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ABSTRACT

The concept of fairness has been widely caught attention in Federated Learning
(FL). While there are tremendous studies about various notations of fairness in
FL in recent years, all of them only consider the case where the training process
starts and ends at the time point for all participants. Actually, participants could be
dynamic and they may join and leave the training process at different time points.
However, participants who join the training process at different time points re-
ceive similar incentive benefits can be seen as a signal of unfairness. In this paper,
we provide the first study on such fairness of FL for dynamic participants. First,
we propose a new mathematical definition of the above fairness namely dynamic
fairness. Briefly speaking, an algorithm is dynamically fair and satisfies that local
agents who participate in the model training longer should receive more benefits
than those who participate in the process shorter. Second, we develop a simple
but novel method, which could be seen as a normalized version of Fedavg, and
theoretically show that it is fairer than Fedavg. Moreover, we can combine our
method with the previous methods in fair FL for static participants to addition-
ally guarantee fair treatment for local agents who join the training process at the
same time point by minimizing the discrepancy of benefits they receive. Finally,
empirically we propose a measure for dynamic fairness and demonstrate that our
method can achieve a fairer performance under our definition of fairness through
intensive experiments on three benchmark datasets.

1 INTRODUCTION

As one of the most fundamental learning frameworks for preserving the privacy of distributed data,
Federated Learning (FL) (Konečnỳ et al., 2016) has prospered in the machine learning community
in the last few years. In the canonical FL setting, there are several local agents, and each of them
holds a dataset for local training. And there is a controller (server) which aggregates gradient vectors
or local models from agents for global model updates. During the training process, the agents only
communicate their gradients or local models to the server and the original data never leaves the local
agents. Therefore, FL can protect the data information of each agent from leaking. To comply with
the privacy regulations such as the General Data Protection Regulation (GDPR) (gdpr), variants of
FL frameworks have been widely studied, and recently adopted in industry, such as Apple’s “FE&T”
(Paulik et al., 2021), Google’s Gboard (gboard), and Alibaba’s FederatedScope (Xie et al., 2022).

While the recent advances in FL present a promising framework to learn from distributed data pri-
vately and efficiently, most of the current research mainly focuses on the central server’s benefits,
i.e., developing methods to improve the convergence rate or the generalization performance in the
FL setting, while ignores local agents’ interests. However, such attention to the server’s benefits
may cause fairness issues which make local agents less interested in participating in the model train-
ing. For instance, those methods usually apply thresholds such as bandwidth and transmission speed
to selectively choose clients (Shi et al., 2021), which potentially leads to unfair client selection in
the FL system. Local devices with low transmission speed might be neglected frequently during
the training process, and eventually become never-represented or under-represented client groups.
Moreover, some researchers have noticed that the participants sometimes suffer from unfair incen-
tive rewards (Zhan et al., 2021). Kairouz et al. (2021) notice the free-rider problem in the FL system.
In the free-rider scenario, clients who contribute less (e.g., better data quality vs. worse data quality)
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in training the model receive the same resulting model as those who contribute more to the train-
ing. Distributing models with performance incommensurate to each participant’s contribution might
discourage active clients from continuously collaborating in the model training.

To leverage the unfairness issue, there are tremendous work studies on Fair FL by considering var-
ious definitions of fairness recently, such as selection fairness (Zhou et al., 2021) and collaboration
(Lyu et al., 2020) (see Related Work section for more details). However, all of these work only
considers the case where all the participants are static, i.e., they join the training process at the
same time point, while in practice such assumptions may not always hold as the participants may
be dynamic, i.e., different agents could join or leave the training at different time points. In such
a dynamic scenario, there are additional fairness issues compared with static ones. Consider the
following case as an example, suppose the agents could join at different time points and they will
never leave before the training process ends. In this case, the agents who join the training earlier
(contributed more) will expect higher benefits than the ones who join later. Thus, participants who
join the training process at different time points receive similar incentive benefits can be seen as a
signal of inequality. However, to our best knowledge, there are no previous work studies on such
fairness in FL.

In this paper, we provide the first study to alleviate the above fairness issue caused by dynamic par-
ticipants by providing some new definitions, methods, and measures. Specifically, our contributions
can be summarized as follows:

1. First, we provide a rigorous definition for the above fairness, namely dynamic fairness.
Briefly speaking, we call an algorithm dynamically fair if its performance is commensurate
to the length of each client’s participating time. Equivalently, it satisfies that the agents
with longer participation time receive more benefits, which could be seen as between-
group fairness. Besides that, we also provide criteria to compare the dynamic fairness of
two algorithms.

2. Next, we propose several dynamically fair methods. First, we propose a simple but efficient
method namely Normalized Fedavg. Generally speaking, our method could be thought of as
a normalized version of Fedavg where we use the normalized SGD instead of SGD for local
training. Interestingly, we theoretically show that our algorithm is fairer than the vanilla
Fedavg (McMahan et al., 2017). To further improve the convergence rate practically, we
propose a method namely Modified Normalized Fedavg.

3. Moreover, due to the simplicity of the idea, our method is compatible with other fair FL
methods. Specifically, we combine our method with the previous methods in fair FL for
static participants to additionally guarantee fair treatment for local agents who join the
training process at the same time point by minimizing the discrepancy of benefits they
receive, i.e, we can achieve within-group fairness additionally.

4. Finally, we propose new measures for dynamic fairness and provide empirical studies of
our methods. With extensive experiments on three datasets MNIST (LeCun et al., 1998),
Fashion MNIST (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009), we find that
our methods are not only dynamically fair, but also achieve better fairness compared with
Fedavg.

