the above lemma.
Lemma G.2. Consider the instantiation of the composite MDP for the control setting as in Section 4.1 and in Appendix I,
with π? as in Definition I.3, and φZ as in Definition E.1. Suppose that W1, . . . ,Wh : S → ∆(S) satisfy6

φZ ◦Wh(s)� φZ ◦ P?h, (G.1)

Consider a sequence of actions s1:H+1, a1:H generated via

ah ∼ π?h(̃sh), s̃h ∼Wh(sh), sh+1 = Fh(sh, ah), s1 ∼ Pinit.

Let s̃h = (x̃th−1:th , ũth−1:th−1) and ah = κth:th+1−1. Then, with probability one, for each h, the unique feasible trajectory
for which

ρc,h+1 = (x′th:th+1
,u′th:th+1−1), x′th = xth , ut = κt(xt), th ≤ t < th+1.

satisfies

• x′th = x̃th , and ρ′c,h+1 is feasible and (Rdyn, Ldyn,Mdyn)-regular

• (ρ′c,h+1, κth:th+1−1) is (Rstab, Bstab, Lstab)-Jacobian Stable.

Remark G.1 (On the absolute continuity constraint in (G.1)). Recall that φZ as defined in Definition I.1 simply extracts the
memory chunk ρm,h from the trajectory chunk ρc,h. The condition supp(φZ ◦Wh(s)) ⊂ supp(φZ ◦ P?h) just means that
the distribution of the memory chunk-components from Wh(s)is absolutely continuous with respect to the memory-chunks
ρm,h under Dexp.

G.1.2. NORM NOTATION.

Lastly, given our parameter η > 0, we define two types of norms. First, for sequences of vectors z1:K ∈ (Rd)K and matrices
(X1:K) ∈ Rd1×d2)K , define

‖z1:K‖`2 =

(
η

K∑
k=1

‖zk‖2
)
, ‖X1:K‖`2,op =

(
η

K∑
k=1

‖Xk‖2
)
,

where again the standard ‖ · ‖ notation denotes Euclidean norm for vectors and operator norm for matrices. We also define

‖z1:K‖max,2 = max
1≤k≤K

‖zk‖, ‖X1:K‖max,op = max
1≤k≤K

‖Xk‖.
6Recall the absolute-continuity comparator� defined in Definition C.4.
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G.2. Composite Problem Constants

We begin by writing down numerous problem constants, all of which are polynomial in the quantities (Rdyn, Ldyn,Mdyn)
and (Rstab, Bstab, Lstab). First, we define the stability exponent,

βstab := (1− η

Lstab
) ∈ (0, 1).

Definition G.4. Given the regularity parameters Rdyn, Ldyn,Mdyn, stability parameters Rstab, Bstab, Lstab, and the step
size η > 0, we define the “little-c” constants

cu = 12Bstab

√
LstabLdyn, cK = 2Bstab + 12BstabL

1/2
stabLdyn, c∆ = 6Bstab

as well as “big-C” constants

Cu := min

{√
LstabLdyn

Mdyn
,

1

256B2
stabMdynLdynL

3/2
stab

}

C∆ :=
1

4 · 324B2
stabMdynLstab

Cx̂ := min

{
Rdyn

2RstabBstab
,

1

16LstabMdynR2
stabB

2
stab

}
CK := min

{
1

24
√
LstabBstabLdyn

,
C−1

x̂ Ldyn

8 · 324B2
stabMdynL

3/2
stab

}

CK,x̂ :=
Ldyn

8 · 324B2
stabMdynL

3/2
stab

.

The “little-c” constants enter directly into our error bounds, where as the “big-C” constants function as constraints on errors,
above which we lose guarantees. We define some additional “big-C” constants which take in a radius argument R0.
Definition G.5 (Final Stability Constants). In term of the constants in Definition G.5, we define the following final stability
constants, as functions of a parameter R0:

Cstab,1(R0) := min

{
Cu,

C∆

4cu
,
Rdyn

R0
· 1

48cuc∆

}
Cstab,2(R0) := min

{
CK,

β
−τc/3
stab C∆

4cu
,
Rdyn

R0
·
β
−τc/3
stab

48cKc∆

}

Cstab,3(R0) :=
Rdyn

12R0cu
√
Lstab + 3

Cstab,4(R0) := min

{
Cx̂,

CK,x̂

CK
,
Rdyn

R0
· 1

12cK

}
G.3. IPS Guarantees & Proof of Proposition 4.1

Here we provide our main stability guarantees for the learned policy π? under Assumptions 3.1 and 3.2, from which we
derive Proposition 4.1. This section adopts the notation from Section 4.1.

We begin by introducing a functional form for our distances.
Definition G.6 (Distances). Let τc be given, and let 0 ≤ τ ≤ τc. For h > 1 and chunk-states sh = (xth−1:th ,uth−1:th−1) ∈
Pτf and s′h = (x′th−1:th

,u′th−1:th−1), define

dS,x,τ (sh, s
′
h) := max

t∈[th−τ :th]
‖xt − x′t‖

dS,u,τ (sh, s
′
h) := max

t∈[th−τ :th−1]
‖ut − u′t‖

dS,τ (sh, s
′
h) := max {dS,x,τ (sh, s

′
h), dS,u,τ (sh, s

′
h)} ,
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For h = 1, s1 = x̄1 and s′1 = x̄′1, we define dS(s1, s
′
1) = ‖x̄1 − x̄′1‖. Note therefore that

dS,τc(·, ·) = dS(·, ·), dS,τm−1(·, ·) = dTVC(·, ·), dS,0(·, ·) = dIPS(·, ·)

Next, we introduce five problem-dependent constants c1, . . . , c5, all of which are stated in terms of the constants
in Appendix G.2; one can readily check that these are all polynomial in the constants (Rdyn, Ldyn,Mdyn) and
(Rstab, Bstab, Lstab) in Assumptions 3.1 and 3.2.
Definition G.7 (IPS Constants). In terms of constants in Appendix G.2, we define the IPS constants as follows:

c1 := (6 max{Rstab(1 + 2cu
√
Lstab), Bstab +

√
LstabcK}). (G.2)

c2 := min

{
Cstab,1(2Rstab)

4Rstab

√
Lstab

,
Cstab,2(2Rstab)√

Lstab

,
Cstab,3(2Rstab)

4Rstab
,

1

2Rstab

}
.

We further define

c3 = 3Lstab log(2c∆), c4 = min{1, Cstab,4(2Rstab)}, c5 = 2(1 +Rstab)Bstab.

In terms of the constants c1, c2 > 0 above, we introduce a family of distance-like functions on d̄A,τ (a, a′ | r) : A×A →
R≥0 ∪ {∞}, defined as follows.
Definition G.8. Consider a = (ū1:τc , x̄1:τc , K̄1:τc) and a′ = (ū′1:τc , x̄

′
1:τc , K̄

′
1:τc).

d̄A,τ (a, a′ | r) := c1 max
1≤k≤τc

(
‖ūk − ū′k‖+ ‖x̄k − x̄′k‖+ re

− η(τc−τ)3Lstab ‖K̄k − K̄′k‖
)

+ I0,∞

{
max

1≤k≤τc

(
max

{
‖ūk − ū′k‖, ‖x̄k − x̄′k‖, ‖K̄k − K̄′k‖

})
≤ c2

}
,

where I0,∞(E) is 0 if clase E is true and∞ otherwise.

In words, d̄A,τ (a, a′ | r) measures the maximal differences between ūk− ū′k, x̄k− x̄′k, and K̄k−K̄′k, subject to a constraint
that each of these quantities is within some bound c2. One the latter threshold is met, the dependence on ‖K̄k − K̄′k‖ is
scaled down by r, and is also exponentially small in τc − τ ; this latter bit is not necessary for our results, but illustrates an
interesting feature of our stability guarantees: they are far less sensitive to errors in K̄ than to errors in ū.

In terms of d̄A,τ (a, a′ | r) defined above, we can now ensure the following stability guarantee.
Corollary G.1. Suppose that τc ≥ c3/η and r ≤ c4, and consider any sequence of kernels {Wh}hh=1, where Wh : S →
∆(S), and7

max
h,s∈S

Ps̃∼Wh(s)[dIPS(s̃, s) ≤ r] = 1, φZ ◦Wh(s)� φZ ◦ P?h,

for φZ is from the direct decomposition instantiated in Definition I.1, and where P?h denotes the law of ρc,h under Dexp as
in Definition I.3.

Define a process s1 ∼ Pinit, s̃h ∼Wh(sh), ah ∼ π?h(s̃h), and sh+1 := Fh(sh, ah). Then, almost surely, the following hold
for all 0 ≤ τ ≤ τc:

• For each 1 ≤ h ≤ H , dS,τ (Fh(̃sh, ah), sh) ≤ c5re−
η(τc−τ)
Lstab .

• For any sequence (a′1:H), the dynamics s′1 = s1, sh+1 = Fh(s′h, a
′
h) satisfy

max
1≤h≤H+1

dS,τ (sh, s
′
h) ≤ max

1≤h≤H
d̄A,τ (ah, a

′
h | r).

Corollary G.1 is derived in Appendix G.3.2 from an even more granular result stated just below. Before continuing, we
explain how Proposition 4.1 follows.

Proof of Proposition 4.1. This follows directly from the above corollary notice that c4 is define to be at most 1, so we
always invoke the corollary with r ≤ 1, and thus d̄A,τ (ah, a

′
h | r) ≤ d̄A,τ (ah, a

′
h | 1) ≤ dA. We remark that the guarantee

only applies to kernels for which
7See Remark G.1 above for iterpretation of this condition below.
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G.3.1. A MORE GRANULAR STABILITY STATEMENT

Here, we state an even more granular stability guarantee. The notation is rather onerous, but captures another nice feature of
our bound: that our stability depends not on the maximal errors over ūk − ū′k, x̄k − x̄′k, x̄k − x̄′k, but rather on `2-errors.
Again, not necessary for our guarantees, but it speaks to the sharpness of our perturbation bounds. See Remark G.2 at the
end of the section for more discussion.

Definition G.9 (Action Differences (inputs and gains)). Consider a = (ū1:τc , x̄1:τc , K̄1:τc) and a′ = (ū′1:τc , x̄
′
1:τc , K̄

′
1:τc).

We define

dA,u,`2(a, a′) = max
1≤k≤τc

η k∑
j=1

βk−jstab‖ūj − ū′j‖2
1/2

dA,x,`2(a, a′) = max
1≤k≤τc

η k∑
j=1

βk−jstab‖x̄j − x̄′j‖2
1/2

dA,K,`2(a, a′) = max
1≤k≤τc

η k∑
j=1

βk−jstab‖K̄j − K̄′j‖

1/2

.

We further define

dA,u,∞(a, a′) := max
1≤k≤τc

‖ūk − ū′k‖ = ‖ū1:τc − ū′1:τc‖max,2

dA,x,∞(a, a′) := max
1≤k≤τc

‖x̄k − x̄′k‖ = ‖x̄1:τc − x̄′1:τc‖max,2

dA,K,∞(a, a′) := max
1≤k≤τc

‖K̄k − K̄′k‖ = ‖K̄1:τc − K̄′1:τc‖max,op.

and

radK(a) := max
1≤k≤τc

‖K̄k‖ = ‖K̄1:τc‖max,op.

We note further that as βstab ∈ (0, 1) and η
∑
i≥0 β

i
stab = Lstab, we have

dA,u,`2(a, a′) ≤ ‖ū1:τc − ū′1:τc‖`2 ∧
√
Lstab‖ū1:τc − ū′1:τc‖max,2

≤ ‖ū1:τc − ū′1:τc‖`2 ∧
√
LstabdA,u,∞(a, a′) (G.3)

and analogously for dA,x,`2(a, a′) and dA,K,`2(a, a′).

Next, recall the constants {Cstab,i(R0)}4i=1 in Definition G.5, and cu, cK in Definition G.4, all of which are polynomial in
relevant problem parameters (Rdyn, Ldyn,Mdyn), (Rstab, Bstab, Lstab), and argument R0. We now define a very general
distance-like function between actions.

Definition G.10 (Action Divergences). Define, for R0 ≥ 1, the following

dA,R0,τ (ah, a
′
h | r) := 2((1 +R0)dA,R0,τ,x(ah, a

′
h | r) + dA,R0,τ,u(ah, a

′
h | r)),

where

dA,R0,τ,u(ah, a
′
h | r) := dA,u,∞(ah, a

′
h) +R0dA,x,∞(ah, a

′
h) + 2rBstabβ

τc−τ
stab dA,K,∞(ah, a

′
h),

and where

dA,R0,τ,x(a, a′ | r) = 2cu(dA,u,`2(a, a′) +R0dA,x,`2(a, a′)) + 2cKr(βstab)
τc−τ

3 · dA,K,`2(a, a′)

+ I0,∞{
3⋂
i=1

Eclose,R0,i}+ I0,∞{radK(a) ∨ radK(a′) ≤ R0},
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where I0,∞{E} denotes 0 if clause E is true, and∞ otherwise, and where we define the clauses

Eclose,R0,1(a, a′) = {(dA,u,`2(a, a′) +R0dA,x,`2(a, a′) ≤ Cstab,1(R0)}
Eclose,R0,2(a, a′) = {dA,K,`2(a, a′) ≤ Cstab,2(R0)}
Eclose,R0,3(a, a′) = {dA,u,∞(a, a′) +R0dA,x,∞(a, a′) ≤ Cstab,3(R0)}.

Again, we see that asside from the I0,∞{·} terms, our distances dA,R0,τ,x(a, a′ | r) depends only on `2-guarantees.

We may now state our most general stability guarantee.

Proposition G.3 (Main Stability Guarantees). Suppose that

τc ≥ 3Lstab log(2c∆)/η.

In addition, fix an R0 > 0, and rmax such that rmax ≤ Cstab,4(R0). Consider any sequence of kernels {Wh}hh=1, where
Wh : S → ∆(S) and8

max
h,s∈S

Ps̃∼Wh(s)[dIPS (̃s, s) ≤ r] = 1, φZ ◦Wh(s)� φZ ◦ P?h, (G.4)

and define a process s1 ∼ Pinit, s̃h ∼ Wh(sh), ah ∼ π?h(̃sh), and sh+1 := Fh(sh, ah). Then, almost surely, the following
hold for all 0 ≤ τ ≤ τc:

• For each 1 ≤ h ≤ H , dS,τ (Fh(̃sh, ah), sh) ≤ 2(1 +Rstab)Bstabrβ
(τc−τ)
stab .

• For any sequence (a′1:H), the dynamics s′1 = s1, sh+1 = Fh(s′h, a
′
h) satisfy

max
1≤h≤H+1

dS,x,τ (sh, s
′
h) ≤ max

1≤h≤H
dA,R0,τ,x(ah, a

′
h | r).

and

max
1≤h≤H+1

dS,τ (sh, s
′
h) ≤ max

1≤h≤H
dA,R0,τ (ah, a

′
h | r).

The above proposition is proven in Appendix G.5, wher it is derived from two key guarantees given in Appendix G.4 below.

Remark G.2 (Remark on the Scaling). We now justify the extreme granularity of the above result. We demonstrate that our
guarantees satisfy the following favorable properties:

• As in Corollary G.1, the dependence of K̄k − K̄′k in the non I0,∞{·} scales down with r and with r · β(τc−τ)/3)
stab , so

that errors in K̄k become less relevant as τ → τc and as r → 0.

• If we restrict our attention only to errors in states, captured by dS,x,τ , the non-I0,∞{·} terms depend only on `2-errors
rather than maximal∞-norm ones.

• In the special case where Rdyn = ∞, i.e., the regularity properties in Assumption 3.2 hold globally, then all terms
Cstab,i(R0) defined in Definition G.5 no longer need depend on R0, as the terms in which R0 appears have an
Rdyn =∞ in the numerator, and each Cstab,i(R0) serves as an upper bound on a certain quantity of interest. Hence,
we can drop the dependence on R0 in all of these terms. Cstab,i(R0) (

• In particular, the term Cstab,3(R0) if equal to∞ when Rdyn =∞. Thus, for Rdyn =∞, we can drop the indictor of
Eclose,R0,3(a, a′) := {dA,u,∞(a, a′) +R0dA,x,∞(a, a′) ≤ Cstab,3(R0)}., and hence each dS,x,τ has depends only on
`2-type errors.

The proof of Proposition G.3 is given in Appendix G.5, derived from the results in the subsection directly below. Before we
do this, we first demonstrate how Corollary G.1 follows from Proposition G.3.

8Again, we refer to Remark G.1 for explanation of the second condition in the display (G.4)
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G.3.2. DERIVING COROLLARY G.1 FROM PROPOSITION G.3

The proof is mostly notational bookkeeping.

By assumption φZ ◦Wh(s)� φZ ◦ P?h and Lemma G.2, and the Rstab-term in (Rstab, Bstab, Lstab)-Jacobian stability, the
action ah with radK(a) ≤ Rstab. Further, notice that the parameter βstab used throughout this section can be bounded by at
most

βstab := (1− η

Lstab
) ≤ exp(−η/Lstab).

Hence, Corollary G.1 from Proposition G.3 as soon as we show that

∀a s.t. radK(a) ≤ Rstab, dA,R0,τ (ah, a
′
h | r) ≤ d̄A,τ (a, a′ | r).

Consider the action divergences in Definition G.10. Take R0 = 2Rstab, where Rstab ≥ 1 by assumption. and upper bound
dA,u,`2(·, ·) ≤

√
LstabdA,u,∞(·) (as in (G.3)), and similarly for dA,x,`2(·, ·) and dA,K,`2(·, ·). .Then,

dA,R0,τ (ah, a
′
h | r) := 2((1 +R0)dA,R0,τ,x(ah, a

′
h | r) + dA,R0,τ,u(ah, a

′
h | r))

= dA,u,∞(ah, a
′
h) +R0dA,x,∞(ah, a

′
h) + 2rBstabβ

τc−τ
stab dA,K,∞(ah, a

′
h)

+ 2cu(dA,u,`2(a, a′) +R0dA,x,`2(a, a′)) + 2cKr(βstab)
τc−τ

3 · dA,K,`2(a, a′)

+ I0,∞{
3⋂
i=1

Eclose,R0,i}+ I0,∞{radK(a) ∨ radK(a′) ≤ R0}

≤ 2Rstab(1 + 2cu
√
Lstab)(dA,u,∞(ah, a

′
h) + dA,x,∞(ah, a

′
h)

+ (2Bstab + 2
√
LstabcK)r exp

− η(τc−τ)3Lstab dA,K,∞(ah, a
′
h)

+ I0,∞{
3⋂
i=1

Eclose,R0,i}+ I0,∞{radK(a) ∨ radK(a′) ≤ 2Rstab}

≤ c1
3

(dA,u,∞(ah, a
′
h) + dA,x,∞(ah, a

′
h) + r exp

− η(τc−τ)3Lstab dA,K,∞(ah, a
′
h))

+ I0,∞{
3⋂
i=1

Eclose,R0,i}+ I0,∞{radK(a) ∨ radK(a′) ≤ 2Rstab},

where we recall from (G.2)

c1 := 6 max{Rstab(1 + 2cu
√
Lstab), Bstab +

√
LstabcK}.

Let’s now simplify the indictators. Restricting our attention to a with radK(a) ≤ Rstab, radK(a′) ≤ Rstab +dA,K,∞(ah, a
′
h)

by the triangle inequality. Thus, we can replace I0,∞{radK(a)∨ radK(a′) ≤ 2Rstab} with I0,∞{dA,K,∞(ah, a
′
h) ≤ Rstab}.

We now recall the definitions

Eclose,R0,1(a, a′) = {(dA,u,`2(a, a′) +R0dA,x,`2(a, a′) ≤ Cstab,1(R0)}
Eclose,R0,2(a, a′) = {dA,K,`2(a, a′) ≤ Cstab,2(R0)}
Eclose,R0,3(a, a′) = {dA,u,∞(a, a′) +R0dA,x,∞(a, a′) ≤ Cstab,3(R0)}.

Again, recall that we take R0 = 2Rstab. Again, invoke the upper bounds of the form dA,u,`2(·, ·) ≤
√
LstabdA,u,∞(·) (as

in (G.3)).Thus,
⋂3
i=1 Eclose,R0,i ∩ {radK(a) ∨ radK(a′) ≤ 2Rstab} holds as soon as

max{dA,u,∞(a, a′), dA,x,∞(a, a′)dA,K,∞(a, a′)} ≤ c2,

where we recall from

c2 := min

{
Cstab,1(2Rstab)

4Rstab

√
Lstab

,
Cstab,2(2Rstab)√

Lstab

,
Cstab,3(2Rstab)

4Rstab
,

1

2Rstab

}
.
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In sum, for any a for which radK(a) ≤ Rstab, we have

dA,R0,τ (ah, a
′
h | r) ≤

c1
3

(dA,u,∞(ah, a
′
h) + dA,x,∞(ah, a

′
h) + r exp

− η(τc−τ)3Lstab dA,K,∞(ah, a
′
h))

+ I0,∞{max{dA,u,∞(a, a′), dA,x,∞(a, a′)dA,K,∞(a, a′)} ≤ c2}.

To conclude, we observe that, for any nonnegative coefficients a1, a2, a3 > 0 and sequences v1,1:n, v2,1:n, v3,n ≥ 0 in Rn,

3∑
i=1

ai(max
j∈[n]

vi,j) ≤ 3 max
j∈[n]

∑
i=1

aivi,j .

