Uncertainty-Driven Pessimistic Q-Ensemble for
Offline-to-Online Reinforcement Learning

Ingook Jang
Electronics and Telecommunications Research Institute
ingook@etri.re.kr

Seonghyun Kim
Electronics and Telecommunications Research Institute
kim-sh@etri.re.kr

Abstract

Re-using existing offline reinforcement learning (RL) agents is an emerging topic
for reducing the dominant computational cost for exploration in many settings. To
effectively fine-tune the pre-trained offline policies, both offline samples and online
interactions may be leveraged. In this paper, we propose the idea of incorporating
a pessimistic Q-ensemble and an uncertainty quantification technique to effectively
fine-tune offline agents. To stabilize online Q-function estimates during fine-tuning,
the proposed method uses uncertainty estimation as a penalization for a replay
buffer with a mixture of online interactions from the ensemble agent and offline
samples from the behavioral policies. In various robotic tasks on DARL benchmark,
we show that our method outperforms the state-of-the-art algorithms in terms of
the average return and the sample efficiency.

1 Motivation

Deep offline reinforcement learning (RL) [9] trains deep neural networks from previously collected
datasets to learn powerful robotic agents without additional environmental interactions. Recently, of-
fline RL methods [4, 6} [1, |11} [7] have performed better than the behavioral policies which produce the
offline datasets. Offline RL agents, however, may perform suboptimally 1) when the offline datasets
follow possibly suboptimal behavioral policies; 2) when the behavioral policies are insufficiently
explorative; or 3) when the datasets are too small. This requires further online learning (fine-tuning)
from additional online interactions generated by offline RL agents. The goal of online fine-tuning
of offline agents is to improve sample efficiency and asymptotic performance of online learning by
efficiently leveraging offline datasets.

To fine-tune an offline RL agent, slightly modified off-policy RL methods may be used by leveraging
both online and offline samples in training. However, such modifications are typically difficult to
make learning sample-efficient or asymptotically optimal due to distributional shift. Fine-tuning an
agent trained solely on an offline dataset may yield inaccurate value estimates due to online visitation
of out-of-distribution (OOD) state-action samples. The distributional shift between the offline dataset
and observed online interactions causes large initial temporal difference errors, which in turn causes
initial performance degradation and the agent to forget all information obtained from offline RL. This
leads to decreased sample efficiency by losing the benefit of having an initial good policy.

To address this problem, offline-to-online RL (Off20nRL [8]) leverages a pessimistic Q-ensemble
scheme. Off20nRL pessimistically trains multiple Q-functions to mitigate such bootstrapping errors
caused by the distributional shift. This constrains the learning policy to visit near the distribution

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022.

of the behavioral policy to stabilize fine-tuning an offline RL agent. Off20nRL also introduced
a prioritized buffer with balanced replay, which contains not only online interactions collected
during fine-tuning but near-on-policy samples from the offline dataset. This scheme enables accurate
Q-function estimation by training a network for prioritizing offline samples, which can bring the
sampling distribution for Q-functions close to online samples.

The goals of online learning using an offline dataset are 1) to estimate a good initial policy that is
not immediately forgotten during online learning; and 2) to improve sample efficiency. However, we
find that online fine-tuning incorporated with the offline dataset tends to be affected by uncertainty
estimation since the buffer has online and offline samples generated from different state-action
distributions. It may suffer from high uncertainty when 1) the network for the balanced replay is not
trained sufficiently; and 2) the offline dataset tends to be diverse around several trajectories produced
by multiple policies.

In this paper, we introduce an uncertainty-driven pessimistic Q-ensemble (UPQ) for offline-to-online
RL. We adopt a pessimistic ensemble of offline actor-critic agents to guide the learning policy with
efficient pessimism. To stabilize online Q-function estimates during online fine-tuning, the proposed
method leverages uncertainty quantification as a penalization for a prioritized replay buffer where
online samples from the ensemble agent and offline samples from the behavioral policy exist together.
In our experiments, we demonstrate that our method obtains high-performing policies with fewer
online interactions, and hence outperforms the state-of-the-art algorithms in terms of the average
return and the sample efficiency.

2 Methodology

We consider a Markov Decision Process (MDP) tuple G = (S, A, r, P) defined by the state space S,
the action space A, the reward function 7, and the transition distribution P. The objective of an RL
agent is to maximize the expected return IE[ZZ o 7'ri], where v € [0, 1) is the discount factor and
T is the episode horizon (total number of timesteps of an episode) that the agent optimizes over.