Due to the space limit, all the proofs, some additional sections, algorithms, and experiments of our
methods are included in Appendix.

2 RELATED WORK

Existing studies have proposed several definitions of fairness in federated learning. Zhou et al.
(2021) proposed the concept of selection fairness: a fair FL model should provide more participation
opportunities for never-represented or under-represented client groups. The following literature tries
to promote a fair client selection by introducing the sampling constraints to the FL model (Huang
et al., 2020).

Different from selection fairness, Li et al. (2019) mentioned that one essential notion of fairness
is to accomplish a relatively uniform accuracy distribution across devices, which is defined as the
standard accuracy parity (Zafar et al., 2017). In a previous study, Li et al. (2021) suggested reducing
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the variation of model performance on different clients’ datasets can be seen as a reliable indicator
for standard accuracy parity. However, the researchers ignored the importance of clients’ contribu-
tions in training an FL model. For instance, as Lyu et al. (2020) proposed in their literature, a client
who contributes more to the federated system deserves a better performing local model than those
who contributed less, which is defined as collaboration fairness. Lyu et al. (2020) proposed that the
quality of each client’s uploaded gradients is sufficient to determine participants’ contribution.

One critique of the above scenario is that the concept of time is ignored. When training an FL model,
all the clients need to incur some cost to participate in the training. For instance, if a company wants
to build a profitable FL model, they have to invest not only money and data but also plenty of time
since training and commercialization of the FL models take time. Yu et al. (2020) introduced the
idea of regret, which refers to the difference between the incentive rewards clients have received and
what they should receive while taking how long they have waited to receive the payoff into account.

However, each participant’s training time was ignored in all the above scenarios. In this paper, we
proposed that in the long term, clients who join an FL model training longer should be rewarded with
better model performance than those who participate in the training shorter since they contribute
more time to the model training.

3 DYNAMIC FAIRNESS FOR FEDERATED LEARNING

In this section, we will formally define the fairness discussed in the Introduction. Before that, we
provide an overview of the standard Federated Learning (FL) setting.

In FL, there are m agents where the i-th agent has a local dataset Di = {xi,j}ni
j=1 (the data samples

could be either i.i.d. or non-i.i.d. sampled) and a central server. We also have a loss function ℓ and
the central server aims to solve the following minimization problem:

min
w∈Rd

F (w) =

m∑
i=1

piFi(w), (1)

where Fi(w) = 1
|Di|

∑
x∈Di

ℓ(w;x) is the empirical risk function for the i-th agent on his/her
dataset Di and pi is the weight for the k-th agent, for example pi =

ni∑
ni

.

Dynamic Federated Learning Setting: While most of the previous work focus on the case where
all agents are static, i.e., all of them join in the training process at the same time point (for simplicity,
in this paper we assume one-time step responds to one update of the global model). Here we consider
a dynamic setting of FL. For simplicity, we consider a dynamic setting with a finite number of time
points. That is there are S time points t1, · · · , tS , and for each time point there is a set of agents
vi who will join the training process (for simplicity here we denote t1 as the time when the training
process starts). Since the server cannot get the information for all participants, now its goal is to
minimize

∑
i≤M Lvi(w) at time point tM with 1 ≤ M ≤ S, where Lvi(w) =

∑
j∈vi

pMj Fj(w),
where pMj is the weight for the j-th agent at time point M , i.e., the objective function is the weighted
sum of empirical risk functions of all the agents who join at time point ti. That is, it wants to
minimize the empirical risk for all the agents who join at or before the time point tM . 1 It is notable
that when M = S, then the objective function is equivalent to the original one in (1).

As we mentioned earlier, in the above dynamic FL setting there could be additional fairness con-
cerns. For example, we consider two succeed time points t1 and t2 with the associated participant
sets v1 and v2 (we assume t2 > t1), and the server conducts Fedavg to train the model. At time
point t2, from the perspective of agents in v1 the algorithm itself may be unfair to them as the agents
in v2 can directly use the current model (which has already been trained for several rounds by using
the data in v1) without any cost. We can see the above unfairness is ubiquitous in the dynamic FL
setting. In this paper, we aim to mitigate such unfairness. However, before showing our method, we
need to provide a mathematical definition for the above fairness.

Defining such fairness is challenging. The most direct way is to use the value of the empirical risk
function for a different set of participants vi, i.e., the value of Lvi(w). However, such measurement

1Note that in this paper, we assume all the agents will never leave the training process before the training
process ends. We leave it as future research to study the case where each agent could join and leave the training.

3



Under review as a conference paper at ICLR 2023

is unsatisfactory as our fairness should ensure the agents gain more as they join in the training
longer, and the function value cannot reveal this relationship. In practice actually, we can use the
”difference of accuracy” between different time points to measure the benefit, i.e., fairness. Consider
an extreme case as an example, where half of the agents join at the beginning of the training, i.e., t1
and the other half join the training at the last time point tS . When the training ends, we hope that the
improvement of the accuracy for the first half agents is much greater than for the other half agents.
Motivated by this, mathematically we can use the difference in the empirical risk function values
to measure the improvement of test accuracy. Based on that, in the following Definition 1, we first
define the benefit for group vi at the current time point t by the difference between the empirical risk
function of the group vi joining the training time point ti and the current time point t.
Definition 1 (Benefit). Under our dynamic FL setting, for a training algorithm A, the benefit at
timepoint t for a group vi joining training at timepoint ti (t > ti) is defined as

Lvi
ti (wt) = Lvi(wti)−Lvi(wt), (2)

where wti and wt is the trained model at timepoint ti and t respectively. Moreover, we define the
benefit agents in vi get in timepoint t as Lvi(wt−1)−Lvi(wt).