Thus, if we express a = (ū1:τc , x̄1:τc , K̄1:τc) and a′ = (ū′1:τc , x̄
′
1:τc , K̄

′
1:τc), we can bound

dA,R0,τ (ah, a
′
h | r) ≤ d̄A,τ (a, a′ | r)

:= c1 max
1≤k≤τc

(
‖ūk − ū′k‖+ ‖x̄k − x̄′k‖+ re

− η(τc−τ)3Lstab ‖K̄k − K̄′k‖
)

+ I0,∞

{
max

1≤k≤τc

(
max

{
‖ūk − ū′k‖, ‖x̄k − x̄′k‖, ‖K̄k − K̄′k‖

})
≤ c2

}
.

G.4. Stability guarantees for single control (sub-)trajectories.

At the heart of the IPS guarantees in Appendix G.3 above are two building blocks: one controller the perturbation of initial
state around a regular (in the sense of Assumption 3.1) trajectory, and the second extending this guarantee to perturbations
of control inputs and gains.
Lemma G.4 (Stability to State Perturbation). Let ρ̄ = (x̄1:K+1, ū1:K) ∈ PK be an (Rdyn, Ldyn,Mdyn)-regular and
feasible path, and let K1:K be gains such that (ρ̄,K1:K) is (Rstab, Bstab, Lstab)-stable. Assume, that Rstab ≥ 1, Lstab ≥
2η. Fix another x1 and define another trajectory ρ via

uk = ūk + Kk(xk − x̄k), xk+1 = x̄k + ηfη(xk,uk)

Then, if ‖x1 − x̄1‖ ≤ min{(16LstabMdynR
2
stabB

2
stab)−1,

Rdyn

2RstabBstab
}, then

• ‖xk+1 − x̄k+1‖ ≤ 2Bstab‖x1 − x̄1‖βkstab.

• (ρ,K1:K) is (Rstab, 2Bstab, Lstab)-stable.

• ‖Bk(ρ)‖ ≤ Ldyn.

This lemma is proven in Appendix G.6, and the following proposition in Appendix G.7.
Proposition G.5 (Single Trajectory Stability Guarantee). Let ρ̄ = (x̄1:K+1, ū1:K) ∈PK be (Rdyn, Ldyn,Mdyn)-regular
and feasible, and let K1:K be such that (ρ̄,K1:K) is (Rstab, Bstab, Lstab)-stable. Assume Rstab ≥ 1, Lstab ≥ 2η, and
given another x1,x

′
1 ∈ X , ū′1:K and K′1:K , define trajectoris ρ = (x1:K+1,u1:K) and ρ′ = (x′1:K+1,u

′
1:K)

xk+1 = xk + ηfη(xk,uk), uk = ūk + Kk(xk − x̄k)

x′k+1 = x′k + ηfη(x′k,u
′
k), u′k = ū′k + K′k(x′k − x̄k)

Let all constants be as defined in Definition G.4, and define (recalling the stability exponent βstab := (1− η
Lstab

)) the terms

Erru := max
k∈[K]

η k∑
j=1

βk−jstab‖ūj − ū′j‖2
1/2

, ErrK := max
k∈[K]

η k∑
j=1

βk−jstab‖Kj −K′j‖2
1/2

Then, the conclusions of Lemma G.4 applies to the trajectory ρ, and moreover, for all 1 ≤ k ≤ K,

‖xk+1 − x′k+1‖ ≤ cuErru + (cKErrK‖x1 − x̄1‖+ c∆‖x1 − x′1‖)β
k/3
stab,

provided that the following two conditions hold:
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• The above error terms satisfy

Erru ≤ Cu, ErrK ≤ CK, ‖x1 − x′1‖ ≤ C∆, ‖x1 − x̄1‖ ≤ Cx̂, ErrK‖x1 − x̄1‖ ≤ CK,x̂

• In addition, if Rdyn <∞, R̃stab := max{1, Rstab,max1≤j≤K ‖K′k‖} and ∆u,∞ := maxj ‖ūj − ū′j‖ satisfy

Rdyn ≥ (4R̃stabcu
√
Lstab + 1)∆u,∞ + 4R̃stabcK‖x1 − x̄1‖+ 4R̃stabc∆‖x1 − x′1‖.

The proofs of both this proposition and the lemma before it consist of translating the differences in trajectories into recursions
satisfying certain functional forms. Taking norms, we obtain scalar recursions whose solutions are upper bounded in a series
of technical lemmas detailed in Appendix G.9. We believe these Proposition G.5 and Lemma G.4 are useful more broadly in
the study of perturbation of non-linear control systems.

Notice that, for convenience, both the x and x′ trajectories are stabilizing around the same x̄. This is for convenience, and
simplifies the analysis. Indeed, difference generalizing to accomodate x′ stabilizing around x̄′ can be accomplished by a
change of variables in the ū′, which is precisely what is done in deriving Proposition G.3 in the section that follows.

G.5. Deriving Proposition G.3 from Proposition G.5

The majority of this proof is (also) notational bookkeeping, whereby we convert two trajectories (in the abstract states/actions
notation) into separate trajectories for each a sequence of h = 1, 2, . . . ,H = T/τc, to each of which we apply Proposi-
tion G.5.

Constructing the (perturbed) expert trajectory We begin by unfolding the generative process for abstract-states
s1, . . . , sH in our proposition. Recall further that sh = ρc,h corresponds to the trajectory-chunk.

We let the (control) states and inputs for the corresponding sequence be denote as (x1:T+1,u1:T ) be generated as follows.
Start with

x1 ← s1

drawn from the inital state distribution. Assume that we have constructed the states s1, . . . , sh−1; this meangs in particular
that we have constructed x1:th ,u1:th−1, as well as the memory-chunks ρm,1, . . . ,ρm,j−1. We extend the construction to
step h+ 1 as follows:

• Define xh,1 = xth

• Select a perturbation of the state s̃h = ρ̃c,h = (x̃th−1:th , ũth−1:th−1), with corresponding memory-chunk ρ̃m,h =
(x̃th−τm+1:th , ũth−τm+1:th−1). As per the proposition, dIPS(sh, s̃h) ≤ r. This means that ‖xth − x̃th‖ ≤ r.

• Draw ah = κth:th:th+τm−1 ∼ π?h(ρ̃m,h). We express

κt(x) = ūt + K̄t(x− x̄t), th ≤ t ≤ th+1 − 1,

and reindexed trajectory

κh,k = κth+k−1.

Denote

x̄h,k = x̄th+k−1, ūh,k = ūth+k−1, K̄h,k = K̄th+k−1

and

ρ̄[h+1] = (x̄h,1:τc+1, ūh,1:τc).

• Moreover, because we assumg φZ ◦Wh � φZ ◦ P?h, we inherbit the conclusions of Lemma G.2. Hence, ρ̄h+1 such
be feasible, (Rdyn, Ldyn,Mdyn)-regular, and (ρ̄h, κh,1:τc) is be (Rstab, Bstab, Lstab)-stable. In addition, Lemma G.2
ensures x̄h,1 = x̃th . Consequently, we have that the composite action map Fh satifies

Fh(̃sh, ah) = ρ̄[h+1] = (x̄h,1:τc+1, ūh,1:τc). (G.5)
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• We execute ah for τc steps from our actual state xt (not x̃t), giving states and actions

xt+1 = f(xt,ut), ut = κt(xt), 1 ≤ t ≤ τc.

And define

xh,k+1 = xth+k, uh,k = uth+k−1, 1 ≤ k ≤ τc.

• Finally, define the chunks the trajectories ρ[h+1] = (xh,1:τc+1,xh,1:τc), which is equal to the next abstract-state

sh+1 = (xh,1:τc+1,uh,1:τc) = (xth:th+1
,uth:th+1−1) (G.6)

Construction of the imitation trajectory. We now construct the imitation trajectory by setting x′1 = x1, and

• For each h, select a′h = (κ′th:th+τc−1) ∈ Kτc . Define the re-indexed primitive controllers

κ′h,k = κ′th+k−1,

and express

κ′h,k(x) = K̄′h,k(x̄− x̄′k,h) + ū′h,k.

• Execute a′h for τc steps, giving states and actions

x′t+1 = f(x′t,u
′
t), xt = κ′t(xt), 1 ≤ t ≤ τc.

And define

x′h,k+1 = x′th+k, u′h,k = u′th+k−1, 1 ≤ k ≤ τc.

• Finally, define the chunks

s′h = (x′th:th+1
,u′th:th+1−1) = (x′h,1:τc+1,u

′
h,1:τc).

Further Notation. Let’s define the following errors analgous to Proposition G.5.

Err2
ū,h = max

1≤k≤τc
η

k∑
j=1

βk−jstab‖ūh,j − κ
′
h,j(x̄h,j)‖2

Err2
K̄,h = max

1≤k≤τc
η

k∑
j=1

βk−jstab‖K̄h,j − K̄′h,j‖2

∆ū,∞,h := max
k
‖ūh,k − κ′h,j(x̄h,j)‖.

Importantly, in Proposition G.5, it is assumeded that other the primed and unprimed sequence stabilize to the same xh,k,
whereas here, the primed sequence stabilized to xh,k′ . This is addressed by replacing the role of u′h,k with κ′h,k(x̄h,k).

G.5.1. INTERPRETING THE ERROR TERMS.

First, we unpack the above error terms.

Lemma G.6. Suppose maxh dA,R0,τ,x(ah, a
′
h | r) is finite. Then,

ErrK̄,h = dA,K,`2(ah, a
′
h)

Errū,h ≤ dA,u,`2(ah, a
′
h) +R0dA,x,`2(ah, a

′
h)

∆ū,∞,h = dA,u,∞(ah, a
′
h) +R0dA,x,∞(ah, a

′
h)
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Proof of Lemma G.6. The equality of ErrK̄,h follows from the reinxing K̄h,k = K̄th+k−1 and the definition of Defini-
tion G.9.Next, unpacking our notation of ū, ū′, we compute

ūh,j − κh,j(x̄h,j) = ūh,j − K̄′h,j(x̄
′
h,j − x̄h,j)

= u′th+k−1 − u′th+k−1 − K̄′th+k−1(xth+k−1 − x′th+k−1)

So that as long as dA,R0,τ,x(ah, a
′
h | r) for all h, then ‖K̄h,j‖ ≤ R0. Thus

‖ūh,j − ū′h,j‖ ≤ ‖u′th+k−1 − u′th+k−1‖+R0‖xth+k−1 − x′th+k−1‖

and thus by the triangle and moving the max outside the sum,

Errū,h = max
1≤k≤τc

η k∑
j=1

βk−jstab‖ūh,j − ū′h,j‖2
1/2

≤ max
1≤k≤τc

η k∑
j=1

βk−jstab‖u
′
th+k−1 − u′th+k−1‖2

1/2

+R0 max
1≤k≤τc

η k∑
j=1

βk−jstab‖x
′
th+k−1 − x′th+k−1‖2

1/2

≤ dA,u,`2(ah, a
′
h) +R0dA,x,`2(ah, a

′
h).

The inequality ∆ū,∞,h ≤ dA,u,∞(ah, a
′
h) +R0dA,x,∞(ah, a

′
h) follows similarly.

G.5.2. AN INTERMEDIATE GUARANTEE.

Next, we establish an intermediate guarantee, from which Proposition G.3 is readily derived.

Lemma G.7. Suppose maxh dA,R0,τ,x(ah, a
′
h | r) is finite, and further that τc ≥ 3Lstab log(2c∆)/η. Then,

• For all k ∈ {0, . . . , τc} and h ∈ [H],

‖xh,k+1 − x′h+1,k+1‖ ≤ max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

k/3
stab

)
,

• For all h ∈ [H] and 1 ≤ k ≤ τc,

‖xh,k − x̄h,k‖ ≤ 2Bstabrβ
k−1
stab .

Proof of Lemma G.7. First, an algebraic computation. Observe that log(1/βstab) = log(1/(1 − η
Lstab

)) = − log(1 −
η

Lstab
) ≥ η

Lstab
. Hence, if τc ≥ 3Lstab log(2c∆)/η, we have τc ≥ 3 log(2c∆)/ log(1/βstab), so that

c∆β
τc/3
stab ≤ 1/2. (G.7)

We continue. Suppose maxh dA,R0,τ,x(ah, a
′
h | r) is finite. Then, from the definition of dA,R0,τ,x in Definition G.10, the

constants Definition G.5, and the inequalities in Lemma G.6 above, we can check that

max
h

Errū,h ≤ max
h

(dA,u,`2(ah, a
′
h) +R0dA,x,`2(ah, a

′
h)) ≤ Cstab,1(R0)

max
h

ErrK̄,h = max
h

dA,K,`2(ah, a
′
h) ≤ Cstab,2(R0)

max
h

∆ū,∞,h = max
h

dA,u,∞(ah, a
′
h) ≤ Cstab,3(R0)

r ≤ Cstab,4(R0).
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We begin with an induction on states ‖xh,1 − x′h,1‖ for h ≥ 1. Recall the assumption that c∆β
τc/3
stab ≤ 1/2. We prove

inductively that

∀h ≥ 1, ‖x′h,1 − xh,1‖ ≤ max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

τc/3
stab )

)
(G.8)

For the base case, we have x1,1 = x′1,1. Now, suppose the result holds up to some h ≥ 1. Using the definitions of various
constants in Definitions G.4 and G.5, and r ≥ ‖x̄h,1 − xh,1‖, as well as our inductive hypotheis, one can check that

Errū,h ≤ Cu, ErrK̄,h ≤ CK

‖xh,1 − x′h,1‖ ≤ max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

τc/3
stab

)
≤ C∆

‖x̄h,1 − xh,1‖ ≤ Cx̂, ‖x̄h,1 − xh,1‖ErrK ≤ CK,x̂

(4R0cu
√
Lstab + 1)∆u,∞ + 4R0cK‖xh,1 − x̄h,1‖+ 4R0c∆‖xh,1 − x′h,1‖. ≤ Rdyn.

Then, by Proposition G.5,

‖xh+1,1 − x′h+1,1‖ = ‖xh,τc+1 − x′h,τc+1‖

≤ cuErrū,h+1 +
(
cKErrK̄,h+1‖x1 − x̄1‖+ c∆‖xh,1 − x′h,1‖

)
β
τc/3
stab

≤ cuErrū,h+1 +
(
cKErrK̄,h+1r + c∆‖xh,1 − x′h,1‖

)
β
τc/3
stab (c∆β

τc/3
stab ≤

1
2 , as established in (G.7))

≤ cuErrū,h + rcKErrK̄,hβ
τc/3
stab +

1

2
max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

τc/3
stab )

)
(inductive hypothesis)

≤ max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

τc/3
stab )

)
This establishes (G.8). A second invocation of Proposition G.5 gives

‖xh,k+1 − x′h+1,k+1‖

≤ cuErrū,h+1 +
(
cKErrK̄,h+1‖x1 − x̄1‖+ c∆‖xh,1 − x′h,1‖

)
β
k/3
stab

≤ cuErrū,h+1 +
(
cKErrK̄,h+1r + c∆‖xh,1 − x′h,1‖

)
β
k/3
stab

≤ cuErrū,h+1 + rcKErrK̄,h+1β
k/3
stab +

1

2
‖xh,1 − x′h,1‖

≤ cuErrū,h+1 + rcKErrK̄,hβ
k/3
stab + max

h′

(
cuErrū,h′ + rcKErrK̄,h′β

τc/3
stab )

)
≤ max

h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

k/3
stab)

)
.

Moreover, as Proposition G.5 implies that the conclusions of Lemma G.4 also hold, we further find that

‖xh,k − x̄h,k‖ ≤ 2Bstab‖xh,k − x̄h,k‖βk−1
stab ≤ 2Bstabrβ

k−1
stab ,

as needed.

G.5.3. CONCLUDING THE PROOF OF PROPOSITION G.3.

Completing the proof of Proposition G.3. Let us start with the first item, bound dS,x,τ . We may assume that
dA,R0,τ,x(ah, a

′
h | r) is finite for all h.
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Controlling dS,x,τ (sh, s
′
h). Not that s1 = s′1. For any 2 ≤ h ≤ H + 1,

dS,x,τ (sh, s
′
h) := max

t∈[th−τ :th]
‖xt − x′t‖

= max
τc−τ≤k≤τc

‖xh−1,1+k − x′h−1,k+1‖ (our indexing scheme)

≤ max
τc−τ≤k≤τc

max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

k/3
stab

)
(Lemma G.7)

= max
h′

(
2cuErrū,h′ + 2rcKErrK̄,h′β

(τc−τ)/3
stab

)
≤ max

h′

(
2cu(dA,u,`2(ah′ , a

′
h′) +R0dA,x,`2(ah′ , a

′
h′)) + 2rcKdA,K,`2(ah, a

′
h)β

(τc−τ)/3
stab

)
(Lemma G.6)

≤ max
h′

dA,R0,τ,x(ah′ , a
′
h′ | r) (Definition G.10)

That is,

dS,x,τ (sh, s
′
h) ≤ max

h
dA,R0,τ,x(ah, a

′
h | r) (G.9)

Bounding dS,τ . To bound dS,τ , we also need to account for differents in inputs. We have

uh,k − u′h,k = κh,k(xh,k)− κ′h,k(x′h,k)

= ūh,k − ū′h,k + K̄t(xh,k − x̄h,k)− K̄′h,k(x′h,k − x̄′h,k)

= ūh,k − ū′h,k + (K̄h,k − K̄′h,k)(xh,k − x̄h,k) + K̄′h,k(xt − x′h,k − (x̄h,k − x̄′h,k))

Where dA,R0,τ,x(ah, a
′
h | r) is finite for all h, then ‖K̄′h,k‖ = ‖K̄th+k−1‖ ≤ R0. Thus,

‖uh,k − u′h,k‖
≤ ‖ūh,k − ū′h,k‖+R0‖x̄h,k − x̄′h,k‖+R0‖x̄h,k − x̄′h,k‖+ ‖K̄h,k − K̄′h,k‖‖xh,k − x̄h,k‖
≤ dA,u,∞(ah, a

′
h) +R0dA,x,∞(ah, a

′
h) +R0‖x̄h,k − x̄′h,k‖+ dA,K,∞(ah, a

′)‖xh,k − x̄h,k‖
≤ dA,u,∞(ah, a

′
h) +R0dA,x,∞(ah, a

′
h) + 2rBstabβ

k−1
stabdA,K,∞(ah, a

′) +R0‖x̄h,k − x̄′h,k‖

Hence,

max
h

dS,τ (sh, s
′
h)

= max
h

dS,x,τ (ah, a
′
h) ∨max

h
max

τc−τ≤k≤τc−1
‖uh,k+1 − u′h,k+1‖

= max
h

dS,x,τ (ah, a
′
h) +R0 max

h
max

τc−τ≤k≤τc−1
‖x̄h,k+1 − x̄′h,k+1‖

+ max
h

max
τc−τ≤k≤τc−1

(
dA,u,∞(ah, a

′
h) +R0dA,x,∞(ah, a

′
h) + 2rBstabβ

k
stabdA,K,∞(ah, a

′)
)

= (1 +R0) max
h

dS,x,τ (ah, a
′
h)

+ max
h

dA,u,∞(ah, a
′
h) +R0dA,x,∞(ah, a

′
h) + 2rBstabβ

τc−τ
stab dA,K,∞(ah, a

′
h)︸ ︷︷ ︸

:=maxh dA,R0,τ,u(ah,a′h|r)


≤ (1 +R0) max

h
dA,R0,τ,x(ah, a

′
h | r) + max

h
dA,R0,τ,u(ah, a

′
h | r) ( (G.9))

≤ max
h

2 ((1 +R0)dA,R0,τ,x(ah, a
′
h | r) + dA,R0,τ,u(ah, a

′
h | r)) .
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Bounding dS,τ (sh+1, Fh(̃sh, ah)). Next, by (G.5) and (G.6) that

dS,x,τ (sh+1, Fh(̃sh, ah)) = max
τc−τ≤k≤τc

‖xh,k+1 − x̄h,k+1‖ ((G.5) and (G.6))

= max
τc−τ≤k≤τc

2Bstabrβ
k
stab (Lemma G.7)

= 2Bstabrβ
(τc−τ)
stab .

Thus, We have

dS,τ (sh+1, Fh(̃sh, ah)) = dS,x,τ (sh+1, Fh(̃sh, ah)) ∨ max
τc−τ≤k≤τc−1

‖uh,k+1 − ūh,k+1‖

= dS,x,τ (sh+1, Fh(̃sh, ah)) ∨ max
τc−τ≤k≤τc−1

‖κh,k+1(xh,k+1)− ūh,k+1)‖

= dS,x,τ (sh+1, Fh(̃sh, ah)) ∨ max
τc−τ≤k≤τc−1

‖(K̄h,k+1(xh,k+1 − x̄h,k+1) + ūh,k+1)− ūh,k+1)‖

≤ dS,x,τ (sh+1, Fh(̃sh, ah)) ∨ max
τc−τ≤k≤τc−1

‖K̄h,k+1‖‖xh,k+1 − x̄h,k+1‖

(i)

≤ dS,x,τ (sh+1, Fh(̃sh, ah)) ∨ max
τc−τ≤k≤τc−1

Rstab‖xh,k+1 − x̄h,k+1‖

≤ (1 +Rstab)dS,x,τ (sh+1, Fh(s̃h, ah))

≤ 2(1 +Rstab)Bstabrβ
(τc−τ)
stab

where in (i), we used ‖K̄h,k+1‖ ≤ Rstab because (ρ̄[h+1], κh,1:τc) is (Rstab, Bstab, Lstab)-stable, so that the gains are
bounded in operator norm by Rstab.

