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Abstract

Formal specifications are supposed to unambigu-
ously describe the behaviour of (parts of) pro-
grams and are usually provided as extra annota-
tions of the program code. The intention is both
to document the code and to be able to automati-
cally check compliance of programs using formal
methods tools. Writing good specifications can
however be both difficult and time-consuming for
the programmer. In this case-study, we investigate
how GPT-4 can help with the task. We propose
a neuro-symbolic integration, by which we aug-
ment the LLM prompts with outputs from two
formal methods tools in the Frama-C ecosystem
(Pathcrawler and EVA), and produce C program
annotations in the specifications language ACSL.
We demonstrate how this impacts the quality of
annotations: information about input/output ex-
amples from Pathcrawler produce more context-
aware annotations, while the inclusion of EVA
reports yields annotations more attuned to run-
time errors.

1. Introduction
The field of specification synthesis offers a possible solu-
tion to the inherent complexities involved in creating and
maintaining specifications for software verification. Cre-
ating useful specifications demands a deep understanding
of both the specification language and the verification pro-
cess, which can often be as intricate, if not more so, than
the software they aim to verify. This complexity poses a
significant barrier (Davis et al., 2013; Tyler, 2021), espe-
cially in dynamic environments where frequent updates and
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refactoring are the norm. Maintaining an accurate align-
ment between ever-evolving code and its specifications can
become a cumbersome and error-prone process.

Specification synthesis possibly alleviates these concerns by
automating the generation and adaptation of specifications.
Instead of requiring developers to manually write detailed
specifications – a task that can be both time-consuming and
susceptible to human error – specification synthesis aims to
infer and edit specifications directly from the codebase and
associated context. The goal is to transform specifications
into convenient guardrails that provide valuable insights and
guidance to programmers, rather than chores performed at
the end of the software pipeline.

Early approaches towards generating specifications em-
ployed a range of symbolic techniques, encompassing meth-
ods like dynamic and static analysis (Lathouwers & Huis-
man, 2024). For instance, Daikon (Ernst et al., 2007), a
widely recognized tool in dynamic analysis, infers prop-
erties by observing program behavior at runtime. On the
other hand, static analyzers deduce properties based on the
program’s structure without executing it. Despite their preci-
sion, the primary limitation of these methods is their rigidity.
Symbolic techniques are constrained by a limited range of
expressible properties and typically specialize in specific
types of analysis which restricts their flexibility in adapting
to diverse verification needs.

On the other side of specification synthesis techniques are
the more recent machine-learning-based synthesizers, which
include methods like Natural Language Processing (NLP)
and Large Language Models (LLMs) (Brown et al., 2020).
NLP tools convert documentation and comments into speci-
fications (Blasi et al., 2018) while LLMs stand out for their
flexibility and creativity in generating specifications from ar-
bitrary text inputs. These models can theoretically generate
any specification that can be articulated in their associated
language, provided they are appropriately trained and given
the correct prompts.

However, this strength also introduces a significant chal-
lenge: the large range of potential specifications LLMs can
produce often includes outputs that may not be practically
useful. While an LLM can generate a wide array of specifi-
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cations, the lack of inherent direction means that there is no
guarantee that the generated specifications will be relevant
or valuable for specific verification tasks. This challenge
has lead users of LLM-based synthesis to rely on prompt
engineering (White et al., 2023) techniques in order to in-
crease the likelihood of the LLM to produce specifications
that align with their objectives.

In this paper, we introduce a hybrid approach that combines
the precision of existing symbolic tools with the flexibil-
ity and creative potential of LLMs. By integrating outputs
from symbolic analysis of C programs into LLM prompts,
this method aims to harness the generative capabilities of
LLMs while taking into account the focus and direction of
symbolic analysis. As interpreting specifications is subjec-
tive, we rely on a human-in-the-loop qualitative analysis
to observe patterns in our generated specifications. From
a practical sense, we can’t always expect our code to be
semantically correct when generating a specification for it.
Therefore, we also observe how our proposed technique
interacts with intentionally incorrect code.