Based on the definition of benefit, we then propose our desired definition of federated learning
fairness criterion with dynamic participants. Generally speaking, we consider a training algorithm
is dynamically fair if the benefits of the agents who join earlier are higher than the ones who join
later.
Definition 2 (Absolute Dynamic Fairness). Under our dynamic FL setting, for a training algorithm
A, it is absolutely dynamically fair if for any two different time points ti < tj and any t > tj we
have

Lvi
ti (wt) > Lv2

tj (wt), (3)
where wt is the trained model at time point t of the algorithm.

Note that the fairness we propose in Definition 2 is real-time, i.e., the definition of fairness in Defi-
nition 2 holds regardless of whether t is the last time point of training or the time point in training, as
long as t > tj . In practice, we not only want to design absolutely dynamically fair algorithms, but
also expect to design develop new fair algorithms that are more fairer than the existing ones. In the
following, we quantify such relative fairness between two algorithms, i.e., the algorithm that allows
the group that participates longer to get more benefits will be more fair.
Definition 3 (Relative Dynamic Fairness). Under our dynamic FL setting, consider two absolutely
dynamically fair training algorithms A and Ã, we call algorithm A is dynamically fairer than
algorithm Ã if for any two different time points ti < tj and any t > tj we have

Lvi
ti (wt)− L

vj
tj (wt) > Lvi

ti (w̃t)− L
vj

tj (w̃t), (4)

where wt and w̃t is the trained model at time point t of algorithm A and Ã respectively.

It is notable that in Definition 3 we require both A and Ã be absolutely dynamically fair. This is
necessary as relative dynamic fairness cannot imply absolute dynamic fairness. Moreover, although
there is no data distribution assumption in our previous definition, we can see they are more suitable
to the non-i.i.d. data for different agents. This is due to that if all the data are i.i.d. and when
m and each ni (i ∈ [m]) is large enough, then we have Lvi

(w) ≈ Lvj (w) for any group i and
j as both of them are approximately equal to the underlying population risk Ex∼P [ℓ(w;x)] by the
Hoeffding’s inequality if the loss function is bounded, where P is the underlying distribution of the
data. And in the ablation study of the experimental part we will also verify this empirically. Thus,
in the following parts we will always consider the non-i.i.d. case.

Note that in Definition 1 we use the difference of the empirical loss at two time points to measure the
benefit of an agent. However, there could be other ways to define the benefits, such as the relative
difference. We will leave them as future work to consider these definitions of benefit.

4 ACHIEVING DYNAMIC FAIRNESS

In the previous section, we presented the dynamic fairness that we aim to study in this paper. Now
we aim to develop methods that is absolutely dynamically fair. Moreover, we want it to be fairer
than Fedavg (McMahan et al., 2017).
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Before diving into details, let us back to the Fedavg to see why it may cause unfairness and how to
improve its fairness. For simplicity we consider the case where there are only two groups v1 and
v2 which join the training at t1 and t2 respectively, and we assume there is only one agent in each
group with the same size of data and each agent will performs one step of Gradient Descent (GD)
locally and then send the model to server to be aggregated. Suppose we have already trained the
model giving agents in v1 for long time, and now we achieve the time point t2 with model wt2 . Now
we consider time point t2 + 1. We will show the above variant of Fedavg is unfair:

Theorem 1. Under the above setting, Fedavg is not dynamically fair at the timepoint t2 + 1
if ∥∇wLv2(wt2)∥2 is sufficiently large such that ∥∇wLv2(wt2)∥2 ≥ Ω(∥∇wLv1(wt2)∥2) and
∥∇wLv2(wt2)∥2 ≥ Ω(Lv1(wt2) − Lv1(w1)) and η = O(1), where η is the stepsize of GD for
each agent.

Note that although in Theorem 1 we need the assume that ∥∇wLv2(wt2)∥2 is sufficiently large, such
assumption is quite natural. As we know wt2 is the model trained via Lv1 with several rounds, which
implies that ∥∇wLv1(wt2)∥2 will be small enough. On the other side, since we get wt2 before v2
joining and we assume the each data in v1 and v2 is non-i.i.d. sampled, thus we have that wt2 will be
far from the minimizer of Lv2(w), i.e., ∥∇wLv2(wt2)∥2 is large. Moreover, as w1 is the initializer
at time t1. Thus, when w1 is close to the minimizer of Lv1 then Lv1(wt2)−Lv1(w1) could also be
small.

In the following, we will intuitively explain why the previous Fedavg is unfair. We assume both
Lv1(w) and Lv2(w) are L-smooth, µ-strongly convex and 1-Lispschitz. Then by the assumption of
smoothness and strong convexity, and the gradient descent in each agent we have

(η − η2L

2
)∥∇wLv2(wt2)∥22 ≤ Lv2(wt2)−Lv2(w

2
t2+1) ≤ (η − η2µ

2
)∥∇wLv2(wt2)∥22, (5)

(η − η2L

2
)∥∇wLv1(wt2)∥22 ≤ Lv1(wt2)−Lv1(w

1
t2+1) ≤ (η − η2µ

2
)∥∇wLv1(wt2)∥22, (6)

where η is the stepsize, and wi
t2+1 (i = 1, 2) is the local model in the i-th agent by performing the

GD. If the benefit from the aggregation step in the server is sufficiently small, then from (5) we can
see the benefit for v2, which depends on Θ(∥∇wLv2(wt2)∥22), could be very large. On the other
side, for v1, ∥∇wLv1(wt2)∥2 is very small, indicating that the benefit they get in this round is quite
small. If they did not get large benefit in the previous round before v2 joining, then the total benift
for v1 will be less than the benefit for v2, i.e., the algorithm is unfair.

