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Abstract

Recently, several new approaches for creating polygenic scores (PGS) have been
developed and this trend shows no sign of abating. However, it has thus far been
challenging to determine which approaches are superior, as different studies report
seemingly conflicting benchmark results. This heterogeneity in benchmark results
is in part due to different outcomes being used, but also due to differences in
the genetic variants being used, data preprocessing, and other quality control
steps. As a solution, a publicly available benchmark for polygenic prediction is
presented here, which allows researchers to both train and test polygenic prediction
methods using only summary-level information, thus preserving privacy. Using
simulations and real data, we show that model performance can be estimated with
accuracy, using only linkage disequilibrium (LD) information and genome-wide
association summary statistics for target outcomes. Finally, we make this PGS
benchmark - consisting of 8 outcomes, including somatic and psychiatric disorders
- publicly available for researchers to download on our PGS benchmark platform
(http://www.pgsbenchmark.org). We believe this benchmark can help establish a
clear and unbiased standard for future polygenic score methods to compare against.

1 Introduction

In recent years, interest in polygenic scores (PGS) has increased greatly, with researchers finding pro-
gressively more applications for polygenic scores in biomedical research, genetics, and epidemiology.
Polygenic scores are now routinely used to examine the genetic relationship between outcomes, such
as bipolar disorder and schizophrenia [36] and in phenome-wide association studies [5]. Polygenic
scores can also be used to infer causal relationships [11] as well as improve power in genome-wide
association studies (GWAS) [2, 30]. There is also a compounding body of evidence supporting the
claim that polygenic scores can improve risk models in clinical applications [17, 14].

In this climate, there has been a proliferation of new approaches for creating polygenic scores,
including linkage-disequilibrium (LD) clumping and p-value thresholding[9], Bayesian approaches
[34, 13, 21, 48, 50], penalized regression [22, 33], and other machine learning methods [41]. Most
of these new polygenic score methods claim to outperform previously proposed methods, making
it confusing for users to choose an appropriate PGS approach for their application. However, this
apparent performance paradox is due to challenges in properly determining what approaches are
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superior, because different datasets, quality control, and preprocessing steps are used to determine
performance. As shown in previous work, these processing steps can have a significant impact on
the overall prediction accuracy for polygenic score methods [35], and thus lead to an incomplete
comparison of PGS methods.

In the related field of Machine Learning these problems have been addressed by the introduction of
publicly available benchmark datasets, which allow for fair comparison between approaches. This
has been vital to the advancement of new and more powerful methods in the machine learning field
[15, 18, 45, 43]. Such benchmark datasets, also called benchmarks, provide researchers with an
identical dataset and accompanying evaluation metrics. This unified setup allows (and constrains)
the researcher to both train and test models. Hence, benchmarks make published performance
measures directly comparable, negating the need to redo analyses. Additionally, since many of
these benchmarks are publicly available for anyone to download, not requiring special access of any
kind, this poses minimal hurdles for researchers. Indeed, a clear and easy-to-use benchmark enables
researchers to focus on improving their method instead of having to apply for data access and go
through the sometimes onerous process of applying other PGS methods to the same data. However
the creation of such publicly available benchmark datasets for polygenic prediction is challenging
because of privacy concerns, as individual-level genotype data and health outcomes are only made
available to approved researchers with restrictions.

As a solution to this challenge, we present a privacy-preserving and publicly available benchmark for
polygenic prediction, which allows researchers to both train and test polygenic prediction methods
using only summary-level information, which we define as linkage disequilibrium (LD) data and
GWAS summary statistics, thus preserving privacy. GWAS summary statistics are usually made
publicly available, and several public and easily accessible repositories exist, containing GWAS
summary statistics for thousands of outcomes [46, 4]. Using both simulations and UK Biobank data
(UKBB) for a diverse set of 8 external summary statistics, including both somatic and psychiatric
disorders, we show that the squared correlation prediction accuracy can be estimated almost perfectly
using summary-level test data only. We further used the benchmark data to compare a collection of
commonly used polygenic scoring methods including PRS-CS, LDpred2, and SBayesR and observe a
high concordance, with complete recovery of model rankings and almost perfect correlation of model
performance measures. Finally, we make the benchmark data, necessary for training and testing,
publicly available and encourage other researchers to consider using it to benchmark their methods.

