teLLMe Why (Ain’t Nothing but a Jam):
Exploratory Causal Analysis of Urban Driving Data

Qiwei Li Jorge Ortiz
Rutgers University, Department of Electrical and Computer Engineering
{qiwei.li, jorge.ortiz}@rutgers.edu

Abstract

Traffic agencies now have access to large volumes of video-derived data for study-
ing safety and congestion. Most of these data are observational and collected with-
out interventions, which makes causal questions such as “How would rain change
traffic density?” difficult to answer. We present teLLMe, a system for exploratory
causal analysis of urban driving datasets. The system starts from a structured
event table built from dashcam annotations and combines causal structure learn-
ing with the PC algorithm, bootstrap-based stability checks, and query-specific
effect estimation using linear regression and DoWhy. Natural-language questions
are mapped to structured causal queries through a schema-aware LLM, enabling
users to specify treatments, outcomes, and subpopulations. teLLMe returns a
“Causal Card” that summarizes effect estimates, adjustment sets, DAG support,
and assumptions, followed by a short natural-language explanation. Case studies
on BDD-derived traffic events show that the system can surface plausible relation-
ships involving weather, peak hours, and traffic density, while making uncertainty
and modeling choices explicit. The system is designed as a tool for hypothesis
generation and expert reasoning rather than a source of definitive causal claims.

1 Introduction

Cities now generate large amounts of video through dashcams, CCTV, and mobile devices. These
streams capture routine traffic behavior and environmental conditions, and they offer a rich source
of information for studying safety and congestion. Analysts often want to ask causal questions
about this data. For example, does rain reduce traffic density at urban intersections, or do peak-
hour periods increase demand on specific corridors. Most video, however, is observational and
collected without interventions, which makes it difficult to distinguish genuine causal effects from
confounding and exposure differences.

Turning raw video into variables that support causal reasoning introduces several challenges. The
underlying data are imbalanced and confounded: weather, time of day, scene type, and demand
patterns interact in ways that are not controlled by design, and some combinations occur rarely. The
analysis pipeline itself is multi-stage. Object detections must be aggregated into event-level features,
a plausible causal structure among those variables must be inferred, and treatment effects must be
estimated for specific questions. Any resulting estimates must also be communicated to practitioners
who are not expected to interpret causal graphs or adjustment rules.

We introduce teLLMe, a system that connects these stages into a single workflow for exploratory
causal analysis of urban driving data. The overall architecture of the system is shown in Figure 1.
teLLMe starts from a structured event table built from dashcam annotations and learns a causal graph
over a curated set of variables using the PC algorithm with domain constraints and bootstrap resam-
pling. Users pose questions in natural language. A schema-aware LLM translates each question
into a formal causal query specifying treatments, outcomes, and subpopulation filters. teLLMe then
selects a backdoor adjustment set based on the learned graph and estimates average treatment effects

User Question
(Natural Language)
)
LLM Query Parser

Learned DAG (G) % (SChema'awm)r Causal Card Generation
& Stabiltty Scores [(Structured Causal Query (@): (T, tor e, ¥.C) | (Summary & Assumptions)

& Event Aggregation
& Windowing

Raw Video & Dashcam

h v
Annotations @ i
Adjustment Set Selection (2)
(e.g., BDD100K) : & Data Filtering (Do) LLM Explainer
Causal y [—i—]
(PC L M:v‘ Effect Estimati W Effoct E .777—‘«‘ Natural Language
Y OLS Regression DoWhy

Structured Event Table (D)

Figure 1: teLLMe has an offline phase that aggregates dashcam annotations into fixed-length windows, con-
structs a structured event table, and learns a causal graph using the PC algorithm with domain constraints and
bootstrap stability. Online, a schema-aware LLM converts natural-language questions into structured causal
queries specifying treatment, control, outcome, and filters. The system selects a backdoor adjustment set from
the learned DAG, filters the event table, and estimates effects with linear regression and DoWhy. It returns a
Causal Card with effect estimates, adjustment sets, DAG evidence, and assumptions, followed by a brief expla-
nation.

using linear regression and DoWhy. The results are presented in a Causal Card that reports effect es-
timates, adjustment sets, graph evidence, and key assumptions, followed by a brief natural-language
explanation.