Our findings suggest that this approach does not increase
the quantity of generated specifications but rather gives the
specifications a focus that mirrors the symbolic analysis
of choice. The integration acts as a directive lens, focus-
ing the LLM on generating specifications that align with
insights from symbolic analysis, thus yielding specifications
that are more relevant to the user who chose said symbolic
tools. Each symbolic analysis is interpreted and utilized in a
unique way, and some analysis types are given significantly
more attention by the LLM than others. In general, these
tools are used to both provide some extra context but also in-
crease the likelihood that the LLM will focus on a particular
aspect of the specification.

A provided programming including a clear intent plays a
crucial role in guiding the LLM during the specification
generation process. If the LLM successfully grasps the
purpose of the program a programmer intends to write, it
becomes much more likely to produce specifications that
align closely with this intent. However, in the absence of a
clearly inferred intent, the LLM tends to default to gener-
ating specifications based on surface-level implementation
details or the context provided.

2. Methods and Tools
Frama-C and ACSL The Frama-C ecosystem is an open-
source suite of tools designed for the analysis of the source
code of software written in C (Kirchner et al., 2015). It
integrates various static and dynamic analysis techniques to
evaluate the correctness, safety, and security of C programs.
It also supports the specification language ACSL (Baudin
et al., 2008; Signoles), which is used to formulate contracts

consisting of e.g. preconditions – the requirements before
a function executes – and postconditions – the expected
state after execution. These contracts provide a clear and
formal framework for understanding and verifying a func-
tion’s behavior. Other ACSL annotaions commonly used
are assertions - stating a condition that needs to be true at
some point in execution and loop invariants which specify
conditions that needs to hold at each iteration of a loop.

Value Analysis: EVA The EVA tool uses abstract interpre-
tation to approximate a set of possible values that program
variables can take during execution (Blazy et al., 2017). By
doing so, it can identify a range of potential issues, such as
division by zero, buffer overflows, null pointer dereferences,
and arithmetic overflows. EVA’s analysis helps in ensuring
that the code behaves correctly across all possible execution
paths and input values. EVA is designed to respect and work
with ACSL annotations when they are present

Automated Testing: Pathcrawler The PathCrawler tool
is designed for the automated testing of C programs
(Williams et al., 2005). Its primary function is to generate
and execute test inputs for C code, with a particular focus
on achieving high code coverage. Employing a technique
known as concolic testing – a combination of concrete and
symbolic testing – Pathccrawler efficiently explores differ-
ent execution paths in the program. This approach not only
generates test cases but also executes them, providing valu-
able information from the execution results across a broad
spectrum of program paths. Additionally, PathCrawler al-
lows users to incorporate a test oracle, a mechanism used to
classify the outcome of test cases. The test oracle assesses
whether the output of a program for a given input is correct
or incorrect, aiding in establishing a baseline for ”correct”
program behavior.

LLM and Prompts We have chosen to use GPT-4 (ver-
sion gpt-4-0125-preview) as our LLM for generating spec-
ification. We ran preliminary tests with Gemini as well as
GPT-3.5 but found that they returned too many syntactical
and semantic errors to draw interesting conclusions from.
While open source models such as Llama-3 have recently
gained traction, the setup and fine tuning of such a model
was out scope for this project, and remain as further work.

We prompt GPT-4 with a C program, instructions for how
to generate ACSL annotations (in a step-by-step manner).
We also include a few examples of valid annotations in
the prompts (see Appendix A). We also experiment with
prompts which in addition contain outputs from the EVA
and Pathcrawler tools (see Appendix B and C).
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3. C-program Test Suits
For our study, we have chosen to utilize the 55 programs
from the closed-source test suite1 of Pathcrawler which we
will refer to as the pathcrawler set. This suite includes a
variety of program types, balancing well-known algorithms
like Binary Search with more niche programs such as a
Soup Heater controller. It also contains small, specially
crafted programs designed to test specific capabilities of
Pathcrawler, adding another layer of diversity to our tests.
Additionally, pathcrawler tests includes files that provide
preconditions to Pathcrawler when it creates test inputs.
This was convenient as it saved us from having to provide
sensible test inputs for every program that we wanted to use
Pathcrawler with. Using a closed-source test suite also has
the advantage that at least some of the programs and their
annotations are less likley to have appeared in the training
data for GPT-4. This test suit helps us test to what extent
accurate annotations can be produced for correct programs.