2 Results

2.1 Constructing a Privacy-Preserving Benchmark [PPB]

Polygenic prediction methods typically use summary statistics and LD information as inputs for model
training [34, 13, 21, 50]. However, this input data has not yet been used to construct benchmarks
for PGS methods. Here we propose to use an alternative formulation of the squared Pearson
correlation (R2), which is regularly used as a performance measure for polygenic prediction. A
similar formulation of the Pearson correlation and related measures has been proposed previously in
the context of fitting hyper-parameters [22] and model selection [50, 42]. Starting from the original
form of the performance measure, which is the squared Pearson correlation between the observed
and predicted phenotypes, we can show that the prediction R2 is equal to

R2 =

(
βT z

)2

βTDβ
.

Here, β is a vector of length M containing model weights of the polygenic prediction approach
that is to be evaluated and M being the number of genetic variants, which typically is larger than
105 up to several million. D = 1

NXTX is the full M -by-M covariance matrix also called the LD
matrix, and z = 1

NXTy denotes the summary statistic z-scores for the outcome of interest. Further-
more, y denotes the standardized phenotype and X the standardized genotype matrix, where each
genetic variant has mean 0 and variance 1. A detailed derivation can be found in the supplementary
information.
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Although the equation above would allow us to compute R2 exactly if we would have access to the
full LD matrix, in practice, the full LD matrix D is very large, making it impractical to both compute
and share. By default, we approximate D as a banded LD matrix by not including covariance outside
a window with a size of 4 cM (centimorgan, a measure of genetic distance). This, in effect, sets
covariance outside this window to zero. Additionally, we present results for other window-sizes (cM)
and LD blocks [3]. Hence, the missing parts (off-diagonal elements) of our approximation of D
will be the cause of discrepancies between our privacy-preserving approach and the individual-level
approach, meaning the original approach for determining R2 by computing the squared correlation
between the observed and predicted phenotypes. Interestingly, it is also possible to compute other
performance measures using the same inputs, including the mean square error (MSE).

Experimental flow: methods & experiments. We compared computing performance measures
using individual level data with our privacy-preserving benchmark [PPB] approach for a number of
polygenic prediction methods, being PRS-CS, SBayesR, LDpred2 and lassosum, using both automatic
and validation set based versions for hyper-parameter tuning where applicable. We looked both at
concordance of absolute performance measure values and at relative performance characteristics (i.e.
rankings of the methods).

We trained the collection of polygenic prediction methods with external summary statistics (real
and simulated) and LD from the validation set, which was a randomly selected 10K subset of our
preprocessed UK Biobank dataset (N=362,320 and 1,117,493 genetic HapMap3 variants)[34, 7]. For
this benchmarking work, we followed and reproduced the experimental setup for PGS benchmarking
as used in Privé et al. [34], unless otherwise specified. Real and simulated phenotypes from the
UK Biobank and iPSYCH cohort [32, 6], were adjusted for sex, age and 10 principal components
and the residuals were subsequently used. Then model selection (hyper-parameter tuning) was
performed when required, using individual-level and privacy-preserving data-types for their respective
approaches (individual-level or PPB). This was followed by final model evaluation on the UK Biobank
test dataset, yielding prediction R2 for both individual-level and PPB approaches.

2.2 Simulations

The impact of LD reference. To examine how the estimated R2 depends on different LD references
and genetic architectures, we performed simulations with simulated genotypes and phenotypes (see
methods for details). We compared the prediction accuracy of three different simple polygenic scores,
namely one where we used the true causal effects, one with marginal least squares effects (linear
regression), and one where we applied a p-value threshold to the marginal least squares estimates.
We then considered three different LD matrix references used to estimate the prediction R2: one
where we used the test data as LD reference (which should be exact), one where training data was
used as the LD reference, and finally an independent LD reference. The results for 1000 simulated
phenotypes with heritability varying from 0 to 1 are shown in Supplementary Figure S1. We found
that using the training data as LD reference results in biased prediction R2 estimates, whereas using
the test data as LD reference provides nearly exact estimates (within rounding error). We also found
that an independent LD reference (with samples not included in training nor testing data) yielded
unbiased estimates for the prediction R2. This does shed some additional light on our usage of the
validation set for both LD and hyper-parameter selection, but as we show in this work this bias does
not appear to lead to substantial performance deviations for the privacy-preserving approach if the
validation data is solely used for selecting model hyper-parameters and not for estimating model
performance.

