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Abstract

Accurate particle picking of macromolecules of all kinds, shapes, and sizes in1

cryogenic electron tomograms (cryo-ET) is critical for understanding the molecular2

architecture of biological systems in their native state. Current deep learning3

methods have shown potential in identifying macromolecules from tomograms, but4

they are vulnerable to issues of noise in the training dataset obtained through human5

or automatic labeling and imbalanced distribution of macromolecule species. To6

address these limitations, we developed RobPicker, a meta-learning framework that7

effectively mitigates these issues by automatically learning deep neural networks to8

correct label errors and give greater emphasis to underrepresented macromolecule9

species. In evaluations across diverse cryo-ET datasets with noisy labels and10

imbalanced species distributions, RobPicker substantially outperforms state-of-11

the-art methods, particularly in identifying small and rare macromolecules. The12

efficiency and robustness of RobPicker can also be used for rapid fine-tuning of the13

tilt-series alignment, leading to improved tomogram reconstruction and enabling14

high-resolution cellular structural biology analysis.15

1 Introduction16

Cryo-electron tomography (cryo-ET) has revolutionized structural biology by enabling the high-17

resolution visualization and structure determination of macromolecules in their near-native states18

within the complex environment of cells in situ [1–8]. Accurately identifying and locating macro-19

molecules in cryo-ET is crucial for understanding their functions, interactions, and dynamics within20

the cellular context [9]. By training neural networks on annotated tomograms, recent deep learn-21

ing methods have shown promise in automatically picking macromolecule complexes (referred to22

as particles) from cryo-ET data [10–17]. In particular, macromolecule segmentation networks, in23

particular 3D U-Net [18], have been successfully applied to segment and pick particles such as24

ribosomes [14, 15]. Yet, these networks often struggle with robustness, particularly facing two key25

challenges: noise in the training labels brought in by human or automatic annotations and imbalanced26

distribution of different species [16, 19].27

The low signal-to-noise ratio (SNR) of cryo-ET raw data, combined the ‘missing wedge’ artifact [20],28

presents significant challenges in detecting and classifying particles in cryo-ET, especially those of29

smaller size [21]. The challenge is further compounded by the noise in training labels brought in30

by particle annotations. Automated annotation often results in false positives [22]. While manual31

annotation is more accurate, it is extremely labor intensive [23]. In summary, particle annotation in32

cryo-ET is inherently difficult (especially for small particles) and time-consuming. When the noisy33

labels are used for deep learning model training, the resulting models cannot accurately identify34

particles when applied to new tomograms (an illustration of the labeling noise is shown in Fig. 3a in35

the appendix).36



Training macromolecule segmentation networks is further impeded by the significant imbalance of the37

occurrence of different macromolecular species within the cellular environment [24]. Larger, more38

abundant species occupy more voxels in the tomograms and tend to have a clearer boundary against39

the background, while smaller or less abundant species are less represented and occupy fewer voxels.40

As training macromolecule segmentation networks mostly relies on voxel-wise loss functions—such41

as Dice loss [25, 26]—to update the model parameters, larger and more abundant species have a42

larger influence on the model update [27]. This imbalance leads to a skewed performance where43

models are proficient at identifying large, well-delineated species but struggle with picking smaller,44

rarer ones (Fig. 3b). The inability to consistently pick small particles in cryo-ET data has hindered45

our understanding of smaller macromolecules and their critical roles in biological systems.46

To address these limitations, we introduce RobPicker, a novel meta-learning [28] framework that47

improves the robustness of macromolecule segmentation networks for cryo-ET. Unlike traditional su-48

pervised deep learning methods, which rely heavily on vast quantities of well-labeled data, RobPicker49

is designed to overcome challenges posed by labeling noise and imbalanced species distribution.50

It is based on a bi-level meta learning framework [29] by automatically learning a label correction51

network that rectifies labeling errors and a data reweighting network that gives greater emphasis52

to underrepresented macromolecule species. These two networks are updated by evaluating the53

performance of the macromolecule segmentation network on a small validation set with cleaner labels54

and a more balanced species distribution. These corrected and reweighted data are then used to learn55

a more robust macromolecule segmentation network (Fig. 1).56

Through comprehensive evaluations of both experimental cryo-ET data and benchmarks, RobPicker57

demonstrates significantly improved robustness in identifying particle species in various cell types58

even when the labels are noisy and the species distribution is imbalanced. Moreover, we demonstrated59

the effectiveness of RobPicker by utilizing it to pick a set of initial ribosome particles efficiently60