G.6. Proof of Lemma G.4 (state perturbation)

Define ∆̄x,k = xk − x̄k. Then

∆̄x,k+1 = ∆̄x,k + η
(
fη(xk, ūk + K̄k(xk − x̄k)− fη(x̄k, ūk)

)
= ∆̄x,k + η(Ak + BkKk)∆x,k + remk, (G.10)

where

remk = fη(xk, ūk + Kk(xk − x̄k))− fη(x̄k, ūk)− (Ak + BkKk)∆̄x,k.

Claim G.8. Take Rstab ≥ 1, and suppose ‖∆̄x,k‖ ≤ Rdyn/Rstab. Then,

‖x̄k − xk‖ ∨ ‖ūk − uk‖ ≤ Rdyn, (G.11)

and ‖remk‖ ≤MdynR
2
stab‖∆̄x,k‖2.

Proof. Let uk = ūk + Kk(xk − x̄k). The conditions of the claim imply ‖uk − ūk‖ ∨ ‖xk ∨ x̄k‖ ≤ Rdyn. From Taylor’s
theorem and the fact that ρ̄ is (Rdyn, Ldyn,Mdyn)-regular imply that

‖fη(xk,uk)− fη(x̄k, ūk)‖ ≤ 1

2
Mdyn(‖xk − x̄k‖2 + ‖uk − ūk‖)

≤ 1

2
(1 +R2

stab)Mdyn‖xk − x̄k‖2 ≤ R2
stabMdyn‖∆̄x,k‖2,

where again use Rstab ≥ 1 above.

Solving the recursion from (G.10), we have

∆̄x,k+1 = η

k∑
j=1

Φcl,k+1,j+1remk + Φcl,k+1,1∆̄x,1.
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Set βstab := (1 − η
Lstab

), so that M := η

β−1
stab−1

= Lstab. Further, recall R0 ≤ Rdyn/Rstab. By assumpion, Φcl,k,j ≤

Bstabβ
k−j
stab, so using Claim G.8 implies that, if maxj∈[k] ‖∆̄x,j‖ ≤ R0 ≤ Rdyn/Rstab for all j ∈ [k],

‖∆̄x,k+1‖ ≤ η
k∑
j=1

BstabMdynR
2
stabβ

k−j
stab‖∆̄x,j‖2 +Bstabβ

k
stab‖∆̄x,1‖.

Appling Lemma G.17 with α = 0, C1 = BstabMdynR
2
stab, and C2 = Bstab ≥ 1 and M = Lstab (noting βstab ≥ 1/2), it

holds that for ‖∆̄x,1‖ = ε1 ≤ 1/4MC1C3 = 1/4LstabMdynR
2
stabB

2
stab,

‖∆̄x,k+1‖ ≤ 2Bstab‖∆̄x,1‖(1−
η

Lstab
)k.

To ensure the inductive hypothesis that maxj∈[k] ‖∆̄x,j‖ ≤ RdynRstab, it suffices to ensure that 2Bstab‖∆̄x,1‖ ≤ R0,
which is assumed by the lemma. Thus, we have shown that, if

‖∆̄x,1‖ ≤ min{1/2BstabR0, 1/8LstabMdynR
2
stabB

2
stab},

it holds that ‖∆̄x,k+1‖ ≤ 2Bstab‖∆̄x,1‖(1− η
Lstab

)k ≤ R0 for all k.

Next, we adress the stability of the gains for the perturbed trajectory ρ. Using (Rdyn, Ldyn,Mdyn)-regularity of ρ̄ and
(G.11),

‖Ak(ρ) + Bk(ρ)Kk −Ak(ρ̄) + Bk(ρ̄)Kk‖

=

∥∥∥∥[Ak(ρ)−Ak(ρ̄) B̂k(ρ)−Bk(ρ̄)
] [ I

Kk

]∥∥∥∥
=

∥∥∥∥(∇fη(x̂k,uk)−∇fη(x̄k, ūk))

[
I

Kk

]∥∥∥∥
≤Mdyn ‖(xk − x̄k,Kk(xk − x̄k)‖

∥∥∥∥[ I
Kk

]∥∥∥∥
= Mdyn‖xk − x̄k‖

∥∥∥∥[ I
Kk

]∥∥∥∥2

≤Mdyn‖xk − x̄k‖(1 + ‖Kk‖2op)

= Mdyn‖xk − x̄k‖
∥∥∥∥[ I

Kk

]∥∥∥∥2

≤Mdyn‖xk − x̄k‖(1 + ‖Kk‖2op)

≤ 2R2
stabMdyn‖xk − x̄k‖

≤ 4BstabR
2
stabMdyn‖x1 − x̄1‖βk−1

stab , βstab = (1− η

Lstab
).

Invoking Lemma G.20 with βstab ≥ 1/2, ‖Φ̂cl,k,j‖ ≤ 2Bstabβ
k−j
stab for all j, k provided that 4BstabR

2
stabMdyn‖x1− x̄1‖ ≤

1/4BstabLstab, which requires ‖x1 − x̄1‖ ≤ 1/16B2
stabR

2
stabLstabMdyn.

The last part of the lemma uses (Rdyn, Ldyn,Mdyn)-regularity of ρ̄ and (G.11).

G.7. Proof of Proposition G.5 (input and gain perturbation)

Recall the trajectories x̄k+1 = x̄k + ηfη(x̄k, ūk), and

xk+1 = xk + ηfη(xk,uk), uk = ūk + Kk(xk − x̄k)

x′k+1 = x′k + ηfη(x′k,u
′
k), u′k = ū′k + K′k(x′k − x̄k).

Further introduce the shorthand Âk = Ak(ρ̂), B̂k = Bk(ρ̂), Âcl,k = Âk + B̂k + Kk, as well as

∆x,k = x′k − xk, ∆u,k = ū′k − ūk, ∆K,k = K′k −K

∆̃x,k = x′k − x̄k, ∆̄x,k = xk − x̄k,
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Then,

∆x,k+1 = ∆x,k + η
(
f(xk + ∆x,k, ūk + ∆u,k + K̃k∆̃x,k)− f(xk, ūk + Kk∆̄x,k)

)
= ∆x,k + η

(
f(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)− f(xk, ūk + Kk∆̄x,k)

)
+ η(remk,1)

= ∆x,k + η

 ∂

∂x
f(xk,uk)︸ ︷︷ ︸

=Âk

∆x,k +
∂

∂u
f(xk,uk)︸ ︷︷ ︸

=B̂k

(∆u,k + Kk ∆̃x,k − ∆̄x,k︸ ︷︷ ︸
∆x,k

)


+ η(remk,1 + remk,2)

= ∆x,k + η
(
Âcl,k∆x,k + B̂k∆u,k

)
+ η(remk,1 + remk,2).

where, above

remk,1 = fη(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− fη(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)

remk,2 = fη(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)− f(xk, ūk + Kk∆̄x,k)

− ∂

∂x
fη(xk,uk)∆x,k +

∂

∂u
fη(xk,uk)(∆u,k + Kk(∆̃x,k − ∆̄x,k)).

Solving the recursion,

∆x,k+1 =

k∑
j=1

Φ̂cl,k+1,j+1(B̂j∆u,j + η(remj,1 + remj,2)) + Φ̂cl,k+1,1∆x,1

Recall that Lemma G.4 implies (K1:K ,ρ) is (Rstab, 2Bstab, Lstab)-stable. Thus, recalling βstab = (1− η
Lstab

) ∈ [1/2, 1),
we have

‖∆x,k+1‖ ≤ η
k∑
j=1

‖Φ̂cl,k+1,j+1‖(‖B̂j‖‖∆u,j‖+ ‖remj,1‖+ ‖remj,2‖)) + ‖Φ̂cl,k+1,1‖‖∆x,1‖

≤ η
k∑
j=1

2Bstabβ
k−j
stab(Ldyn‖∆u,j‖+ ‖remj,1‖+ ‖remj,2‖)) + 2Bstabβ

k
stab‖∆x,1‖.

Let us now bound each of these remainder terms. The following claim, as well as all subsequent claims, is proven at the end
of the section.

Claim G.9. Suppose that it holds that for a given k, it holds that

‖∆x,k‖ ≤ cuErru + cKErrK‖x1 − x̄1‖+ c∆‖x1 − x′1‖ (G.12)

Then,

‖remk,1‖ ≤ Ldyn‖∆K,k‖(‖∆̄x,k‖+ ‖∆x,k‖)

‖remk,2‖ ≤
3

2
MdynR

2
stab‖∆x,k‖2 +Mdyn‖∆u,k‖2

We now proceed by strong induction on the condition in (G.12). Observe that if this condition holds for all 1 ≤ j ≤ k, we
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have

‖∆x,k+1‖ ≤ η
k∑
j=1

2Bstabβ
k−j
stab(Ldyn‖∆u,j‖+ ‖remj,1‖+ ‖remj,2‖)) + 2Bstabβ

k
stab‖∆x,1‖

≤ η
k∑
j=1

2Bstabβ
k−j
stab

(
Ldyn‖∆u,j‖+Mdyn‖∆u,j‖2

)
︸ ︷︷ ︸

=Term1,k

+ η

k∑
j=1

βk−jstab

3BstabMdyn︸ ︷︷ ︸
C1

‖∆x,j‖2 + 2BstabLdyn︸ ︷︷ ︸
C2

‖∆K,j‖‖∆x,j‖


+ 2Bstabβ

k
stab‖∆x,1‖+ η

k∑
j=1

2LdynBstabβ
k−j
stab‖∆K,j‖‖∆̄x,j‖︸ ︷︷ ︸

Term2,k

(G.13)

Define the terms

C1 := 3BstabMdyn, C2 := 2BstabLdyn,

α := 2BstabErru

(
MdynErru +

√
LstabLdyn

)
ε̄1 := 2Bstab

(
‖∆x,1‖+ 2L

1/2
stabErrK‖∆̄x,1‖

)
where above

Erru := max
k∈[K]

η k∑
j=1

βk−jstab‖∆u,j‖2
1/2

, ErrK := max
k∈[K]

η k∑
j=1

βk−jstab‖∆K,j‖2
1/2

.

We bound the two underlined terms in the above display.

Claim G.10. Recall Erru = maxk∈[K]

(
η
∑k
j=1 β

k−j
stab‖∆u,j‖2

)1/2

. Then, for any k,

Term1,k ≤ α := 2BstabErru

(
MdynErru +

√
LstabLdyn

)
Claim G.11. Assume βstab ∈ [1/2, 1) and recall ErrK := maxk∈[K]

(
η
∑k
j=1 β

j
stab‖∆K,j‖2

)1/2

. Then,

Term2 ≤ ε̄1β
k
2

stab, ε̄1 := 2Bstab

(
‖∆x,1‖+ 2L

1/2
stabLdynErrK‖∆̄x,1‖

)
The previous two claims and (G.13) show that as soon as (G.12) holds for all indices 1 ≤ j ≤ k,

‖∆x,k+1‖ ≤ α+ ε̄1β
k/2
stab + η

k∑
j=1

βk−jstab

(
C1‖∆x,j‖2 + C2‖∆K,j‖‖∆x,j‖

)
Set εj = ‖∆x,j‖. Note that ε̄1 ≥ ε1, βstab ∈ [1/2, 1), we can apply Lemma G.19 with δj ← ‖∆K,j‖ and M ← η

1−β =
Lstab to find that

‖∆x,k+1‖ = εk+1 ≤ 3(α+ ε̄1)β
k/3
stab
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provided it holds that (we takeLstab ≥ 1, Bstab ≥ 1)

2BstabErru

(
MdynErru +

√
LstabLdyn

)
= α ≤ 1

18C1Lstab
=

1

64BstabMdynLstab

2Bstab

(
‖∆x,1‖+ 2LdynL

1/2
stabErrK‖∆̄x,1‖

)
= ε̄1 ≤

1

108C1Lstab
=

1

324BstabMdynLstab

ErrK ≤
1

12
√
Lstab max{C2, 1}

≤ 1

24
√
LstabBstabLdyn

.

For these first two equation, it is enough that

Erru ≤ min

{√
LstabLdyn

Mdyn
,

1

256B2
stabMdynLdynL

3/2
stab

}

ErrK ≤
1

24
√
LstabBstabLdyn

‖∆x,1‖ ≤
1

4 · 324B2
stabMdynLstab

ErrK‖∆̄x,1‖ ≤
Ldyn

8 · 324B2
stabMdynL

3/2
stab

for which Erru ≤ Cu, ‖∆x,1‖ ≤ C∆,‖∆̄x,1‖ ≤ Cx̂, ErrK ≤ CK, ErrK‖∆̄x,1‖ ≤ CK,x̂. Moreover, under the above
condition on Erru, we have

‖∆x,k+1‖ ≤ 3(α+ ε̄1)β
k/3
stab

≤ 12Bstab

√
LstabLdynErru + 2Bstab

(
‖∆x,1‖+ 2L

1/2
stabLdynErrK‖∆̄x,1‖

)
β
k/3
stab

≤ 12Bstab

√
LstabLdynErru + 2Bstab

(
‖∆x,1‖+ 2L

1/2
stabLdynErrK‖∆̄x,1‖

)
β
k/3
stab

≤ cuErru +
(
cKErrK‖∆̄x,1‖+ c∆‖∆x,1‖

)
β
k/3
stab.

This in turn shows that the inductive hypothesis (G.12) holds, completing the induction.

G.7.1. DEFERRED CLAIMS

Proof of Claim G.9. We argue in steps. Recall also R̃stab be such that R̃stab ≥ maxk{‖Kk‖, ‖K′k‖, 1}.

Ensuring within radius of regularity. Our first step is to establish that the maximum of the following three terms is at
most Rdyn:

‖(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− (x̄k, ūk)‖
∨ ‖(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− (x̄k, ūk)‖
∨ ‖(xk,uk)− (x̄k, ūk)‖ ≤ Rdyn

First, we observe

‖(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− (x̄k, ūk)‖
≤ ‖(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− (x̄k, ūk)‖+ ‖∆K,k‖‖∆̃x,k‖
≤ ‖(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)− (x̄k, ūk)‖+ ‖∆K,k‖‖∆x,k‖+ ‖∆K,k‖‖∆̄x,k‖
≤ ‖(xk + ∆x,k, ūk + ∆u,k + Kk∆̄x,k)− (x̄k, ūk)‖+ ‖∆K,k‖‖∆x,k‖+ ‖∆K,k‖‖∆̄x,k‖+ ‖Kk‖‖∆x,k‖
≤ ‖(xk, ūk + Kk∆̄x,k)− (x̄k, ūk)‖+ (1 + ‖∆K,k‖)‖∆x,k‖+ ‖∆K,k‖‖∆̄x,k‖+ ‖Kk‖‖∆x,k‖+ ‖∆u,k‖
≤ ‖∆̄x,k‖(1 + ‖K‖) + (1 + ‖∆K,k‖+ ‖Kk‖)‖∆x,k‖+ ‖∆̄x,k‖+ ‖∆u,k‖
≤ (1 + ‖Kk‖+ ‖∆K,k‖)(‖∆x,k‖+ ‖∆̄x,k‖) + ‖∆u,k‖
≤ (2Rstab + max

j
‖Kk −K′j‖)(‖∆x,k‖+ ‖∆̄x,k‖) + ‖∆u,k‖
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Recall the notation

∆K,∞ := max
j
‖Kj −K′j‖, ∆u,∞ := max

j
‖ūj − ū′j‖.

Hence, it is enough that

(2Rstab + ∆K,∞)(‖∆x,k‖+ ‖∆̄x,k‖) + ∆u,∞ ≤ Rdyn.

Thus, since ‖∆x,k‖ ≤ cuErru + (cKErrK − 2Bstab)‖∆̄x,1‖+ c∆‖∆x,1‖ due to (G.12) and ‖∆̄x,k‖ ≤ 2Bstab‖∆̄x,1‖ by
Lemma G.4

‖∆x,k‖ ≤ cuErru + cKErrK‖∆̄x,1‖+ c∆‖∆x,1‖

Hence, it is enough that

Rdyn ≥ (2Rstab + ∆K,∞)(cuErru + cKErrK‖∆̄x,1‖+ c∆‖∆x,1‖)) + ∆u,∞,

We can bound 2Rstab + ∆K,∞ ≤ 4R̃stab, and solving the geometric series, bound Erru ≤
√
Lstab∆u,∞ and ErrK ≤√

Lstab∆K,∞ ≤ 2
√
LstabR̃stab. Thus, it is enough that

Rdyn ≥ (4R̃stabcu
√
Lstab + 1)∆u,∞ + 4R̃stabcK‖∆̄x,1‖+ 4R̃stabc∆‖∆x,1‖.

which is ensured by Proposition G.5.

Controlling the first remainder. Using that the relevant terms are within the radius of regularity,

‖remk,1‖ = ‖fη(xk + ∆x,k, ūk + ∆u,k + K′k∆̃x,k)− fη(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)‖
≤ Ldyn‖(K′k −Kk)∆̃x,k‖
≤ Ldyn∆K,k(‖∆̄x,k‖+ ‖∆x,k‖).

Controlling the first remainder. Using the definitions of xk = x̄k + ∆̄x,k ut = ūk + Kk∆̄x,k, and the fact that (xk,uk)
is in the radius of regularity around (x̄k, ūk), a Taylor expansion implies

‖remk,2‖ =

∥∥∥∥ fη(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)− f(xk, ūk + Kk∆̄x,k)

− ∂
∂xfη(xk,uk)∆x,k + ∂

∂ufη(xk,uk)(∆u,k + Kk(∆̃x,k − ∆̄x,k))

∥∥∥∥
=

∥∥∥∥ fη(xk + ∆x,k, ūk + ∆u,k + Kk∆̃x,k)− f(xk,uk)

− ∂
∂xfη(xk,uk)∆x,k + ∂

∂ufη(xk,uk)(ūk + ∆u,k + Kk∆̃x,k − uk)

∥∥∥∥
≤ Mdyn

2

(
‖∆x,k‖2 + ‖ūk + ∆u,k + Kk∆̃x,k − uk‖

)2

=
Mdyn

2

(
‖∆x,k‖2 + ‖∆u,k + Kk(∆̃x,k − ∆̄x,k)‖

)2

=
Mdyn

2

(
‖∆x,k‖2 + ‖∆u,k + Kk∆x,k‖

)2
=
Mdyn

2

(
(1 + 2‖Kk‖2)‖∆x,k‖2 + 2‖∆u,k‖2

)2
=

3

2
MdynR

2
stab‖∆x,k‖2 +Mdyn‖∆u,k‖2
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Proof of Claim G.10. Recall Erru = maxk∈[K]

(
η
∑k
j=1 β

k−j
stab‖∆u,j‖2

)1/2

and βstab = 1− η
Lstab

. Then,

Term1,k = η

k∑
j=1

2Bstabβ
k−j
stab

(
Ldyn‖∆u,j‖+Mdyn‖∆u,j‖2

)

≤ 2Bstab

MdynErr2
u + Ldyn · η

k∑
j=1

βk−jstab‖∆u,j‖


≤ 2Bstab

MdynErr2
u + Ldyn · (η

k∑
j=1

βk−jstab)1/2(η

k∑
j=1

βk−jstab‖∆u,j‖)1/2


≤ 2Bstab

MdynErr2
u + Ldyn · (η

k∑
j=1

βk−jstab)1/2Erru



≤ 2Bstab

MdynErr2
u + Ldyn · (η

1

β−1
stab − 1︸ ︷︷ ︸
=Lstab

)1/2Erru


= 2BstabErru

(
MdynErru +

√
LstabLdyn

)

Proof of Claim G.11.

L−1
dyn(Term2,k − 2Bstabβ

k
stab‖∆x,1‖) = η

k∑
j=1

2Bstabβ
k−j
stab‖∆K,j‖‖∆̄x,j‖

= η

k∑
j=1

2Bstabβ
k−j
stabβ

j−1
stab‖∆K,j‖‖∆̄x,1‖

= 2Bstab‖∆̄x,1‖ · η
k∑
j=1

βk−1
stab‖∆K,j‖

= 2Bstabβ
k
2−1

stab ‖∆̄x,1‖ · η
k∑
j=1

β
(k−j)/2
stab β

j/2
stab‖∆K,j‖

≤ 2Bstabβ
k
2−1

stab ‖∆̄x,1‖ ≤

η k∑
j=1

βjstab

η k∑
j=1

βjstab‖∆K,j‖2
1/2

≤ 2Bstabβ
k
2−1

stab ‖∆̄x,1‖ ≤

η k∑
j=1

βjstab

1/2η k∑
j=1

βjstab‖∆K,j‖2
1/2

≤ 2BstabL
1/2
stabβ

k
2−1

stab ‖∆̄x,1‖ ·

η k∑
j=1

βjstab‖∆K,j‖2
1/2

︸ ︷︷ ︸
=ErrK

≤ 4BstabL
1/2
stabβ

k
2

stabErrK‖∆̄x,1‖. (βstab ≥ 1/2)
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Thus,

Term2,k ≤ 4BstabLdynL
1/2
stabβ

k
2

stabErrK‖∆̄x,1‖+ 2Bstabβ
k
stab‖∆x,1‖

≤ β
k
2

stab

(
4LdynBstabL

1/2
stabErrK‖∆̄x,1‖+ 2Bstab‖∆x,1‖

)

G.8. Ricatti synthesis of stabilizing gains.