To also investigate if our approach can help with buggy
programs, we created a second suite of programs titled
mutated set. This comprises 8 of ”correct” programs with
handcrafted mutations simulating typos, designed to explore
a range of programs across two key dimensions: clarity of
intent and complexity. To thoroughly study the interactions
between these dimensions, this set includes various types of
programs: simple programs with clear intent, complex pro-
grams with clear intent, simple programs with ambiguous
intent, and complex programs with ambiguous intent.

4. Generating Annotations
For each program in our two test suits, we generate three
sets of ACSL annotations:

1. Using just the program in the prompt (Appendix A)

2. Running EVA on the program and including its report
on potential value errors in the prompt shown in Ap-
pendix B.

3. Running Pathcrawler on the program, and then includ-
ing its output about test-cases (input-output pairs) into
the prompt shown in Appendix C.

The variability of LLMs like GPT-4 can be adjusted via its
temperature setting. As we are interested to to explore a
range of potential specifications we choose to generate three
distinct specifications for each program (and prompt) within
our test suite, repeating the steps above with a temperature
setting of 0.7. This approach allows us to capture a spectrum
of possible specifications and assess the consistency and
variability of the model’s output across multiple generations.

1Provided to us by the Pathcrawler developers.

5. Evaluation
Evaluating specifications is inherently a complex and some-
what ambiguous task, largely due to the absence of a univer-
sally correct specification for any given program. Different
users often have varying priorities and perspectives on which
properties are worth verifying, making the notion of a defini-
tive specification subjective. Similarly, a specification might
be logically correct, but more or less trivial with respect to
the program at hand, in which case it provides little value.

In light of these challenges, our evaluation methodology
does not attempt to benchmark the generated specifications
against a predefined gold standard, nor does it aim to de-
termine the optimal approach to creating specifications. In-
stead, our focus is on identifying the behaviors and patterns
that emerge from incorporating symbolic analysis outputs
into the specification generation prompts. This approach
allows us to better understand the dynamics at play and what
kinds of output to expect given a particular prompt.

We propose a primarily qualitative evaluation from two
different angles:

• Types of annotations: In addition to counting the dif-
ferent types of annotations produced per prompt, we
use a human-in-the-loop qualitative analysis to inter-
pret the specification and identify trends depending on
which prompt was used, to assess how the different
symbolic tool outputs influence the results of the LLM.
For this we use the programs in the pathcrawler set.

• Implementation vs. Intent: We specifically exam-
ine programs in the mutated set to study how errors
introduced into the program affect the resultant specifi-
cations. This analysis explores how errors, symbolic
analyses, intended program functionality, and actual
implementation interact.

5.1. Types of Annotations

To give an overview, Figure 1 displays the number anno-
tations generated for each annotation type for the three
promtps. For all three cases, the most common annota-
tions are unsurprisingly the requires and ensures statements,
which are used to define pre- and post-conditions of func-
tions, followed by assigns statements and loop invariants.

5.1.1. BASELINE PROMPT

Many of the annotations produced with the baseline prompt
were rather simplistic. While not necessarily incorrect or
completely useless, these specifications tended to focus on
surface-level details of the programs, overlooking deeper,
more substantive aspects. This can be seen in Appendix D
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Figure 1. Annotation-type counts for each prompt

where the specification completely misses the semantics of
binary search.

We note that during an earlier pilot experiment, with a pre-
vious version of GPT-4, the same prompt produced a larger
number of annotations, both unnecessary but also more sub-
stantive, which were missing using a later version. This is
exemplified by our preliminary specification generated for
binary search shown in Appendix E. This highlights one of
the downsides with using GPT-4: users are largely unaware
of changes to the product and it is difficult to know what
causes changes in behaviour.

5.1.2. PROMPT WITH EVA ANNOTATIONS

When given the EVA-augmented prompt, the annotation
types generated display distinctive characteristics influenced
by the inclusion of EVA reports in the prompt. Notably,
these annotations types tend to emphasize aspects that are
less about operational semantics and more focused on miti-
gating runtime errors and defining possible output domains.
The manner in which the LLM responds to the information
from Eva reports aligns with our expectations. EVA’s alarms
highlight scenarios where inputs might lead to runtime er-
rors. The LLM addresses these scenarios by generating
requires clauses that aim to preclude problematic inputs,
effectively setting boundaries to ensure safety. Moreover,

EVA’s value analysis provides detailed insights into the
range of possible values variables might hold at the end of a
function’s execution. This data is particularly useful for gen-
erating postconditions in the form of ensures clauses. These
clauses frequently involve specifying ranges or conditions
for variable values at the end of execution, thereby provid-
ing useful constraints to the program as a while. However,
it seems the LLM has a tendency to often base its specifica-
tions primarily on the EVA reports and disregard details of
the implementation. As an example, the specification gen-
erated for the triangle classifier seen in Appendix F along
with its corresponding EVA report, focuses on values from
the EVA report while disregarding functional properties of
the code.