and robustly, which were further used for quick multiple-particle refinement [30], enabling a fast61

fine-tuning of the alignment of tilt-series.62

2 Methods63

RobPicker is composed of three deep neural networks: a macromolecule segmentation network,64

a label correction network, and a data reweighting network. The macromolecule segmentation65

network takes a cryo-electron tomogram as input and outputs the detection result in the form of a66

segmentation map, which indicates the likelihood of macromolecule species at each voxel in the67

tomogram. The segmentation map is used to derive the class of species and the center of particles68

in post processing (Appendix G). While we employed a 3D U-Net [18] as the macromolecule69

segmentation network—following prior deep learning pickers [14], our method can benefit from70

using more advanced segmentation network architectures. The label correction network is designed71

to correct noisy labels in the training data. It is a small 3D U-Net that takes a tomogram and a noisy72

particle segmentation map as inputs and produces a corrected label (Fig. 1 and Appendix E). The73

parameters of the label correction network are updated to minimize the segmentation loss function74

on a separate, smaller validation set with cleaner—compared to the training set—labels [31] (Stage75

II in Fig. 1). Intuitively, a bad label correction network will result in corrupted supervision signal76

for the segmentation network to learn in the training stage (Stage I in Fig. 1), which will result77

in low segmentation performance in the validation stage—thus a high validation loss—since the78

validation labels are cleaner. Therefore, minimizing the validation loss can update the label correction79

network towards the direction such that it outputs better supervision signal, i.e., cleaner labels. In80

parallel to the label correction network, the data reweighting network [32] predicts a weight for each81

tomogram to increase the influence of smaller or less abundant particle species on the update of82

the segmentation network. Specifically, the reweighting network takes as input the prediction loss83

of a tomogram and outputs a scalar weight between 0 and 1, which is multiplied by the prediction84

loss so that the weight controls the influence—higher weights lead to higher influence—of the85

tomogram on model parameter update (Stage I in Fig. 1). The reweighting network is implemented86

as a multi-layer perceptron (MLP) with one hidden layer. Similar to the update of the label correction87

network, the update of the reweighting network is also guided by minimizing the validation loss on88

the validation set where balanced data sampling is used to increase the frequency of less abundant89

species (Appendix F). The mathematical framework of RobPicker and the bi-level optimization is90

detailed in Appendices C and D.91
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Figure 1: The bi-level optimization framework for training RobPicker.

3 Experiments92

3.1 RobPicker tolerates noise in cryo-ET particle picking training data93

Typical cryo-ET particle picking datasets contain annotations of particle locations in the form of their94

3D coordinates. Following DeepFinder’s data preprocessing approach, we applied two methods—a95

sphere-based and a shape-based—to derive label maps from the location annotations [14]. The96

shape-based method uses subtomogram averaging [33] to create a mask that mimics the shape of97

each particle species, and then the mask is placed at each particle location to represent the particles98

in the label map. The sphere-based method simply uses a sphere mask to represent each particle in99

the label map, which is more computationally efficient than the shape-based method but resulting in100

noisier labels. Following the widely used protocol for model training and evaluation [14], we divided101

our cryo-ET datasets into three subsets: a training set, a validation set, and a test set. We aim to102

experiment with using the sphere-based method to efficiently generate labels for the majority of the103

tomograms and examine if RobPicker can tolerate the noise brought in by the sphere-based labels. To104

this end, we used the sphere-based method to create the label maps for the tomograms in the training105

set (which has the majority of the tomograms), while we used the shape-based method to create the106

label maps for the remaining small amount of tomograms and put them in the validation and test sets.107

The data preprocessing is efficient since subtomogram averaging is only done for the validation and108

test tomograms.109

We conducted experiments on four cryo-ET real datasets (denoted by D1–D4) comprising tomograms110

with annotations for ribosomes from different cell types. The first dataset (D1) contains annotations111

for cytosolic ribosomes (ct-ribos) and membrane-bound 80S ribosomes (mb-ribos) in C. reinhardtii112

cells [14] (detailed statistics can be found in Table 1 in the Appendix H). D2 was annotated for113

80S ribosomes in S. cerevisiae (yeast) cells [34]. D3 contains annotations for 50S large subunits114

and fully assembled 70S ribosomes of E. coli cells. D4 also contains annotations for ribosomes115

in yeast cells. The details of data annotation can be found in the Appendix H. We compared116