From the previous intuitive analysis we can see that in order to make agents in v2 get less benefit
at time point t2 + 1, we cannot use the GD (or similarly SGD) as it could make the benefit depend
on Θ(∥∇wLv2(wt2)∥22), which is quite large. Equivalently, the ℓ2-norm of the gradient plays an
important role for the benefits of agents in v2. Motivated by this, a natural way is performing the
normalized gradient descent (NGD) instead of GD, i.e., w2

t2+1 = wt2 − η
∇wLv2 (wt2 )

∥∇wLv2
(wt2

)∥2
and

w1
t2+1 = wt2 − η

∇wLv1
(wt2

)

∥∇wLv1
(wt2

)∥2
. In this case, considering when Lv2 is 1-Lipschitz and we have the

same stepsize as above, then we have

Lv2
(wt2+1)−Lv2(wt2) ≤ ∥wt2+1 − wt2∥2 ≤ 2η,

i.e., the benefit now is bounded by η, which is much smaller than ∥∇wLv2(wt2)∥2. This indicates
that as long as the benefit of v1 at t2, i.e., Lv1(wt1) − Lvi(wt) > 2η then the algorithm will be
absolutely dynamically fair at t2 + 1. Moreover since now we limit the benefit for v2, we can show
using NGD is fairer than implementing the above vanilla Fedavg.

Theorem 2. Consider the same setting as in Theorem 1 with normalized GD and fixed w1, wt2 and
η, then if ∥∇wLv2(wt2)∥2 ≥ Ω(1) we have NGD is dynamically fairer than the above Fedavg at
time point t2 + 1.

Note that although in the previous theorem we only considered the time point t2 + 1. As we can
see from the experimental part, our algorithm is fairer than Fedavg in practice at each time point.
Moreover, the above results relies on the assumption of ∥∇wLv2(wt2)∥2 ≥ Ω(1). Actually, when
∥∇wLv2(w)∥2 is small enough, the group v2 will get smaller benefit, i.e., for any q > 0 by the
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properties of the loss function we have

η∥∇wLv2(wt2 + q)∥2 −
η2L

2
≤ Lv2(wt2+q)−Lv2(w̃

2
t2+q+1) ≤ η∥∇wLv2(wt2+q)∥2 −

η2µ

2
,

η∥∇wLv1(wt2 + q)∥2 −
η2L

2
≤ Lv1(wt2+q)−Lv1(w̃

1
t2+q+1) ≤ η∥∇wLv1(wt2+q)∥2 −

η2µ

2
,

where w̃i
t2+q+1 (i = 1, 2) is the local model in the i-th agent by performing NGD and wt2+q+1 =

w̃1
t2+q+1+w̃2

t2+q+1

2 . If we ignore the benefit of the aggregation step in the server, then from the
previous two results we can see the benefit the vi group get is Θ(η∥∇wLvi(wt2 +q)∥2). Thus, when
η and the two gradient norms are small, then the benefits are also small which could be considered
to be equal. In total we have that, when ∥∇wLvi(wt2 + q)∥2 is large, then if Lv1(wt1)−Lvi(wt) ≥
ω(η), our previous algorithm will be dynamically fair. And when ∥∇wLvi(wt2 + q)∥2 becomes
sufficiently small then since both groups get almost the same benefit in time point t2+ q. Therefore,
our algorithm is still dynamically fair.

Algorithm 1 Normalized Fedavg: Two groups v1, v2 with joining time point t1, t2 (t1 = 1, t1 < t2).
|v| indicates the number of clients in group v, |B| is the local minibatch size, E is the number of
local epochs, and η is the learning rate. C is a constant

Server executes:
1: initialization: w1

2: for each round t = 1, 2, . . . do
3: if t < t2 do m← max(C · |v1|, 1) else do m← max (C · (|v1|+ |v2|), 1)
4: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k, wt)
8: if t ≥ t2 do

wk
t+1 ← wt − ηt

wt−wk
t+1

||wt−wk
t+1||

// Normalization

9: wt+1 ←
∑

k∈St
pikw

k
t+1, where pik is the weight where i = 1 when t < t2 otherwise i = 2.

ClientUpdate (k, w): // Run on client k
1: B ← (split Dk into batches of size |B|)
2: for each local epoch i from 1 to E do
3: for batch b ∈ B do
6: w ← w − ηt∇l(w; b)
7: return w to server

Based on our above idea of normalizing the gradient to limit the benefit for each new agent, we can
modify the vanilla Fedavg to improve its dynamic fairness, i.e., we propose Normalized Fedavg in
Algorithm 1 (for simplicity we only present the case where only two groups are trained, and the
multi-group case can be easily generalized). Compared with the previous normalized stochastic
gradient descent (NSGD) (Zhao et al., 2020; Cutkosky & Mehta, 2020; You et al., 2019; Hazan
et al., 2015), there are two critical differences: While in the existing work on NSGD we normalize
the gradients each iteration, in Algorithm 1 each agent still uses SGD to train local model and
then send model to the server, then the server normalizes these local model updates to update the
model (step 8) and then perform the aggregation step (step 9). This is due to that in practice we
find that using directly NSGD locally for all agents will make the algorithm hard to be convergent.
Thus, before the normalization step, we still need each agent perform SGD (step 7). The second
difference it that, where in the previous NSGD based methods we need to calculating the global
norm for all parameters of the model and then perform the normalization step. In Algorithm 1,
for the normalization step we use layer-wise norm (LN) as using the global norm could lead to
non-convergence (see experiments in Section D.1 in Appendix for details).

