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Abstract
Virtual screening is a critical step in drug dis-
covery, aiming at identifying potential drugs that
bind to a specific protein pocket from a large
database of molecules. Traditional docking meth-
ods are time-consuming, while learning-based ap-
proaches supervised by high-precision conforma-
tional or affinity labels are limited by the scarcity
of training data. Recently, a paradigm of fea-
ture alignment through contrastive learning has
gained widespread attention. This method does
not require explicit binding affinity scores, but it
suffers from the issue of overly simplistic con-
struction of negative samples, which limits their
generalization to more difficult test cases. In
this paper, we propose Drug-TTA, which lever-
ages a large number of self-supervised auxiliary
tasks to adapt the model to each test instance.
Specifically, we incorporate the auxiliary tasks
into both the training and the inference process
via meta-learning to improve the performance
of the primary task of virtual screening. Addi-
tionally, we design a multi-scale feature based
Auxiliary Loss Balance Module (ALBM) to bal-
ance the auxiliary tasks to improve their effi-
ciency. Extensive experiments demonstrate that
Drug-TTA achieves state-of-the-art (SOTA) per-
formance in all five virtual screening tasks under
a zero-shot setting, showing an average improve-
ment of 9.86% in AUROC metric compared to
the baseline without test-time adaptation. The
code is available at https://github.com/
ShenAoAO/Drug-TTA.git.
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1. Introduction
Virtual screening plays a crucial role in early drug discov-
ery by enabling the rapid identification of potential drug
candidates from vast small molecule libraries for further
validation (Patel et al., 2021; Schneider, 2010). The num-
ber of molecules in these libraries is increasing very fast,
with recent ones reaching billions of molecules (Zhou et al.,
2024). As a result, there is an urgent need for fast and
efficient virtual screening methods to keep pace with the
growing size of molecule libraries (Sadybekov & Katritch,
2023; Shen et al., 2024a).

Traditional virtual screening methods (Halgren et al., 2004;
Trott & Olson, 2010; Spitzer & Jain, 2012; Combs et al.,
2013) primarily rely on molecular docking software to pre-
dict binding conformations and estimate binding affinity by
calculating the binding energy. However, these methods
are often computationally expensive and time-consuming,
as they require sampling a large number of conformations
and evaluating each through complex scoring calculations
(Kitchen et al., 2004). With the advancement of deep learn-
ing(Yuan et al., 2023; Shen et al., 2024c), the majority of
current methods focus on using deep models to predict dock-
ing conformations (Cai et al., 2024; Zhang et al., 2023b) and
binding affinity (Zhang et al., 2023a; Kimber et al., 2021),
which significantly accelerates the screening process. How-
ever, these models are typically trained on positive pairs,
i.e., binding protein-molecule pairs, with available confor-
mational or binding affinity labels (Wang et al., 2005). As a
result, the scarcity of high-quality labeled data limits their
generalization ability. Furthermore, the absence of negative
pairs, i.e., non-binding protein-molecule pairs, makes the
training data have a large disparity with the inference data,
which requires the model to identify active molecules that
form positive pairs with the target protein from a large num-
ber of inactive molecules. Recently, a new structure-based
feature alignment paradigm (e.g., DrugCLIP (Gao et al.,
2024)) of virtual screening has emerged, which is free of
complex docking simulation and high-quality affinity la-
bels. Similar to other feature alignment approaches (e.g.,
CLIP (Hafner et al., 2021)), this paradigm maps molecules
and pockets into a shared feature space using deep neu-
ral networks and employs contrastive learning for training,
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Figure 1. Average feature distance between positive/negative pairs
in the training and inference stages. Positive and negative pairs re-
fer to binding and non-binding pair of protein pocket and molecule,
respectively. • and • points represent the average feature distance
for positive and negative pairs, respectively. (a) Training stage
(using training dataset in DrugCLIP (Gao et al., 2024)): Each batch
contains 48 positive pairs and 2,256 (48× 47) negative pairs. (b)
Inference stage (using DUD-E benchmark (Mysinger et al., 2012)):
There are 102 pockets and for each pocket a number of molecules
are provided to form positive and negative pairs with it.

where the binding pocket-ligand data in a batch are treated
as positive pairs and other pocket-ligand combinations in
the same batch are regarded as negative pairs. During in-
ference, it scores and ranks candidate molecules based on
the similarity between pocket and molecule features and se-
lects the molecules with high scores as the screening results.
However, this method explores the CLIP-based approach to
construct the positive and negative pairs for model training,
which leads to an inherent limitation in drug virtual screen-
ing. Specifically, negative pairs for a given pocket are
defined too simplistically, consisting of only molecules
binding to other pockets. In actual virtual screening tasks,
there are often challenging negative pairs, where the bind-
ing and non-binding molecules for a specific pocket exhibit
very similar physicochemical properties. This results in a
domain gap between the training and inference stages, mak-
ing it challenging for the model to generalize effectively. To
illustrate this problem, we conduct a simple statistical anal-
ysis for the training dataset in DrugCLIP (Gao et al., 2024)
and the DUD-E benchmark (Mysinger et al., 2012). We
calculate the average feature distance between positive pairs
and negative pairs of each training batch, and the results are
shown in Figure 1(a). The results reveal that distinguish-
ing positive and negative pairs during training is relatively
easy. Similarly, we calculate the average feature distance
between positive pairs and negative pairs for 102 pockets in
the DUD-E benchmark dataset, and the results are shown
in Figure 1(b). We can see that it is much more difficult to
distinguish positive and negative pairs since their feature
distances are much closer than that in the training stage.

To address this issue, one naive approach could be to en-
hance the training dataset with more challenging negative
pairs. However, designing negative pairs for training that
are consistent with those encountered at test time is unreal-

istic. Given that drug screening often presents a zero-shot
problem, where testing involves no labeled target-domain
data, tuning training data to simulate the target domain is
also not feasible. As Vladimir Vapnik (Vapnik, 2006) fa-
mously stated, “When solving a problem of interest, do
not solve a more general problem as an intermediate step.
Try to get the answer that you really need, not a more gen-
eral one.” An alternative approach is to design a network
that adapts to each test sample individually. We draw in-
spiration from the success of test-time adaptation (TTA) in
image classification tasks (Sun et al., 2020; Xiao & Snoek,
2024), which adapts a trained model to each test instance
during inference to make better predictions. TTA typically
leverages self-supervised auxiliary tasks during inference
to dynamically update the model parameters, enabling the
learning of feature representations tailored to individual test
instances. This approach requires no prior knowledge of the
test data distribution and instead adjusts model parameters
dynamically on a per-instance basis during inference. In
this paper, we propose Drug-TTA, which incorporates the
TTA approach into DrugCLIP (Gao et al., 2024) and sig-
nificantly boosts its performance on drug virtual screening.
This is the first work to introduce TTA into drug screening
to adapt the trained model to unseen instances at test time,
and the significant performance improvement demonstrates
its promise.