5.1.3. PROMPT WITH PATHCRAWLER INPUT/OUTPUT
PAIRS

When using the Pathcrawler-augmented prompt, we observe
two main characteristics. First, it produces the highest num-
ber of behavior clauses. Second, as shown in Appendix G,
the quality of the specification is highly dependent on the
quantity and quality of the test cases. This leads to spec-
ifications with an emphasis on capturing the semantics of
program behavior, rather than detailing numerous specific
implementation aspects. However, in the case where either
quality or quantity of test cases is poor, then the Pathcrawler
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output is more of a distraction to the LLM.

This outcome aligns well with our expectations for how
Pathcrawler input/output guides the LLM towards consider-
ing the broader, more abstract interactions within the pro-
gram. The input-output pairs showcase how different inputs
lead to various outputs, prompting the LLM to produce an-
notations beyond simple line-by-line code execution and
instead focus on the causal relationships and logical flows
that define the program’s behavior. The weaknesses that
we encountered with using Pathcrawler as a tool were a
result of Pathcrawler being designed for a different use case
rather than any core issue with the methodology of including
input/output examples in prompts.

5.2. Implementation vs. Intent

What should a specification generation tool do if given a
buggy program? Symbolic tools, such as QuickSpec (Small-
bone et al., 2017) will simply generate some odd specifica-
tion to which the buggy program adheres. The user might
find this surprising, but it might not be obvious that it is
due to a bug. As an LLM can also take cues from function
names into account, we speculate that it might be better at
inferring the actual intent rather than blindly follow the im-
plementation. This in turn might bring to the programmers
attention that the program does not adhere to the specifica-
tion, and prompt them to more closely examine the reasons.
We therefore test our three prompts on the mutated set of
programs.

5.2.1. BASELINE PROMPT

We did indeed observe that if the LLM has an intent pro-
vided to it, it will create a specification based on that intent
even if the buggy implementation contradicts it. On the
other hand, annotations in the function body such as loop
invariants and asserts tend to still follow the implementation
rather than the intent. One strong example of this is the
mutated Tritype function shown in figure 2. In this example
the implementation and specification are disconnected from
each other as the LLM’s inferred intent took priority over
small yet semantically important implementation details.
On the other hand, the code for calculating the Levenshtein
distance shown in figure 3 shows us that rather than generat-
ing loop annotations from a nuanced understanding of the
interactions between implementation and intent, the LLM
instead considered the full intent of the function and then
added loop annotations only based on nearby implemen-
tation. When an obvious bug in the code is detected, the
behavior of LLM responds in one of two primary ways. The
more common response is that the LLM disregards the error
and generate a specification using inferred intent from other
language cues in the program. On less frequent occasions
the LLM might actively repair the code during the specifi-

/*@
@ requires i >= 0 && j >= 0 && k >= 0;
@ assigns \nothing;
@ behavior not_triangle:
@ assumes i == 0 || j == 0 || k == 0 ||

i+j <= k || j+k <= i || i+k <= j;
@ ensures \result == 4;
@ behavior equilateral_triangle:
@ assumes i != 0 && j != 0 && k != 0 &&

i == j && j == k;
@ ensures \result == 3;
@ behavior isosceles_triangle:
@ assumes i != 0 && j != 0 && k != 0 &&

((i == j && j != k) || (i != j && j ==
k) || (i == k && j != k));

@ ensures \result == 2;
@ behavior scalene_triangle:
@ assumes i != 0 && j != 0 && k != 0 &&

i != j && j != k && i != k && i+j > k
&& j+k > i && i+k > j;