Although in practice we found Normalized Fedavg can indeed improve the dynamic fairness com-
pared with Fedavg, its convergence rate is quite slow. The main reason is that the model update of
local agents becomes quite small at the early stage after adding group v2. To address the issue, we
simply modify the normalization update step (step 8 in Algorithm 1) by adding a decayed coeffi-
cient. We choose the model update norm G at the time point when group v2 joined in the training
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Algorithm 2 The Modified Normalized Fedavg algorithm. The β is a hyperparameter and takes
value from 0 ∼ 1. The default value of β is 1. LN : (w[0], ..., w[L−1])→ (||w[0]||2, ..., ||w[L−1]||2)
is the function to compute the model update norm at each layer.

Server executes:
1: initialization: w0, β
2: for each round t = 1, 2, . . . do
3: if t < t2 do m← max(C · |v1|, 1) else do m← max (C · (|v1|+ |v2|), 1)
4: St ← (random set of m clients)
5: if t = t2 + 1 do G ← LN(wt−1 − wt)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k, wt)
8: if t ≥ t2 + 1 do

wk
t+1 ← wt −

(
β G

1+t−t2
+ (1− β)LN(wt − wk

t+1)
)

wt−wk
t+1

LN(wt−wk
t+1)

9: wt+1 ←
∑

k∈St
pikw

k
t+1

ClientUpdate (k, w): same as Algorithm 1

as the initial value of this coefficient, and decay it with the training round increasing. The modified
formula for local device model update is

wk
t+1 := wt −

G
1 + t− t2

wt − wk
t+1

||wt − wk
t+1||2

, (7)

where t ≥ t2+1, G = ||wt2−wt2+1||. In order to further enhance the applicability of the algorithm,
we introduce another hyperparameter β to combine Fedavg and normalized Fedavg:

wk
t+1 := wt −

(
β

G
1 + t− t2

+ (1− β)||wt − wk
t+1||2

)
wt − wk

t+1

||wt − wk
t+1||2

(8)

where the value of β is from 0 to 1. If the value of β is close to 1, the algorithm will be more fair;
And if the value is close to 0, the algorithm will converge faster and close to Fedavg.

Note that in the above methods we normalize the model update (gradients) to limit each agent’s ben-
efit. A natural question is whether we can use other ways. We known that other than normalization,
clipping is another commonly used operation in deep learning (e.g., poisoning attacks (Guo et al.,
2021; Xie et al., 2021; Panda et al., 2022) and privacy (Truex et al., 2019; Lee & Kifer, 2018)).
Motivated by this we propose the Clipping Fedavg (Algorithm 3). We find that clipping can also
improve the fairness via experiments. However, its improvement compared with Fedavg is quite
limited. See Section B in Appendix for details.

Actually, due to the simplicity of our idea, our methods are compatible with other fair FL methods.
Specifically, we combine our method with the existing methods in fair FL for static participants
to additionally guarantee fair treatment for local agents who join the training process at the same
time point by minimizing the discrepancy of benefits they receive, i.e, we can achieve within-group
fairness additionally. See Section C in Appendix for details.
5 EXPERIMENTS
In this section, we will study the practical performance of our proposed algorithms on several bench-
mark datasets.

Experimental Settings: To verify whether the normalization-based methods can indeed improve
dynamic fairness, we design the Two-groups experiment to simulate the scenario in which some
clients join first (group1) while some join in training at timepoint t2 (group2). In this type of exper-
iment, each group contains 5 clients.

To make our experiments more convincing and applicable, we also design the Multi-groups exper-
iment, in which more clients are added to the training at several different timepoints. In detail,
there are S groups {v1, ..., vS} (S ≥ 2), and each group is added to trained at a specific time point
{t1, ..., tS} (t1 = 1). In the Multi-groups experiment, each group contains 3 clients.

For all experiments, all clients run 5 local epochs, 32 local batch-size and η = 1e− 2 in each round.
Also, we define a paramter α to control the degree of non-i.i.d of the dataset, i.e., if two groups
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join the training with α = 0.9 and the size of class of the dataset is 10, then one group has 90%
of the data in 5 classes and the second group has 90% of the data in the other 5 classes. For the
Two-groups experiment, we choose 10 clients in total and each group contains 5 clients. The second
group is added to training in round 10. For the Multi-groups experiment, we choose 30 clients in
total and each group contains 3 clients). The timepoint each group join in training is in the set
{0, 10, 20, 30, 40, 50, 60, 70, 80, 90}.

(a) Fairness evaluation on MNIST

(b) Fairness evaluation on FMNIST

(c) Fairness evaluation on CIFAR10

Figure 1: Two-groups experiment. (a), (b), (c) represent the evaluation of our proposed algorithm
against the original Fedavg on the three datasets MNIST, FMNIST, and CIFAR10, respectively.