To leverage self-supervised learning-based TTA techniques
in virtual screening, we introduce five self-supervised auxil-
iary tasks for proteins and small molecules, encompassing
both fine-grained and coarse-grained tasks. To prevent the
model from overly favoring the auxiliary tasks, which could
negatively impact the performance of the primary task and
result in suboptimal outcomes, we explore a meta-learning
framework in Drug-TTA. During training, this framework
simulates the inference process by first updating the model
weights using auxiliary tasks and then applying the updated
model to the primary task. This process is consistently
followed throughout both training and inference, ensuring
that the primary task’s performance is effectively optimized
by the auxiliary tasks, while mitigating overfitting to the
auxiliary tasks. Furthermore, to better balance the auxil-
iary tasks, we design a multi-scale feature based Auxiliary
Loss Balance Module (ALBM), which flexibly adjusts the
weights of the auxiliary task loss during inference. This
method offers greater flexibility than manually designing
loss weights, and it is more effective than learning fixed
weights and can generalize more effectively to new input
samples during inference.

Our main contributions are summarized as follows:

• To the best of our knowledge, Drug-TTA is the first to
introduce TTA into the field of drug virtual screening
so that the trained model can be dynamically adapted
to each test instance during inference.
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• We introduce five self-supervised auxiliary tasks for
TTA in drug virtual screening, spanning both fine-
grained and coarse-grained tasks, enabling the model
to effectively adapt to test instances. Moreover, we
propose a meta-auxiliary learning strategy that allows
the model to learn how to leverage these auxiliary tasks
for parameter adjustment, thereby improving the per-
formance of the primary task during inference.

• We propose a multi-scale feature based ALBM to
balance the weights of self-supervised auxiliary task
losses according to the test instance features, which
outperforms directly assigning fixed weights.

• Drug-TTA achieves SOTA performance with signifi-
cant improvements across five virtual screening tasks,
showcasing its remarkable potential in drug virtual
screening, particularly with an average improvement
of 9.86% in the AUROC metric.

2. Related Work
Drug Virtual Screening: The goal of virtual screening is
to identify the most relevant molecules from a large molecu-
lar library that have the highest probability of binding to a
given protein pocket. Drug virtual screening methods can
be broadly categorized into traditional methods and deep
learning-based methods (Oliveira et al., 2023). Traditional
methods (Halgren et al., 2004; Trott & Olson, 2010; Spitzer
& Jain, 2012; Combs et al., 2013) rely on docking soft-
ware to assess the binding affinity between proteins and
ligands by extensively sampling and evaluating docking
conformations. However, these methods are heavily de-
pendent on the accuracy of scoring functions and require
complex structural sampling and energy calculations, which
reduce computational efficiency. In contrast, deep learning-
based methods can significantly accelerate the screening
process (Shen et al., 2024b; Du et al., 2025). Most of these
methods train a deep model to predict the binding affin-
ity between a molecule and a pocket in a supervised way
with available binding affinity labels (Öztürk et al., 2018;
Zheng et al., 2019; Jones et al., 2021) or calculating bind-
ing scores from known complex conformations (Cai et al.,
2024; Zhang et al., 2023b). Then the trained model can be
used to predict the binding affinity between a target pocket
and molecules in a large library and rank the molecules to
determine the best candidates. There are two issues in this
kind of method. First, it is usually difficult to obtain the
ground-truth affinity labels or conformation for supervised
learning. Another less obvious issue is that they rely on
positive pocket-ligand pairs for model training, and lack the
learning of negative pairs. This makes them less aligned
with most real virtual screening tasks, where the objec-
tive is to select molecules that can bind to a given pocket
from a large pool of candidate molecules, most of which

form negative pairs with the given pocket. A recent feature
alignment paradigm (Gao et al., 2024) avoids the need for
ground-truth affinity value by projecting the pocket and the
molecule representation into a common feature space and
scoring molecules directly based on their feature similarity
to the target pocket. However, this approach suffers from
overly simplistic negative pairs, which is inconsistent with
the real-world virtual screening task. To solve this issue, we
propose a self-supervised learning-based TTA approach to
dynamically adjust the model to each test instance, aiming
to enhance the performance in real virtual screening tasks.

Test-Time Adaptation: TTA is an emerging learning
paradigm that adapts the model to target data at test time
(Xiao & Snoek, 2024). TTA encompasses a variety of ap-
proaches (Xiao & Snoek, 2024), and the most widely used
approach is based on auxiliary tasks, which have found ex-
tensive application in fields such as image processing (Yeo
et al., 2023; Bahmani et al.; Park et al., 2024), video analysis
(Lin et al., 2023; Xiong et al., 2024; Yi et al., 2023), 3D
classification (Shim et al., 2025; Wang et al., 2024; Shin
et al., 2022) and so on. Most studies utilizing this approach
focus on how to design self-supervised learning tasks as
auxiliary tasks and how to couple them with the primary
task. For auxiliary task design, Varsavsky et al. (Varsavsky
et al., 2020) introduce a framework combining adversarial
loss with consistency regularization to enhance model adap-
tation at test time. CKEPE (Liu et al.) adapts the model by
utilizing multimodal representation learning, and NC-TTT
(Osowiechi et al., 2024) enhances self-adaptation by apply-
ing noise discrimination to the features. Besides designing
proper auxiliary tasks, another important issue is how to
couple them with the primary task to avoid overfitting the
auxiliary tasks while harming the performance of the pri-
mary task. For example, Liu et al. (Liu et al., 2023) propose
a novel meta-auxiliary learning framework aimed at opti-
mizing model adaptation specifically for test-time scenarios.
TT++ (Liu et al., 2021) proposes an online feature align-
ment strategy to align feature distributions at test time with
those at training time, effectively mitigating overfitting to
the auxiliary task. Point-TTA (Hatem et al., 2023) trains a
meta-auxiliary learning TTA approach for point cloud reg-
istration. In this paper, we propose an adaptive algorithm
for balancing self-supervised task losses, and utilize a meta-
learning training framework to avoid bias towards auxiliary
tasks.

3. Method
Given a protein pocket p and a set of candidate molecules
M = {m1,m2, . . . ,mn}, the goal of virtual screening is
to rank M according to their probability of binding with p.
In this work, we propose Drug-TTA, a test-time adaptation
(TTA)-based virtual screening framework, which consists
of a pocket encoder and molecule encoder, parameterized
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Figure 2. Overview of Drug-TTA. (a) Pipeline: The framework comprises two branches: a primary branch and an auxiliary branch. The
input pockets and molecules are first encoded by their respective encoders. Then, the primary branch computes a similarity score between
the encoded features of the pockets and the molecules to train the encoders through a contrastive loss. (b) Auxiliary branch: Pockets
and molecules go through their own auxiliary branches, which have identical architecture but different parameters and inputs. Both
auxiliary branches perform five self-supervised tasks, consisting of three fine-grained tasks and two coarse-grained tasks. Seven losses are
calculated from the five auxiliary tasks and they are weighted and balanced through the multi-scale feature based Auxiliary Loss Balance
Module (ALBM). This module concatenates features from the encoder’s top, middle, and final layers, reduces their dimensionality through
an MLP, and employs task-specific MLPs to generate adaptive weights for each loss. (c) Meta-learning TTA process: The training stage
consists of four steps: (1) The pocket-ligand pairs are encoded through their respective encoders, and auxiliary task loss is computed.
(2) The auxiliary loss is used to update the encoder’s layer norm weights. (3) The updated encoder is employed to perform the primary
task and calculate the primary loss. (4) All encoders are updated again by the primary loss. During the testing stage, the same pipeline
is followed, and for each test instance, the encoder weights are first updated by the auxiliary loss, and then the final similarity score is
calculated by the primary branch, which is used to rank the molecules.

by θp and θm, respectively. The two encoders are trained
to extract pocket and molecule features: Fθp (p) → fp;
Fθm (m)→ fm, and the molecules are ranked by the sim-
ilarity between fp and fm. Drug-TTA explores the TTA
technique to enhance the model’s generalization ability and
overall performance. The model architecture and the train-
ing and testing workflow are illustrated in Figure 2, and it is
further explained in the following three subsections.