@ ensures \result == 1;
*/
int tritype(int i, int j, int k){

int type_code;
if ((i == 0) || (j == 0) || (k == 0))

type_code = 4;
else {

type_code = 0;
if (i == j) type_code = type_code + 1;
if (i == k) type_code = type_code + 2;
if (j == k) type_code = type_code + 3;
if (type_code == 0){

if ((i+j <= k) || (i+k <= i) || (i+k
<= j))

type_code = 4;
else

type_code = 1;
}

else if (type_code > 3) type_code = 3;
else if ((type_code == 1) && (i+j > k))
type_code = 2;
else if ((type_code == 2) && (i+k > j))
type_code = 2;
else if ((type_code == 3) && (i+k > i))
type_code = 2;
else type_code = 4;
}

return type_code;
}

Figure 2. Mutated Tritype with typos highlighted in red
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#include <string.h>

/*@ requires \true;
@ ensures \result <= x && \result <= y &&

\result <= z;
@ assigns \nothing;

*/
int min(int x, int y, int z) {

if (x < y) return (x < z) ? x : z;
else return (y < z) ? y : z;

}

/*@ requires \valid(s1) && \valid(s2);
@ ensures \result >= 0;
@ assigns \nothing;

*/
int levenshtein(char *s1, char *s2) {

int len1 = strlen(s1), len2 = strlen(s2
);
int matrix[len1 + 1][len2 + 1];

/*@ loop invariant 0 <= x <= len1;
@ loop assigns matrix[0][0 .. len1];

*/
for (int x = 0; x <= len1; x++) matrix
[0][x] = x;

/*@ loop invariant 0 <= y <= len2;
@ loop assigns matrix[0 .. len2][0];

*/
for (int y = 0; y <= len2; y++) matrix[
y][0] = y;

/*@ loop invariant 1 <= x <= len1;
@ loop assigns matrix[1 .. len1][1 ..

len2];
*/
for (int x = 1; x <= len1; x++) {

/*@ loop invariant 1 <= y <= len2;
@ loop assigns matrix[x][1 ..

len2];
*/
for (int y = 1; y <= len2; y++) {

int cost = (s1[x - 1] == s2[y -
1]) ? 0 : 1;

matrix[x][y] = min(matrix[x -
1][y] + 1, matrix[x][y - 1] + 1, matrix
[x - 1][y - 1] + cost);

}
}

return matrix[len1][len2];
}

Figure 3. Mutated Levenshtein distance with typos highlighted in
red

cation process, contrary to the instructions to not modify
the C code. Quite likely the LLM might have seen very
similar programs during training, and the corrected version
is simply a more likely continuation.

5.2.2. PROMPTS WITH ADDITIONAL ANNOTATIONS

Adding information from the formal methods tools will not
help much in the case of buggy programs. The inclusion of
an Eva report continues to steer the LLM’s towards specifi-
cations focusing on value domains, ignoring any underlying
intent of the program, much like observations from bug-free
scenarios. Similarly for Pathfinder, input/output pairs did
not consistently aid the LLM in recognizing buggy code
within a program, even when an oracle was provided spec-
ifying which test cases failed. Instead, the specifications
largely followed cues from names in the program, as in the
baseline case.

6. Conclusion
We have conducted a case-study to assess the abilities of
GPT-4 to generate specifications of simple C-programs, with
or without added information from symbolic formal meth-
ods tools. While the evaluation is naturally somewhat sub-
jective and limited to working on simple programs, it shows
that adding such information appear improve the quality of
the annotations, and can steer the LLM to focus on certain
types of annotations of interest to the user. We see this
as a first step towards building neuro-symbolic verification
systems where formal methods tools and LLMs work in
tandem.
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A. Baseline Prompt
Prompt used for generating ACSL without any additional context.

You are a LLM that takes the following inputs and returns a C program annotated
with ACSL annotations.

Inputs:
1. A C program with no ACSL annotations

GOALS:
1. Describe any abstract properties that could be represented as ACSL annotations
2. Generate ACSL annotations based on your analysis of the program
3. Returning a program with no annotation is not a valid solution
4. Do not edit the C code , only add annotations
5. Make sure to describe your thought process behind the annotations
6. Do not skip any code in the returned solution to make it shorter.
7. If you break any of these rules then my family will disown me.