The contribution of teLLMe is the integration of these components into a query-driven system that
makes causal assumptions explicit and keeps the workflow reproducible. The goal is to support the
generation and inspection of plausible causal hypotheses from large video-derived datasets and to
give domain experts a structured way to interrogate the evidence.

2 Data and System Overview

2.1 Event dataset from dashcam annotations

We work with a structured event table built from a large dashcam corpus such as BDD100K [Xu
et al., 2017]. Raw detections and metadata are aggregated into fixed-length windows, each repre-
sented by a row with weather labels, scene type, traffic density, peak-hour status, and basic temporal
indicators (e.g., weekday/weekend and time-of-day bins). Traffic density is computed as the count
of detected vehicles per minute. We drop windows with missing labels and clip extreme values to
avoid outliers. Because some combinations of weather and scene type are rare, we create a bal-
anced subset using stratified sampling for the main analyses and retain the full dataset for sensitivity
checks.

2.2 System architecture

Figure 1 provides an overview of the system architecture. teLLMe is organized around two linked
stages: an offline discovery phase that builds the structural substrate for causal reasoning, and an
online query phase that turns user questions into structured causal analyses. The offline stage pre-
pares the data and learns a causal graph with stability information, and the online stage parses user
queries, selects adjustment sets, and estimates effects, producing a Causal Card for each query.

Offline. We standardize variables, learn a causal graph over selected features using the PC al-
gorithm [Spirtes et al., 2000, Kalisch and Bithimann, 2007], apply domain constraints to rule out
implausible directions, and run bootstrap resampling to record edge stability. The resulting DAG
and stability scores are stored for later use.

Online. Users provide a natural-language question. A schema-aware LLM converts it into a struc-
tured causal query with a treatment, outcome, and optional filters. The system selects a backdoor
adjustment set based on the learned DAG, filters the event table accordingly, and estimates an aver-
age treatment effect using linear regression and DoWhy [Sharma and Kiciman, 2020]. The output is
a Causal Card that reports effect estimates, adjustment sets, graph evidence, and assumptions, along
with a short natural-language explanation.

3 Methods

3.1 Causal graph learning with PC and bootstrap

Let V denote a subset of event-level variables deemed relevant for causal analysis, such as
V = {weather, is_peak hour, traffic density, scene_type, weekday, time bin}.

We treat the event table as samples from a joint distribution over V' and aim to learn a directed
acyclic graph (DAG) G that encodes candidate causal relationships among these variables.

We use the PC algorithm [Spirtes et al., 2000, Kalisch and Biihlmann, 2007] as implemented
in pgmpy. PC starts from a complete undirected graph over V' and iteratively removes edges
based on conditional independence tests, then orients the remaining edges using a set of logical
rules. We incorporate domain knowledge through forbidden edges (e.g., disallowing edges from
traffic_density to weather) and, if desired, required edges. All variables used for PC are dis-
cretized or encoded as needed for the chosen independence tests.

To quantify robustness, we perform a simple bootstrap stability analysis [Spirtes et al., 2000, Kalisch
and Biihlmann, 2007]. We draw B = 20 bootstrap resamples of the event table (with replacement),
run PC on each resample, and record how often each directed edge appears. This yields a stability
score s(e) € [0, 1] for each edge e in G, which we later expose in the Causal Cards. Intuitively,
edges with high s(e) are more stable under resampling, while edges with low s(e) should be treated
with caution.