In Section 3.1, we introduce the primary branch (Figure
2(a)), which learns feature alignment between pocket and
molecule features through contrastive learning. Section
3.2 introduces the five auxiliary tasks and explains how
we perform weight learning to balance them (Figure 2(b)).
Finally, in Section 3.3, we describe the training and testing
TTA process (Figure 2(c)).

3.1. Primary Branch

In this study, we follow the contrastive learning paradigm
of DrugCLIP (Gao et al., 2024) to construct the virtual
screening primary branch to perform the primary task. The

learning paradigm is briefly introduced below for complete-
ness.

First, both protein pockets and molecules are represented
at the atomic level, with atom types and 3D coordinates
fed into the protein/molecule encoder. In this study, we
follow the encoder architecture of Uni-Mol (Zhou et al.,
2023). Through the encoder, both atom features and pair-
wise features are generated. Specifically, the atom features
for pockets and molecules are encoded as fp and fm, re-
spectively. These representations are subsequently passed
through simple non-linear projection heads σp

pri and σm
pri,

yielding the final output features f ′
p and f ′

m.

During training, a contrastive learning approach is ex-
plored, where positive pairs are the input binding protein-
molecule pairs. Similar to CLIP (Hafner et al., 2021), an
in-batch sampling strategy is employed to generate negative
pairs. Specifically, given a batch of N input positive pairs
{(xp

k, x
m
k )}Nk=1, with the list of pockets {(xp

k)}Nk=1 and the
list of molecules {(xm

k )}Nk=1. The pockets and molecules
can be combined to N2 pairs (xp

i , x
m
j ), where i, j ∈ [1, N ],
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and pairs with i = j are positive pairs, while those with
i ̸= j serve as negative pairs.

The training loss consists of two parts: the Pocket-to-Mol
loss Lp

k = − 1
N

exp(s(xp
k, x

m
k )/τ)∑

i exp(s(x
p
k, x

m
i )/τ)

and the Mol-to-Pocket

loss Lm
k = − 1

N

exp(s(xp
k, x

m
k )/τ)∑

i exp(s(x
p
i , x

m
k )/τ)

, where s =
fT
p ·fm

∥fp∥∥fm∥ is
the similarity functions composed of both the dot product(·)
and cosine similarity, and τ represents the temperature pa-
rameter controling the softmax distribution. The former
measures the likelihood of ranking the binding molecule
higher than other molecules for a given protein, while the lat-
ter evaluates the probability of correctly ranking the binding
targets for a given molecule. By combining these two parts,
the primary branch training loss is obtained as follows:

Lpri =
1

2

N∑
k=1

(Lp
k + Lm

k ). (1)

3.2. Auxiliary Branch

In this work, we introduce five auxiliary self-supervised
tasks in the auxiliary branch to adapt the encoders to differ-
ent data during inference. These tasks consist of three fine-
grained tasks focusing on contextual information and two
coarse-grained tasks focusing on modeling global features.
The fine-grained tasks are masked atom type prediction,
corrupted coordinate reconstruction and distance prediction,
and the coarse-grained tasks are KL divergence minimiza-
tion and SimCLR contrastive learning (Chen et al., 2020).
These tasks generate seven distinct losses, with detailed
descriptions provided in the Appendix A.

To better balance the aforementioned self-supervised tasks
and their losses, one naive approach is to learn the weights
for different losses during training and fix them for testing.
However, this leads to overfitting of the weights to the train-
ing data, which contradicts the purpose of TTA—to adjust
the model for better alignment with testing conditions. To
this end, we propose the multi-scale feature based ALBM,
which adjusts the weight allocation at test time based on the
test instance’s own feature.

As shown in Figure 2(b), a transformer architecture is used
for both the protein and the molecule encoders, which con-
sist of multiple layers. To capture a comprehensive repre-
sentation of a test instance, we extract features from the top,
middle and last layers of the encoder, which are denoted
as ftop, fmid and flast, respectively, and concatenate them.
Subsequently, the concatenated features are passed through
seven independent MLP heads {MLPl} (l = 1, 2, .., 7),
each responsible for calculating a weight for one of the
seven losses. The weights {el} (l = 1, 2, ..., 7) are calcu-
lated as:

el = MLPl (Concat(ftop, fmid, flast)) . (2)

To prevent the model from collapsing during training and

balance the distribution of weights, we apply a softmax
function to constrain the weights, ensuring their sum equals
one. As a result, final weights {λl} (l = 1, 2, .., 7) for the
auxiliary task losses are mapped as follows:

λl = Softmax
(

1

2e2l

)
. (3)

The total auxiliary loss is formulated as:

Laux =λ1Ltype + λ2Lcoord + λ3Ldist

+ λ4LNX + λ5LNP + λ6Lkl + λ7Lsim.
(4)

3.3. Meta-learning TTA

Our goal is to leverage self-supervised auxiliary tasks to
adjust the encoder weights during inference, enabling the
model to quickly adapt its parameters for each test instance
without the need for additional labels. To prevent the param-
eters updated by the auxiliary loss from becoming overly
focused on improving the auxiliary tasks at the expense of
the primary task, as suggested in (Hatem et al., 2023), we
propose a meta-auxiliary task approach that jointly trains
both the main and auxiliary tasks. There are three groups of
parameters in the whole model, the pocket/molecule encoder
parameters θp/θm, the pocket/molecule auxiliary branch
head parameters σp

aux/σ
m
aux, and the pocket/molecule pri-

mary branch output head parameters σp
pri/σ

m
pri. We define

three sets of parameters according to their different updating
mechanism in training and inference. The updated param-
eter set in primary branch is θpri = {θp, θm, σp

pri, σ
m
pri},

while the updated parameter sets in protein and molecule
auxiliary branch are θpaux = {ϕp

norm, σp
aux} and θmaux =

{ϕm
norm, σm

aux}, where ϕp
norm and ϕm

norm are the parame-
ters of normalization layers in θp and θm.

As shown in Figure 2(c), the training and testing processes
are largely similar, with the key difference occurring after
the primary task is executed. During training, the encoder
weights are updated based on the primary task loss by ad-
justing θpri. In contrast, during testing, the model directly
outputs the similarity score for the primary task without
further updating the encoder weights.

Training: The initial weights for both encoders are obtained
from pre-training on a large-scale dataset by Uni-Mol (Zhou
et al., 2023). A batch of sample pairs {(xp

k, x
m
k )}Nk=1 is in-

put, and the molecules and the pockets are separated and fed
into their respective encoders and auxiliary task branches.
The normalization layer parameters ϕp

norm and ϕm
norm, as

well as head parameters σp
aux and σm

aux are updated based
on respective auxiliary task losses Lp

aux and Lm
aux:

{ϕp
norm, σp

aux} ← {ϕp
norm, σp

aux} − α∇θLp
aux

{ϕm
norm, σm

aux} ← {ϕm
norm, σm

aux} − α∇θLm
aux,

(5)
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where α is the learning rate for auxiliary tasks.