In this section, we show that under a certain stabilizability condition, it is always possible to synthesize primitive controllers
satisfying Assumption 3.2 with reasonable constants. We begin by defining our notion of stabilizability; we adopt the
formulation based on Jacobian linearizations of non-linear systems the discrete analogue of the senses proposed in which is
consistent with (Pfrommer et al., 2023; Westenbroek et al., 2021).
Definition G.11 (Stabilizability). A control trajectory ρ = (x1:K+1,u1:K) ∈ PK is LV -Jacobian-Stabilizable if
maxk Vk(ρ) ≤ LV , where for k ∈ [K + 1], Vk(ρ) is defined by

Vk(ρ) := sup
ξ:‖ξ≤1

 inf
ũ1:s

‖x̃K+1‖2 + η

K∑
j=k

‖x̃j‖2 + ‖ũj‖2


s.t. x̃k = ξ, x̃j+1 = x̃j + η (Aj(ρ)x̃j + Bj(ρ)ũj) ,

Here, for simplicity, we use Euclidean-norm costs, though any Mahalanobis-norm cost induced by a positive definite matrix
would suffice. We propose to synthesize gain matrices by performing a standard Ricatti update, normalized appropriately to
take account of the step size η > 0 (see, e.g. Appendix F in (Pfrommer et al., 2023)).
Definition G.12 (Ricatti update). Given a path ρ ∈Pk with Ak = Ak(ρ), Bk = Bk(ρ) we define

Pric
K+1(ρ) = I, Pric

k (ρ) = (I + ηAcl,k(ρ))>Pric
k+1(ρ)(I + ηAcl,k(ρ)) + η(I + Kk(ρ)Kk(ρ)>)

Kric
k (ρ) = (I + ηB>k Pric

k+1(ρ)Bk)−1(B>k Pk+1(ρ))(I + ηAk)

Aric
cl,k(ρ) = Ak + BkKk(ρ).

The main result of this section is that the parameters (Rstab, Bstab, Lstab) in Assumption 3.2 can be bounded in terms of
Ldyn in Assumption 3.1, and the bound LV defined above.
Proposition G.12 (Instantiating the Lyapunov Lemma). Let Ldyn, LV ≥ 1, and let ρ = (x1:K+1,u1:K) be
(Rdyn, Ldyn,Mdyn)-regular and LV -Jacobian Stabilizable. Suppose further that η ≤ 1/5L2

dynLV . Then, (ρ,Kric
1:K)-

is (Rstab, Bstab, Lstab)-Jacobian Stable, where

Rstab =
4

3
LVLdyn, Bstab =

√
5LdynLV , Lstab = 2LV

Proposition G.12 is proven in Appendix G.8.1 below. A consequence of the above proposition is that, given access to a
smooth local model of dynamics, one can implement the synthesis oracle by computing linearizations around demonstrated
trajectories, and solving the corresponding Ricatti equations as per the above discussions to synthesize the correct gains.

G.8.1. PROOF OF PROPOSITION G.12 (RICATTI SYNTHESIS OF GAINS)

Throughout, we use the shorthand Ak = Ak(ρ) and Bk = Bk(ρ), recall that ‖ · ‖ denotes the operator norm when applied
to matrices. We also recall our assumptions that Ldyn, LV ≥ 1. We begin by translating our stabilizability assumption
(Definition G.11) into the the P-matrices in Definition G.12. The following statement recalls Lemma F.1 in (Pfrommer
et al., 2023), an instantiation of well-known solutions to linear-quadratic dynamic programming (e.g. (Anderson & Moore,
2007)).
Lemma G.13 (Equivalence of stabilizability and Ricatti matrices). Consider a trajectory (x1:K ,u1:K), and define the
parameter Θ := (Ajac(x̄k, ūk),Bjac(x̄k, ūk))k∈[K]. Then, for all k ∈ [K],

∀k ∈ [K], Vk(ρ) = ‖Pk(Θ)‖op
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Hence, if ρ is LV -stabilizable,

max
k∈[K+1]

‖Pk(Θ)‖op ≤ LV .

Lemma G.14 (Lyapunov Lemma, Lemma F.10 in (Pfrommer et al., 2023)). Let X1:K ,Y1:K be matrices of appropriate
dimension, and let Q � I and Yk � 0. Define Λ1:K+1 as the solution of the recursion

ΛK+1 = Q, Λk = X>k Λk+1Xk + ηQ + Yk

Define the operator Φj+1,k = Xj ·Xj−1, · · · ·Xk, with the convention Φk,k = I. Then, if maxk ‖I −Xk‖op ≤ κη for
some κ ≤ 1/2η,

‖Φj,k‖2 ≤ max{1, 2κ} max
k∈[K+1]

‖Λk‖(1− ηα)j−k, α :=
1

maxk∈[K+1] ‖Λ1:K+1‖
.

Claim G.15. If ρ is (0, Ldyn,∞)-regular, then for all k, Ak = Ak(ρ) and Bk = Bk(ρ) satisfy
maxk∈[K] max{‖Ak‖, ‖Bk‖} ≤ Ldyn.

Proof. For any k ∈ [K],

max{‖Ak‖, ‖Bk‖} = max

{∥∥∥∥ ∂∂xf(x̄k, ūk)

∥∥∥∥ ,∥∥∥∥ ∂∂uf(x̄k, ūk)

∥∥∥∥} ≤ ‖∇f(x̄k, ūk)‖ ≤ Ldyn,

where the last inequality follows by regularity.

Claim G.16. Recall Kric
k (ρ) = (I + ηB>k Pric

k+1(ρ)Bk)−1(B>k Pric
k+1(ρ))(I + ηAk). Then, if ρ is LV -stabilizable and

(0, Ldyn,∞)-regular, and if η ≤ 1/3Ldyn,

‖Kric
k (ρ)‖ ≤ 4

3
LVLdyn

Proof. We bound

‖Kric
k (ρ)‖ ≤ ‖Bk‖‖Pric

k+1(ρ)‖(1 + η‖Ak‖)
≤ Ldyn(1 + ηLdyn)‖Pric

k+1(ρ)‖ (Claim G.15)
≤ LVLdyn(1 + ηLdyn) (Lemma G.13, LV ≥ 1)

≤ 4

3
LVLdyn (η ≤ 1/3Ldyn.)

Proof of Proposition G.12. We want to show that Kric
1:K(ρ) is (Rstab, Bstab, Lstab)-stabilizing.Claim G.16 has already

established that maxk∈[K] ‖Kric
k (ρ)‖ ≤ Rstab = 4

3LVLdyn.

To prove the other conditions, we apply Lemma G.14 with Yk = Kk(Θ)Kk(Θ), Q = I, and Xk = I + ηAcl,k(Θ). From
Definition G.12, let have that the term Λk in Lemma G.14 is precise equal to Pk(Θ). From Lemma G.13,

max
k∈[K+1]

‖Pk(Θ)‖op = max
k∈[K+1]

Vk(ρ) ≤ LV .

This implies that if maxk ‖Xk − I‖ ≤ κη ≤ 1/2, we have

‖Φcl,j,k(Θ)‖2 = ‖(Xj ·Xj−1 · . . .Xk)‖ ≤ max{1, 2κ}LV
(

1− η

LV

)j−k
.
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It suffices to find an appropriate upper bound κ. We have

‖Xk − I‖ = ‖ηAcl,k(Θ)‖ ≤ η(‖Ak‖+ ‖Bk‖‖Kk(Θ)‖)
≤ ηLdyn(1 + ‖Kk(Θ)‖)

≤ ηLdyn(1 +
4

3
LdynLV) (Claim G.16)

≤ 7

3
ηL2

dynLV (LV , Ldyn ≥ 1)

Setting κ = 7
3L

2
dynLV ., we have that as η ≤ 1

5L2
dynLV

≤ min{ 3
14L2

dynLV
, 1

3Ldyn
} (recall Ldyn, LV ≥ 1), we can bound

max{1, 2κ} ≤ max

{
1,

14

3
L2

dynLV

}
≤ max

{
1, 5L2

dynLV
}

= 5L2
dynL

2
V ,

where again recall LV , Ldyn ≥ 1. In sum, for η ≤ 1
5L2

dynLV
, we have

‖Φcl,j,k‖2 ≤ 5L2
dynL

2
V

(
1− η

LV

)j−k
.

Hence, using the elementary inequality
√

1− a ≤ (1− a/2),

‖Φcl,j,k‖ ≤
√

5LdynLV

(
1− η

LV

)(j−k)/2

≤
√

5LdynLV

(
1− η

2LV

)j−k
,

which shows that we can select Bstab =
√

5LdynLV and Lstab = 2LV .

G.9. Solutions to recursions

This section contains the solutions to various recursions used in the proof of the two two results in Appendix G.4:
Proposition G.5 (whose proof is given in Appendix G.7 ) and Lemma G.4 (whose proof is given in Appendix G.6).

Lemma G.17 (First Key Recursion). Let C1 > 0, C2 ≥ 1/2, βstab ∈ (0, 1), and suppose ε1, ε2, . . . is a sequence satisfying
ε1 ≤ ε̄1, and

εk+1 ≤ C2β
k
stabε̄1 + C1η

k∑
j=1

βk−jstabε
2
j

Then, as long as C1 ≤ β(1− β)/2η, it holds that εk ≤ 2C2β
k−1
stab ε̄1 for all k.

Proof. Consider the sequence νk = 2C2β
k−1
stab ε̄1. Since C2 ≥ 1/2, we have ν1 ≥ ε̄1 ≥ ε1. Moreover,

C2β
k
stabε̄1 + C1

k∑
j=1

βk−jstabνj = C2β
k
stabε̄1 + 2C1C2

k∑
j=1

βk+j−2
stab ε̄1

= C2β
k
stabε̄1

1 +
2C1

β

k−1∑
j=0

βjstab


≤ C2β

k
stabε̄1

(
1 +

2C1η

β(1− β)

)
Hence, for C1 ≤ β(1− β)/2η, we have C2β

k
stabε̄1 + C1

∑k
j=1 β

k−j
stabνj ≤ 2C2ε̄1β

k
stab ≤ νk+1. This shows that the (νk)

sequence dominates the (εk) sequence, as needed.
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Lemma G.18 (Second Key Recursion). Let c,∆, η > 0, βstab ∈ (0, 1) and let ε1, ε2, . . . satisfy ε1 ≤ c and

εk+1 ≤ cβkstab + cη∆βk−1
stab

k∑
j=1

εj .

Then, if ∆ ≤ β(1−β)
2cη , εk+1 ≤ 2cβkstab for all k.

Proof. Consider the sequence νk = 2cβk−1
stab . Since ε1 ≤ c, ν1 ≥ ε1. Moreover,

cβkstab + cη∆βk−1
stab

k∑
j=1

νj ≤ cβkstab + 2c2η∆βk−1
stab

k∑
j=1

βj−1
stab

≤ cβkstab + 2c2η∆βk−1
stab

1

1− β

≤ cβkstab

(
1 + 2c∆

η

β(1− β)

)
.

Hence, for ∆ ≤ β(1−β)
2cη , the above is at most 2cβkstab ≤ νk+1. This shows that the (νk) sequence dominates the (εk)

sequence, as needed.

Lemma G.19 (Third Key Recursion). Let C1, C2 > 0, α ≥ 0, βstab ∈ (1/2, 1), and let ε1, ε2, . . . , and δ1, δ2, . . . ,, and
ε̄1 ≥ ε1 and be a sequence of real numbers satisfying

εk+1 ≤ α+ η

k∑
j=1

βk−jstab(C1ε
2
j + C2εjδj) + β

k/3
stabε̄1

Defin, Errδ := maxk η
∑k
j=1 β

(k−j)
stab δ2

j and M = η/(1− β). Then, as long as

α ≤ 1

18C1M
, ε̄1 ≤

1

108C1M
, Errδ ≤

1

12
√
M max{C2, 1}

,

the following holds for all k ≥ 0:

εk+1 ≤ 3α+ 3ε̄1β
k/3
stab.

Proof of Lemma G.19. Consider a sequence

νk+1 = α? + c?β
k
? ε̄1, α? = 3α, c? = 3, β? = β

1/3
stab

defined for k ≥ 0, for some α? ≥ α, β? ∈ (β, 1), and c? ≥ 1. Then, ν1 ≥ ε̄1,≥ ε1. Let us define the term Bk via

Bk = α+ η

k∑
j=1

βk−jstab(C1ν
2
j + C2νjδj) + β

k/3
stabε̄1.

It suffices to show Bk ≤ νk+1 for all k. Introduce Termν,k =
(
η
∑k
j=1 β

k−j
stabν

2
j

)1/2

and Errδ =

maxk

(
η
∑k
j=1 β

k−j
stabδ

2
j

)1/2

Then, by Cauch-Schwartz,

Bk = α+ η

k∑
j=1

βk−jstab(C1ν
2
j + C2νjδj) + β

k/3
stabε̄1

≤ α+ C1Term2
ν,k + C2Termν,kErrδ + β

k/3
stabε̄1.
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We now bound

Term2
ν,k = η

k∑
j=1

βk−jstabν
2
j

= η

k∑
j=1

βk−jstab(α? + c?ε̄1β
j−1
? )2

≤ 2η

k∑
j=1

βk−jstabα
2
? + 2ηc2?ε̄

2
1

k∑
j=1

βk−jstabβ
2(j−1)
?

≤ 2ηα2
?

1− β
+ 2ηc2?ε̄

2
1

k∑
j=1

βk−jstabβ
2(j−1)
? .

Now, recalling β? = β
1/3
stab, we have

k∑
j=1

βk−jstabβ
j−1
? =

k∑
j=1

β3k−3j
? β

2(j−1)
? =

k∑
j=1

β3k−j−2
?

= β2k−2
?

k∑
j=1

βk−j? = β2k−2
?

∑
j≥0

βj?

≤ 3β2k−2
?

∑
j≥0

β3j
? = 3β2k

? β
−2/3
stab

∑
j≥0

βjstab

=
3

1− β
β2k
? β
−2/3
stab ≤

3

β(1− β)
β2k
? .

Thus, adopting the shorthand M = η/(1− β), and using the assumption βstab ≥ 1/2,

Term2
ν,k ≤ 2α2

?M + 12Mc2?ε̄
2
1β

2k
? .

Thus,

Bk ≤ α+ C1Term2
ν,k + C2Termν,kErrδ + βkstabε̄1

≤ α+ 2C1α
2
?M + 12C1Mc2?ε̄

2
1β

2k
? + ErrδC2

√
2Mα? + ErrδC2

√
12Mc?ε̄1β

k
? + β

k/3
stabε̄1

= α

(
1 + 2C1

α2
?

α
M +

α?
α

ErrδC2

√
2M

)
+ βk? ε̄1

(
12C1Mc2?β

k
? ε̄1 + Eδ

√
12Mc? + β

k/3
stabβ

−k
?

)
≤ α

(
1 + 2C1

α2
?

α
M +

α?
α

ErrδC2

√
2M

)
+ βk? ε̄1

(
12C1Mc2?ε̄1 + Eδ

√
12Mc?

)
where in the last line, we use β? = β

1/3
stab ≤ 1. Recalling α? = 3α and c = 3, we have Bk ≤ α? + c?ε̄1β

k
? = νk+1 as soon

as

1 ≥ 2C1
α2
?

α
M ∨ α?

α
ErrδC2

√
2M ∨ 12C1Mc2?ε̄1 + Eδ

√
12Mc?

= 18αC1M ∨ 3ErrδC2

√
2M ∨ 108C1Mε̄2 + 3Eδ

√
12M

= 18αC1M ∨ 108C1Mε̄1 ∨ Errδ(3C2

√
2M ∨ 3

√
12M )̄.

Thus, it suffices that

α ≤ 1

18C1M
, ε̄1 ≤

1

108C1M
, Errδ ≤

1

12
√
M max{C2, 1}

,

as needed.
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Lemma G.20 (Matrix Product Perturbation). Define matrix products

Φk,j = Xk−1 ·Xk−2 · · ·Xj , Φ′k,j = X′k−1 ·X′k−2 · · ·X′j .

Let η,∆, c > 0 and βstab ∈ (0, 1). If (a) Φk,j ≤ βk−jstab for all j ≤ k, (b) ‖Xj −X′j‖ ≤ η∆βj−1
stab for all j ≥ 1 and (c)

∆ ≤ β(1−β)
2cη , then, for all j ≤ k, ‖Φ′k,j‖ ≤ 2cβk−jstab.

Proof. Without loss of generally, take j = 1. Then, letting ∆k = (X′k −Xk),

Φ′k+1,1 = X′k ·X′k−2 · · ·X′1
= X′k ·Φ

′
k,1

= ∆kΦ
′
k,1 + XkΦ

′
k,1

= ∆kΦ
′
k,1 + Xk∆k−1Φ

′
k−2,1 + XkXk−1Φ

′
k−2,1

= Φk+1,k+1∆kΦ
′
k,1 + Φk+1,k∆k−1Φ

′
k−2,1 + Φk+1,kΦ

′
k−2,1

=

k∑
j=1

Φk+1,j+1∆jΦ
′
j,1 + Φk+1,1.

Thus,

‖Φ′k+1,1‖op ≤ cη
k∑
j=1

βk−jstab‖Xj −X′j‖‖Φ
′
j,1‖+ cβkstab

≤ cηβk−1
stab∆

k∑
j=1

‖Φ′j,1‖+ cβkstab. (‖Xj −X′j‖ ≤ η∆βj−1
stab)

Define εj = ‖Φ′j,1‖. Then, ε1 = 1 ≤ c, so Lemma G.18 implies that for ∆ ≤ (1−β)β
2η , ‖Φ′k,1‖ := εk ≤ 2cβkstab for all

k.

H. Sampling and Score Matching
In this section, we provide a rigorous guarantee on the quality of sampling from the learned DDPM under Assumption 3.3.
We organize the section as follows:

• In Definition H.1 we provide the main notion of function class complexity, a vectorized Rademacher complexity that
also appears in some form in Block et al. (2020a); Maurer (2016).

• We then state the main result of the section, Theorem 6, which provides a high probability upper bound on the number
of samples n required in order to sample from DDPM trained on a given score estimate such that the sample is close in
our optimal transport metric to the target distribution.

• In particular, in (H.1), we give the exact polynomial dependence of the sampling parameters α and J on the parameters
of the problem.

• We break the proof of Theorem 6 into two sections. First, in Appendix H.1, we recall a result of Chen et al. (2022);
Lee et al. (2023) that shows that it suffices to accurately learn the score in the sense that if the score estimate is accurate
in the appropriate sense, then the DDPM will adequately sample from a distribution close to the target.

• In Remark H.5, we emphasize the conditions that would be required to sample in total variation and explain why they
do not hold in our setting.

• Then, in Appendix H.2, we apply statistical learning techniques, similar to those in Block et al. (2020a), to show that
with sufficiently many samples, we can effectively learn the score. We detail in Remark H.7 how the realizability part
of Assumption 3.3 can be relaxed.
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• Finally, we conclude the proof of Theorem 6 by combining the two intermediate results detailed above.

To begin, we define our notion of statistical complexity:

Definition H.1 (Complexity of Θ Complexity). Define the vector- Rademacher complexity of a function class {sθ|θ ∈ Θj}
by:

Rn(Θj) = E

[
sup
θ∈Θj

1

n

n∑
k=1

d∑
i=1

εk,is
(i)
θ (ak,ρm,k, j)

]
,

where s
(i)
θ denotes the ith coordinate of sθ and the expectation is over (κ,ρm,h) ∼ q[t] and independent Rademacher random

variables εk,i, with q[t] as in Section 2.

We now state the main result of this section.

Theorem 6. Fix 1 ≤ h ≤ H and suppose that (ai,ρm,h,i) ∼ q are independent for 1 ≤ i ≤ n Suppose that the projection
of q onto the first coordinate has support (as defined in Definition C.3) contained in the euclidean ball of radius R ≥ 1 in
Rd. For ε > 0, set

J = c
d3R4(R+

√
d)4 log

(
dR
ε

)
ε20

, α = c
ε8

d2R2(R+
√
d)2

. (H.1)

for some universal constant c > 0. Suppose that for all 1 ≤ j ≤ J , the following hold:

• There exists a function class Θj containing some θ∗j such that s?(·, ·, jα) = sθ∗j (·, ·, jα) = ∇ log q[jα](·|·), where q[·]
is defined in Section 2.

• The following holds for some δ > 0:

sup
θ,θ′∈Θj

||a||∨||a′||≤R+
√
d log( 2nd

δ )
ρm,h

∣∣∣∣sθ(a,ρm,h, t)− sθ′(a
′,ρm,h, t)

∣∣∣∣ ≤ cd2(R+
√
d log

(
2nd
δ

)
)2

ε8
.

• Assumption 3.3 holds and thus, for all j ∈ [J ], it holds thatRn(Θj) ≤ CΘn
−1/ν for some ν ≥ 2 and all n ∈ N.

• The parameter θ̂ = θ̂1:J is defined to be the empirical minimizer of LDDPM from Section 3.

If

n ≥ c

(
CΘdR(R ∨

√
d) log(dn)

ε4

)4ν

∨

(
d6(R4 ∨ d2 log3

(
ndR
δε

)
)

ε24
d2

)4ν

,

then with probability at least 1− δ, it holds that

Eρm,h∼qρm,h

[
inf

µ∈C (DDPM(s
θ̂
,ρm,h),q(·|ρm,h))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε)
]
≤ 3ε.