RobPicker against a state-of-the-art supervised deep learning method DeepFinder [14], which uses117

a 3D U-Net [18] for multi-class semantic segmentation to pick particles in tomograms. We used118

the same 3D U-Net as the segmentation network in RobPicker as DeepFinder to demonstrate that119
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Figure 2: RobPicker achieved higher mean picking F1-scores than DeepFinder and DeePiCt in various cryo-ET
real datasets. The mean and standard deviation are shown.

the robustness of RobPicker results from the training framework (Fig. 1) instead of more advanced120

network architectures. Therefore, the major distinction between RobPicker and DeepFinder is that121

RobPicker leveraged a data reweighting network and a label correction network to reweight and122

correct the training data. To report model performance, we calculated the picking F1 scores as123

the evaluation metric as in DeepFinder. In the evaluation, a particle prediction is considered as a124

true positive only when the prediction and the ground truth have sufficient overlap (Appendix I).125

The experiments were repeated three times, and the mean and standard deviation are reported in126

Fig. 2a–f. The performance comparison on the four real cryo-ET datasets show that RobPicker127

demonstrated substantially enhanced performance over DeepFinder in picking particles across diverse128

datasets. The experiments underscore that RobPicker tolerated the label noise in the training set129

robustly, enabling efficient data preprocessing for the training data, as only a smaller amount of clean130

labels is needed to calculate the validation loss of RobPicker. In contrast, the supervised learning131

method DeepFinder [14] achieved lower performance when the training data contains noisy labels132

created from sphere-based particle masks. The robustness of RobPicker can be attributed to the label133

correction mechanism in RobPicker, where the sphere-based particle labels in the training set are134

rectified by the label correction network to better represent the particle shapes, thus resulting in a135

more accurate macromolecule segmentation model.136

3.2 RobPicker robustly picks small and rare macromolecular species137

We experimented with a cryo-ET real dataset (denoted by D5) obtained from DeePiCt [15], which138

contains 10 tomograms acquired from wild-type S. pombe using a Volta potential phase plate (VPP).139

It contains annotations of 731 fatty acid synthases (FAS) and 25,311 ribosomes, and high-quality140

label masks of the macromolecules were generated for model training and evaluation [15]. We141

trained DeePiCt and RobPicker to localize the S. pombe FAS and ribosomes. FAS segmentation is142

particularly challenging due to its sporadic presence in cells [15]. We followed the original work [15]143

to use five-fold cross-validation, splitting the tomograms into five equal-sized subsets. In each fold,144

one subset was reserved for testing, while the remaining four were used for training. For RobPicker,145

the training set (8 tomograms) was further divided into a new training set and a validation set in a146

7:1 ratio, used for Stage I and Stage II optimizations, respectively (Fig. 1). We adhered to the same147

pre-processing and post-processing configurations as DeePiCt to ensure consistency. The mean and148

standard deviation of the picking F1 scores are shown in Fig. 2g-h.149

RobPicker achieved a mean F1 score of 0.41 for FAS picking, marking a 24.2% relative improvement150

over DeePiCt’s mean F1 score of 0.33 (P = 0.181). For ribosome picking, RobPicker’s mean F1151

score of 0.80 also surpasses DeePiCt’s mean F1 score of 0.75 (P = 0.029) with a 6.67% relative152

improvement. These results highlight RobPicker’s higher performance in particle picking compared153

to DeePiCt. Since only 731 FAS particles are present in the dataset, which is much fewer than the154



abundant ribosomes with a total of 25,311 particles, the species distribution is extremely imbalanced.155

Moreover, the FAS particles are much smaller than the ribosome particles. These factors make picking156

FAS much more challenging than picking ribosomes. Nevertheless, the relative improvement of the F1157

scores of RobPicker over DeePiCt is much more significant on the FAS than on the ribosome (24.2%158

vs 6.67%), underscoring RobPicker’s robustness on picking smaller and less abundant particles.159

RobPicker’s robustness to imbalanced species distribution is attributed to the inclusion of the data160

reweighting network, which dynamically up-weight the minority species in training. This strategy161

is in contrast to traditional supervised learning methods like DeePiCt, which directly optimizes the162

segmentation loss function without reweighting the data samples, causing the segmentation network163

biases towards the major species in the segmentation.164

3.3 RobPicker enables efficient, generalizable particle picking for macromolecular structure165

determination166

The output of particle picking from cryo-ET data is often used as input for structure solving analysis.167

We showed the utilization of RobPicker in combination of subtomogram averaging tool RELION [35]168

and multi-particle refinement tool M [30] in structure determination pipelines, which demonstrated169