As the primary branch has been updated by ϕp
norm and

ϕm
norm, the primary task loss is used to update all parameters

of the primary branch:

θpri ← θpri − β∇θLpri, (6)

where β is the learning rate for the primary task.

Testing: During testing, all trained model parameters are
used. When a pocket p and a set of candidate molecules
M are input, the normalization layer parameters as well
as head parameters are first updated via the auxiliary tasks.
Then, the updated encoders are directly used to perform
the primary task. For the inference of a new iteration, the
original parameters are reloaded to prevent accumulation
offsets. Pseudo code for the training and the testing process
are listed in Appendix C.

4. Experiments
To evaluate the performance of our method, we first as-
sess the zero-shot performance of Drug-TTA on five virtual
screening benchmarks: DUD-E (Mysinger et al., 2012),
LIT-PCBA (Tran-Nguyen et al., 2020), AD (Chen et al.,
2019), DEKOIS 2.0 (Bauer et al., 2013), and CASF-2016
(Su et al., 2018), comparing it with existing methods in
Section 4.1. Here, ”zero-shot” refers to the setting where
the model is tested on entirely unseen protein pockets with-
out using any labeled samples from the target benchmarks.
Each virtual screening benchmark consists of multiple pock-
ets, with each pocket corresponding to various active and
inactive molecules (decoys). The task of virtual screening
is to rank molecules such that active ones that bind to the
corresponding pocket are placed at the top. To evaluate
screening effectiveness, we use AUROC, BEDROC, and
EF as our evaluation metrics. BEDROC is an improved
version of AUROC, incorporating exponential weighting
to emphasize to early rankings, while EF is a widely used
virtual screening metric. Detailed definitions of evaluation
metrics are in Appendix F. For training, we use the dataset
from DrugCLIP (Gao et al., 2024), and when evaluating on
each benchmark, we exclude it from the training datasets
and retrain Drug-TTA. The hyperparameter settings for both
training and testing are provided in Appendix E. Further-
more, we conduct ablation studies on key components, as
detailed in Section 4.2. The visualization results can be
found in Section 4.3.

4.1. Evaluation on virtual screening benchmarks

DUD-E Benchmark (Mysinger et al., 2012): DUD-E
(Directory of Useful Decoys, Enhanced) Benchmark is
a widely used virtual screening performance evaluation
dataset. DUD-E contains 102 protein pockets and 22,886
active molecules, with an average of 224 active molecules

Table 1. Results on DUD-E. AUROC, BEDROC, and EF are re-
ported (higher values indicate better performance). Bold values
represent the best performance, and green indicates improvements
of Drug-TTA over DrugCLIP.

EFMethod AUROC(%) BEDROC(%) 0.50% 1% 5%

Glide-SP 76.70 40.70 19.39 16.18 7.23
Vina 71.60 - 9.13 7.32 4.44

NN-score 68.30 12.20 4.16 4.02 3.12
RFscore 65.21 12.41 4.90 4.52 2.98
Pafnucy 63.11 16.50 4.24 3.86 3.76

OnionNet 59.71 8.62 2.84 2.84 2.20
Planet 71.60 - 10.23 8.83 5.40

DrugCLIP 80.93 50.52 38.07 31.89 10.66

Drug-TTA 93.16 82.82 57.50 54.04 16.88
(↑12.23) (↑32.30) (↑19.43) (↑22.15) (↑6.22)

per pocket. Each active molecule corresponds to 50 decoys,
which are inactive molecules with similar physicochemical
properties but different 2D topologies.

As shown in Table 1, we evaluate our method in a zero-
shot setting and compare its performance with docking-
based (Glide-SP (Halgren et al., 2004), Vina (Trott & Ol-
son, 2010)), learning-based (NN-score (Durrant & McCam-
mon, 2011), RFscore (Ballester & Mitchell, 2010), Pafnucy
(Stepniewska-Dziubinska et al., 2018), OnionNet (Zheng
et al., 2019), Planet (Zhang et al., 2023a), and feature align-
ment method (DrugCLIP (Gao et al., 2024)). The results
clearly indicate that the feature alignment paradigm out-
performs the other paradigms, showing that this paradigm
is more suitable for virtual screening. Compared to Drug-
CLIP, our method demonstrates a substantial performance
improvement on all metrics, particularly in BEDROC, where
we can observe an increase of 32.30%. This highlights that
the TTA technique significantly enhances the model’s gen-
eralization performance on unseen data.

LIT-PCBA Benchmark (Tran-Nguyen et al., 2020): LIT-
PCBA (Large-scale Interaction and Toxicity Prediction for
Chemical Bioactivity Assays) is a more challenging bench-
mark for virtual screening, designed to address the data bias
issues found in other benchmarks such as DUD-E. It con-
tains 15 pocket targets, 7,844 active molecules and 407,381
unique inactive molecules selected from high-confidence
PubChem Bioassay data.

As shown in Table 2, we compare our method with docking-
based methods (Surflex (Spitzer & Jain, 2012), Glide-SP
(Halgren et al., 2004)), learning-based methods (Planet
(Zhang et al., 2023a), Gnina (McNutt et al., 2021), Deep-
DTA (Öztürk et al., 2018), BigBind (Brocidiacono et al.,
2023)), SPRINT (McNutt et al., 2024)) and feature align-
ment method (DrugCLIP (Gao et al., 2024)). The results
demonstrate that our method significantly improves the per-
formance of DrugCLIP by a large margin, achieving SOTA
performance across all metrics, with a particularly notable
improvement in the EF metric with an order-of-magnitude
enhancement.
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Table 2. Results on LIT-PCBA. AUROC, BEDROC, and EF are
reported (higher values indicate better performance). Bold values
represent the best performance, and green indicates improvements
of Drug-TTA over DrugCLIP.

EFMethod AUROC(%) BEDROC(%) 0.50% 1% 5%

Surflex 51.47 - - 2.50 -
Glide-SP 53.15 4.00 3.17 3.41 2.01

Planet 57.31 - 4.64 3.87 2.43
Gnina 60.93 5.40 - 4.63 -

DeepDTA 56.27 2.53 - 1.47 -
BigBind 60.80 - - 3.82 -
SPRINT 73.4 12.3 15.90 10.78 5.92

DrugCLIP 57.17 6.23 8.56 5.51 2.27

Drug-TTA 71.24 45.08 74.39 42.74 10.61
(↑14.07) (↑38.85) (↑65.83) (↑37.23) (↑8.34)

Table 3. Results on AD, DEKOIS 2.0, and CASF-2016. AUROC,
BEDROC, and EF are reported (higher values indicate better per-
formance). Bold values represent the best performance, and green
indicates improvements of Drug-TTA over DrugCLIP.