ANNOTATION EXAMPLES:

Examples 1 (single annotation):
/*@ requires low >= 0 && high <= 9; */

Example 2 (block annotation style):
//Only use this style for function headers. Do not use blocks for multiple

annoations in the function body
/*@

@ requires low >= 0 && high <= 9;
@ requires elem >= 0 && elem <= 9;

*/

Example 3 (loops):
/*@

@ loop invariant low <= high;
@ loop variant high - low;

*/
while(low <= high)

Example 4 (loop assigns) (loop assigns must be placed before loop variant):
/*@

@ loop invariant i >= 0 && i <= 3;
@ loop assigns fa;
@ loop variant 3 - i;

*/
while(low <= high)

Example 5 (assigns must be in scope):
//This is VALID because x is a parameter that the function contract can see
{valid_assigns}

// this is NOT VALID because x is in the function body and can not be seen by the
contract

{invalid_assigns}
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FORMAT INSTRUCTIONS:

First describe your reasoning behind the added annotations

Return the annotated c code wrapped in markdown
‘‘‘c
...
‘‘‘

START OF INPUT:

‘‘‘c
{program}
‘‘‘

B. EVA Augmented Prompt
The edited instructions for generating specifications with EVA reports.

...
1. Describe any abstract properties of the input program that could be

represented as ACSL annotations
2. Analyze the Eva report and describe how the results could be used in

generating ACSL annotations
3. Generate ACSL annotations based on your analysis of the program and take

special account of the properties described when analyzing the Eva report
4. Returning a program with no annotation is not a valid solution
5. Do not edit the C code , only annotations
6. Make sure to describe your thought process behind the annotations
7. Do not skip any code in the returned solution to make it shorter.
8. If you break any of these rules then my family will disown me.
...
START OF INPUT:

Program:
‘‘‘c
{program}
‘‘‘

Eva Report:
{eva}
...

C. Pathcrawler Augmented Prompt
The edited instructions for generating specifications with Pathcrawler input/outputs.

...
GOALS:
1. Describe any abstract properties of the input program that could be

represented as ACSL annotations
2. Analyze the pathcrawler CSV and describe any patterns that you see that could

help you understand the behaviors of the program based on given input/output
pairs
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3. Describe how these behaviors could be used into creating ACSL annotations
4. Generate ACSL annotations based on your analysis of the program and take

special account of the properties described when analyzing the Pathcrawler
CSV file

5. Returning a program with no annotation is not a valid solution
6. Do not edit the C code , only add annotations
7. Make sure to describe your thought process behind the annotations
8. Do not skip any code in the returned solution to make it shorter.
9. If you break any of these rules then my family will disown me.
...
START OF INPUT:

Program:
‘‘‘c
{program}
‘‘‘

PathCrawler Output:
{csv}

D. Baseline Binary Search
Specification for Binary Search generated with the baseline prompt.

/*@
@ requires \valid(A + (0..9)) && \valid(&elem);
@ ensures \result == 0 || \result == 1;
@ assigns \nothing;

*/
int testme( int A[10], int elem) {

int low, high , mid, ret ;
low = 0 ;
high = 9 ;
ret = 0 ;
/*@

@ loop invariant high >= low;
@ loop assigns low, high , mid, ret;
@ loop variant high - low;

*/
while( ( high > low ) )

{ mid = (low + high) / 2 ;

if( elem == A[mid] )
ret = 1;

if( elem > A[mid] )
low = mid + 1 ;

else
high = mid - 1;

}
mid = (low + high) / 2 ;

if( ( ret != 1) && ( elem == A[mid]) )
ret = 1;

return ret ;
}
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E. Preliminary Baseline Binary Search
Specification generated with an earlier verison of GPT-4

/*@
@ requires \valid(A + (0..9));
@ requires \forall integer i, j; 0 <= i < j < 10 ==> A[i] <= A[j]; // Array is sorted
@ assigns \nothing;
@ ensures \result == 1 <==> \exists integer i; 0 <= i < 10 && A[i] == elem;

*/
int testme( int A[10], int elem) {

int low, high , mid, ret ;

/*@
@ assigns low;

*/
low = 0 ;

/*@
@ assigns high;

*/
//@assert true;
high = 9 ;

/*@
@ assigns ret;

*/
ret = 0 ;

/*@
@ loop invariant 0 <= low <= high <= 9;
@ loop assigns low, high , mid, ret;
@ loop variant high - low;

*/
while( ( high > low ) )

{
/*@

@ assigns mid;
*/
mid = (low + high) / 2 ;