RobPicker as a fast, first-round picking method without any supervision to get a high-quality 3D170

reconstruction (also referred to as 3D map or map). We first trained RobPicker to pick ribosomes171

on just four yeast tomograms in D4, where RobPicker achieved a much higher F1 score than172

DeepFinder (0.87 vs 0.67) (Fig. 2f). As illustrated in Fig. 4a, RobPicker produced more accurate173

particle probability maps compared to DeepFinder, with significantly fewer false positives, reflecting174

its strong specificity. Furthermore, we applied RobPicker on another eight held-out tomograms175

of yeast, which was efficiently done in ~15 minutes on an A100 GPU. We performed a quick 3D176

refinement followed by 3D classification on the picked particles in RELION [35], resulting in a good177

and representative yeast ribosome map (resolution ~19 Å) shown in Fig. 4b, further underscoring178

RobPicker’s efficiency, accuracy, and specificity.179

To evaluate RobPicker’s generalization capacity, the same RobPicker model trained on the four180

yeast tomograms was used to pick ribosomes in 14 in-cell tomograms at a highly coarse pixel size181

(apix) of another organism (bacterial; M. pneumoniae [30]). Subsequently, we aimed to create182

a high-resolution bacterial ribosome map using a pipeline subjected to Fig.4c. Specifically, we183

performed a 3D refinement with the picked particles in RELION [35], which was quick due to the184

coarse apix. The 3D classification resulted in a small subset of high-quality particles. These particles185

were re-extracted at finer apix for further refinement. To further improve and fine-tune tilt-series186

alignment and its resulting reconstruction quality, we used the multi-particle refinement tool M [30],187

which jointly optimizes tilt-series alignment and contrast transfer function (CTF) parameters across188

the full tomograms. Application of M to the refined bacterial ribosome particles resulted in a marked189

resolution improvement from ~15 Å to 7 Å at the 0.143 Fourier shell correlation (FSC) criterion190

(Fig.4c). This whole process that led to a significant improvement in the tilt-series alignment and191

resolution of the ribosome average can be performed quickly within a few hours. This highlights the192

utility of RobPicker for fast, accurate particle detection and its synergy with modern refinement tools193

in enhancing tilt-series alignment and structural resolution.194

4 Conclusion195

We introduced RobPicker—a meta learning framework for robust particle picking in cryo-ET data. In196

this framework, a data reweighting network and a label correction network are trained to minimize the197

validation loss on a smaller, cleaner validation set. Then, these two networks reweight the importance198

of data samples and correct the noisy labels in the training set, enabling better supervision signal to199

train the macromolecule segmentation network. The two learning stages are performed iteratively in a200

bi-level optimization framework for continual refinement of these networks. Experiments on cryo-ET201

real datasets show that RobPicker outperforms two strong particle pickers DeepFinder and DeePiCt,202

especially on small and rare particle species. Moreover, RobPicker trained on yeast tomograms203

can pick particles on bacterial tomograms, showing its strong generalizablility across organisms.204

Finally, the synergy of RobPicker and existing cryo-ET processing tools demonstrates its utilization205

in structure determination pipelines.206
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Figure 5: (a) and (b) RobPicker outperformed DeepFinder across 12 distinct classes encompassing particles
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A More experiments394

A.1 RobPicker robustly picks particles of diverse sizes in noisy, imbalanced data395

We conducted experiments on a benchmark dataset from the SHREC 2019 Cryo-ET Challenge, which396

consists of ten synthetic tomograms with ground truth labels for particles across 12 distinct species,397

covering a wide range of sizes [36]. These particles were categorized by size into four groups: large,398

medium, small, and tiny (Fig. 5). The dataset was divided into a training set, a validation set, and a399

test set. The label maps for the validation and test sets were created using the shape-based method,400

while the label maps for the training set were created based on two settings, one with the shape-based401

method and the other with the sphere-based method—to demonstrate the robustness of RobPicker402

facing data with different noise levels.403

We compared RobPicker’s performance with DeepFinder’s [14] in the benchmark. RobPicker404

consistently outperformed DeepFinder in terms of picking F1-scores across all particle size cate-405

gories, including large, medium, small, and tiny in the sphere-based experiments (Fig. 5a). Notably,406

RobPicker demonstrated a substantial improvement over DeepFinder in detecting small and tiny407

particle species.408
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RobPicker also outperformed DeepFinder in the shape-based experiments (Fig. 5b) where the training409

labels were cleaner than the sphere-based experiments. Moreover, RobPicker demonstrated a more410

pronounced improvement over DeepFinder for smaller particles compared to larger ones.411