EFDataset Method AUROC(%) BEDROC(%) 0.50% 1% 5%

AD
DrugCLIP 81.19 52.04 20.50 18.00 9.10

Drug-TTA 92.62 86.73 32.54 30.51 15.29
(↑11.43) (↑34.69) (↑12.04) (↑12.51) (↑6.19)

DEKOIS 2.0
DrugCLIP 77.98 47.32 18.48 17.02 8.52

Drug-TTA 83.61 73.64 26.41 25.64 13.06
(↑5.63) (↑26.32) (↑7.93) (↑8.62) (↑4.54)

CASF-2016
DrugCLIP 85.92 67.88 36.19 34.19 12.93

Drug-TTA 91.88 85.72 42.73 41.34 16.04
(↑5.96) (↑17.84) (↑6.54) (↑7.15) (↑3.11)

AD Benchmark (Chen et al., 2019): This dataset is an
improvement over DUD-E. Specifically, it reduces negative
target bias by using active molecules from other targets
as decoys for the current target. For each target, active
molecules from 101 other targets are selected and docked in
101 separate batches, with the top 50 molecules by affinity
chosen in each batch. This results in an average of 5,000
molecules used as decoys for each target. The comparison
of our method with DrugCLIP is shown in Table 3. It can
be observed that applying the TTA strategy significantly
enhances the model’s performance. When comparing the
results in Table 1, we find that the improvements in the AD
dataset over DUD-E have a minimal impact on the AUROC
and BEDROC metrics for both DrugCLIP and Drug-TTA,
but they significantly affect the EF metric.

DEKOIS 2.0 Benchmark (Bauer et al., 2013): DEKOIS
2.0 is a dataset specifically designed for evaluating virtual
screening methods in drug discovery. It consists of 81 tar-
gets from different protein families, with each target having
40 active ligands and 1,200 decoys. As shown in Table 3,
Drug-TTA outperforms DrugCLIP across all metrics, with a
particularly notable improvement of 26.32% in BEDROC.

CASF-2016 Benchmark (Su et al., 2018): CASF-2016
Benchmark provides 57 targets for virtual screening
tasks, with each target containing approximately 5 active

Table 4. Ablation Study on Various Aspects. ”w/o” indicates the
removal of the respective component compared to Drug-TTA.

EF
Ablation aspects Method AUROC(%) BEDROC(%)

0.50% 1% 5%

-
DrugCLIP 80.93 50.52 38.07 31.89 10.66

Drug-TTA 93.16 82.82 57.50 54.04 16.88

Weights Allocation

weights=1 83.63 51.75 39.15 33.05 11.29

fixed weight 71.13 64.30 51.69 42.40 12.09

w/o weight regularization 78.44 41.55 31.77 25.95 9.40

Self-Supervised
Task Selection

w/o coarse-grained tasks 82.22 53.25 39.87 33.89 11.47

w/o fine-grained tasks 79.35 41.77 31.58 26.05 9.53

Auxiliary Branch
Selection

w/o pocket TTA 83.64 55.00 40.41 35.35 11.96

w/o molecule TTA 79.85 41.55 31.24 26.08 9.49

Multi-scale Feature
Layer Selection

w/o middle and last layers 83.55 58.12 43.54 36.95 12.47

w/o top and last layers 84.38 59.78 45.42 38.31 12.56

w/o top and middle layers 84.19 59.67 44.25 38.67 12.51

w/o last layer 89.62 68.64 49.55 43.89 14.59

w/o top layer 89.11 78.12 54.89 50.44 16.07

w/o middle layer 82.60 67.09 50.98 43.92 13.47

Meta-learning w/o meta-learning 80.19 40.90 31.19 25.14 9.46

molecules and 280 inactive molecules. Table 3 shows
that Drug-TTA outperforms DrugCLIP across all metrics,
demonstrating that TTA effectively enables the model to
adapt to unseen datasets.

4.2. Ablation study

Weights Allocation: We conduct ablation experiments on
the allocation of weights across different auxiliary task
losses, and the results are shown in Table 4. First, we
evaluate the model’s performance without any weight allo-
cation for the self-supervised tasks by setting all weights
to 1 (the row “weights=1”), and the results indicate that
the improvement over the baseline model (DrugCLIP) is
minimal. Next, we evaluate the model’s performance when
using fixed weights after training, as shown in the row “fixed
weight”. Compared to DrugCLIP, we observe significant im-
provements across most metrics, except for AUROC, though
the improvements are not as substantial as those seen with
Drug-TTA. Furthermore, we assess whether using regular-
ization constraints on the weights affects performance. The
results in the row “w/o weight regularization” demonstrate
that the absence of regularization leads to the failure of
the TTA strategy, highlighting the importance of weight
regularization.

Self-Supervised Task Selection: Given the large number
of tasks used in Drug-TTA, we focus on ablation experi-
ments involving the coarse-grained and fine-grained tasks.
As shown in Table 4, using only fine-grained tasks (“w/o
coarse-grained tasks”) still results in performance improve-
ments over DrugCLIP, although the gains are smaller. In
contrast, when only coarse-grained tasks are used, the per-
formance decreases compared to DrugCLIP. Significant per-
formance gains are only achieved when both coarse-grained
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AUROC:89.12%
BEDROC:78.54%

AUROC:51.40%
BEDROC:1.51%

DrugCLIP Drug-TTA

(b) DHI1

AUROC:46.99%
BEDROC:0.61%

AUROC:93.49%
BEDROC:85.54%

(a) CP3A4

DrugCLIP Drug-TTA Pocket 
Positive molecule 
Negative molecule 

Figure 3. Visualization of feature distributions for the targets CP3A4 (a) and DHI1 (b) using DrugCLIP and Drug-TTA models. The red
points represent pocket features, blue points denote active molecule features, and gray points indicate inactive molecule features.

Sample Weights allocation

�� �2 �3 �4 �5 �6 �7

511.67 1.82 8 27

496.74 4.52 13 25

401.47 2.28 4 17

468.59 3.72 13 27

Molecule 
weight

LogP Rotatable 
bonds

Carbon 
atom count

0.1104

0.1053

0.1102

0.1091

0.1434

0.1471

0.1438

0.1439

0.1450

0.1449

0.1464

0.1439 0.1455

0.1497

0.1471

0.1483 0.2154

0.2193

0.2047

0.2264

0.1235

0.1230

0.1304

0.1182

0.1141

0.1133

0.1148

0.1131

Figure 4. Weight allocation heatmap of four molecules in TTA
and their molecular properties. The heatmap illustrates the weight
allocation for four molecules during the TTA process. The cor-
responding molecular properties include molecular weight, LogP,
the number of rotatable bonds, and carbon atom count, shown
alongside the molecular structures.

and fine-grained tasks are combined (Drug-TTA), demon-
strating the value of combining these task types for a more
comprehensive learning of instance features. More details
on the combination ablation of self-supervised tasks can be
found in Appendix D.

Auxiliary Branch Selection: Drug-TTA applies TTA to
fine-tune the encoders for both the pocket and molecule
branches. As shown in Table 4, we evaluate the model’s per-
formance when TTA is applied to only one encoder—either
the molecule encoder (“w/o pocket TTA”) or the pocket
encoder (“w/o molecule TTA”). The results show that ex-
cluding TTA from either encoder results in a performance
decrease. Notably, applying TTA only to the pocket encoder
results in worse performance than DrugCLIP, indicating
that model adjustment requires simultaneous fine-tuning of
paired data encoders to achieve optimal results.