Datasets and Models We use three classical dataset MNIST (LeCun et al., 1998), Fashion MNIST
(FMNIST) (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009) and two popular model LeNet
(LeCun et al., 1998) and ResNet18 (He et al., 2016) to evaluate our algorithms. Like most of works,
we used LeNet on MNIST and FMNIST, and ResNet18 on CIFAR10 for evaluation, respectively.

Evaluation Metrics Based on our Definition 1, to better describe the benefits of all groups during
the training process, we propose groups benefits (GB) as one of our experimental metrics. This
metric shows the difference in the value of the loss between the group that joins later and the group
that joins first. A positive value of GB indicates that the algorithm is fair, and larger value indicates
better fairness of the algorithm. The metric is defined in (9). GB (train) and GB (test) are calculated
from the train dataset and the test dataset, respectively. If there is only one group, we set GB as 0.

GBt =
1

n− 1

n−1∑
i=1

exp
(
Lvi+1

(wt)−Lvi(wt)
)
− 1 (9)

where n ∈ [2, N ] denotes the number of current running groups. It should be noted that the metric
here does not exactly follow Definition 1, the reason can be seen in section E in Appendix.

Main Experiment Results The experiment results are shown in the Figure 1 and 2. It can be seen
that Algorithm 1 and 2 exhibit much higher benefits than Fedavg, and their benefits eventually con-
verge to a positive large value on all the datasets. In contrast, Fedavg makes the value of GB smaller

8
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(a) Fairness evaluation on MNIST

(b) Fairness evaluation on FMNIST

(c) Fairness evaluation on CIFAR10

Figure 2: Multi-groups experiment. (a), (b), (c) represent the evaluation of our proposed algorithm
against the original Fedavg on the three datasets MNIST, FMNIST, and CIFAR10, respectively.

or even negative (absolute unfairness). A noteworthy phenomenon is that for Fedavg, compared with
its GB values that keep decreasing during the training process, the GB values will increase slightly
during the testing process for both datasets (MNIST and CIFAR10). However, the increased values
are still much smaller than those of our methods. Remarkably, we find that Algorithm 2 is fairer than
Algorithm 1 in Figure 1, but Figure 2 shows the exact opposite phenomenon. Therefore, for those
two algorithms, we cannot conclude which algorithm outperforms measured by GB, which indicates
that our strategies in Algorithm 2 do not significantly reduce fairness compared with Algorithm 1.

Figure 1 and 2 both illustrate a negative correlation between fairness and convergence rate. Algo-
rithms 1 and 2 have better fairness performance but their convergence rates are slower than Fedavg.
Meanwhile, we can conclude that Algorithm 2 converges faster than Algorithm 1, which shows the
effectiveness of our proposed Algorithm 2.

To summary, both of Algorithm 1 and 2 demonstrate greater dynamic fairness than Fedavg. Besides,
Algorithm 2 can achieve a faster convergence rate than Algorithm 1 while maintaining a similar
dynamic fairness with Algorithm 1.

We defer the ablation study to Section D.1 in Appendix due to space limit.
6 CONCLUSION
In this paper, we focused on the fairness in the setting of Federated Learning with dynamic partic-
ipants, meaning that clients can join in the training at different time points. We proposed a new
definition of federated learning fairness namely dynamic fairness to guarantee higher benefits for
local agents who participate in the FL model training for longer time periods than those do not.
We developed algorithms with normalization to guarantee the dynamic fairness based on Fedavg.
Furthermore, we improved the efficiency of Normalized Fedavg via some strategies. Intensive ex-
periment results showed that our methods are dynamically fair. And specifically, our algorithms are
fairer than Fedavg.

9
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A OMITTED PROOFS

Proof of Theorem 1. In Fedavg from the server side it computes wt2+1 =
w2

t1+1+w2
t2+1

2 , where
w2

t1+1 = wt2 − η∇wLv2(wt2) and w1
t1+1 = wt2 − η∇wLv1(wt2) with the stepsize η. Thus, from

the first order approximation we have

Lv1(wt2+1) = Lv1(wt2)− η∇wLv1(wt2) ·
∇wLv1(wt2) +∇wLv2(wt2)

2

+ o
[
||wt2+1 − wt2 ||2

] (10)

Lv2(wt2+1) = Lv2(wt2)− η∇wLv2(wt2) ·
∇wLv1(wt2) +∇wLv2(wt2)

2

+ o
[
||wt2+1 − wt2 ||2

] (11)

Thus we have
[Lv2(wt2)−Lv2(wt2+1)]− [Lv1(wt2)−Lv1(wt2+1)] ≈ η∥∇wLv2(wt2)∥22 − η∥∇wLv1(wt2)∥22
Thus, based on the definition 1 the difference of benefit for agents in v2 and benefit for agents in v1
is approxiamtely equal to

η[∥∇wLv2(wt2)∥22 − ∥∇wLv1(wt2)∥22] + [Lv1(wt2)−Lv1(w1)].

Thus, when ∥∇wLv2(wt2)∥2 ≥ Ω(∥∇wLv1(wt2)∥2) and ∥∇wLv2(wt2)∥2 ≥ Ω(Lv1(wt2) −
Lv1(w1)) then the benefit for v2 is larger and the algorithm is no longer fair.