/*@
@ assigns ret;

*/
if( elem == A[mid] )

ret = 1;

/*@
@ assigns low;

*/
if( elem > A[mid] )

low = mid + 1 ;
else
/*@

@ assigns high;
*/

high = mid - 1;
}

/*@
@ assigns mid;

*/
mid = (low + high) / 2 ;

/*@
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@ assigns ret;
*/
if( ( ret != 1) && ( elem == A[mid]) )

ret = 1;

/*@
@ assigns \nothing;

*/
return ret ;

}

F. LabelsTritype Augmented with an Eva Report
LabelsTritype is a version of Tritype that is meant to test the labeling feature of Pathcrawler. The following is a specification
generated for LabelsTritype with an Eva report added.

/*@ requires Side1 > 0 && Side2 > 0 && Side3 > 0;
@ ensures \result >= 1 && \result <= 4;
@ assigns \nothing;*/

int testme (int Side1 , int Side2 , int Side3){
int triOut;
/*@ assert Side1 <= 2147483647 && Side2 <= 2147483647 && Side3 <= 2147483647; */
if (Side1 <= 0 || Side2 <= 0 || Side3 <= 0)
{

triOut = 4;
return (triOut);

}
triOut = 0;
if (Side1 == Side2){ triOut = triOut + 1;}
if (Side1 == Side3){ triOut = triOut + 2;}
if (Side2 == Side3){triOut = triOut + 3;}
if (triOut == 0)
{

/*@ assert Side1+Side2 <= 2147483647 && Side1+Side3 <= 2147483647 && Side2+Side3 <=
2147483647; */

if (Side1+Side2 <= Side3 || Side2+Side3 <= Side1 || Side1+Side3 <= Side2){triOut =
4;}
else{triOut = 1;}
return (triOut);

}
if (triOut > 3){triOut = 3;}
else{

/*@ assert Side1+Side2 <= 2147483647 && Side1+Side3 <= 2147483647 && Side2+Side3 <=
2147483647; */
if (triOut == 1 && Side1+Side2 > Side3){triOut = 2;}
else{

if (triOut == 2 && Side1+Side3 > Side2){triOut = 2;}
else{

pathcrawler_label(triOut == 3);
pathcrawler_label(triOut != 3);
pathcrawler_label(Side2+Side3 > Side1);
pathcrawler_label(Side2+Side3 <= Side1);
if (triOut == 3 && Side2+Side3 > Side1){triOut = 2;}
else{triOut = 4;}

}
}

}
return (triOut);

}

The EVA report provided to the prompt:

[kernel] Parsing temp_files/tmpifalg4bf/eva_temp.c (with preprocessing)
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[kernel:typing:implicit -function -declaration] temp_files/tmpifalg4bf/eva_temp.c
:20: Warning:

Calling undeclared function pathcrawler_label. Old style K&R code?
[eva] Option -eva-precision 7 detected , automatic configuration of the analysis:

option -eva-min-loop -unroll set to 0 (default value).
option -eva-auto -loop -unroll set to 256.
option -eva-widening -delay set to 4.
option -eva-partition -history set to 1.
option -eva-slevel set to 250.
option -eva-ilevel set to 128.
option -eva-plevel set to 300.
option -eva-subdivide -non-linear set to 140.
option -eva-remove -redundant -alarms set to true (default value).
option -eva-domains set to ’cvalue ,equality ,gauges ,octagon ,symbolic -locations ’.
option -eva-split -return set to ’auto ’.
option -eva-equality -through -calls set to ’formals ’ (default value).
option -eva-octagon -through -calls set to true.

[eva] Splitting return states on:
[eva] Analyzing an incomplete application starting at testme
[eva] Computing initial state
[eva] Initial state computed
[eva:initial -state] Values of globals at initialization

[kernel:annot:missing -spec] temp_files/tmpifalg4bf/eva_temp.c:20: Warning:
Neither code nor specification for function pathcrawler_label , generating
default assigns from the prototype