Multi-scale Feature Layer Selection: In the process of
generating loss weights controlled by instance features, our
approach concatenates features from the encoder’s top, mid-
dle, and last layers. We perform an ablation study on the
selection of these layers, and the results are shown in Table
4. The results indicate that combining features from all
three layers provides the best representation of the sample’s
features. Notably, the middle layer features demonstrate

greater importance than those from the top and last layers.
For further insights of these three layers, additional t-SNE
visualizations refer to Appendix G.

Meta-learning: To verify that meta-learning can effectively
prevent the model from becoming biased toward the auxil-
iary task and producing suboptimal results, we conduct an
ablation experiment on the meta-learning approach, with the
results shown in Table 4. The results indicate that without
the meta-learning based TTA approach (w/o meta-learning),
the model’s performance is even lower than DrugCLIP, sug-
gesting that this approach leads to a performance decline in
the primary task.

4.3. Visualization

We visualize the embeddings of two pocket targets and their
corresponding molecules from the DUD-E dataset in Fig-
ure 3. The t-SNE plot illustrates both the pocket features
and their corresponding active and inactive features. The
visualization clearly demonstrates that, compared to Drug-
CLIP, Drug-TTA significantly enhances the separability of
active and inactive molecule features. Notably, the active
molecule points are more tightly clustered around the pocket
feature points, indicating that Drug-TTA improves feature
alignment. Moreover, the performance metrics, including
AUROC and BEDROC, show substantial improvements,
with BEDROC increasing by an order of magnitude. This
effect aligns with our objective of using feature alignment
to identify molecules similar to a given pocket feature for
virtual screening.

Furthermore, we analyze the weight allocation across dif-
ferent molecules. Figure 4 presents the heatmap of the
weight distributions for four molecules with distinct chem-
ical properties. This heatmap illustrates how the weight
distribution varies according to different tasks, with the
model adjusting the weight based on the inherent features of
the test molecules. The varying weight assignments across
molecules highlight the model’s ability to dynamically al-
locate weight according to each sample, thereby allowing
for more accurate focus on the most relevant features to
improve performance.
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5. Conclusion
In this paper, we introduce TTA for virtual screening for
the first time. This approach effectively mitigates the is-
sue of overly simplistic negative samples in the baseline
model during training and better aligns with real-world vir-
tual screening scenarios. Specifically, in such scenarios,
both pockets and candidate molecules are unseen, and a
large number of molecules fail to bind to the given pocket.
Ablation study reveals that simply applying TTA to virtual
screening is not sufficient. In our proposed framework, we
incorporate abundant self-supervised auxiliary tasks and de-
sign an innovative module, multi-scale feature based ALBM,
to generate weights for auxiliary task losses based on the
features of each instance at test time, effectively addressing
the task balancing issue. To further leverage the informa-
tion from auxiliary tasks to improve the primary task, we
adopt a meta-learning strategy to better couple the training
and inference processes of both the primary task and the
auxiliary tasks, preventing model bias towards the auxiliary
tasks, which may negatively affect the primary task’s perfor-
mance. Significant performance improvement over current
SOTA methods is achieved by the proposed method, which
shows its great potential in virtual screening applications. In
addition, this study shows the importance of TTA in virtual
drug screening and this finding may spur many future work
in this direction.
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A. Auxiliary losses
In this work, we introduce five auxiliary self-supervised tasks in the auxiliary branch to adapt the encoders to different data
during inference. These tasks consist of three fine-grained tasks focusing on contextual information and two coarse-grained
tasks focusing on modeling global features. The fine-grained tasks are masked atom type prediction, corrupted coordinate
reconstruction and distance prediction, and the coarse-grained tasks are KL divergence minimization and SimCLR contrastive
learning (Chen et al., 2020).

Masked atom type reconstruction: This task aims to recover the atom type of masked atoms in a sample, mainly leveraging
the local context provided by surrounding atoms. By doing so, it helps the encoder learn the relationships of chemical
nature between atoms. The process begins by randomly masking a subset of atoms in the molecule or protein pocket.
Some of the masked atoms are replaced with a special [MASK] token, while others are substituted with random tokens
(Zhou et al., 2023). These masked molecules or pockets are then passed through their respective encoders to extract feature
representations. Subsequently, the extracted features are fed into a prediction head to predict the original atomic types at the
masked positions. The loss function is based on the negative log-likelihood of the predicted atomic types at the masked
positions. Formally, the loss is expressed as:

Ltype = −
A∑
i=1

log(p(t̂i|ti)), (7)

where t̂i is the predicted atom type for the i-th masked atom, ti is the ground-truth atom type, p(t̂i|ti) is the predicted
probability, and A is the total number of masked atoms. Following Uni-Mol (Zhou et al., 2023), an additional loss, LNX is
introduced to normalize masked atom features.

The following two reconstruction tasks follow this process, where the encoder output is used along with a prediction head
for the reconstruction task, but with distinct output heads, each comprising a specific MLP.

Corrupted coordinate reconstruction: Building upon the previous task, this task is to reconstruct the 3D coordinates
of the masked atoms, further enhancing the model’s ability to understand spatial relationships and molecules’ or pockets’
geometry. Specifically, the same subset of masked atoms is considered, but their coordinates are now perturbed following the
corrupted position generation and assignment algorithm of Uni-Mol (Zhou et al., 2023). The loss for this task is computed
by comparing the predicted coordinates with the ground-truth coordinates and is defined as:

Lcoord =
1

A

A∑
i=1

LSmoothL1(ĉi|ci), (8)

where ĉi and ci are the predicted and ground-truth coordinate for the i-th masked atom, respectively.

Distance reconstruction: This task aims to predict the distances between pairs of masked atoms in the pockets or molecules,
thus helping the model learn how atoms interact with each other in terms of their relative spatial positioning. For this task,
all pairwise distances involving masked atoms from the previous task need to be reconstructed. The loss is calculated by
comparing the predicted distances with the true ones and is defined as:

Ldist =
1

B

B∑
i=1

LSmoothL1(d̂i|di), (9)

where d̂i and di are the predicted and ground-truth distance for the i-th pair to be reconstructed, and B is the total number of
pairs that need to be reconstructed. To normalize masked pairwise features, an additional loss, LNP is introduced following
Uni-Mol (Zhou et al., 2023).

KL divergence minimization: This task encourages the model to learn a feature distribution that closely approximates a
uniform distribution. As a result, the model is forced to learn more diverse feature representations, rather than excessively
relying on specific patterns or features. Consequently, this regularization approach helps improve the model’s generalization
ability, enabling it to perform more effectively on unseen data. The KL loss LKL is computed as the KL divergence between
the softmaxed logits of latent features and a uniform distribution:

Lkl = KL (softmax(Z)/τkl ∥ U/τkl) , (10)
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where Z = {(fp
k )}Nk=1 or {(fm

k )}Nk=1 represents the latent features of the pockets or molecules, which are the output of
their respective encoders, and τkl is a temperature scaling factor.