Proof of Theorem 2. In Fedavg from the server side it computes wt2+1 =
w1

t2+1+w2
t2+1

2 , where

w2
t1+1 = wt2 − η

∇wLv2 (wt2 )

∥∇wLv2
(wt2

)∥2
and w1

t2+1 = wt2 − η
∇wLv1 (wt2 )

∥∇wLv1
(wt2

)∥2
with the stepsize η. Thus,

from the first order approximation we have

Lv1(wt2+1) = Lv1(wt2)−
η

2
∇wLv1(wt2) · (

∇wLv1(wt2)

∥∇wLv1(wt2)∥2
+
∇wLv2(wt2)

∥∇wLv2(wt2)∥2
)

+ o
[
||wt2+1 − wt2 ||2

] (12)

Lv2(wt2+1) = Lv2(wt2)−
η

2
∇wLv2(wt2) · (

∇wLv1(wt2)

∥∇wLv1(wt2)∥2
+
∇wLv2(wt2)

∥∇wLv2(wt2)∥2
)

+ o
[
||wt2+1 − wt2 ||2

] (13)

Thus we have
[Lv2(wt2)−Lv2(wt2+1)]− [Lv1(wt2)−Lv1(wt2+1)]

≈ η

2
(∥∇wLv2(wt2)∥2 − ∥∇wLv1

(wt2)∥2)(1 +
∇wLv1(wt2) · ∇wLv2(wt2)

∥∇wLv1(wt2)∥2∥∇wLv2(wt2)∥2
)

Thus, based on Definition 1 the difference of benefit for agents in v2 and benefit for agents in v1 is
η

2
(∥∇wLv2(wt2)∥2 − ∥∇wLv1(wt2)∥2)(1 +

∇wLv1(wt2) · ∇wLv2(wt2)

∥∇wLv1(wt2)∥2∥∇wLv2
(wt2)∥2

)

+ [Lv1(wt2)−Lv1(w1)].

(14)

And it is smaller than the difference in the case of Theorem 1 with fixed w1, wt2 and η when
∥∇wLv2(wt2)∥2 ≥ 2. Thus, it is more fairer than Theorem 1.

B CLIPPING FEDAVG AND EXPERIMENT

Note that in the above methods we normalize the model update (gradients) to improve algorithms’
fairness. A natural question is whether we can use other ways. Other than normalization, clipping
is another commonly used operation in deep learning (e.g., poisoning attacks (Guo et al., 2021; Xie
et al., 2021; Panda et al., 2022) and privacy (Truex et al., 2019; Lee & Kifer, 2018)). Motivated by
this, we propose the Clipping Fedavg algorithm, whose complete pseudo-code is given in Algorithm
3. With experiments in figure 3, we found that on the whole training stage, it is hard to argue that
clipping can improve the fairness of the algorithm. we can see that although algorithm 3 can maintain
a high level of fairness in the early stage after new group joins, it is not significantly different from
Fedavg in the later stage. Therefore, we do not recommend using algorithm 3 to improve fairness in
practical applications.

12



Under review as a conference paper at ICLR 2023

(a) Two-groups experiment on MNIST

(b) Multi-groups experiment on MNIST

Figure 3: Two-groups and Multi-groups experiments for definition 2, 3. (a), (b) represent the Two-
groups and Multi-groups experiments of our proposed clipping algorithm against the original Fedavg
on MNIST, respectively.

Algorithm 3 The Clipping Fedavg algorithm. The running clients are indexed by k, and η is
the learning rate. LM : (w[0], ..., w[L−1]) → (max(w[0]), ...,max(w[L−1])) is the function
to compute the max value of model update at each layer, and Clipg : (w[0], ..., w[L−1]) →
(threshold(w[0],±g), ..., threshold(w[L−1],±g)) is the function to clip the paramters at each layer
with specified value, where threshold(w,±g) can limit w with ±g.

Server executes:
1: initialization: w0

2: for each round t = 1, 2, . . . do
3: if t < t2 do m← max(C · |v1|, 1) else do m← max (C · (|v1|+ |v2|), 1)
4: St ← (random set of m clients)
5: if t = t2 do G ← LM(wt−1 − wt)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k, wt)
8: if t ≥ t2 do

wk
t+1 ← wt −ClipG(wt − wk

t+1) // Clipping
9: wt+1 ←

∑St

k=1 pkw
k
t+1

10: if t ≥ t2 do compute test loss: Lv1(wt), Lv2(wt)

ClientUpdate (k, w): same to algorithm 1

C FURTHER EXPANSION OF THE FAIRNESS DEFINITION

Additionally, we combine our method with the existing methods in fair FL for static participants.
Via such approach, we can minimize the discrepancy of benefits for the agents who join the training
process at the same time point, and guarantee a fair treatment for them, i.e, we can achieve within-
group fairness.

By combining the fairness definition of Li et al. (2019) and ours, we extend the definition 2, 3
to definition 4, including between-group fairness (guarantees that agents with longer participating
time benefit more) and within-group fairness (guarantees performance uniformity for agents with
the same participating time).

13
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Definition 4. Dynamic Fairness (Extended): Under our dynamic FL setting, for a training algo-
rithm A, it is absolutely dynamically fair if for any two different time points ti < tj and any t > tj
we have

Between-group fairness:
Lv1
t1 (wt) > Lv2

t2 (wt) (15)
Within-group fairness:

stdk∈v {Fk(w)} → 0 (16)
Under our dynamic FL setting, consider two absolutely dynamically fair training algorithms A and
Ã, we call algorithm A is dynamically fairer than algorithm Ã if for any two different time points
ti < tj and any t > tj we have

Between-group fairness:

Lv1
t1 (wt)− Lv2

t2 (wt) > Lv1
t1 (w̃t)− Lv2

t2 (w̃t) (17)

Within-group fairness:
stdk∈vi {Fk(w)} < stdk∈vi {Fk(w̃)} (18)

Here Lvi
ti (wt) is defined in Definition 1, stdk∈v {Fk(w)} denotes the standard deviation of the test

loss of all devices in group vi, and vi is anyone of all groups currently participating.