Remark H.1. We emphasize that the exact value of the polynomial dependence (and in particular its pessimism) stem from
the guarantees of Chen et al. (2022); Lee et al. (2023) regarding the quality of sampling with DDPMs. We remark below that
the learning process itself does not incur such poor polynomial dependence except via these guarantees. Furthermore, we do
not expect the sampling guarantees of those two works to be tight in any sense and such a poor polynomial dependence is not
observed in practice. Rather, we include the bounds of Chen et al. (2022); Lee et al. (2023) so as to provide a fully rigorous
end-to-end guarantee showing that polynomially many samples suffice to do imitation learning under our assumptions.
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Remark H.2. A subtle difference between the presentation in the body and that here is the dependence of the complexity of
Θ on the parameter α. We phrase the complexity guarantee as we did in the body in order to emphasize the dependence on
the algorithmic parameter. If we let C ′Θ denote a constant such thatRn(Θ) ≤ C ′Θ(α/n)−1/ν , then the sample complexity
above becomes

n ≥ c
(
C ′Θ log(dn)

α

)4ν

∨

(
d2(R2 ∨ d2 log3

(
ndR
εδ

)
)

α2ε16

)4ν

.

Remark H.3. We observe that while at first it may seem that the upper bound on the osculation of sθ is limiting, and,
indeed, it is not obvious that this assumption does not contradict the realizability assumption immediately preceding it,
it follows immediately from Lemma H.2 that if the preceding assumptions are satisfied, then the true score function s?
automatically satisfies the bound on osculation. Moreover, the boundedness of the function class is only assumed for the
sake of convenience and could be substantially relaxed to an assumption requiring finiteness of moments of the envelope of
the class (Wainwright, 2019; Rakhlin et al., 2017). For the sake of simplicity, we do not further remark on this.

Critically, the guarantee of the quality of our DDPM is not in TV, but rather an optimal transport distance tailored to the
problem at hand. As remarked in Section 3, it is precisely this weaker guarantee that makes the problem challenging.

We begin by recalling the basic motivation for Denoising Diffusion Probabilistic Models (DDPMs) and explain how we
train them. We then apply results from Chen et al. (2022) to show that if we have learned the conditional score function,
then sampling can be done efficiently. While Block et al. (2020a) demonstrated that unconditional score learning can be
learned through standard statistical learning techniques, we generalize these results to the case of conditional score learning
and conclude the section by proving that with sufficiently many samples, we can efficiently sample from a distribution close
to our target. In this section, we drop the subscript h for clarity, as our theoretical analysis treats each sθ,h separately; while
empirically one sees better success in training the score estimates jointly, the focus of this paper is not on sampling and
score estimation and so we make the simplifying assumption for the sake of convenience.

H.1. Denoising Diffusion Probabilistic Models

We begin by motivating the sampling procedure described in (2.2), which is derived by fixing a horizon T and considering
the continuum limit as α ↓ 0 and J = T

α . More precisely, consider a forward process satisfying the stochastic differential
equation (SDE) for 0 ≤ t ≤ T :

dat = −atdt+
√

2dBt, a0 ∼ q,

where Bt is a Brownian motion on Rd and a0 is sampled from the target density. Applying the standard time reversal to this
process results in the following SDE:

daT−t← =
(
at← + 2∇ log qT−t(a

t
←)
)
dt+

√
2dBt, a0

← ∼ qT ,

where qt is the law of at. Because the forward process mixes exponentially quickly to a standard Gaussian, in order to
approximately sample from q, the learner may sample ã0

← ∼ N (0, I) and evolving ãt← according to the SDE above. Note
that the classical Euler-Maruyama discretization of the above procedure is exactly (2.2), but with the true score∇ log qT−t
replaced by score estimates sθ(·, T − t) : Rd → Rd; we may hope that if sθ(·, T − t) ≈ ∇ log qT−t as functions, then the
procedure in (2.2) produces a sample close in law to q. Indeed, the following result provides a quantitative bound:

Theorem 7 (Corollary 4, Chen et al. (2022)). Suppose that a distribution q on Rd is supported on some ball of radius R ≥ 1.
Let C be a universal constant, fix ε > 0, and let α, J be set as in (H.1). If we have a score estimator sθ : Rd × [τ ]→ Rd
such that

max
j∈[J]

Ea∼q[αj]

[∣∣∣∣sθ(a, j)−∇ log q[αj](a)
∣∣∣∣2] ≤ ε4,

then

sup
f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼Law(aJ ) [f(â)]− Ea∗∼q [f(a∗)] ≤ ε2,

where aJ is sampled as in (2.2).
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Remark H.4. As a technical aside, we note that Chen et al. (2022, Corollary 4) applies to an “early stopped” DDPM, in the
sense that the denoising is stopped in slightly fewer than J steps. On the other hand, for the choice of α given above, Chen
et al. (2022, Lemma 20 (a)) demonstrates that this distribution is ε2-close in Wasserstein distance to the sample produced by
using all J steps and so by multiplying C above by a factor of 2 the guarantee is preserved. Because in practice we do not
stop the DDPM early, we phrase Theorem 7 in the way above as opposed to the more complicated version with the early
stopping.

Remark H.5. While (Chen et al., 2022; Lee et al., 2023) show that if sθ is close to the s?,h in L2(q[αj]) and q satisfies mild
regularity properties, then the law of aJh will be close in total variation to q. Unfortunately, the required regularity of q, that
the score is Lipschitz, is too strong to hold in many of our applications, such as when the data lie close to a low-dimensional
manifold. In such cases, Chen et al. (2022) provided guarantees in a weaker metric on distributions. We emphasize that even
with full dimensional support, the Lipschitz constant of ∇ log q is likely large and thus the dependence on this constant
appearing in Chen et al. (2022, Theorem 2) is unacceptable. In particular, this subtle point is what necessitates the intricate
construction of our paper; as remarked in Section 3, if we could expect the score to be sufficiently regular and producing a
sample close in total variation to the target distribution were feasable, the problem would be trivial.

While Theorem 7 applies to unconditional sampling, it is easy to derive conditional sampling guarantees as a corollary.

Corollary H.1. Suppose that q is a joint distribution on actions a and observations ρm,h ∈ Rd′ . Further assume that the
marginals over Rd are fully supported in a ball of radius R ≥ 1. Then there exists a universal constant C such that for all
small ε > 0, if J and α are set as in (H.1) and

Eρm,h∼qρm,h

[
max
j∈[J]

Ea∼q[αj](·|ρm,h)

[∣∣∣∣sθ(a, j,ρm,h)−∇ log q[αj](a|ρm,h)
∣∣∣∣2]] ≤ ε4, (H.2)

then

Eρm,h∼qρm,h

[
inf

µ∈C (DDPM(sθ,ρm,h),q(·|ρm,h))
P(̂a,a∗)∼µ (||â− a∗|| ≥ ε)

]
≤ 3ε

Proof. We begin by showing an intermediate result,

Eρm,h∼qρm,h

[
sup

f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,ρm,h) [f(â)]− Ea∗∼q(·|ρm,h) [f(a∗)]

]
≤ 3ε2. (H.3)

using Theorem 7. Let

A =

{
max
j∈[J]

Ea∼q[αj](·|ρm,h)

[∣∣∣∣sθ(a, j,ρm,h)−∇ log q[αj](a|ρm,h)
∣∣∣∣2] ≤ ε2

}
.

By Markov’s inequality and (H.2), it holds that

Pρm,h∼qρm,h
(Ac) ≤ ε4

ε2
= ε2

and thus

Eρm,h∼qρm,h

[
sup

f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,ρm,h) [f(â)]− Ea∗∼q(·|ρm,h) [f(a∗)]

]

= Eρm,h∼qρm,h

[
I[A] sup

f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,ρm,h) [f(â)]− Ea∗∼q(·|ρm,h) [f(a∗)]

]

+ Eρm,h∼qρm,h

[
I[Ac] sup

f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,ρm,h) [f(â)]− Ea∗∼q(·|ρm,h) [f(a∗)]

]

≤ Eρm,h∼qρm,h

[
I[A] inf

q′∈∆(Rd)
W2(q(·|ρm,h), q′) + TV (q′,Law(πτ ))

]
+ 2ε2.
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For each ρm,h, we may apply Theorem 7 and observe that for ρm,h ∈ A,

sup
f : ||f ||∞∨||||∇f ||||∞≤1

Eâ∼DDPM(sθ,ρm,h) [f(â)]− Ea∗∼q(·|ρm,h) [f(a∗)] ≤ ε2,

which proves (H.3). Now, for any fixed ρm,h, by Markov’s inequality and the definition of Wasserstein distance,

inf
µ∈C (DDPM(sθ,ρm,h),q(·|ρm,h))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε) ≤
W1(DDPM(sθ,ρm,h), q(·|ρm,h))

ε
.

The result follows.

Note that the guarantee in Corollary H.1 is precisely what we need to control the one step imitation error in Theorem 2; thus,
the problem of conditional sampling has been reduced to estimating the score. In the subsequent section, we will apply
standard statistical learning techniques to provide a nonasymptotic bound on the quality of a score estimator.

H.2. Score Estimation

In the previous section we have shown that conditional sampling can be reduced to the problem of learning the conditional
score. While there exist non-asymptotic bounds for learning the unconditional score (Block et al., 2020a), they apply to a
slightly different score estimator than is typically used in practice. Here we upper bound the estimation error in terms of the
complexity of the space of parameters Θ.

Observe that in order to apply Corollary H.1, we need a guarantee on the error of our score estimate inL2(q[αj]) for all j ∈ [J ].

Ideally, then, for fixed ρm,h and t = αj, we would like to minimize Ea∼q[t]

[∣∣∣∣sθ(a,ρm,h, t)−∇ log q[t](a|ρm,h)
∣∣∣∣2], where

the inner norm is the Euclidean norm on Rd. Unfortunately, because q[t] itself is unkown, we cannot even take an empirical
version of this loss. Instead, through a now classical integration by parts (Hyvärinen & Dayan, 2005; Vincent, 2011; Song &
Ermon, 2019), this objective can be shown to be equivalent to minimizing

LDDPM(θ, a,ρm,, t) = Ea∼q[t]

[∣∣∣∣∣∣∣∣sθ (e−ta +
√

1− e−2tγ,ρm,h, t
)

+
1√

1− e−2t
γ

∣∣∣∣∣∣∣∣2
]
.

Because we are really interested in the expectation over the joint distribution (a,ρm,h), we may take the expectation over
ρm,h and recover (3.1) as the empirical approximation. We now prove the following result for a single time step t:

Proposition H.1. Suppose that q is a distribution such that q(·|ρm,i) is supported on a ball of radius R for q-almost
every ρm,h. For fixed j ∈ [J ] and α from (H.1), let t = jα and suppose that there is some θ∗ ∈ Θj such that s?(·, ·, t) =
sθ∗(·, ·, t) = ∇ log q[t](·|·), i.e., sθ is rich enough to represent the true score at time t. Suppose further that the class of
functions {sθ|θ ∈ Θj} satisfies for all θ ∈ Θj ,

sup
θ,θ′∈Θj

||a||∨||a′||≤R
ρm,h

∣∣∣∣sθ(a,ρm,h, t)− sθ′(a
′,ρm,h, t)

∣∣∣∣ ≤ cd2(R+
√
d log

(
2nd
δ

)
)2

ε8

for some universal constant c > 0. Recall the Rademacher termRn(Θj) defined in Definition H.1, and let

θ̂ ∈ arg min
θ∈Θ

n∑
i=1

LDDPM(θ, ai,ρm,i, t)

for independent and identically distributed (ai,ρm,i) ∼ q. Then it holds with probability at least 1− δ over the data that

E(at,ρm,h)∼q[t]

[∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](at|ρm,h)
∣∣∣∣2]

≤ c ·
√

log (dn)

1− e−2t

Rn(Θ) +
d2(R+

√
d log

(
2nd
δ

)
)2

ε8
·

√
d log

(
4dn
δ

)
n

 .
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Before we provide a proof, we recall the following result:

Lemma H.2. Suppose that q is supported in a ball of radius R and let t ≥ α for α as in (H.1). Then ∇ log q[t](·|·) is
L-Lipschitz with respect to the first parameter for

L =
dR2(R ∨

√
d)2

ε8
.

In particular,

sup
||a||∨||a′||≤R

ρm,h

∣∣∣∣∇ log q[t](a|ρm,h)−∇ log q[t](a
′|ρm,h)

∣∣∣∣ ≤ 2LR

and there exists some assignment of Θ and sθ that satisfies the boundedness condition in Proposition H.1.

Proof. The first statement follows from eplacing the ε in Chen et al. (2022, Lemma 20 (c)) by ε2. The second statement
follows immediately from the first.

We also require the following standard result:

Lemma H.3. IfRn(Θj) is defined as in Definition H.1, then

Eγ1,...,γn

 sup
θ∈Θj

1≤j≤J

1

n
·
n∑
i=1

〈
sθ(a,ρm,i, j),γi

〉 ≤√π log(dn) · Rn(Θj)

Proof. This statement is classical and follows immediately from the fact that the norm of a Gaussian is independent from its
sign as well as the fact that E [maxi,j(γi)j ] ≤

√
π log(dn) by classical Gaussian concentration. See Van Handel (2014) for

more details.

Proof of Proposition H.1. Let Pn denote the empirical measure on n independent samples
{(

ai,ρm,i,γi
)}

and let ati =

e−tai +
√

1− e−2tγi. Let Ct =
√

1− e−2t and observe that by definition and realizability,

Pn

(∣∣∣∣Ctsθ̂(at,ρm,h, t)− γ
∣∣∣∣2) ≤ ·Pn (∣∣∣∣Ct∇ log q[t](a

t|ρm,h)− γ
∣∣∣∣2) . (H.4)

We emhasize that by Lemma H.2, realizability does not make the result vaccuous. Adding and subtracting
Ct∇ log q[t](a

t|ρm,h) from the left hand inequality, expanding and rearranging, we see that

C2
t Pn

(∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](a
t|ρm,h)

∣∣∣∣2) ≤ 2Ct · Pn
(〈

sθ̂(a
t,ρm,h, t)−∇ log q[t](a

t|ρm,h),γ
〉)

≤ 2Ct · Pn

(
sup
θ∈Θj

〈
sθ(a

t,ρm,h, t)−∇ log q[t](a
t|ρm,h),γ

〉)
.

We now claim that with probability at least 1− δ, it holds that

Pn

(
sup
θ∈Θ

〈
sθ(a

t,ρm,h, t)−∇ log q[t](a
t|ρm,h),γ

〉)
≤ E

[
Pn

(
sup
θ∈Θj

〈
sθ(a

t,ρm,h, t)−∇ log q[t](a
t|ρm,h),γ

〉)]

+B ·

√
d log

(
2d
δ

)
n

,

where

B = c
d2(R+

√
d log

(
2nd
δ

)
)2

ε8
(H.5)
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for some universal constant c > 0. To see this, we claim that with probability at least 1 − δ
2 , it holds that ||ati|| ≤

c

(
R+

√
d log

(
2nd
δ

))
for all 1 ≤ i ≤ n. Indeed, this follows by Gaussian concentration in Jin et al. (2019, Lemmata

1 & 2). We may now apply Lemma H.2 to a bound on the osculation of sθ − ∇ log q[t] in the ball of the above radius.
Conditioning on the event that ||ati|| is bounded by the above, we may argue as in Wainwright (2019, Theorem 4.10) that if
we let the function

G = G(a1,ρm,1, . . . , an,ρm,n) = Pn

(
sup
θ∈Θj

〈
sθ(a

t,ρm,h, t)−∇ log q[t](a
t|ρm,h),γ

〉)
,

then for any i, on the event of bounded norm, replacing (ai,ρm,i) with (a′i,ρ
′
m,i) and leaving other terms unchanged changes

ensures that |G−G′| ≤ 2B
n γi. Thus by Jin et al. (2019, Corollary 7) and a union bound, the claim holds. Because γ is

mean zero, we have

E
[
Pn

(
sup
θ∈Θ

〈
sθ(a

t,ρm,h, t)−∇ log q[t](a
t|ρm,h),γ

〉)]
≤ E

[
Pn

(
sup
θ∈Θ

〈
sθ(a

t,ρm,h, t),γ
〉)]

≤
√
π log(dn) · Rn(Θj),

where the last inequality follows by Lemma H.3 and the fact that t = jJ . Summing up the argument until this point and
rearranging tells us that with probability at least 1− δ, it holds that

Pn

(∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](a
t|ρm,h)

∣∣∣∣2) ≤ 2

Ct

√
π log(nd) · Rn(Θ) +

B

Ct
·

√
d log

(
2nd
δ

)
n

,

with B given in (H.5). We now use a uniform norm comparison between population and empirical norms to conclude the
proof. Indeed, it holds by Rakhlin et al. (2017, Lemma 8.i & 9) that there exists a critical radius

rn ≤ cB log3(n)Rn(Θj)
2

such that with probability at least 1− δ,

E(at,ρm,h)∼q[t]

[∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](a
t|ρm,h)

∣∣∣∣2]
≤ 2 · Pn

(∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](a
t|ρm,h)

∣∣∣∣2)+ crn + c
log
(

1
δ

)
+ log log n

n
,

where again c is some universal constant. Combining this with our earlier bound on the empirical distance and a union
bound, after rescaling δ, we have that

E(at,ρm,h)∼q[t]

[∣∣∣∣sθ̂(at,ρm,h, t)−∇ log q[t](a
t|ρm,h)

∣∣∣∣2] ≤ 4

Ct

√
π log(nd) · Rn(Θj) +

2B

Ct
·

√
d log

(
4nd
δ

)
n

+ cB log3(n) · R2
n(Θj) + c

log
(

2
δ

)
+ log log(n)

n

with probability at least 1− δ. This concludes the proof.

Remark H.6. For the sake of simplicity, in the proof of Proposition H.1 we applied uniform deviations and recovered
the “slow rate” ofRn(Θ), up to logarithmic factors. Indeed, if we were to further assume that the score function class is
star-shaped around the true score, we could recover a faster rate, as was done in the case of unconditional sampling in Block
et al. (2020a) with a slightly different loss. While in our proof the appeal to Rakhlin et al. (2017) to control the population
norm by the empirical norm could be replaced with a simpler uniform deviations argument because we have already given
up on the fast rate, such an argument is necessary in the more refined analysis. As the focus of this paper is not on the
sampling portion of the end-to-end analysis, we do not include a rigorous proof of the case of fast rates for the sake of
simplicity and space.
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Remark H.7. While we assumed for simplicity that the score was realizable with respect to our function class for every
time t = αj, this condition can be relaxed to approximate realizability in a standard way. In particular, if the score is ε-far
away from some function representable by our class in a pointwise sense, then we can add an ε to the right hand side of
(H.4) with minimal modification to the proof.

With Proposition H.1, and a union bound, we recover the following result:

Proposition H.4. Suppose that the conditions on sθ in Proposition H.1 continue to hold. Let J and α be as in (H.1) and
suppose that α ≤ 1

2 . Then, with probability at least 1− δ over D′, it holds that

Eρm,h∼qρm,h

[
max
j∈[J]

Ea∼q[αj](·|ρm,h)

[∣∣∣∣sθ(a, j,ρm,h)−∇ log q[αj](a|ρm,h)
∣∣∣∣2]]

≤ cdR(R ∨
√
d) log(dn)

ε4
Rn(Θ) + c

d3
(
R2 + d log

(
ndR
δε

))
ε12

√
d log

(
4dnR
δε

)
n

In particular if

Rn(Θj) ≤ CΘn
−1/ν

for some ν ≥ 2 and all j ∈ [J ], then for

n ≥ c

(
CΘdR(R ∨

√
d) log(dn)

ε4

)4ν

∨

(
d6(R4 ∨ d2 log3

(
ndR
δε

)
)

ε24
d2

)4ν

it holds that with probability at least 1− δ,

Eρm,h∼qρm,h

[
max
j∈[J]

Ea∼q[αj](·|ρm,h)

[∣∣∣∣sθ(a, j,ρm,h)−∇ log q[αj](a|ρm,h)
∣∣∣∣2]] ≤ ε4.

Proof. We begin by noting that

1− e−2t ≥ 1− e−2α ≥ α

because 2α ≤ 1. We now apply Proposition H.1 and take a union bound over j ∈ [J ]. The result follows.

We note that in our simplified analysis, we have assumed that Naug = 1, i.e., for each sample, we take a single noise
level from the path. In practice, we use many augmentations per sample. Again, as the focus of our paper is not on score
estimation and sampling, we treat this as a simple convenience and leave open to future work the problem of rigorously
demonstrating that multiple augmentations indeed help with learning. Finally, for a discussion on boundingRn(Θ), see
Wainwright (2019).

Proof of Theorem 6. We note that the proof follows immediately from combining Corollary H.1 with Proposition H.4.

I. End-to-end Guarantees and the Proof of Theorem 1
In this section, we provide a number of end-to-end guarantees for the learned imitation policy under various assumptions.
The core of the section is Theorem 8, which provides the basis for the final proof of Theorem 1 in the body by uniting the
analysis in the composite MDP from Appendix E, the control theory from Appendix G, and the sampling guarantees from
Appendix H. We now summarize the organisation of the appendix:

• In Appendix I.1, we recall the association between the control setting and the composite MDP presented in Section 4,
as well as rigorously instantiating the direct decomposition and the expert policy.

• In Appendix I.2, we state a reduction from imitation learning to conditional sampling, which we then use to derive a
proof of Theorem 1.
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• In Appendix I.3, we demonstrate that if the demonstrator policy is assumed to be TVC, then we can recover stronger
guarantees than those provided in Theorem 1 without this assumption; in particular, we show that we can bound the
joint imitation loss as well as the marginal and final versions.