SimCLR contrastive learning: This contrastive learning task encourages the model to learn representations where similar
pockets or molecules are mapped closer together in the feature space, while dissimilar pockets or molecules are pushed
farther apart. This task enhances the model’s ability to distinguish between different types of samples. Specifically, through
the aforementioned reconstruction tasks, we obtain masked pockets {(x̂p

k)}
N

k=1
or molecules {(x̂m

k )}Nk=1, which include both
masked types and corrupted coordinates. These original and masked versions are treated as two distinct views of a pocket
or a molecule. The features for each view are generated by their respective encoders, denoted as zk ∈ Z = {(fp

k )}Nk=1 or

{(fm
k )}Nk=1 and ẑk ∈ Ẑ =

{(
f̂p
k

)}N

k=1
or

{(
f̂m
k

)}N

k=1
, respectively. SimCLR aims to minimize the distance between the

original and masked versions of these two views fp
i and f̂p

i (fm
i and f̂m

i ) while maximizing the distance between them and
all other views, fp

i and f̂p
j (fm

i and f̂m
j ) where i ̸= j. The SimCLR loss can be formulated as follows:

Lsim = E(zi∼Z,ẑj∼Ẑ)
[
ℓzi,ẑj

]
,

ℓzi,ẑj = − log
exp

(
sim

(
ℓzi,ẑj

)
/τsim

)∑
i ̸=j exp

(
sim

(
ℓzi,ẑj

)
/τsim

) , (11)

where sim(·) denotes the dot product and τsim is a temperature scaling factor.

B. The hyperparameter settings
The hyperparameter settings for the main branch are exactly the same as those used in DrugCLIP(Gao et al., 2024), and the
hyperparameter settings for the auxiliary branch model are shown in Table 5. To ensure that the losses from different tasks
are on the same scale, we multiply each loss by a weight that controls the scale of each respective loss.

Table 5. Hyperparameter settings for auxiliary branch model.

Hyperparameter Value

τkl 1.0
τsim 0.007

Layers of weights allocation MLP 2
Layers of cat multi-layers of encoder MLP 3

Mask ratio 0.15
Corrupted distance [-1,1]

Vocabulary size (atom types) 30 (molecule) / 9 (pocket)
Gradient clip norm 1.0

Embedding dim of coarse-grained tasks 128
Embedding dim of fine-grained tasks 512

Control weight for 1.0 (molecule) / 1.0 (pocket)
Control weight for Ltype 5 (molecule) / 1.0 (pocket)
Control weight for Lcoord 10 (molecule) / 1.0 (pocket)
Control weight for Ldist 0.01 (molecule) / 0.01 (pocket)
Control weight for LNX 0.01 (molecule) / 0.01 (pocket)
Control weight for LNP 0.01 (molecule) / 0.01 (pocket)
Control weight for Lkl 1000 (molecule) / 1000 (pocket)

Control weight for Lsim 0.01 (molecule) / 0.01 (pocket)

13



Drug-TTA: Test-Time Adaptation for Drug Virtual Screening

C. Pseudo code
Pseudo codes for the training and the testing process are listed in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1 Training stage
Require: {(xp

k, x
m
k )}Nk=1: pairs of molecules and pockets; α, β: learning rates

Initialize the network with pre-trained weights θm, θp

for batched pairs do
Conduct auxiliary tasks in molecule branch: Lm

aux

Update parameters of auxiliary branch heads and encoder layer norm:
{ϕm

norm, σm
aux} ← {ϕm

norm, σm
aux} − α∇θLm

aux

Conduct the auxiliary tasks in pocket branch: Lp
aux

Update parameters of auxiliary branch heads and encoder layer norm:
{ϕp

norm, σp
aux} ← {ϕp

norm, σp
aux} − α∇θLp

aux

Update the primary task using the adapted parameters and update:
θpri ← θpri − β∇θLpri

end for
Return θpri, θ

m
aux, θ

p
aux

Algorithm 2 Testing stage
Require: An interesting pocket p and a set of candidate molecules M = {m1,m2, . . . ,mn}; η: learning rate

Initialize the network with trained weights θpri
for batched molecules in M do

Conduct auxiliary tasks in molecule branch: Lm
aux

Update parameters of auxiliary branch heads and encoder layer norm:
{ϕm

norm, σm
aux} ← {ϕm

norm, σm
aux} − η∇θLm

aux

end for
Conduct the auxiliary tasks in pocket branch: Lp

aux

Update parameters of auxiliary branch heads and encoder layer norm:
{ϕp

norm, σp
aux} ← {ϕp

norm, σp
aux} − η∇θLp

aux

Complete the primary task using the adapted parameters and compute scores:
Scores = Similarity(Fθp(p), Fθm(M))
Reload θpri to prevent accumulation of offsets
Return Predicted scores for each molecule
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D. Additional ablation study
We conduct ablation experiments on the selection of various auxiliary tasks, as shown in Table 6. Ltype and LNX are closely
related, while Lcoord, Ldist and LNP are also tightly linked. The ablation results reveal that without Ltype and LNX , the
model fails to converge, as demonstrated by the last two rows. The other results indicate that the inclusion of each loss term
is meaningful.

Each row of the ablation study is explained in detail as follows:

• w/o Lkl: Drug-TTA without the KL loss

• w/o Lsim: Drug-TTA without the SimCLR loss

• w/o Ltype LNX : Drug-TTA without the masked atom type construction loss and atom feature normalization loss

• w/o Lcoord Ldist LNP : Drug-TTA without the corrupted coordinate reconstruction loss, distance reconstruction loss,
and pairwise normalization loss

• w/o Lcoord Ldist LNX LNP : Drug-TTA without the corrupted coordinate reconstruction loss, distance reconstruction
loss, atom feature normalization loss and pairwise feature normalization loss

• w/o LNX LNP : Drug-TTA without the atom feature normalization loss and pairwise feature normalization loss

• w/o Ltype LNX LNP : Drug-TTA without the masked atom type construction loss, atom feature normalization loss and
pairwise feature normalization loss

Table 6. Ablation study on self-supervised tasks.

EFMethod AUROC(%) BEDROC(%) 0.50% 1% 5%

DrugCLIP(Gao et al., 2024) 80.93 50.52 38.07 31.89 10.66
Drug-TTA 93.16 82.82 57.50 54.04 16.88

w/o coarse-grained tasks 82.22 53.25 39.87 33.89 11.47
w/o fine-grained tasks 79.35 41.77 31.58 26.05 9.53

w/o Lkl 88.38 69.72 50.30 44.61 14.60
w/o Lsim 83.71 54.76 41.59 35.09 11.60

w/o Ltype LNX 86.85 68.28 49.77 44.46 14.03
w/o Lcoord Ldist LNP 83.12 64.22 46.38 41.05 13.69

w/o Lcoord Ldist LNX LNP 79.58 40.81 29.43 24.86 9.52
w/o LNX LNP - - - - -

w/o Ltype LNX LNP - - - - -

Furthermore, we conduct an ablation study on the times of TTA fine-tuning for the encoder. We compare the performance of
performing two adjustments to the molecule encoder before applying it to the primary task, as shown in Table 7. The results
reveal that multiple adjustments yield inferior performance compared to a single update.

Table 7. Ablation study on TTA fine-tuning times.