Simulations using real genotypes. In order to gain insight into comparative accuracy of the privacy-
preserving approach we performed simulations, using real genotype data (from the UK Biobank and
iPSYCH datasets) and simulated genetic effects with different levels of polygenicity and repeated
each simulation 10 times. For the different levels of polygenicity we randomly picked a total of 103,
104, 105 or All to be causal variants. We then simulated phenotypes for the UK Biobank and iPSYCH
cohorts, using a Liability Threshold Model (LTM), with a heritability of 0.4 and a prevalence of 20%
[12] and performed GWAS in the iPSYCH cohort to get GWAS summary statistics for the prediction
approaches in our comparison. We then treated these like summary statistics from real traits. We
combined the summary statistics with the LD from the validation dataset and used this to train our
models. After this we performed hyper-parameter selection using the validation dataset. Lastly, we
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Figure 1: Accuracy of privacy-preserving prediction R2 in simulations. a, Matched prediction R2 computed using the
privacy-preserving or individual-level approach for different LD approximation windows and blocks, prediction methods and
effect-size distributions (shown by the density plot on the top). b, The difference in percentage of the privacy-preserving
vs. the individual-level based approach for computing performance. Firstly shown as the mean of percentages grouped by
effect-size distribution (number of causal variants) vs window size in centimorgan (cM), with 95% confidence intervals and
secondly with boxplots for different window sizes (cM) and LD blocks (ldetect, [3]). c, Boxplots of differences in percentages
for different polygenic prediction methods for a 4 cM window-size.

evaluated final prediction performance for the simulated traits on the UKBB test dataset for both the
individual-level and privacy-preserving based approaches.

To investigate the power and potential limitations of a privacy-preserving approach for performance
evaluation, the results of the simulations were analyzed (see Figure 1). Overall, concordance between
our PPB and the individual-level approach was noteworthy, both in absolute and relative terms, if
a sufficiently large LD window was used. In cases where the quantity of captured LD was small,
the R2 tended to be overestimated (Fig. 1a). We observed this overestimation for all effect-size
distributions (+1.9% on average with 2 cM windows), but it was more pronounced for more polygenic
ones (Fig. 1b) as measured by average percent deviation. For instance, with a window-size of 2
cM, the most polygenic effect-size distribution showed +2.82% average deviation versus +0.70%
for the least polygenic one (All and 103 respectively). This overestimation rapidly became minimal
with larger LD windows for all effect-size distributions. Furthermore, we observed that relying
on the widely-used ldetect LD blocks [3] led to substantial overestimation of the prediction R2

(+12.4% on average). These results suggests that a LD window-size of 4 cM provides a good balance
between accuracy and LD data size, which one would like to keep of a manageable size for effective
dissemination and use of the benchmark. Next, one can see the accuracy of the privacy-preserving
approach for a number of prediction approaches in Figure 1c, with average deviations relatively close
to zero across the prediction methods.

ncausal ρ̄Pearson ρ̄Spearman

103 1.0000 1.0000
104 0.9999 1.0000
105 1.0000 1.0000
All 1.0000 0.9976

Table 1: The average Spearman’s and Pear-
son’s rho (ρ̄) over the repeats of the exper-
iment for different effect-size distributions
using 4 cM windows. All rho’s are very close
to one with the Spearman’s rho of the All
effect-size, being due to one ranking flip for
one simulation.