• In Appendix I.4, we show that if we were able to produce samples from a distribution close in total variation to the
expert policy distribution, as opposed to the weaker optimal transport metric that we consider in the rest of the paper,
then without any further assumptions, imitation learning is easily achievable.

• In Appendix I.5, we show that if we remove the data augmentation from TODA, i.e., we set σ = 0, then we can recover
similar guarantees under the assumption that the imitator policy π̂ is TVC. In this way, we show that in some sense,
total variation continuity is the important property imparted by smoothing.

• In Appendix I.6, we demonstrate the utility of our imitation losses, showing that for Lipschitz cost functions decompos-
ing in natural ways, our imitation losses as defined in Definition 2.2 provide control over the difference in expected
cost under expert and imitated distributions.

• Finally, in Appendix I.7, we collect a number of useful lemmata that we use throughout the appendix.

I.1. Preliminaries

Here, we state various preliminaries to the end-to-end theorems. For simplicity, to avoid complications with the boundary
effects at h = 1, we re-define h = 1-memory chunks ρm,1 as elements Pτm−1 by prepending the necessary zeros – i.e.
ρm,1 = (0, 0, . . . , 0,x1)– and similarly modifying ρc,1 ∈ Pτc by prepending zeros. We first recall the definitions of
the composite-states and -actions from Section 4. The prepending of zeros in the h = 1 case is mentioned above. For
h > 1, recall that sh = (xth−1:th ,uth−1:th−1) and that ah = κth:th+1−1, where we again emphasize that ah begins at
the same t that sh+1 does. We further recall that dS(sh, s

′
h) = maxt∈[th−1:th] ||xt − x′t|| ∨ maxt∈[th−1:th−1] ||ut − u′t||,

dTVC(sh, s
′
h) = maxt∈[th−τm:th] ||xt − x′t|| ∨maxt∈[th−τm:th−1] ||ut − u′t||, and dIPS(sh, s

′
h) =

∣∣∣∣xth − x′th
∣∣∣∣. Finally, for

a = (ū1:τc , x̄1:τc , K̄1:τc) and a′ = (ū′1:τc , x̄
′
1:τc , K̄

′
1:τc), recall from (4.2) that

dA(a, a′) := c1 max
1≤k≤τc

(‖ūk − ū′k‖+ ‖x̄k − x̄′k‖+ ‖K̄k − K̄′k‖) + I0,∞{E},

where we E = {max1≤k≤τc max{‖ūk − ū′k‖, ‖x̄k − x̄′k‖, ‖K̄k − K̄′k‖} ≤ c2}, I0,∞ is the indicator taking infinite value
when the event fails to hold, and c1 and c2 are given in Definition G.5.

Direct Decomposition and Smoothing Kernel. This section will invoke the generalizations Theorem 2 which requires
TVC only subspace of the state space. This invokes the direct decomposition explained in Appendix E.
Definition I.1 (Direct Decomposition and Smoothing Kernel). We consider the decomposition of S = Z ⊕ V , where
Z = Pτm−1 are the coordinates of ρc,h corresponding to the memory chunk ρm,h, and V are all remaining coordinates We
let φZ : S → Z denote the projection onto the coordinates in Z . We instantiate the smoothing kernel Wσ as follows: For
s = ρc,h ∈Pτc , we let

Wσ(s) = N
(
ρc,h,

[
σ2IZ 0

0 0

])
,

where IZ denotes the identity supported on the coordinates in Z as described above.

We note that the above direct decomposition satisfies the requiste compatibility assumptions explained in Appendix E. Note
also that dIPS and Wσ are compatible with the above direct decomposition.

Chunking Policies. We continue by centralizing a definition of chunking policies.
Definition I.2 (Policy and Initial-State Distributions). Given an chunking policy π = (πh)Hh=1 with πh : Pτm−1 → ∆(A),
we let Dπ denote the distribution over ρT and a1:H induced by selecting ah ∼ πh(ρm,h), and rolling out the dynamics as
described in Section 2. We extend chunking policies to maps πh : S = Pτc → ∆(A) by expressing πh = πh ◦ φZ (i.e.,
projection ρc,h onto its ρm,h-components). Further, we let Pinit denote the distribution of x1 under ρT ∼ Dexp.
Remark I.1. The notation Dπ denotes the special case of chunking policies in the control setting of Section 2, whereas we
reserve the seraf font Dπ for the distribution induced by policies in the abstract MDP. For composite MDPs instantiated as in
Section 4.1, the two exactly coincide.
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Construction of π? for composite MDP. We now explain how to extract π? from Dexp in the composite MDP.
Definition I.3 (Policies corresponding to Dexp). Define the following sequence kernels π? = (π?h)Hh=1 and π?dec =
(π?dec,h)Hh=1 via the following process. Let ρT ∼ Dexp, and let a1:H = synth(ρT ); further, let ρm,1:H be the corresponding
memory-chunks from ρT . Let

• π?h(·) : Pτm−1 → A denote a regular conditional probability corresponding to the distribution over ah given ρm,h in
the above construction.

• π?dec,h(·) : Pτm−1 → A denote a regular conditional probability corresponding to the distribution over ah given an
augmented ρ̃m,h ∼ N (ρm,h, σ

2I).

Finally, for π? as constructed above, P?h denotes the distribution over ρc,h under Dπ? . By Lemma I.6, this is in fact equal to
the distribution over ρc,h under Dexp. Notice further, therefore, that φZ ◦ P?h is precisely the distribution of ρm,h under
Dexp.
Remark I.2. We remark that by Theorem 3, π?h is unique up to a measure zero set of ρm,h as distributed as above, and
π?dec,h is unique almost surely for ρ̃m,h distributed as above. In particular, since the latter has density with respect to the
Lebesgue measure and infinite support, π?dec,h is unique in a Lebesgue almost everywhere sense.

Instantiation of the distance dA for pairs of actions. We recall the instantiation of the distance dA:
Definition I.4 (Instantiation of dA). We recall dA : A×A → R≥0 as defined in (4.2):

dA(a, a′) := c1 max
1≤k≤τc

(‖ūk − ū′k‖+ ‖x̄k − x̄′k‖+ ‖K̄k − K̄′k‖) + I0,∞{E},

where we define E := {max1≤k≤τc max{‖ūk − ū′k‖, ‖x̄k − x̄′k‖, ‖K̄k − K̄′k‖} ≤ c2}, I0,∞ is the indicator taking infinite
value when the event fails to hold, and c1 and c2 are constants depending polynomially on all problem parameters, given in
Definition G.7.

I.1.1. PRELIMINARIES FOR JOINT-DISTRIBUTION IMITATION.

This section introduces a further joint imitation gap, which we can make small under a stronger bounded-memory assumption
on Dexp stated below.
Definition I.5 (Joint Imitation Gap). Given a chunking polcy π′, we let

Ljoint,ε(π) := inf
µ

Pµ
[
max
t∈[T ]

max
{
‖xexp

t+1 − xπt+1‖, ‖u
exp
t − uπt ‖

}
> ε

]
,

where the infimum is over all couplings between the distribution of ρT under Dexp and that induced by the policy π.

Controlling Ljoint,ε(π) requires various additional stronger assumptions (which we do not require in Theorem 1), one of
which is that the demonstrator has bounded memory:
Definition I.6. We say that the demonstration distribution, synthesis oracle pair (Dexp,synth) have τ -bounded memory if
under ρT = (x1:T+1,u1:T ) ∼ Dexp and a1:H = synth(ρT ), the conditional distribution of ah and x1:th−τ ,u1:th−τ are
conditionally independence given (xth−τ+1:th ,uth−τ+1:th−1).

We note that enforcing Definition I.6 can be relaxed to a mixing time assumption (see Remark I.4). Moreover, we stress that
we do not need the condition in Definition I.6 if we only seek imitation of marginal distributions (as captured by Lmarg,ε

and Lfin,ε), as in Theorem 1.

I.1.2. TRANSLATING CONTROL IMITATION LOSSES TO COMPOSITE-MDP IMITATION GAPS

Lemma I.1. Recall the imitation losses Definitions 2.2 and I.5, and the compsite-MDP imitation gaps Definition 4.1.
Further consider, the substitutions defined in Section 4.1, with π? instantiated as in Definition I.3. Given policies π = (πh)
with πh : Pτm−1 → A, we can extend πh : S = Pτc → A by the natural embedding of Pτm−1 into Pτc . Then, for any
ε > 0,

Lmarg,ε(π) ≤ Γmarg,ε(π ‖ π?).
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If we instead consider the the substitutions defined in Section 4.1, but set dS to equal dIPS, which only measures distance in
the final coordinate of each trajectory chunk ρc,h,

Lfin,ε(π) ≤ Γmarg,ε(π ‖ π?), dS(·, ·)← dIPS(·, ·) (I.1)

Finally, if Dexp has τ ≤ τm-bounded memory,

Ljoint,ε(π) ≤ Γjoint,ε(π ‖ π?).

Proof. Let’s start with the first bound, let superscript exp denote objects from Dexp and superscript π from Dπ, the
distribution induced by chunking policy π. Letting infµ denote infima over couplings between the two, we have

Lmarg,ε(π) := max
t∈[T ]

inf
µ

{
Pµ
[
‖xexp

t+1 − xπt+1‖ > ε
]
, Pµ [‖uexp

t − uπt ‖ > ε]
}

:= max
t∈[T ]

inf
µ

{
Pµ
[
‖xexp

t+1 − xπt+1‖ ∨ ‖u
exp
t − uπt ‖ > ε

]}
≤ max
h∈[H]

inf
µ

{
Pµ
[

max
0≤i≤τc

‖xexp
th−i − xπth−i‖ ∨ max

1≤i≤τc
‖uexp

th−i − uπth−i‖
]}

≤ max
h∈[H]

inf
µ

{
Pµ
[
dS(ρexp

c,h ,ρ
π
c,h)
]}

,

From Lemma I.6, ρexp
c,h has the same marginal distribution as ρπ

?

c,h, the distribution induced by π? in Definition I.3. Note the
subtlety that the joint distribution of these may defer because π? has limited trajectories. Still, letting infµ′ denote infimum
over couplings between Dπ and Dπ? , equality of marginals suffices to ensure

Lmarg,ε(π) = max
h∈[H]

inf
µ

{
Pµ′

[
dS(ρπ

?

c,h,ρ
π
c,h)
]}

,

which is at most Γmarg,ε(π ‖ π?) by definition Definition 4.1.

For the final-state imitation loss,

Lfin,ε(π) := inf
µ

Pµ
[
‖xexp

T+1 − xπT+1‖ > ε
]

≤ max
h∈[H]

inf
µ

{
Pµ
[
dIPS(ρ

exp
c,h ,ρ

π
c,h)
]}

,

where again dIPS only measures error in the final state of ρc,h. The corresponding bound in (I.1) follows similarly.

Finally, we have

Ljoint,ε(π) := inf
µ

Pµ
[
max
t∈[T ]

max
{
‖xexp

t+1 − xπt+1‖, ‖u
exp
t − uπt ‖

}
> ε

]
,

When Dexp has τ ≤ τm-bounded memory, then, the expert and π?-induced trajectories are identically distributed. Therefore,
directly from this observation and Definition 4.1,

Ljoint,ε(π) = inf
µ

Pµ
[
max
t∈[T ]

max
{
‖xπ

?

t+1 − xπt+1‖, ‖uπ
?

t − uπt ‖
}
> ε

]
≤ Γjoint,ε(π ‖ π?).

I.2. Proof of Theorem 1 and a general reduction

We now state a reduction from which Theorem 1 is readily derived from our statistical learning analysis of score estimation.
Theorem 8 (Reduction from trajectory imitation to conditional sampling). Consider applying TODA with σ > 0, and let
δ ∈ (0, 1), and define

∆h(ε) := Eρm,h∼Dexp
Eρ̃m,h∼N (ρm,h,σ

2I) inf
µ∈C (π?dec,h(ρ̃m,h),π̂h(ρ̃m,h))

P(a,a′)∼µ[dA(a, a′)]. (I.2)

where dA is as in Definition I.4, ρm,h ∼ Dexp is shorthand for ρT ∼ Dexp, and ρm,h denotes the corresponding h-th
memory chunk of Dexp. Consider the following setup:
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• Suppose that Assumptions 3.1 and 3.2 hold.

• Let c1, . . . , c5 be the constants defined Definition G.7, which we recall are polynomial in the terms in Assumptions 3.1
and 3.2

• Define d = τc(du + dx + dudx).

• Suppose that τc ≥ c3/η

• The parameters ε, σ > 0 satisfy 5dx + log
(

4σ
ε

)
≤ c24/(16σ2),

For all we have

Lmarg,ε1(π̂σ) ∨ Lfin,ε2(π̂σ)

≤ H

(
2ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e
− η(τc−τm)

Lstab

)
+

H∑
h=1

∆h(ε)

where

ε1 = ε+ 4c5σ ·

√
5dx + 2 log

(
4σ

ε

)
(I.3)

ε2 = ε+ 4c5σe
− ητc
Lstab ·

√
5dx + 2 log

(
4σ

ε

)

We first demonstrate how Theorem 1 follows from Theorem 8 and Theorem 6:

Proof of Theorem 1. From Theorem 8, it suffices to show that with probability at least 1 − δ, it holds that ∆h ≤ 3ε
σ for

all h ∈ [H]. Note that by Assumption 3.2 it holds Dexp-almost surely that ||ah|| ≤ Rstab and thus the condition on q in
Theorem 6 holds for R = Rstab. Moreover, for d = τc(dx + du + dxdu), we have that a ∈ Rd. By Assumption 3.3, the
conditions on the score class sθ hold for us to apply Theorem 6. Note that by assumption,

Nexp ≥ c

(
CΘdR(R ∨

√
d) log(dn)

(ε/σ)4

)4ν

∨

(
d6(R4 ∨ d2 log3

(
HndRσ
δε

)
)

(ε/σ)24
d2

)4ν

,

where we note that the right hand side is poly (CΘ, ε/σ,Rstab, d, log(H/δ))
ν , and J and α are set as in (H.1). Taking a

union bound over h ∈ [H] and applying Theorem 6 tells us that with probability at least 1− δ, for all h ∈ [H], it holds that

Eρm,h∼qρm,h

[
inf

µ∈C (DDPM(s
θ̂
,ρm,h),q(·|ρm,h))

P(̂a,a∗)∼µ (||â− a∗|| ≥ ε/σ)

]
≤ 3ε

σ
.

Thus it holds that with probability at least 1− δ,

H∑
h=1

∆h(ε/σ) ≤ 3Hε

σ
.

Plugging this in to Theorem 8 concludes the proof.

Proof of Theorem 8. Lets begin by bounding Lmarg,ε(π). Recall the definitions of dS , dTVC, dIPS in Section 4, and let
s?1:H+1 and s1:H+1 denote the composite states corresponding to a trajectory (xπ

?

1:T+1,u
π?

1:T ) under π? and (xπ1:T+1,u
π
1:T ),

respectively, under the instantiation of the composite MDP in Section 4.1. We can view π? and π (which depend only on
memory chunks ρm,h) as policies in the composite MDP which are compatible with the decomposition Definition E.1. We
make the following points:
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• In light of Lemma I.1,

Lmarg,ε1(π ‖ π?) ≤ Γmarg,ε1(π ‖ π?).

• By Lemma I.8, a consequence of Pinsker’s inequality, it holds that the Gaussian kernel Wσ used in TODA is γσ-TVC
(w.r.t. dTVC) with γσ(u) = u

√
τm+1
2σ .

• Note that dIPS(sh, s
′
h) = ‖xth − x′th‖ measures Euclidean distance between the last x-coordinates of sh, s′h. Moreover,

if s′h ∼ Wσ(sh) the last coordinate x′th of s′ is distributed as N (xth , σ
2I). By Lemma I.7 with d = dx, that for

r = 2σ ·
√

5dx + 2 log
(

1
p

)
Ps′∼Wσ(s)[dIPS(s, s

′) > r] ≤ p.

• As (a) s?h corresponds to ρc,h from ρT ∼ Dexp, (b) as π̂, π?dec are functions of ρm,h, and (c) by recalling the definition
of dos,ε in Definition 4.1,

Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(πh(̃s?h) ‖ π?dec(̃s?h))

= Eρm,h∼Dexp
Eρ̃m,h∼N (ρm,h,σ

2I) inf
µ∈C (π?dec(ρ̃m,h),π̂(ρ̃m,h))

P(a,a′)∼µ[dA(a, a′) ≥ ε],

which is at most ∆h(ε0) by assumption.

• Finally, Proposition 4.1 ensures that under our assumption τc ≥ c3/η, and let rIPS = c4, γIPS,1(u) = c5u exp(−η(τc −
τm)/Lstab), γIPS,2(u) = c5u for c3, c4, c5 given in Definition G.7. Then, for dS , dTVC, dIPS as above, we have that π? is
(γIPS,1, γIPS,2, dIPS, rIPS)-IPS.

Consequently, for r = 2σ ·
√

5dx + 2 log
(

4σ
ε

)
∈ (0, 1

2rIPS), Theorem 5 (which, we recall, generalizes Theorem 2 to account
for the direct decomposition structure) implies

Lmarg,ε+2rc5(π̂σ) = Lmarg,ε+2rc5(π̂σ ‖ π?) ≤ Γmarg,ε+2rc5(π̂σ ‖ π?)

≤ H
√

2τm − 1

(
ε

2σ
+

3

2σ

(
max

{
ε, 2rc5e

− η(τc−τm)
Lstab

}))
+
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(πh(̃s?h) ‖ π?dec(̃s?h))

≤ H
√

2τm − 1

(
2ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e
− η(τc−τm)

Lstab

)
+

H∑
h=1

∆h(ε)

Substituting in ε1 = ε+ 2rc5 = ε+ 4c5σ ·
√

5d+ 2 log
(

4σ
ε

)
the bound on Lmarg,ε1 is proved.

To show Lfin,ε2(π̂σ) satisfies the same bound, we replace dS in the above argument (as defined in Section 4.1) with
dS(·, ·)← dIPS(·, ·), where again we recall that dIPS(ss, s

′
s) = ‖xth−x′th‖measures differences in the final associated control

state. From Corollary G.1, which is a a generalization of Proposition 4.1, it follows that we can replace γIPS,2(u) = c5u

as used above with the considerable smaller quantity γIPS,2(u) = c5ue
− ητc
Lstab . Thus, we can replace ε1 above with

ε2 := ε+ 4c5e
−ητc/Lstabσ · (5dx + 2 log

(
1
ε

)
)1/2. This concludes the proof that

Lmarg,ε2(π̂σ) ≤ H
√

2τm − 1

(
6c5

√
5dx + 2 log

(
4σ
ε

)
e
− η(τc−τm)

Lstab +
2ε

σ

)
,

as needed.
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I.3. Imitation of the joint trajectory under total variation continuity of demonstrator policy

Here, we show that if the demonstrator policy satisfies a certain continuity property in total variation distance, then we
can imitate the joint distribution over trajectories, not just marginals. Recall the joint imitation loss from Ljoint,ε from
Definition I.5.

Theorem 9. Consider the setting Theorem 8, with ∆h(ε) as in (I.2), and suppose all the assumptions of that theorem are
met. Suppose that, in addition, there is a strictly increasing function γ(·) such that for all ρm,h,ρ

′
m,h ∈Pτm−1,

TV(π?(ρm,h), π?(ρ′m,h)) ≤ γ(‖ρm,h − ρ′m,h‖),

where π? is defined is the conditional in Definition I.3. Further, suppose that Dexp has τ ≤ τm bounded memory

(Definition I.6). Then, with ε1 := ε+ 4c5σ ·
√

5dx + 2 log
(

4σ
ε

)
as in (I.3),

Ljoint,ε1(π̂σ) ≤ H · ERRTVC(σ, γ)

+H
√

2τm − 1

(
2ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e
− η(τc−τm)

Lstab

)
+

H∑
h=1

∆h(ε),

where we define d0 = τmdx + (τm − 1)du and u0 = γ(8σ
√
d0 log(9)), and

ERRTVC(σ, γ) =

{
2cσ
√
d0 linear γ(u) = c · u, c > 0

u0 +
∫∞
u0
e−

γ−1(u)2

64σ2 du general γ(·)
. (I.4)

In particular, under Assumption 3.3, if

Nexp ≥ c

(
CΘdR(R ∨

√
d) log(dn)

(ε/σ)4

)4ν

∨

(
d6(R4 ∨ d2 log3

(
HndRσ
δε

)
)

(ε/σ)24
d2

)4ν

,

then with probability at least 1− δ, it holds that

Ljoint,ε1(π̂σ) ≤ H · ERRTVC(σ, γ) +H
√

2τm − 1

(
3ε

σ
+ 6c5

√
5dx + 2 log

(
4σ

ε

)
e
− η(τc−τm)

Lstab

)
.

Remark I.3. The second term in our bound on Ljoint,ε(π) is identical to the bound in Theorem 8. The term ERRTVC
captures the additional penalty we pay to strengthen for imitation of marginals to imitation of joint distributions. Notice that
if limu→0 γ(u) → 0 and γ(u) is sufficiently integrable, then, limσ→0 Err(σ, γ) = 0. This is most clear in the linear γ(·)
case, where Err(σ, γ) = O (σ).

The proof is given in Appendix I.3.1; it mirrors that of Theorem 8, but replaces Theorem 2 with the following imitation
guarantee in the composite MDP abstraction of Section 4, which bounds the joint imitation gap relative to π? if π? is TVC.