A.2 Ablation studies412

To evaluate the effectiveness of the data reweighting (DR) network and label correction (LC) network,413

we tested two variants of RobPicker: DR-Only, which performs data reweighting without label414

correction, and LC-Only, which applies label correction without data reweighting. RobPicker with415

both DR an LC networks significantly outperformed the two variants (Fig. 5c,d), especially for picking416

particles of tiny species. These results highlight the importance of combining data reweighting and417

label correction to achieve robust performance in RobPicker.418

A.3 Qualitative results of label correction network and data reweighting network419

Our analysis revealed that RobPicker’s label correction network recovered missing labels. Specifically,420

we had a noisy label map of a tomogram from the SHREC 2019 cryo-ET dataset [37], where the421

labels for some particles were missing (Fig. 6a). The noisy label map and the subtomogram were422

inputted into RobPicker’s label correction network, which outputted a new label map that showed423

multiple particles’ occupancy (Fig. 6b). We found that the clean label map (Fig. 6c), which showed424

the actual particle occupancy, and the label map predicted by the label correction network highly425

overlap with each other (Fig. 6d). Therefore, the missing labels were recovered by the label correction426

network, which provided improved, cleaner labels to train the macromolecule segmentation network427

for robust identification of particles. Moreover, we found that the data reweighting network assigned428

larger weights to underrepresented macromolecule species. The SHREC 2019 dataset categories the429

particles into four categories, including large, medium, small, and tiny categories, by the particle mass430

(Fig. 5). For each subtomogram in the training set, it was classified as one of the large, medium, small,431

and tiny categories if the majority of particles were from that category in the subtomogram. Each432

subtomogram was assigned a weight by the data reweighting network during training. We recorded433

the weights of the subtomograms, and plotted the mean and standard deviation of the weights for434

the large, medium, small, and tiny categories. As shown in Fig. 6b, the data reweighting network435

assigned larger weights to the subtomograms with smaller particles, which indicated that the network436

learned to give more emphasis to underrepresented particles in training the macromolecule network.437
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This strategy effectively mitigated the issue of imbalanced species and improved the particle picking438

performance on small species (Fig. 5).439

A.4 Comparison with PyTom on structure determination440

We performed an experiment on another yeast tomogram dataset to compare traditional template441

matching methods and RobPicker in solving ribosome structures. The lack of supervision and manual442

curation required to clean up the picks is a major advantage of RobPicker. Such manual curation is443

a significant bottleneck for traditional template-matching methods like PyTom [38, 39] for particle444

picking. The manual curation is required in such template matching methods due to prevalence445

of false positives in the picked particles. But even this manual curation is ill-defined. Typically,446

a user-defined threshold (on quality score of template matching picks) has to be applied to pick447

high quality particles (presumably representing true positives). In contrast, RobPicker’s detection of448

ribosomes requires no manual input and can generalize well to other organisms without changing any449

hyper-parameters (as shown in the bacterial ribosome experiments above). After training RobPicker450

on five yeast tomograms in D2, we used another four held-out yeast tomograms as the test dataset for451

a comparison between PyTom and RobPicker. While RobPicker identified 4,092 particles in the four452

tomograms, the automatic thresholding in PyTom returned very few particles. This can be explained453

by the fact that there is no visible second peak in the histogram of the local cross-correlation (LCC)454

scores when we extract the top 10,000 candidates (Fig. 8a). To compare the two particle-picking455

methods, we extracted the same number of particles as the RobPicker output from PyTom candidates456

(breakdown in Fig. 8b). The comparison between the RobPicker picks and PyTom picks, shown in457
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Fig. 7b–c, demonstrates the higher specificity of the RobPicker picks. We performed several rounds458

of refinement and classification in RELION [35] and further multi-particle refinement in M [30], for459

both particle sets to select a subset of particles that showed consistent high-resolution features during460

iterative refinement. This process resulted in an 11 Å reconstruction from the RobPicker-identified461

dataset, and a 12.5 Å reconstruction from the PyTom-identified dataset. Visual inspection of the462

reconstructions (Fig. 7d) shows a marked increase in detail in the map from RobPicker-identified463

picks compared to those identified in PyTom, emphasizing the improved ability of RobPicker to464

identify more particles that contribute to high-resolution information in the resulting reconstruction.465