In our proposed method, we use IV offline actor-critic agents {Qy,, 7¢, }ic[n] for an ensemble from
Off20nRL [8], where 6; and ¢; are defined as the parameters of the i agent’s critic and actor,
respectively. We define the Q-function and the policy of the ensemble as follows:

N
Qf) = Do Qu(s:0) (1)

N
o (]s) (NZM@ : NZ(%(s) + 3, (s)) —ui(8)>,)

where the parameters are defined as 6 := {0; };c;n) and ¢ := {¢; };c[n], respectively. The defined

ﬂf follows a normal distribution with mean and variance of the Gaussian mixture % Zfil g, for
parameterization. The modeled policy is the same as Off20nRL [8]].

Since the ensemble estimates the posterior distribution of its Q-functions, we use the standard
deviation-based uncertainty quantification technique proposed in Pessimistic Bootstrapping for
offline RL (PBRL [22])). The uncertainty estimation at (s’, a’) of the target Q-functions is defined as
follows:

N
Uy () = 0@, = | w2 (Qo(0) - QE (), @)

where 6;_ is the parameters of the ¢ agent’s target Q-network and we denote the mean over the en-
semble of the target Q-functions by Q% . In policy evaluation, we use such uncertainty quantification
as a penalization to the next Q-value for a mixture of online and offline samples from the prioritized
replay buffer B proposed in Off20nRL. The Q¥ of the ensemble agent is updated through pessimistic
Q-function updates by fitting the following target for state-action pairs sampled from B:

Online Interaction

Ensemble Agent Gradient update
Offline data collection
v CQL Agent 1
—p
(sOff off LC iti (9)
Offline 1 Pty 1 — rite
Dataset Pretraining offline LActor(Q)
CQL Agent 2 4
> > QF S
Prioritized|offline samples
—— TQE R
_ CQL Agent N
Online samples Prioritized > u —
Replay I
Buffer RN
» Offline procedure
—— Online procedure
Sampling mini-batch transitions T

(s,ars)

Figure 1: Illustration of the overall architecture of the proposed method with a pessimistic Q-ensemble
and uncertainty quantification. Our method calculates the Q-target 7 Q¥ and the corresponding
uncertainty I/ by using the ensemble of the N offline agents pre-trained from the offline dataset to
update the gradients.

TQF (5.a) = 1(5,0) + 1Eyre [QF_(s's0') — alognf (a'|s) = BUs—(s',a)| . @)

where (3 is the tuning parameter for the uncertainty penalization. To this end, the parameters of the
Q-network and the policy of the ensemble agent, 6 and ¢, are updated by minimizing the following
objectives, respectively:

2
ECritic(e) = E(s,a,s’)NB [(QE(‘% a) - TQHE(sa a/)) ‘| 3 (5)

Lactor(9) = B arunr [log 8 (als) = QF (5,0)], ©)

where « is the parameter for temperature.

Figure 1 illustrates the overall workflow of the proposed method with uncertainty quantification. The
learning Q-function and policy are updated via update rules (5) and (6) by fine-tuning the pre-trained
multiple ensemble agents.

3 Experimental Setup and Results

We use the D4RL benchmark [3]], which includes datasets for data-driven deep reinforcement learning.
To demonstrate the performance of our method, three Mujoco [10] locomotion tasks (HalfCheetah,
Walker2d, and Hopper) are adopted with four types of datasets (random, medium, medium-replay,
medium-expert) for comparative evaluation. Specifically, the random dataset has collections by
a random policy and the medium dataset contains samples from a medium-level policy trained
via Soft Actor-Critic (SAC [5]). The medium-replay dataset contains all samples observed during
training a medium-level policy and the medium-expert dataset consists of samples recorded by both a
medium-level agent and expert demonstrations. We use a total of 12 task setups with the "v2’ version
datasets.

We compare the proposed method with several baseline algorithms including CQL [7] and Off20nRL
[8]. CQL provides a good baseline for the performance of an offline approach, which is also used
for learning both Off20nRL and our method. The implementation of CQL and Off20nRL are
adopted from the official implementation at https://github.com/aviralkumar2907/CQL/and
https://github.com/shlee94/0ff20nRL), respectively. We fix most of the hyperparameters for

https://github.com/aviralkumar2907/CQL
https://github.com/shlee94/Off2OnRL

Table 1: Average returns for all algorithms in Mujoco locomotion tasks. The highest average return
values are highlighted.