Another way to view the results is to consider the average
correlation per effect-size distribution for the selected window-
size of 4 cM (Table 1). We determined the average Spearman’s
and Pearson’s correlation between the individual-level and
privacy-preserving R2 estimate over the different simulations
to get an idea of both absolute and ranking accuracy within
traits. As can be seen, Pearson’s correlation is very close to
one for all effect-size distributions. For the All effect-size
experiments (all variants being causal), there was only one
single experiment with a single rank flip (6 ⇄ 7) of LDpred2-
auto and LDpred2. However, in this particular case, there was
only a 0.34% difference between the two approaches. Hence,
based on the empirical evidence provided by these simulations,
we can conclude that the overall concordance of the privacy-
preserving approach aligns closely with the individual-level
approach for an assortment of effect-size distributions.
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Figure 2: Barplot of the R2 for different polygenic prediction approaches for 8 human traits. Both results for the
individual-level and privacy-preserving approach are present in this barplot with the individual-level being the colored bar,
which represents the R2 and the borders around the bars being the R2 that was computed using the privacy-preserving
approach, with corresponding error-bars. Hence, this means that white spaces at the tops of the bars, like for Type 1 diabetes
(T1D) or Major depression (MDD) represent overestimation of the R2 by PPB. The black error-bars are the 95% confidence
intervals of privacy-preserving approach. The error-bars for the individual-level approach were not included to keep the figure
uncluttered. The meaning of the trait abbreviations can be found in Table 2.

2.3 Performance comparisons for real human traits

Trait ρ
Pearson

ρ
Spearman

Asthma 1.0000 1.0000
Breast cancer (BRCA) 0.9999 1.0000
Coronary artery disease(CAD) 0.9999 1.0000
Major depression (MDD) 0.9979 1.0000
Prostate cancer (PRCA) 0.9998 1.0000
Rheumatoid arthritis (RA) 0.9999 1.0000
Type 1 diabetes (T1D) 0.9992 1.0000
Type 2 diabetes (T2D) 0.9997 1.0000

Table 2: Pearson’s and Spearman’s rho (ρ) between the
privacy-preserving and individual-level derived prediction
R2 within the respective traits. As can be seen the Spear-
man’s rho has the highest possible value and hence the rank-
ing is complete preserved.

For real data analyses, 8 external GWAS summary
statistics (details contained in Table S1) were used
together with LD and other information from the
validation set to train and optimize a collection of
polygenic predictors. These predictors were then
applied to the UK Biobank test set yielding predic-
tion R2 measures using the privacy-preserving and
the individual-level approach, which are both con-
tained in Figure 2 for their respective model-trait
combination.

In general, we observed good agreement between
the two approaches. The only (small) discrepancy
we observe is for Major depression (MDD), where
we have a tendency to overestimate the R2, which is an interesting point we will return to in later
sections. We also observed small deviations including for Type-1 Diabetes (T1D), and initially a
difference for Type 2 Diabetes (T2D) with PRS-CS (+13.6%). Here, closer inspection reveals that
this is due to PRS-CS[13] selecting a different hyper-parameter value based on the validation data
when using the privacy-preserving approach, where the resulting R2 values for the validation set
differed by −0.27%. When using the same hyper-parameter value, the difference in the final test set
estimates is only 0.71%.

Additionally, we looked at absolute and relative performance by rankings within traits, by computing
Spearman’s and Pearson’s rho, which are shown in Table 2. We see very good agreement in terms
of both absolute and relative terms, showing that the privacy-preserving approach is effective for
comparing and ranking polygenic prediction methods across traits.

Finally, considering these real outcomes, we examined the average discrepancy per trait. For this we
used the same approach for hyper-parameter selection in validation set (individual-level) for both the
privacy-preserving and individual-level approach. We then plotted the mean deviation (measured in
percentages) for different LD window-sizes in Figure 3. As can be seen clearly in this plot, all traits
converge towards mean deviation of zero for increasing window-sizes, with the notable exception of
Major depression, which converges to a prediction R2 overestimation of about +4.5%. Considering
the fact that our simulations showed robust convergence towards a mean deviation of zero, this is
a curious discrepancy from the trend, which we will revisit in the Discussion section. Also, the
observed tail off for real traits further motivates our selection of the 4 cM window-size, being a good
compromise between estimation performance and resulting dataset size.
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Figure 3: Mean deviation in % by trait for different window-sizes, with 95% confidence intervals. The sizes of the
windows are indicated on the x-axis in centimorgan (cM) on a log-scale. The trait results were denoised for hyper-parameter
selection deviations, by using the individual-level approach for both PPB and individual-level benchmarking. The meaning of
the trait abbreviations can be found in Table 2.