Proposition I.2. Consider the set-up of Section 4, and suppose that the assumptions of Theorem 5, but that, in addition, the
expert policy π? is γ̃(·)-TVC with respect to the pseudometric dTVC, where γ̃ : R≥0 → R≥0 is strictly increasing. Then, for
all parameters as in Theorem 2, and any r̃ > 0,

Γjoint,ε(π̂ ◦Wσ ‖ π?) ≤ H
∫ ∞

0

max
s

Ps′∼Wσ(s)[dTVC(s, s′) > γ̃−1(u)/2]du

+H (2pr + 3γσ(max{ε, γIPS,1(2r)})) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖ π?dec(̃s?h)),

where the term in color on the first line is the only term that differs from the bound in Theorem 2.

Moreover, in the special case where all of the distributions of dTVC(s, s′) | s′ ∼ Wσ(s) are stochastically dominated by a
common random variable Z, and further more γ̃(u) = c̃ · u for some constant c̃, then our bound may be simplified to

Γjoint,ε(π̂ ◦Wσ ‖ π?) ≤ 2c̃HE[Z]

+H (2pr + 3γσ(max{ε, γIPS,1(2r)})) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖ π?dec(̃s?h)).



4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784

Proof Sketch. Proposition I.2 is derived below in Appendix I.3.2. It is corollary of Theorem 2, combined with adjoining the
coupling constructed therein to a TV distance coupling between π?	σ (whose joints we can always imitate) and π?. Coupling
trajectories induced by π?	σ and π? relies on the TVC of π?, as well as concentration of Wσ .

Using the above proposition, we can derive the following consequences for imitation of the joint distribution.

I.3.1. PROOF OF THEOREM 9

The proof is nearly identical to that of Theorem 8, with the modifications that we replace our use of Theorem 2 with
Proposition I.2 taking γ̃ ← γ. By Lemma I.1 and the assumpton that Dexp has τ ≤ τm-bounded memory, it suffices to
bound the joint-gap in the composite MDP:

Ljoint,ε(π) ≤ Γjoint,ε(π ‖ π?).

We bound this directly from Proposition I.2. The final statement follows from Theorem 6 in the same way that it does in the
proof of Theorem 1.

The only remaining modification, then, is to evaluate the additional additive terms colored in purple in Proposition I.2; we will
show that ERRTVC as defined in (I.4) suffices as an upper bound. We have two cases. In both, let d0 = τmdx + (τm − 1)du.
As dTVC measures the distance between the chunks ρm,h = φZ(sh), ρ̃m,h = φZ(s′h), which have dimension d0, and since
we φZ ◦Wσ(·) = N (·, σ2Id0), we have

dTVC(φZ ◦ s, φZ ◦ s′) | s′ ∼Wσ(s)
dist
= ‖γ‖, γ ∼ N (0, σ2Id0) (I.5)

General γ(·). Eq. (I.5) and Lemma I.7 imply that

Ps′∼Wσ(s)[dTVC(s, s′)] ≤ exp(−r2/16σ2), r ≥ 4σd0 log(9).

Hence, if u0 = γ(8σd0 log(9)), then

P[dTVC(s, s′) > γ−1(u)/2] ≤ exp(−γ−1(u)2/64σ2), u ≥ u0.

Thus, as probabilities are at most one,∫ ∞
0

max
s

Ps′∼Wσ(s)[dTVC(s, s′) > γ−1(u)/2]du ≤ u0 +

∫ ∞
u0

e−
γ−1(u)2

64σ2 du,

as needed.

Linear γ(·). In the special case where γ(u) = c(u), Eq. (I.5) implies that we can take Z = ‖γ‖ where γ ∼ N (0, σ2Id0)
in the second part of Proposition I.2. The corresponding additive term is then 2HcE[‖γ‖]. By Jensen’s inequality,
E[‖γ‖] ≤

√
E[‖γ‖2] =

√
σ2d0 = σ

√
d0, as needed.

I.3.2. PROOF OF PROPOSITION I.2

Define the shorthand

B := H (2pr + 3γσ(max{ε, γIPS,1(2r)})) +
∑H
h=1 Es?h∼P?hEs̃?h∼Wσ(s?h)dos,ε(π̂h(̃s?h) ‖ π?dec(̃s?h)),

and recall that Theorem 2 ensures Γjoint,ε(π̂ ◦Wσ ‖ π?	σ) ≤ B. Further, recall from Definition 4.1 that

Γjoint,ε(π̂ ◦Wσ ‖ π?	σ) = inf
µ1

Pµ1

[
max
h∈[H]

max{dS(s	h+1, ŝh+1), dA(a	h , âh)} > ε

]
,

where the infinum is over all couplings µ1 of (̂s1:H+1, â1:H) ∼ Dπ̂◦Wσ
and (s	1:H+1, a

	
1:H) ∼ Dπ?	σ with Pµ1

[̂s1 = s	1 ] = 1.
For any coupling µ1, we can consider another coupling µ2 of (s?1:H+1, a

?
1:H) ∼ Dπ? and (s	1:H+1, a

	
1:H) ∼ Dπ?	σ with

Pµ2 [s?1 = s	1 ] = 1. By the “gluing lemma” (Lemma C.2), we can construct a combined coupling µ which respects the
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marginals of µ1 and µ2. This combined coupling induces a joint coupling µ̃1 of Dπ̂◦Wσ
and Dπ? which, by a union bound,

satisfies Pµ̃1 [̂s1 = s?1] = 1. Thus, by a union bound, we can bound

Γjoint,ε(π̂ ◦Wσ ‖ π?) ≤ Pµ̃1

[
max
h∈[H]

max{dS(s?h+1, ŝh+1), dA(a?h, âh)} > ε

]
≤ Pµ1

[
max
h∈[H]

max{dS(s	h+1, ŝh+1), dA(a	h , âh)} > ε

]
+ Pµ2

[
(s?1:H+1, a

?
1:H) 6= (s	1:H+1, a

	
1:H)

]
.

Passing to the infinum over µ1, µ2,

Γjoint,ε(π̂ ◦Wσ ‖ π?) ≤ Γjoint,ε(π̂ ◦Wσ ‖ π?	σ)︸ ︷︷ ︸
≤B

+ inf
µ2

Pµ2

[
(s?1:H+1, a

?
1:H) 6= (s	1:H+1, a

	
1:H)

]
,

where again µ2 quantify couplines of (s?1:H+1, a
?
1:H) ∼ Dπ? and (s	1:H+1, a

	
1:H) ∼ Dπ?	σ with Pµ2 [s?1 = s	1 ] = 1. Bounding

the infinum over µ2 with Proposition I.4, we have

Γjoint,ε(π̂ ◦Wσ ‖ π?) ≤ B +

H∑
h=1

Es?h
TV(π?h(s?h),π?	σ,h(s?h))

To conclude, it suffices to show the following bound:
Claim I.3. For any s ∈ S, h ∈ [H], and r̃ ≥ 0, TV(π?h(s),π?	σ,h(s)) ≤

∫∞
0

maxs maxs Ps′∼Wσ(s)[dTVC(s, s′) >

γ̃−1(u)/2].

Proof. To show this claim, we note that we can represent (via the notation in Appendix E.3) π?	σ,h(s) = π?h◦W?
	,h(s), where

W?
	,h is the replica-kernel defined in Definition E.5. Thus, we can construct a coupling of a? ∼ π?h(s) and a	 ∼ π?	σ,h(s)

by introducing an intermediate state s′ ∼W?
	,h(s) and a	 ∼ π?(s′). By Lemma C.4, the fact that TV distance is bounded

by one, and the assumption that π? is γ̃-TVC, we then have

TV(π?h(s),π?	σ,h(s)) ≤ Es′∼W?
	,h(s)TV(π?h(s), π?h(s′)).

Recall the well-known formula that, for a non-negative random variable X , E[X] =
∫∞

0
P[X > u]du (Durrett, 2019). From

this formula, we find

TV(π?h(s),π?	σ,h(s)) ≤
∫ ∞

0

P[TV(π?h(s), π?h(s′)) > u]du

(i)

≤
∫ ∞

0

P[dTVC(s, s′) > γ̃−1(u)]du

where in (i) we used that TV(π?h(s), π?h(s′)) ≤ γ̃(dTVC(s, s′)) and that, as γ̃(·) is strictly increasing, we have the equality
of events {TV(π?h(s), π?h(s′)) > u} = {dTVC(s, s′) > γ−1(u)}. Arguing as in the proof of Lemma E.5, we have that
Ps′∼Wσ(s)[dTVC(s, s′) > γ̃−1(u)] ≤ maxs Ps′∼Wσ(s)[dTVC(s, s′) > γ̃−1(u)/2]. Hence, we conclude

TV(π?h(s),π?	σ,h(s)) ≤
∫ ∞

0

max
s

Ps′∼Wσ(s)[dTVC(s, s′) > γ̃−1(u)/2]du

which proves the first guarantee.

With the above claim proven, we conclude the proof of the first statement of Proposition I.2. For the second statement, we
observe that under the stated stochastic domination assumption by Z, and if γ̃(u) = c̃ ·u, then maxs Ps′∼Wσ(s)[dTVC(s, s′) >
γ̃−1(u)/2] ≤ P[Z > u

2c ]. Hence, by a change of variables u = t
2c ,∫ ∞

0

max
s

Ps′∼Wσ(s)[dTVC(s, s′) > γ̃−1(u)/2]du ≤
∫ ∞

0

P[Z >
u

2c
] = 2c

∫ ∞
0

P[Z > u] = 2cE[Z],

where again we invoke that Z must be nonnegative (to stochastically dominate non-negative random variables), and thus
used the expectation formula referenced above.
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I.4. Imitation in total variation distance

Here, we notice that estimating the score in TV distance fascilliates estimation in the composite MDP, with no smoothing:

Theorem 10. For a chunking policy π̂, suppose that there are terms (∆̄h)1≤h≤H such that

Ēρm,h∼DexpTV(π?(ρm,h), π̂(ρm,h)) ≤ ∆̄h,

Then, under no additional assumption (not even those in Section 3), we have

Lfin,ε=0(π̂) ≤ Lmarg,ε=0(π̂) ≤
H∑
h=1

∆̄h

In in addition π? has τ -bounded memory(Definition I.6) for τ ≤ τm, then for Ljoint,ε as in Definition I.5,

Ljoint,ε=0(π̂) ≤
H∑
h=1

∆̄h

The above theorem is a direct consequence of the result below in the composite MDP, together with the correct instantiations
for control, and Lemma I.1 to convert Lmarg,ε and Lfin,ε into Γmarg,ε ≤ Γjoint,ε, and Γjoint,ε, respectively.

Proposition I.4. Consider the composite MDP setting of Section 4. Then, there exists a coupling

TV(Dπ̂,Dπ?) ≤
H∑
h=1

Es?h∼P?hTV(π?h(s?h), π̂h(s?h))

Thus, there exists a a couple µ ∈ C (Dπ? ,Dπ̂) of (s?1:H+1, a
?
1:H) ∼ Dπ? and (ŝ1:H+1, â1:H) ∼ Dπ̂ such that

Pµ[(s?1:H+1, a
?
1:H) 6= (ŝ1:H+1, â1:H)] is bounded by the right-hand side of the above display. Moreover, this coupling

can be constructed such that Pµ[s?1 = ŝ1].

Proof of Proposition I.4. This is a direct consequence of Lemma I.9, with P1 ← Pinit, and Qh+1 corresponding to the
kernel for sampling a?h ∼ π?(s?h) and incrementing the dynamics s?h+1 = Fh(s?h, a

?
h), and Q′h the same for âh ∼ π̂(̂sh), and

similar incrementing of the dynamics.

I.5. Imitiation with no augmentation

Theorem 11. Let π̂ be a learner policy, and define

∆?
h(ε) := Eρm,h∼Dexp

Eρ̃m,h∼N (ρm,h,σ
2I) inf

µ∈C (π?h(ρ̃m,h),π̂h(ρ̃m,h))
P(a,a′)∼µ[dA(a, a′)],

which we note defers from ∆h(ε) in Eq. (I.2) in that it measures error with respect to π?h, rather than π?dec,h. Suppose that
there is a non-decreasing function γ(·) such that for all ρm,h,ρ

′
m,h ∈Pτm−1

TV(π̂(ρm,h), π̂(ρ′m,h)) ≤ γ(‖ρm,h − ρ′m,h‖),

where π? is defined is the conditional in Definition I.3. Then, the loss of π̂, without smoothing, is bounded by

Lmarg,ε(π̂) ≤ Hγ(ε
√

2τm − 1) +

H∑
h=1

∆?
h(ε),

Further if Dexp has τ ≤ τm bounded memory (Definition I.6), then it also holds that

Ljoint,ε(π̂) ≤ Hγ(ε
√

2τm − 1) +

H∑
h=1

∆?
h(ε)
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Proof. The above is a direct consequence of the following points. First, with our instantition of the composite MDP, we
can bound Lmarg,ε(π̂) ≤ Γmarg,ε(π̂ ‖ π?) ≤ Γjoint,ε(π̂ ‖ π?) due to Lemma I.1; and moreover, we have Ljoint,ε(π̂) ≤
Γjoint,ε(π̂ ‖ π?) when Dexp has τ ≤ τm-bounded memory.

Next, bounding ‖ρm,h − ρ′m,h‖ ≤
√

2τm − 1dTVC(ρm,h,ρ
′
m,h), we see π̂ is γ̃(·)-TVC w.r.t. dTVC, where γ̃(u) =

γ(u
√

2τm − 1). The bound now follows from Proposition D.1, and the fact that Proposition 4.1 verifies the input-stability
property.

I.6. Consequence for expected costs

Finally, we prove Proposition I.5, which shows that it is sufficient to control the imitation losses in Definition 2.2 if we wish
to control the difference of a Lipschitz cost function between the learned policy and the expert distribution:
Proposition I.5. Recall the marginal and final imitation losses in Definition 2.2, and also the joint imitation loss in
Definition I.5. Consider a cost function J : PT → R on trajectories ρT ∈PT . Finally, let ρT ∼ Dexp, and let ρ′T ∼ Dπ
be under the distribution induced by π Then,

(a) If maxρT |J(ρT )| ≤ B, and ρT is L Lipschitz in the Euclidean norm9 (treating ρT as Euclidean vector in
R(T+1)dx+Tdu ), then

|EDexp [J(ρT )]− EDπ [J(ρ′T )]| ≤
√

2TLε+ 2BLjoint,ε(π).

(b) If J decomposes into a sum of of costs, J(ρ) = `T+1,1(x1+T ) +
∑T
t=1 `t,1(xt) + `t,2(ut), where `t,1(·), `t,2(·) are

L-Lipschitz and bounded in magnitude in B. Then,

|EDexp [J(ρT )]− EDπ [J(ρ′T )]| ≤ 4TBLmarg,ε(π) + 2TLε.

(c) J(ρ) = `T+1,1(xT+1) depends only on xT+1, then

|EDexp
[J(ρT )]− EDπ [J(ρ′T )]| ≤ +2BLfin,ε(π) + Lε

Thus, for our imitation guarantees to apply to most natural cost functions used in practice, it suffices to control the imitation
losses defined above.

Proof of Proposition I.5. Let ρT = (x1:T+1,u1:T ) ∼ Dexp, and let ρ′T = (x′1:T+1,u
′
1:T ) be under the distribution induced

by π.

Part (a). For any coupling µ between the two under which x1 = x′1, and let Eε := {maxt ‖xt+1−x′t+1‖∨‖ut−u′t‖ ≤ ε}.

|E[J(ρT )]− E[J(ρ′T )]| = |Eµ[J(ρT )− J(ρ′T )]|
≤ Eµ[|J(ρT )− J(ρ′T )|]
≤ 2B Pµ[Ecε ] + Eµ[|J(ρT )− J(ρ′T )|I{Eε}]

By passing to an infinum over couplings, infµ Pµ[Ecε ] ≤ Ljoint,ε(π). Moreover, we observe that under µ, x1 = x′1, and the
remaining coordinates, (x2:T+1,u1:T ) and (x′2:T+1,u

′
1:T ) are the concatentation of 2T vectors, so the Euclidean norm of

the concatenations ‖ρT − ρ′T ‖ is at most
√

2T maxt ‖xt+1 − x′t+1‖ ∨ ‖ut − u′t‖, which on Eε is at most
√

2Tε. Using
Lipschitz-ness of J concludes.

Part (b) . Using the adaptive discomposition of the cost and the fact that x1 and x′1 have the same distributions,

|E[J(ρT )]− E[J(ρ′T )]| = |
T∑
t=1

(E[`t,1(xt+1)]− E[`t,1(x′t+1)) + (E[`t,2(ut)]− E[`t,2(u′1))|

≤
T∑
t=1

|E[`t,1(xt+1)]− E[`t,1(x′t+1)|+ |E[`t,2(ut)]− E[`t,2(u′1)|

9Of course, Lipschitznes in other norms can be derived, albeit with different T dependence
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Applying similar arguments as in part (a) to each term, we can bound

max
{
|E[`t,1(xt+1)]− E[`t,1(x′t+1)|, |E[`t,2(ut)]− E[`t,2(u′1)|

}
≤ 2BLmarg,ε(π) + Lε.

Summing over the 2T terms concludes.

Part (c). Follows similar to part (b).

I.7. Useful Lemmata

I.7.1. ON THE TRAJECTORIES INDUCED BY π? FROM Dexp

The key step in all of our proofs is to relate the expert distribution over trajectories ρT ∼ Dexp to the distribution induced by
the chunking policy π? in Definition I.3
Lemma I.6. There exists a sequence of probability kernels π?h mapping ρm,h → ∆(A) such that the chunking policy
π? = (π?h)1≤h≤H satisfies the following:

(a) π?h(ρm,h) is equal to the almost-sure conditional probability of ah conditioned on ρm,h under ρT ∼ Dexp and
a1:H = synth(ρT ).

(b) The marginal distribution over each ρc,h is the same as the marginals of each xt and ut under ρT ∼ Dexp.

(c) If Dexp has τ -bounded memory (Definition I.6) and if τ ≤ τm, then the joint distribution of ρT induced by π? is equal
to the joint distribution over ρT under Dexp.

Remark I.4 (Replacing τ -bounded memory with mixing). We can replace that τ -bounded memory condition to the
following mixing assumption. Define the chunk ρi≤j = (xi:j ,ui:j−1). Define the measures

Qh(ρm,h) = Pa1:h−1,ρ1:th−τm−1,ah:H ,ρth:T+1|ρm,h

Q⊗h (ρm,h) = Pa1:h−1,ρ1:th−τm−1|ρm,h
⊗Pah:H ,ρth:T+1|ρm,h

.

which describes the conditional distribution of the whole trajectory without ρm,h and the product-distribution of the
conditional distributions of the before-ρm,h part of the trajectory, and after ρm,h-part. Under the condition

Eρm,h from ρT∼Dexp
TV
(
Qh(ρm,h),Q⊗h (ρm,h)

)
≤ εmix(τm),

which measures how close the before- and after-ρm,h parts of the trajectory are to being conditionally independent, one can
leverage Lemma I.9 to show that

TV(Dπ? ,Dexp) ≤ Hεmix(τm)

Lemma I.6 corresponds to the special when when εmix = 0.

Proof of Lemma I.6. We prove each part in sequence

Part (a). follows from the fact that all random variables are in real vector spaces, and thus Polish spaces. Hence, we can
invoke the existence of regular conditional probabilities by Theorem 3.

Part (b). This follows by marginalization and Markovianity of the dynamics. Specifically, let (ρ?T , a
?
1:H be a trajectory

and composite actions induced by the chunking policy π?, and let (ρT , a1:H) be the same induced by Dexp. Let ρ?m,h
denote memory chunks of ρ?T , and let ρm,h memory chunks of ρT (length τm − 1); similarly, denote by ρ?c,h and ρc,h the
respective trajectory chunks (length τc ≥ τm).

We argue inductively that the trajectory chunks ρ?c,h and ρc,h are identically distribued for each h. For h = 1, ρ?c,1 and
ρc,1 are identically distributed according to Dx1

. Now assume we have show that ρ?c,h and ρc,h are identically distributed.
As memory chunks are sub-chunks of trajectory chunks, this means that ρ?m,h and ρm,h are identically distributed. By
part (a), it follows that (ρ?m,h, a

?
h) and (ρm,h, ah) are identically distributed. In particular, (x?th , a

?
h) and (xth , ah) are

identically distributed, where x?th (resp xth ) these denote the th-th control state under π? (resp. Dexp). By Markovianity of
the dynamics, ρ?c,h+1 and ρc,h+1 are functions of (x?th , a

?
h) and (xth , ah), respectively, ρ?c,h+1 and ρc,h+1 are identically

distributed, as needed.
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Part (c). When Dexp has τ -bounded memory and τ ≤ τm, then we have the almost-sure equality

PDexp [ah ∈ · | x1:th ,u1:th ] = PDexp [ah ∈ · | ρm,h] = π?h(ρm,h)[ah ∈ ·].

Finally, xth+1:th+1
,uth:th+1−1 are determined by xth and ah, this inductively establishes equality of the joint-trajectory

distributions.

I.7.2. CONCENTRATION AND TVC OF GAUSSIAN SMOOTHING.