UPQ UPQ UPQ

CQL Off2onRL =01 A=0.01 pg=0.001

g HalfCheetah 2455.2 11474.5 11068.6 11172.4 11280.5
i Hopper 323.5 3213 945.3 2622.6 2967.8
& Walker2d 372.2 2706.1 22241 3190.8 2759.2
g HalfCheetah 5171.1 10049.7 10364.9 10847.9 10668.2
3 Hopper 1973.4 32797 3416.8 3361.3 3424.1
ﬁ Walker2d 3288.4 4638.5 4356.5 4736.9 4971.2
g > HalfCheetah 5214 10413.4 10118.3 10600.4 10313.2
3 'EL Hopper 1698.8 3521.6 3195.2 3206.7 3440.4
ﬁ o Walker2d 3142.1 47609 4505.2 4750.9 5100.2
g + HalfCheetah 1158.8 11159.0 11261.2 11277.9 11353.4
S| § Hopper 1272.1 2531.3 22011 2594.8 34234
g M Walker2d 3675 5181.8 5525.7 5682.6 5446
12000 halfcheetah-random-v2 halfcheetah-medium-v2 halfcheetah-medium-replay-v2 halfcheetah-medium-expert-v2

0 0 0 0

o 50 100 150 200 0 50 100 150 200 0 50 100 150 200 o 50 100 150 200
Environment Steps (x10%) Environment Steps (x10%) Environment Steps (x10%) Environment Steps (x10%)
hopper-random-v2 hopper-medium-v2 hopper-medium-replay-v2 hopper-medium-expert-v2
3000 _y% gﬁg
3000
3000
€ 2500 € € € 3000
£ 2000 g H :
h o 2000 o 2000 2000
§ 1500 ¢ ¢ §
2 2 2 H
< 1000 < 1000 < 1000 < 1000
500
0 o
o 50 100 150 200 o 50 100 150 200 o 50 100 150 200 o 50 100 150 200
Environment Steps (x10%) Environment Steps (x10%) Environment Steps (x10%) Environment Steps (x10%)
walker2d-random-v2 walker2d-medium-v2 walker2d-medium-replay-v2 walker2d-medium-expert-v2
5000
3000 5000
5000
2500 4000 4000 _
< £ 400
£ 2000 £ 3000 5 g
& 1500 g 2 0 o 3000
g £ 2000 £ 2000 § 2000
Z 1000 z z Ed
500 1000 1000 1000
0 o [o
o 50 100 150 200 o 50 100 150 200 o 50 100 150 200 o 50 100 150 200
Environment Steps (x10%) Environment Steps (x10) Environment Steps (x10%) Environment Steps (x10%)
CQL e Off20nRL -

p=01 =001 B =0.001

Figure 2: Training curves of all algorithms in Mujoco locomotion tasks.

our method the same as the official Off20nRL implementation. We train N = 4 CQL agents for 1000
epochs with different seeds for all the locomotion tasks where we experiment. Off2onRL and our
method are trained for 200 epochs (200000 environmental steps) using the pre-trained CQL agents.
In our method, the parameter for uncertainty penalization (3 is varied from [0.1,0.01,0.001].

Table T reports the performance of our method and baseline algorithms for each task. UPQ performs
similarly or better than the baseline methods in most of the tasks in terms of the average return and
sample efficiency. We find that UPQ has advantages in the tasks with non-optimal datasets marked as
medium, medium-replay, and medium-expert. The experiments show that UPQ performs the best
with 5 € [0.01,0.001] in many tasks. Figureillustrates the training curves for UPQ and baseline
algorithms in all tasks. We remark that the performance of UPQ shows more stable training curves in
the early stage (especially 50000 — 100000 environmental steps) of fine-tuning in most of the tasks.

4 Conclusion

In this work, we propose UPQ with an uncertainty-driven pessimistic Q-ensemble and it is effective for
improving offline-to-online RL methods. To stabilize online Q-function estimates during fine-tuning,
the proposed method leverages uncertainty quantification as a penalization for a prioritized replay
buffer consisting of both online and offline samples. Our experiments show that UPQ outperforms
several baselines over robotic locomotion tasks in terms of the average return and the sample efficiency.
We expect that our method enables sample-efficient re-use of the existing offline agents and offline
datasets. We also expect to implement further improvements as future work.

Acknowledgments and Disclosure of Funding

This work was supported by Electronics and Telecommunications Research Institute (ETRI) grant
funded by the Korean government. [22ZR1100, A Study of Hyper Connected Thinking Internet
Technology by autonomous connecting, controlling and evolving ways].

References

[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on
offline reinforcement learning. In International Conference on Machine Learning, 2020.

[2] Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and
Zhaoran Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning.
In International Conference on Learning Representations, 2022.

[3] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning, 2020.

[4] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In Proceedings of the 36th International Conference on Machine Learning,
pages 2052-2062, 2019.

[5] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. 2017.

[6] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, 2019.

[7] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for
offline reinforcement learning. In Advances in Neural Information Processing Systems, pages
1179-1191, 2020.

[8] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble. In Conference on Robot
Learning, pages 1702-1712, 2022.

[9] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[10] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026-5033, 2012.

[11] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, pages 14129-14142, 2020.

	Motivation
	Methodology
	Experimental Setup and Results
	Conclusion