3 Discussion

Here we propose a novel way to establish a linear polygenic prediction benchmark, that does
not require any individual-level data to be shared. Using both simulations and real data we have
demonstrated that, for our benchmark, performance can be determined with great accuracy, both in
relative and absolute terms. We will shortly make this new benchmark dataset publicly available
on our PGS benchmark platform (http://www.pgsbenchmark.org), where it can be downloaded by
anyone. As shown, this benchmark allows for standardized unambiguous comparisons between
the plethora of methods currently available. Additionally, we have created a publicly-accessible
frequently-updated leaderboard on our platform in which one can see the approaches that are currently
state-of-the-art, greatly simplifying researchers search for the best polygenic prediction approach.
Additionally, the benchmark will allow researchers to much more easily reproduce each other’s
results. We believe this benchmark can be used as a clear and unbiased standard for future polygenic
score methods to compare against.

Regarding possible limitations of our approach, an obvious improvement would be to include better
modeling of the potential assortative mating effects to account for the observed discrepancies (e.g.
for the affected trait of Major depression). In fact, earlier experiments (data not shown) indicate
that for certain other traits (Height and BMI) this effect is also present. This suggest the effect
could be caused by assortative mating, since there is a significant body of evidence suggesting
assortative mating effects for these effected traits [44, 24, 49, 37]. Also, we feel it is worth noting
that this very discrepancy might be exploited as a measure of assortative mating. An expansion to the
described benchmark could be to add a vetted collection of GWAS summary statistics in addition
to the ones already supplied, which would allow for the evaluation of polygenic score combiner
based approaches. Another enhancement would be to include ancestrally diverse summary-level data,
which our benchmark is currently lacking, to enable analysis and improvement of cross-population
prediction methods. We aim to address this limitation by publishing additional datasets for a diverse
set of genetic ancestries for our benchmark to ameliorate the much-publicized risk that PGS could
increase health-disparities [23]. Additionally, we could introduce recently proposed LD graphical
models (LDGMs), which are sparse and efficient representations of LD, to more effectively model and
share LD for diverse populations[28]. Another improvement would be to include privacy-preserving
benchmarks for five common psychiatric disorders from the large Danish iPSYCH datasets.

Lastly, open benchmarks have played a crucial role in several fields, including those of computer
vision (e.g. ImageNet [15, 18]), protein folding [1, 16, 40, 26], and more[45, 31]. Therefore,
we believe that the impact of establishing open and privacy-preserving benchmarks for polygenic
prediction could be profound, especially if one considers the downstream effects on medical science.
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Supplementary Information

Derivations for the PPB Method

This section goes into more detail regarding the derivation of procedure for arriving at our desired
performance measures. We start by considering the following equation,

r =

∑
i (xi −mx) (yi −my)√∑

i (xi −mx)
2
√∑

i (yi −my)
2
,

which is the definition of the Pearson correlation coefficient. We can create a vectorized version,
tailored to our use case, which is:

r =
1
N (ŷ −mŷ)

T
(y −my)√

1
N (ŷ −mŷ)

T
(ŷ −mŷ)

√
1
N (y −my)

T
(y −my)

,with
{
ŷ = Xβ

c2 = 1
N ŷT ŷ

m is repeating vector, containing the mean. If we manage to tackle all the elements in this equation
this will allow us to compute Pearson’s r and therefore R2 too. Also, if so desired, a prediction
magnitude invariant mean squared error can be computed, using, MSE = −2(R− 1). A factor of
1
N on both sides of the division, because it will simplify upcoming derivations. Keep in mind that
we have full control over the standardization of y and chose to standardize it with a mean of 0 and
standard deviation of 1. First, it is useful to notice that the following portion of the numerator can
be expanded. For the computation of our final R2 we also need to take into account the prevalence
information for the respective trait. Therefore, we make use of a latent trait model correction as
described in earlier work which takes the prevalence of a trait into account [20]. Additionally, the
computations of the confidence intervals for the R2 were done using the Fisher transformation [19].