We now include two easy lemmata necessary for the proof. The first shows that pr is small when r is Θ(σ) by elementary
Gaussian concentration:

Lemma I.7. Suppose that γ ∼ N (0, σ2I) is a centred Gaussian vector with covariance σ2I in Rd for some σ > 0. Then
for all p > 0, it holds with probability at least 1− p that

||γ|| ≤ 2σ ·

√
2d log(9) + 2 log

(
1

p

)
≤ 2σ ·

√
5d+ 2 log

(
1

p

)
Moreover, for r ≥ 4σ

√
d log(9), P[||γ||] ≥ r] ≤ exp(−r2/16σ2).

Proof. We apply the standard covering based argument as in, e.g., Vershynin (2018, Section 4.2). Note that

||γ|| = sup
w∈Sd−1

〈γ,w〉 ,

where Sd−1 is the unit sphere in Rd. Let U denote a minimal (1/4)-net on Sd−1 and observe that a simple computation
tells us that

sup
w∈Sd−1

〈γ,w〉 ≤ 2 ·max
w∈U
〈w,γ〉 .

A classical volume argument (see for example, Vershynin (2018, Section 4.2)) tells us that |U| ≤ 9d. A classical Gaussian
tail bound tells us that for any w ∈ Sd−1, it holds that for any r > 0,

P (〈w,γ〉 > r) ≤ e−
r2

2σ2 .

Thus by a union bound, we have

P (||γ|| > r) ≤ |U| ·max
w∈U

P
(
||γ|| > r

2

)
≤ 9d · e−

r2

8σ2 .

Inverting concludes the proof.

The second lemma shows that the relevant smoothing kernel is TVC:

Lemma I.8. For any σ > 0, let φZ and Wσ be as in Definition I.1 kernel, then Wσ is γTVC-TVC for with respect to dTVC (as
defined in Section 4.1)

γTVC(u) =
u
√

2τm − 1

2σ
.

Proof. Recall that φZ denotes projection onto the Z-component of the direct decomposition in Definition E.1, i.e. projects
onto the memory chunk ρm,h. We apply Pinsker’s inequality (Polyanskiy & Wu, 2022+): Then, for for s, s′ ∈ Rp, we have

TV (φZ ◦Wσ(s), φZ ◦Wσ(s′)) ≤
√

1

2
·DKL (φZ ◦Wσ(s) ‖ φZ ◦Wσ(s′)).
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Note that for s = ρc,h with corresponding memory chunk ρm,h φZ ◦ Wσ(s) ∼ N (ρm,h, σ
2I). Similarly, for ρ′m,h

corresponding to s′, φZ ◦Wσ(s′) ∼ N (ρ′m,h, σ
2I). Hence,

DKL (φZ ◦Wσ(s) ‖ φZ ◦Wσ(s′)) ≤

∣∣∣∣∣∣ρm,h − ρ′m,h

∣∣∣∣∣∣2
2σ2

.

Thus, we conclude TV (φZ ◦Wσ(s), φZ ◦Wσ(s′)) ≤ ||ρm,h−ρ′m,h||
2σ . Finally, we upper bound the Euclidean norm∣∣∣∣∣∣ρm,h − ρ′m,h

∣∣∣∣∣∣ of vectors consistening of 2τm − 1 sub-vectors via dTVC (which is the maximum Euclidean norm of

these subvectors) via
∣∣∣∣∣∣ρm,h − ρ′m,h

∣∣∣∣∣∣ ≤ √2τm − 1dTVC(s, s′).

I.7.3. TOTAL VARIATION TELESCOPING

Lemma I.9 (Total Variation Telescoping). Let Y1, . . . ,YH ,YH+1 be Polish spaces. Let P1 ∈ ∆(Y1), and let Qh,Q′h ∈
∆(Yh | X ,Y1:h−1), h > 1. Define P′1 = P1, and recursively define

Ph = law(Qh;Ph−1), P′h = law(Q′h;P′h−1), h > 1.

Then,

TV(PH+1,P
′
H+1) ≤

H∑
h=1

EY1:h∼PhTV(Qh+1(· | Y1:h),Q′h+1(· | Y1:h))

Moreover, there exists a coupling of µ ∈ C (PH+1,P
′
H+1) over Y1:H+1 ∼ PH+1 and Y1:H+1] ∼ P′H+1 such that

Pµ[Y1 = Y ′1 ] = 1, Pµ[Y1:H+1 6= Y ′1:H+1] ≤
H∑
h=1

EY1:h∼PhTV(Qh+1(· | Y1:h),Q′h+1(· | Y1:h)).

Proof. To prove the first part of the lemma, define Q′i,j for 2 ≤ i ≤ j ≤ H + 1 by Q′i,i = Qi define Q′i,j by appending Q′i,j
to Q′i,j−1. and law(Q′i,j ; (·)) = law(Q′j ; law(Qi,j−1; (·))′). We now define

P(i) = law(Q′i+1,H+1;Pi),

with the convenction law(Q′H+2,H+1;PH+1) = PH+1. Note that P(H+1) = PH+1, and P(1) = P′H+1. Then, because TV
distance is a metric,

TV(PH+1,P
′
H+1) ≤

H∑
h=1

TV(P(i),P(i+1))

Moreover, we can write P(i) = law(Q′i+2,H+1; law(Q′i+1;Pi)) and Pi+1 = law(Qi+1;Pi). Thus,

TV(P(i),P(i+1)) = TV(law(Q′i+2,H+1; law(Q′i+1;Pi)), law(Q′i+2,H+1; law(Qi+1;Pi)) (Lemma C.4)

= TV(law(Q′i+1;Pi), law(Qi+1;Pi)

= EY1:i∼PiTV(Q′i(Y1:i),Qi(Y1:i)). (Corollary C.1)

This completes the first part of the demonstration (noting symmetry of TV). The second part follows from Corollary C.1, by
letting Y ← Y1, and X ← Y2:H+1 in that lemma.

J. Extensions and Further Results
J.1. Noisy Dynamics

We can directly extend our imitation guarantees in the composite MDP to settings with noise:

sh+1 ∼ F noise
h (sh, ah,wh), wh ∼ Pnoise,h, (J.1)
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where the noises are idependent of states and of each other. Indeed, (J.1) can be directly reduced to the no-noise setting by
lifting “actions” to pairs (ah,wh), and policies π to encompass their distribution of actions, and over noise.

Another approach is instead to condition on the noises w1:H first, and treat the noise-conditioned dynamics as deterministic.
Then one can take expectation over the noises and conclude. The advantage of this approach is that the couplings constructed
thereby is that the trajectories experience identical sequences of noise with probability one.

Extending the control setting to incorporate noise is doable but requires more effort:

• If the demonstrations are noiseless, then one can still appeal to the synthesis oracle to synthesis stabilizing gains. How-
ever, one needs to (ever so slightly) generalize the proofs of the various stability properties (e.g. IPS in Proposition 4.1)
to accomodate system noise.

• If the demonstrations themselves have noise, one may need to modify the synthesis oracle setup somewhat. This
is because the synthesis oracle, if it synthesizes stabilizing gains, will attempt to get the learner to stabilize to a
noise-perturbed trajectory. This can perhaps be modified by synthesizing controllers which stabilize to smoothed
trajectories, or by collecting demonstrations of desired trajectories (e.g. position control), and stabilizing to the these
states than than to actual states visited in demonstrations.

J.2. Robustness to Adversarial Perturbations

Our results can accomodate an even more general framework where there are both noises as well adversarial perturbations.
We explain this generalization in the composite MDP.

Specifical, consider a space E of adversarial perturbations, as well asW of noises as above. We may posite a dynamics
function F adv : S ×A×W ×A → S, and consider the evolution of an imitator policy π̂ under the adversary

ŝh+1 = F adv
h (̂sh, âh,wh, eh), wh ∼ Pnoise,h

âh ∼ π̂h(sh)

eh ∼ πadvh (̂s1:h, a1:h,w1:h, e1:h−1),

ŝ1 ∼ πadv0 (s1), s1 ∼ Pinit.

By constrast, we can model the demonstrator trajectory as arising from noisy, but otherwise unperturbed trajectories:

s?h+1 ∼ F adv
h (s?h, a

?
h,wh, 0), wh ∼ Pnoise,h, a?h ∼ π?h(s?h), s?1 ∼ Pinit.

To reduce the composite-MDP in Section 4, we can view the combination of adverary πadv and imitator π̂ as a combined
policy, and the π? with zero augmentation as another policy; here, we would them treat actions as ã = (a, e). Then, one
can consider modified senses of stability which preserve trajectory tracking, as well as a modification of dA to a function
measuring distances between ã = (a, e) and ã′ = (a′, e′). The extension is rather mechanical, and we fit details. Note
further that, by including a πadv0 (s1), we can modify the analysis to allow for subtle differences in initial state distribution.
This would in turn require strengthening our stability asssumptions to allow stability to initial state (e.g., the definition of
incremental stability as exposited by (Pfrommer et al., 2022)).

J.3. Deconvolution Policies and Total Variation Continuity

While our strongest guarantees hold for the replica policies, where we add noise both as a data augmentation at training
time and at test time, many practitioners have seen some success with the deconvolution policies where noise is only added
at training time. We note that Proposition D.1 holds when the learned policy is TVC; without noise at training time this
certainly will not hold when the expert policy is not TVC. We show here that the deconvolution expert policy is TVC under
mild assumptions, which lends some credence to the empirical success of deconvolution policies.

Precisely, we show that, under reasonable conditions, deconvolution is total variation continuous. In particular, suppose
that µ ∈ ∆(Rd) is a Borel probabilty measure and p is a density with respect to µ. Further suppose that Q is a density
with respect to the Lebesgue measure on Rd. Suppose that x ∼ p, w ∼ Q, and let x̃ = x + w. We will show that the
deconvolution measure p(x|x̃) is continuous in TV.
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Proposition J.1. Let x,x′ ∈ Rd be fixed, let p : Rd → R denote a probability density, and let Q : Rd → R denote a
function such that∇2Q and ∇ logQ exist and are continuous on the set

X = {(1− t)x̃ + tx̃′ − x|x ∈ supp p and t ∈ [0, 1]}

Then it holds that

TV (p(·|x̃), p(·|x̃′)) ≤ ||x̃− x̃; || · sup
x∈X
||∇ logQ(x)|| .

By Lemma C.4, any policy composed with the total variation kernel is thus total variation continuous with a linear γTVC;
moreover, the Lipschitz constant is given by the maximal norm of the score of the noise distribution. For example, if Q is
the density of a Gaussian with variance σ2, then γTVC(u) ≤ supX ||x||

σ2 is dimension independent.

Remark J.1. Note that our notation is intentionally different from that in the body to emphasize that this is a general fact
about abstract probability measures. We may intantiate the guarantee in the control setting of interest by letting x = ρm,h

and consider Q to be a Gaussian (for example) kernel. In this case, we see that the deconvolution policy of Definition 3.1 is
automatically TVC.

To prove Proposition J.1, we begin with the following lemma:

Lemma J.2. Let x̃ ∈ Rd be fixed and suppose that ∇ logQ(x̃− x) exists for all x ∈ supp p. Then, for all x ∈ supp p, it
holds that ∇x̃p(x|x̃) exists. Furthermore,∫

||∇p(x|x̃)|| dµ(x) ≤ 2 sup
x∈supp p

||∇ logQ(x̃− x)|| ,

where the gradient above is with respect to x̃.

Proof. We begin by noting that if∇ logQ(x̃− x) exists, then so does∇Q(x̃− x). By Bayes’ rule,

p(x|x̃) =
p(x)Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
.

We can then compute directly that

∇p(x|x̃) =
p(x)∇Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
−
p(x)Q(x̃− x) ·

∫
∇Q(x̃− x′)p(x′)dµ(x′)(∫

Q(x̃− x′)p(x′)dµ(x′)
)2 ,

where the exchange of the gradient and the integral is justified by Lebesgue dominated convergence and the assumption of
differentiability of Q and thus existence is ensured. We have now that

||∇p(x|x̃)|| = p(x)Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

·
∣∣∣∣∣∣∣∣∇ logQ(x̃− x)−

∫
∇Q(x̃− x′)p(x′)dµ(x′)∫
Q(x̃− x′)p(x′)dµ(x′)

∣∣∣∣∣∣∣∣
=

p(x)Q(x̃− x)∫
Q(x̃− x′)p(x′)dµ(x′)

·
∣∣∣∣∣∣∣∣∇ logQ(x̃− x)−

∫
(∇ logQ(x̃− x′)) ·Q(x̃− x)p(x′)dµ(x′)∫

Q(x̃− x′)p(x′)dµ(x′)

∣∣∣∣∣∣∣∣
≤
(

sup
x∈supp p

||∇ logQ(x̃− x)||
)
· p(x)Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
·
(

1 +

∫
Q(x̃− x)p(x′)dµ(x′)∫
Q(x̃− x)p(x′)dµ(x′)

)
=

(
2 sup

x∈supp p
||∇ logQ(x̃− x)||

)
· p(x)Q(x̃− x)∫

Q(x̃− x′)p(x′)dµ(x′)
.

Now, integrating over x makes the second factor 1, concluding the proof.

We will now make use of the theory of Dini derivatives ((Hagood & Thomson, 2006)) to prove a bound on total variation.
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Lemma J.3. For fixed x̃, x̃′ and 0 ≤ t ≤ 1, let the upper Dini derivative

D+ TV(p(·|x̃), p(·|x̃t)) = lim sup
h↓0

TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))
h

,

where

x̃t = (1− t)x̃ + tx̃′.

If ∇ logQ(x̃t − x) exists and is finite for all x ∈ supp p and t ∈ [0, 1], then

TV(p(·|x̃), p(·|x̃′)) ≤
∫ 1

0

D+ TV (p(·|x̃), p(·|x̃t)) dt. (J.2)

Proof. We compute:

2 |TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))| =
∣∣∣∣∫ |p(x|x̃)− p(x|x̃t+h)| − |p(x|x̃)− p(x̃t)| dµ(x)

∣∣∣∣
≤
∫
|p(x|x̃t+h)− p(x|x̃t)| dµ(x). (J.3)

Observe that by the assumption on Q and Lemma J.2, p(x|x̃t) is differentiable and thus continuous in x̃t. We therefor see
that the function

t 7→ TV(p(·|x̃), p(·|x̃t))

is continuous as x̃t is linear in t. By Hagood & Thomson (2006, Theorem 10), (J.2) holds.

We now bound the Dini derivatives:
Lemma J.4. Let x̃, x̃′ ∈ Rd such that for all t ∈ [0, 1]it holds that

sup
x∈supp p

∣∣∣∣ d2

dt2
(p(x|x̃t))

∣∣∣∣ = C <∞,

where the derivative is applied on x̃t. If the assumptions of Lemmas J.2 and J.4 hold, then

D+ TV(p(·|x̃), p(·|x̃t)) ≤ ||x̃− x̃′|| · sup
x∈supp p
t∈[0,1]

||∇ logQ(x̃t − x)|| .

Proof. By definition,

D+ TV(p(·|x̃), p(·|x̃t)) = lim sup
h↓0

TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))
h

.

Fix some t and some small h. By (J.3), it holds that

|TV(p(·|x̃), p(·|x̃t+h))− TV(p(·|x̃), p(·|x̃t))| ≤
1

2
·
∫
|p(x|x̃t+h)− p(x|x̃t)| dµ(x).

By Taylor’s theorem, it holds that

p(x|x̃t+h)− p(x|x̃t) = h · d
dt

(p(x|x̃t)) + h2 · d
2

dt2
(p(x|x̃t′))

for some t′ ∈ [0, 1]. By the chain rule, we have

d

dt
(p(x|x̃t)) = 〈x̃′ − x̃,∇p(x|x̃t)〉 ,

and thus,

|p(x|x̃t+h)− p(x|x̃t)| ≤ h · ||x̃− x̃′|| · ||∇p(x|x̃t)||+ h2C

Now, applying Lemma J.2 and plugging into the previous computation concludes the proof.
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(a) PushT Enviroment (Chi et al., 2023). The
blue circle is the manipulation agent, while
the green area is the target position which
the agent must push the blue T block into.

(b) Can Pick-and-Place Environment (Man-
dlekar et al., 2021). The grasper must pick
up a can from the left bin and place it into
the correct bin on the right side.

(c) Square Nut Assembly Environment
(Mandlekar et al., 2021). The grasper must
pick up the square nut (the position of which
is randomized) and place it over the square
peg.

Figure 6. Environment Visualizations.

We are finally ready to state and prove our main result:

Proof of Proposition J.1. Note that

d2

dt2
(p(x|x̃t)) = (x̃− x̃′)

T ∇2p(x|x̃t)(x̃− x̃′)

and thus is bounded if and only if ∇2p(x|x̃t) is bounded. An elementary computation shows that if ∇2Q exists and is
continuous on X , then ∇2p(x|x̃t) is bounded in operator norm on X . Thus the assumption in Lemma J.4 holds. Applying
Lemma J.3 then concludes the proof.

K. Experiment Details
K.1. Compute and Codebase Details

Code. For our experiments we build on the existing PyTorch-based codebase and standard environment set provided by
Chi et al. (2023) as well as the robomimic demonstration dataset Mandlekar et al. (2021). 10

Compute. We ran all experiments using 4 Nvidia V100 GPUs on an internal cluster node. For each environment running
all experiments depicted in Figure 2 took 12 hours to complete with 20 workers running simultaneously for a total of
approximately 10 days worth of compute-hours. Between all 20 workers, peak system RAM consumption totaled about 500
GB.

K.2. Environment Details

For simplicity the stabilizatin oracle synth is built into the environment so that the diffusion policy effectively only
performs positional control. See Appendix K for visualizations of the environments.

PushT. The PushT environment introduced in (Chi et al., 2023) is a 2D manipulation problem simulated using the PyMunk
physics engine. It consists of pushing a T-shaped block from a randomized start position into a target position using a
controllable circular agent. The synthesis oracle runs a low-level feedback controller at a 10 times higher to stabilize the

10The modified codebase with instructions for running the experiments is available at the following anonymous link: https:
//www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0. We will provide a public github repository
for the final release.

https://www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0
https://www.dropbox.com/s/vzw0gvk1fd3yadw/diffusion_policy.zip?dl=0
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agent’s position towards a desired target position at each point in time via acceleration control. Similar to Chi et al. (2023),
we use a position-error gain of kp = 100 and velocity-error gain of kv = 20. The observation provided to the DDPM model
consists of the x,y oordinates of 9 keypoints on the T block in addition to the x,y coordinates of the manipulation agent, for
a total observation dimensionality of 20.

For rollouts on this environment we used trajectories of length T = 300. Policies were scored based on the maximum
coverage between the goal area and the current block position, with > 95 percent coverage considered an “successful”
(score = 1) demonstration and the score linearly interpolating between 0 and 1 for less coverage. A total of 206 human
demonstrations were collected, out of which we use a subset of 90 for training.

Can Pick-and-Place. This environment is based on the Robomimic (Mandlekar et al., 2021) project, which in turn uses the
MuJoCo physics simulator. For the low-level control synthesis we use the feedback controller provided by the Robomimic
package. The position-control action space is 7 dimensional, including the desired end manipulator position, rotation, and
gripper position, while the observation space includes the object pose, rotation in addition to position and rotation of all
linkages for a total of 23 dimensions. Demonstrations are given a score of 1 if they successfully complete the pick-and-place
task and a score of 0 otherwise. We roll out 400 timesteps during evaluation and for training use a subset of up to 90 of the
200 “proficient human" demonstrations provided.

Square Nut Assembly. For Square Nut Assembly, which is also Robomimic-based (Mandlekar et al., 2021), we use
the same setup as the Can Pick and Place task in terms of training data, demonstration scoring, and low-level positional
controller. The observation, action spaces are also equivalent to the Can Pick-and-Place task with 23 and 7 dimensions
respectively.

K.3. DDPM Model and Training Details.

For our DDPM we use the same 1-D convolutional UNet-style (Ronneberger et al., 2015) architecture employed by (Chi
et al., 2023), which is in turn adapted from Janner et al. (2022). This principally consists of 3 sets of downsampling
1-dimensional convolution operations using Mish activation functions (Misra, 2019), Group Normalization (with 8 groups)
(Wu & He, 2018), and skip connections with 64, 128, and 256 channels followed by transposed convolutions and activations
in the reversed order. The observation and timestep were provided to the model with Feature-wise Linear Modulation
(FiLM) (Perez et al., 2018), with the timestep encoded using sin-positional encoding into a 64 dimensional vector.

During training and evaluation we utilize a squared cosine noise schedule (Nichol & Dhariwal, 2021) with 100 timesteps.
For training we use the AdamW optimizer with linear warmup of 500 steps, followed by an initial learning rate of 1× 10−4

combined with cosine learning rate decay over the rest of the training horizon. For PushT models we train for 800 epochs and
evaluate test trajectories every 200 epochs while for Can Pick-and-Place and Square Nut Assembly we evaluate performance
every 250 epochs and train for a total of 1500 epochs.

In both environments the diffusion models are conditioned on the previous two observations trained to predict a sequence of
16 target manipulator positions, starting at the first timestep in the conditional observation sequence. The 2rd (corresponding
to the target position for the current timestep) through 9th generated actions are emitted as the τc = 8 length action sequence
and the rest is discarded. Extracting a subsequence of a longer prediction horizon in this manner has been shown to improve
performance over just predicting the H = 8 action sequence directly (Chi et al., 2023).

For σ > 0 we generate new perturbed observations per training iteration, effectively using Naug = Nepoch augmentations.
We find this to be easier than generating and storing Naug augmentations with little impact on the training and validation
error. Noise is injected after the observations have been normalized such that all components lie within [−1, 1] range.
Performing noise injection post normalization ensures that the magnitude of noise injected is not affected by different units
or magnitudes. .
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