EFMethod AUROC(%) BEDROC(%) 0.50% 1% 5%

DrugCLIP(Gao et al., 2024) 80.93 50.52 38.07 31.89 10.66
Drug-TTA 93.16 82.82 57.50 54.04 16.88

TTA 2times 84.04 71.76 54.97 47.13 14.03
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E. Details of training and testing
During both training and testing, we utilize the DrugCLIP dataset, which is derived from the PDBBind dataset (Wang et al.,
2005) and augmented through the identification of homologous proteins. To achieve a zero-shot setup, we exclude any
overlapping data from the benchmark dataset when evaluating on different datasets. In the training phase, we optimize the
primary task using the AdamW optimizer with a learning rate of 1e-3 and a batch size of 48, with acceleration provided by
an NVIDIA A40 GPU. For optimizing the auxiliary branch, we use the SGD optimizer, setting the learning rate for the
molecule branch at 1e-3 and the pocket branch at 1e-4. During inference, we update only the auxiliary branch, continuing
with the SGD optimizer; the learning rate for the molecule branch is set at 0.005, while the pocket branch’s learning rate is
0.0001, and the batch size is increased to 64.

In the zero-shot inference process, DrugCLIP has not been evaluated on the AD, DEKOIS 2.0, and CASF-2016 benchmarks.
The results on these three datasets are based on our own inference, while results on the other two datasets, including those
of the comparison methods, are sourced from the original DrugCLIP paper. We reassess the overlap of data between the
DrugCLIP training set and these three benchmarks. It is found that there is no data overlap between AD and CASF-2016,
so we use the weights provided by DrugCLIP for inference on these two benchmarks. For DEKOIS 2.0, we remove the
overlapping data and retrained the DrugCLIP model using its original hyperparameters.

16



Drug-TTA: Test-Time Adaptation for Drug Virtual Screening

F. Evaluation metrics
BEDROC (Boltzmann-Enhanced Discrimination of Receptor-Ligand Interactions): BEDROC is a metric frequently
applied in virtual screening, especially in drug discovery. It emphasizes the early-ranked molecules by incorporating an
exponential weighting factor. The purpose of BEDROC is to evaluate the binding efficacy of molecules to the target,
focusing primarily on the pocket-ligand interactions, while considering the relative importance of molecules ranked earlier
in the screening process. BEDROC85 is a common variant of BEDROC where the top 2% of candidates contribute 80% of
the BEDROC score. The formula for BEDROC is defined as:

BEDROCα =

∑N
i=1 exp

(
−αri

N

)
Zα

(
1−exp(−α)
exp(α/N)−1

) × Zα sinh
(
α
2

)
cosh

(
α
2

)
− cosh

(
α
2 − αZα

) +
1

1− exp (α(1− Zα))
, (12)

where α is the parameter controlling the sensitivity of the metric to the early ranks in the list (typically ranges from 1 to 100),
N is the number of compounds being considered, ri is the rank of the i-th compound in the list, and Zα is a normalization
constant.

EF (Enrichment Factor): The Enrichment Factor (EF) is another commonly used metric for assessing how well active
compounds are enriched within the top-ranked molecules from virtual screening. A higher EF suggests that the top-ranked
molecules are more likely to be active. The EF is calculated as follows:

EFα =
NTBα

α ·NTBt
, (13)

where NTBα is the count of active molecules in the top α% and NTBt is the total number of active compounds.

ROC Enrichment Metric (RE): The ROC enrichment metric (RE) is used to measure the ratio of the true positive rate to
the false positive rate (FPR) at a specific threshold. It is defined as:

RE(x%) =
n · TP

P · FPx%
, (14)

where n is the total number of compounds, TP refers to the true positive compounds correctly identified as active, P is the
total number of active compounds, and FPx% is the number of false positives predicted at a given threshold.

We add the comparison results between Drug-TTA and DrugCLIP on the RE metric across five tasks, as shown in Table 8. It
can be observed that incorporating the TTA strategy significantly improves the performance.

Table 8. Additional results on RE metric.

Dataset Method RE
0.50% 1% 2% 5%

DUD-E DrugCLIP 73.97 41.79 23.68 11.16
Drug-TTA 144.38 77.48 40.9 17.09

LIT-PCBA DrugCLIP 9.03 5.54 3.46 2.27
Drug-TTA 77.38 44.04 23.78 10.74

AD DrugCLIP 52.44 33.07 20.63 10.57
Drug-TTA 128.13 71.71 38.98 16.79

DEKOIS 2.0 DrugCLIP 48.89 31.30 18.36 9.20
Drug-TTA 107.84 58.18 31.68 13.73

CASF-2016 DrugCLIP 96.33 53.09 30.42 13.43
Drug-TTA 141.85 73.78 39.07 16.41

17



Drug-TTA: Test-Time Adaptation for Drug Virtual Screening

G. Visualization
As shown in Figure 5, we visualize the features of active molecules (indicated in blue) and inactive molecules (indicated in
grey) encoded by the top, middle, and last layers of the molecular encoder for two targets. We can observe that the features
extracted by different layers represent different levels of molecular characteristics. Shallow-layer features, middle-layer
features and deep-layer features exhibit significantly different distributions, suggesting that integrating features from all
three layers is meaningful for generating loss weights.

Moreover, we visualize the feature distribution heatmap for additional molecules, as shown in Figure 6.

Top layer Middle layer Last layer

CP3A4

DHI1

Figure 5. Visualization of feature distributions for the targets CP3A4 and DHI1 on the top, middle and last layer of molecule encoder.
The blue points denote positive molecule features, and the gray points indicate negative molecule features.
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Figure 6. Weight allocation heatmap of 12 molecules in TTA and their molecular properties. The heatmap illustrates the weight allocation
for 12 molecules during the TTA process. The corresponding molecular properties include molecular weight, LogP, the number of
rotatable bonds, and carbon atom count.
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H. Inference time and computational burden
We conduct additional experiments comparing the memory cost and inference time of Drug-TTA and DrugCLIP under the
same conditions (i.e., on an RTX 3090 GPU with a batch size of 64).

Memory Cost: Compared to DrugCLIP, Drug-TTA increases memory usage from 1313 MiB to 1805 MiB for the molecule
branch per batch and from 1232 MiB to 1627 MiB for the pocket branch (with a single target). Despite this increase, our
model can still maintain a batch size of 64, ensuring training efficiency remains unaffected. Moreover, given that a standard
24 GB (24,576 MiB) GPU is widely accessible to researchers, this additional memory consumption remains well within
practical limits and does not bring computational bottleneck.

Inference Time: Based on the average inference time under our experimental setup on the DUD-E benchmark, Drug-TTA
requires 2.1 days for virtual screening at a practical scale (100 million molecules for a single target), compared to 0.8 day for
DrugCLIP. While TTA does introduce additional computation time due to model adaptation during inference, this overhead
is insignificant in the context of the overall drug discovery timeline, which spans years (including both in silico and wet-lab
experiments). More importantly, the substantial performance improvement brought by Drug-TTA significantly reduces the
trial-and-error burden in wet-lab experiments, making the additional computational time worthwhile.

In practice, given the relatively low hardware cost of our approach, inference time can be further reduced with minimal
investment in computational resources if needed. We will incorporate this discussion on computational cost and inference
time in the final version of the paper. Once again, we sincerely appreciate your interest in the practical applicability of our
method.
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