[eva] using specification for function pathcrawler_label
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:67: Warning:

signed overflow. assert Side1 + Side2 <= 2147483647;
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:69: Warning:

signed overflow. assert Side1 + Side3 <= 2147483647;
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:71: Warning:

signed overflow. assert Side2 + Side3 <= 2147483647;
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:100: Warning:

signed overflow. assert Side1 + Side2 <= 2147483647;
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:112: Warning:

signed overflow. assert Side1 + Side3 <= 2147483647;
[eva:alarm] temp_files/tmpifalg4bf/eva_temp.c:124: Warning:

signed overflow. assert Side2 + Side3 <= 2147483647;
[eva] done for function testme
[eva] ====== VALUES COMPUTED ======
[eva:final -states] Values at end of function testme:

triOut in {1; 2; 3; 4}
__retres in {1; 2; 3; 4}

[eva:summary] ====== ANALYSIS SUMMARY ======
------------------------------
1 function analyzed (out of 1): 100% coverage.
In this function , 73 statements reached (out of 73): 100% coverage.
------------------------------
Some errors and warnings have been raised during the analysis:

by the Eva analyzer: 0 errors 0 warnings
by the Frama -C kernel: 0 errors 2 warnings

------------------------------
6 alarms generated by the analysis:
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6 integer overflows
-------------------------------
No logical properties have been reached by the analysis.

G. Apache Pathcrawler
Specification generated for the Apache program with Pathcrawler input/output pairs as additional context
#include "apache.h"

/*@
@ requires \valid(s);
@ ensures \result >= 0;

*/
unsigned mystrlen(char *s)
{

int i;
i = 0;
/*@

@ loop invariant \valid(s+i);
@ loop assigns i;

*/
while (s[i] != EOS)

++i;
return i;

}

/*@
@ requires \valid(s1) && \valid(s2) && n >= 0;
@ ensures \result <= 0 || \result == 0 || \result > 0;

*/
int mystrncmp (const char *s1, const char *s2, int n)
{

int i;
int retval;
i = 0;
/*@

@ loop invariant \valid(s1+i) && \valid(s2+i) && i <= n;
@ loop assigns i, retval;

*/
do {

retval = s1[i] - s2[i];
if (i >= n-1) return retval;
if (retval != 0) return retval;
if (s1[i] == EOS) return 0;
i++;

} while (1);
}
/*@

@ requires scheme >= 0 && \valid(uri);
@ assigns uri[0..TOKEN_SZ];

*/
void testme (char *uri, int scheme)
{

int cp;
int c,i;
char LDAP[5]={"ldap"};
char *token[TOKEN_SZ];
if (scheme == 0

|| mystrlen(uri) < scheme) {
return;

}
cp = scheme;
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if (uri[cp -1] == ’/’) {

while (uri[cp] != EOS
&& uri[cp] != ’/’) {

++cp;
}
if (uri[cp] == EOS || uri[cp+1] == EOS) return;
++cp;
scheme = cp;
if (mystrncmp(uri, LDAP , LDAP_SZ) == 0) {

c = 0;
token[0] = uri;

while (uri[cp] != EOS
&& c < TOKEN_SZ) {

if (uri[cp] == ’?’) {
++c;
token[c] = uri + cp + 1;
uri[cp] = EOS;

}
++cp;

}
return;

}
}
return;

}

The Pathcrawler Input/Output pairs provided. Notice how no output is provided. Since Apache is a void function with
side-effects, the input output pairs say nothing about the program.

input_scheme ,input_uri[0],...,input_uri[14],output ,verdict
1,47,47,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
1,47,58,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
2,108,47,47,47,0,0,0,0,0,0,0,0,0,0,0,,unknown
1,47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
5,108,100,97,112,47,47,63,0,0,0,0,0,0,0,0,0,unknown
5,108,100,97,112,47,47,63,47,63,63,0,0,0,0,0,,no_extra_coverage
5,108,100,97,112,47,47,63,63,63,0,0,0,0,0,0,,no_extra_coverage
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
422214939,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
1,47,47,47,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
1,58,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
5,108,100,97,112,47,47,63,63,63,47,0,0,0,0,0,,unknown
5,108,100,97,112,47,47,63,63,47,63,0,0,0,0,0,,no_extra_coverage
4,108,100,97,47,47,47,0,0,0,0,0,0,0,0,0,,unknown
5,108,100,97,112,47,47,47,0,0,0,0,0,0,0,0,,unknown
422214939,47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,,unknown
5,108,100,97,112,47,47,47,63,63,63,0,0,0,0,0,,no_extra_coverage%
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