3.2 Query parsing and DAG-based adjustment selection

Users interact with teLLMe through natural-language questions. To bridge between free text and the
fixed dataset schema, we define a structured Causal Query:

Q _ (T, ttreated7 tcomtrol7 Y" C),

where T is the treatment variable, t#¢2ted gnd ¢eontrol gre two values of 7, Y is the outcome variable,
and C is a set of conditioning constraints (e.g., scene_type = intersection, is_peak_hour = 1).

We prompt an LLM with (i) the dataset schema, including variable names, types, and allowed cate-
gorical values, and (ii) the user question, and instruct it to output @ in a constrained JSON format.
The resulting specification is then validated against the schema: we enforce strict type checking,
reject references to undefined variables, and discard invalid categorical values. If validation fails,
the system returns a user-facing error and optionally falls back to a simple rule-based parser for a
subset of templates. This schema-aware parsing layer is crucial for preventing hallucinated columns
and keeping causal queries grounded in the actual dataset.

Given @ and the learned DAG G, we select a backdoor adjustment set Z for the treatment—outcome
pair (7,Y). In the simplest implementation, we start from a candidate list of covariates (e.g.,
scene_type, weekday, time_bin) and include those that are parents of 7" or Y in GG while avoiding
descendants of T'. This heuristic approximates a backdoor adjustment set [Pearl, 2009] and encodes
our modeling choice about which variables to condition on when estimating the effect of 77 on Y.

3.3 Effect estimation and Causal Cards
For the filtered dataset D, we estimate an average treatment effect
7@ = E[Y | do(T = t"****%), C] = E[Y | do(T = t°**"°"), (],
using the assumptions encoded in G and the selected adjustment set Z.
Linear regression (OLS). We fit an ordinary least squares model
Y=a+pT+~"Z+e,

with categorical variables in Z one-hot encoded. The coefficient [is taken as the estimate of 7,
and we report its point estimate, standard error, and confidence interval.

/ Peak Hour ~=——Jp» Traffic Density \

Effect Size Confidence Score
+17.3% Increase 80 High

Explanation:

Peak-hour windows align with
commuting demand, so more people
depart simultaneously and create

\ dense traffic. j

Figure 2: Example Causal Card summarizing the query, effect estimate, adjustment set, DAG infor-
mation, and a short explanation.

Estimator ATE 95% CI N (treated/control)
OLS 0.024 [0.014, 0.034] 4,268 /6,154
is_peak_hour count mean std p25 median p75 min max
0 6154 0.3827 0.2466 0.20 035 0.50 0 1
1 4268 0.5291 0.2835 0.30 050 0.75 0 1

Figure 3: ATE summary (top) and outcome distribution (bottom) for peak-hour vs. off-peak on
highway traffic density.

DoWhy backdoor estimator. We also construct a DoWhy [Sharma and Kiciman, 2020]
CausalModel using Dg, the treatment 7', the outcome Y, and a DOT version of the learned DAG
G. DoWhy identifies a backdoor estimand and estimates it via linear regression, giving a second
estimate of 7 under the same adjustment set. DoWhy supports additional estimators (e.g., inverse-
propensity and doubly robust methods), but we use linear regression for consistency with the OLS
baseline.

Optionally, we bootstrap D, to examine the spread of the estimated effect for the chosen estimator.
This gives an empirical measure of stability beyond the usual standard errors.

Causal Cards. Each query is summarized in a compact Causal Card with the parsed variables, the
effect estimate and confidence interval, treated/control sample sizes, any direct I" — Y edge and its
stability, and relevant caveats. A brief natural-language explanation is generated from these fields.

A short natural-language explanation is then generated from the card for non-technical users.

4 Case Studies

We illustrate teLLMe on several representative queries using the BDD-derived event dataset. All
estimates and confidence intervals come from the specified subpopulations and adjustment sets.

4.1 Weather and traffic density at urban intersections

What is the effect of rainy versus clear weather on traffic density at urban inter-
sections during peak hours?