We further modified our algorithm by combining above algorithms with q-Fedavg (Li et al. (2019)),
which is an excellent solution of within-group fairness. The pseudo-code of our modified algorithm
is given in algorithm 4.

Algorithm 4 We merged our methods (step 8) into the q-Fedavg. The notation k is the index
of running clients, wt is the global model at current round t, and η is the learning rate. LN :
(w[0], ..., w[L−1])→ (||w[0]||, ..., ||w[L−1]||) is the function used to compute the model update norm
at each layer. q is a hyperparameter of q-Fedavg, and its default value is 0.1.

Server executes:
1: initialization: w0

2: for each round t = 1, 2, . . . do
3: if t < t2 do m← max(C · |v1|, 1) else do m← max (C · (|v1|+ |v2|), 1)
4: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1, Fk(wt)← ClientUpdate(k, wt)
8: wk

t+1 ← Our operation (based on algorithm 1, 2, 3)
9: △k

t = F q
k (wt) ∗ (wt − wk

t+1)

10: hk
t = qF q−1

k (wt)LN(wt − wk
t+1) + F q

k (wt)

11: wt+1 ← wt −
∑

v∈St

∑
k∈v pk

△k
t

hk
t

12: if t ≥ t2 do compute test loss: Lv1(wt), Lv2
(wt)

ClientUpdate (k, w): same to algorithm 1

Then we provide the experiment results for Algorithm 4.

Figure 4: Experiment to verify if the q-Fedavg is still valid under our Two-groups experiment con-
dition (section 5) and select the most suitable q with algorithm 4

We provide the experiment results of Algorithm 4.
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Figure 5: Two-groups experiment on MNIST for definition 4.

First, we define an evaluation metric loss std (LS) for within-group fairness. This metric indicates
the level of performance uniformity across clients within the same group. A lower value of the
metric indicates higher uniformity. If only one group runs, we set LS to 0.

LSt =
1

n

n∑
i=1

√√√√ |vi|∑
k=1

(F k
t − Lvi

t )2

|vi|
(19)

Second, we verified that the q-Fedavg Li et al. (2019) is still valid in our Two-groups experiment
condition in figure 4(section 5). We then selected q = 0.1 that best fits algorithm 4.

Last, as shown in figure 5, we find that the algorithm 4 can improve both between-groups fairness
(lower LS) and within-group fairness (greater Group benefit).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY

In ablation study, we use the experiment results of "Two-groups experiment" (MNIST) as the con-
trol group. We explore the effects of three key variables (α, global or layer norm, and β) on the
experiment results.

Figure 6: Ablation experiment on MNIST for impact of α value.

Impact of α. Figure 6 shows that in a scenario of a low level of non-iid, fairness is not guaranteed
regardless of whether normalization is implemented or not. And only with strong non-iid, normal-
ization can guarantee fairness and is fairer than Fedavg, which is consistent with our idea in the
previous section.

Impact of global / layer norm. We investigate whether the global parameter norm of the model
update or the per-layer parameter norm should be used in algorithm 1 and 2. As seen in figure
7(a), the global norm for all parameters of model update in algorithm 2 prevents the model from
converging. On the contrary, the layer norm (LN) is able to make the model converge.

Impact of β for algorithm 2. Due to a necessary trade-off between fairness and convergence
speed in practical applications, we expect the hyperparameter β to regulate the degree of fairness
of algorithm 2. Figure 7(b) also demonstrates that the effect of adjusting β is consistent with our
expectation.

D.2 EVALUATION OF OTHER MODELS

We redid the Two-group experiment using Linear-regression and 2-layer neural network and got the
same results (figure 8) as Lenet. This proves that our method is not limited by the model
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(a) Impact of global / layer norm (b) Impact of β

Figure 7: Three ablation experiments on MNIST dataset. (a) represents the impact of global or layer
norm in algorithm 2, and (b) illustrates the impact of β in algorithm 2

(a) Fairness evaluation on MNIST with Linear-regression

(b) Fairness evaluation on MNIST with 2-layer neural network

Figure 8: Two-groups experiments for definition 2. (a), (b) represent the Linear-regression and 2-
layer neural network are used to evaluate the fairness of our proposed algorithms against the original
Fedavg on MNIST, respectively.

E SUPPLEMENTAL NOTION

Explanation of implementing Evaluation Metric "Group Benefit" If we follow the benefit defi-
nition (2), then the equation (9) should be rewritten as

GBt =
1

n− 1

n−1∑
i=1

exp
(
Lvi
ti (wt)− Lvi+1

ti+1
(wt)

)
− 1

=
1

n− 1

n−1∑
i=1

exp

 (Lvi(wti)−Lvi+1
(wti+1

))︸ ︷︷ ︸
Our proposed algorithms do not change it

+(Lvi+1
(wt)−Lvi

(wt))

− 1

(20)

However, we find that the former term Lvi(wti) in (2) is much larger than the latter term Lvi(wt)
in the actual experiments, which makes the actual benefit Lvi

ti (wt) always be close to Lvi
(wti) and

remains constant. Moreover, we find that Lvi
(wti) − Lvi+1

(wti+1
) in (20) is the same for our

algorithms and Fedavg, so we remove the former term (Lvi(wti)−Lvi+1
(wti+1

)) in the metric (20)
and change the metric to (9).
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