(ŷ −mŷ)
T
(y −my) = ŷTy − ŷTmy − yTmŷ +mT

ŷmy︸ ︷︷ ︸
=0, if y has a mean of zero.

Since y has a mean of zero, the numerator for r simplifies to 1
N ŷTy. This is equivalent to

βT
[
1
NXTy

]
, being the product of the weights and the summary statistics, which we can easily

compute. Next, we can split the 1
N factor into the roots of the denominator and realize that following

holds since we chose to standardize y with a standard deviation of 1.√
1
N (y −my)

T
(y −my) = 1

which further simplifies the equation for r. This leaves us with the task to determine a value for the
empirical standard deviation of ŷ, which we will denote with c, which we will now analyze.

c =

√
1
N (ŷ −mŷ)

T
(ŷ −mŷ)

c2 = 1
N (ŷ −mŷ)

T
(ŷ −mŷ)

Nc2 = ŷT ŷ − 2ŷTmŷ +mT
ŷmŷ

Here, we re-encounter the mean of the prediction, mŷ, but in this case, its effect does not factorize
out, like before. However, since we can standardize every variable in X to have a mean of 0, the
quantity turns out to be 0 for that case.

ŷi = xi
1β1 + xi

2β2 + xi
3β3 + . . .+ xi

MβM

mŷ ←
vectorize

1

N

N∑
i

ŷi =
1

N
[
(
x1
1 + . . .+ xi

1 + . . .+ xN
1

)
β1 + · · ·+

(
x1
j + . . .+ xi

j + . . .+ xN
j

)
βj

= +
(
x1
M + . . .+ xi

M + . . .+ xN
M

)
βM ]

0 =
(
x1
j + . . .+ xi

j + . . .+ xN
j

)︸ ︷︷ ︸
=0

βj

9



Computational verification confirmed this too. Therefore we can take mŷ to be 0 and simplify our
equation for c2, which together with the previous simplifies to equation for r into the follow.

r =
1
N ŷTy√
1
N ŷT ŷ

, with

{
ŷ = Xβ

c =
√

1
N ŷT ŷ

r =
1

c
βT

[
1
NXTy

]︸ ︷︷ ︸
sumstats

With this equation, it becomes apparent that, the only non trivial part of computing r is finding a
value of c. Thus our effort will now focus finding a good way of estimating c2. For this, we will
introduce some additional variables.

c2 = 1
N ŷT ŷ = βT

[
1
NXTX

]︸ ︷︷ ︸
D, full LD

β

Hence:

R2 =

(
βT

[
1
NXTy

])2

βTDβ
=

(
βT

∼
β
)2

βTDβ

Extended results

Trait GWAS reference GWAS sample size # GWAS variants # matched variants

Breast cancer (BRCA) Michailidou et al. [25] 137,045 / 119,078 11,792,542 1,114,424
Rheumatoid arthritis (RA) Okada et al. [29] 29,880 / 73,758 9,739,303 656,087
Type 1 diabetes (T1D) Censin et al. [8] 5913 / 8828 8,996,866 514,420
Type 2 diabetes (T2D) Scott et al. [39] 26,676 / 132,532 12,056,346 1,108,760
Prostate cancer (PRCA) Schumacher et al. [38] 79,148 / 61,106 20,370,946 1,115,688
Depression (MDD) Wray et al. [47] 59,851 / 113,154 13,554,550 1,103,440
Coronary artery disease (CAD) Nikpay et al. [27] 60,801 / 123,504 9,455,778 1,108,313
Asthma Demenais et al. [10] 19,954 / 107,715 2,001,280 980,430

Table S1: External GWAS summary statistics. Summary of the 8 external GWAS summary statistics used for this work,
with their respective abbreviations. The GWAS sample size is the number of cases / controls in the GWAS. Initial number of
GWAS variants is given and the number of variants after matching with our PPB dataset from the UK Biobank.
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Figure S1: The impact of the LD reference on the accuracy of the PPB approach. All the plots in this figure show the true
prediction R2 on the y-axis and the Estimated prediction R2 on the x-axis. The colors are used for the different prediction
approaches used in this simulation study. Lines along the diagonal are provided too. Hence, data-points close to the line
indicate good estimation of the R2.
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