For this query, the treatment is weather, with rainy as the treated condition and
clear as the control. The outcome is traffic_density, restricted to windows where
scene_type=urban_intersection and is_peak hour=1. The adjustment module selects
time_of_day and total_objects. In this run, the learned DAG does not contain a direct weather
— traffic_density edge.

Using OLS with the selected adjustment set, the estimated effect is —0.036 with a 95% confidence
interval from —0.047 to —0.024, based on 1,840 rainy windows and 7,681 clear windows.

4.2 Peak-hour effects on highway traffic density

How do peak-hour periods affect traffic density on highways under clear weather?

In this query, the treatment is is_peak_hour and the outcome is traffic_density. The conditions
restrict the data to scene_type=highway and weather=clear. The adjustment module selects
time_of_day, weather, and total_objects. The learned DAG for this subpopulation does not
contain a direct is_peak_hour — traffic_density edge.

Using OLS with the selected adjustment set, the estimated effect is 0.024 with a 95% confidence
interval from 0.014 to 0.034, based on 4,268 peak-hour windows and 6,154 off-peak windows.

4.3 Sensitivity to adjustment and balancing choices

We compare DAG-based adjustment with a fixed adjustment set and repeat analyses on the imbal-
anced dataset. Ignoring the DAG sometimes produces larger effects and narrower intervals, consis-
tent with under-adjustment. Analyses on the imbalanced data occasionally produce more extreme
estimates and greater uncertainty. These differences highlight the influence of adjustment and sam-
pling choices; teLLMe surfaces these decisions directly in the Causal Cards.

5 Discussion and Limitations

teLLMe works entirely with observational event data, so all effects depend on the assumptions
encoded in the learned DAG and the selected adjustment sets. Several important factors—driver
intent, road surface conditions, and weather severity— are not observable in dashcam footage, which
means the reported effects should be treated as plausible explanations rather than definitive causal
claims.

The system treats event windows as independent and does not model temporal or spatial structure.
Traffic patterns often depend on both, and capturing those dependencies would require different
causal discovery methods and richer data. Measurement limits also constrain the questions we can
answer. Traffic density is straightforward to compute, but more safety-oriented surrogates, such as
near-miss measures, are harder to derive reliably from video alone. We have not yet evaluated the
Causal Cards with practitioners. They are designed to make assumptions and uncertainty clear, but
we do not yet know how analysts or planners interpret them or what forms of guidance they find
most useful.

Beyond this standalone prototype, teLLMe is being developed as part of the Redddot project, a
broader platform for participatory urban safety and mobility analytics. Redddot seeks to give plan-
ners, researchers, and community stakeholders access to interpretable views of heterogeneous urban
data, including video-derived events, traffic indicators, and contextual information about places.
Within this context, teLLMe plays the role of a causal reasoning and explanation module: it turns
dashcam-derived event tables into queryable “what-if” analyses, and its Causal Cards can be sur-
faced alongside other Redddot views to show how candidate effects, uncertainty, and assumptions
relate to specific locations and populations. This connection grounds teLLMe’s design in a concrete
application setting and highlights its potential to mediate human—AlI collaboration around urban
decisions.

The pipeline gives analysts and other Redddot stakeholders a direct way to test specific causal ques-
tions on video-derived data while keeping assumptions explicit. The resulting estimates are intended
as inputs to further analysis and deliberation, not final answers.

Acknowledgements

This work was supported by the National Science Foundation as part of the Center for Smart
Streetscapes under Cooperative Agreement EEC-2133516 and by NSF Grant No. 2429672.

References

Markus Kalisch and Peter Biihimann. Estimating high-dimensional directed acyclic graphs with the
pc-algorithm. Journal of Machine Learning Research, 8§(Mar):613-636, 2007.

Judea Pearl. Causality. Cambridge university press, 2009.

Amit Sharma and Emre Kiciman. Dowhy: An end-to-end library for causal inference. arXiv preprint
arXiv:2011.04216, 2020.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models from
large-scale video datasets. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