The ability to use RobPicker as a pre-trained model offers the potential of improving and speeding466

this process up even further for initial reconstruction of 80S ribosomes that can be used to improve467

our tomograms in packages like RELION and M, similar to the pipeline described in Fig. 4c.468

B Related works469

Deep learning for cryo-ET particle picking Deep learning has rapidly displaced classical template470

matching for particle picking in cryo-ET. Supervised 3D U-Net–style approaches established that neu-471

ral networks can localize multiple macromolecular species directly in tomograms (DeepFinder [14])472

and mine cellular context to improve picking (DeePiCt [15]). Subsequent architectures targeted speed473

and scalability, e.g., one-stage 3D detectors like PickYOLO [40], and generalizable feature learn-474

ing [16]. More recently, self-supervised contrastive pipelines like MiLoPYP [41] use unsupervised475

pattern mining in particle segmentation model training.476

Meta learning for robust machine learning Meta-learning has emerged as a powerful paradigm477

for building models that adapt quickly to new tasks or noisy supervision by leveraging higher-order478

optimization. The seminal Model-Agnostic Meta-Learning (MAML) framework demonstrated that a479

single initialization can be optimized across tasks to enable rapid adaptation with only a few gradient480

steps, inspiring a wave of follow-up work on robust learning [29]. In the context of noisy labels, meta-481

learning has been widely applied to dynamically refine supervision quality. Meta label correction482

methods use auxiliary validation sets to guide the correction of mislabeled data, while extensions such483

as the decoupled Meta Label Purifier [42] and Meta Soft Label Generation [43] propose strategies484

for disentangling clean and noisy signals or generating reliable soft labels. Complementary to label485

correction, another line of work has focused on adaptive reweighting. The method of learning to486

reweight examples introduced the idea of meta-learned weighting of training samples to mitigate487

the effect of noise [44], later extended by Meta-Weight-Net [32], which parameterizes an explicit488

weighting function optimized via meta-gradients. Collectively, these approaches highlight how489



meta-learning enables data-driven strategies for both correcting supervision and reweighting training490

signals, offering a robust framework for learning under noisy or imperfect data.491

C The RobPicker framework492

RobPicker is formulated as a meta learning problem, with a bi-level optimization (BLO) formulation.493

A BLO problem has two levels of optimization problems: a lower level and a upper level. In494

RobPicker, the training of the macromolecule segmentation network is at the lower level, while the495

training of the DR network and LC network is at the upper level. The two levels are nested and496

mutually dependent on each other: the optimal parameters of the segmentation network from the497

lower level are used to define the objective function at the upper level; the non-optimal parameters of498

the DR and LC networks from the upper level are used to define the objective function at the lower499

level. Due to this mutual dependency, the model parameters of the two levels are iteratively updated,500

with the detailed process described below.501

Given a training dataset Dtr = {(ti, ai)}Ntr
i=1, where ti represents an input tomogram, ai denotes502

the corresponding macromolecule label, and Ntr is the number of training samples, we input ti503

into the macromolecule segmentation network f(ti; I) with I representing the network’s weight504

parameters, which outputs a prediction. Simultaneously, ai is fed into the LC network g(ai;C),505

where C represents the weight parameters for this network, producing a corrected label. A loss506

function ℓ(f(ti; I), g(ai;C)), which is the Dice loss [45], is computed to quantify the discrepancy507

between the detection result and the corrected label. The loss value is fed into the DR network to508

output a scalar weight h(ℓ(f(ti; I), g(ai;C));R), where the DR network is parameterized by R. The509

loss is then multiplied by this weight. Let L(Dtr, I, C,R) represent the sum of the reweighted losses510

over the entire training dataset:511

L(Dtr, I, C,R) =∑Ntr
i=1 h(ℓ(f(ti; I), g(ai;C));R)ℓ(f(ti; I), g(ai;C)).

(1)

We train the segmentation network by updating its parameters I to minimize this loss L(Dtr, I, C,R)512

while keeping the parameters of the LC and DR networks fixed. This leads to the following optimiza-513

tion problem:514

I∗(C,R) = argminI L(Dtr, I, C,R). (2)

Here, I∗(C,R) indicates that the optimal trained parameter I∗ is a function of the parameters of the515

LC and DR network C and R, as I∗ is determined by the loss function, which itself depends on C516

and R. Note that C and R are not optimized in this step, as doing so could result in a trivial solution517

where the weight h(ℓ(f(ti; I), g(ai;C));R) becomes zero for every i.518

Next, we evaluate the trained segmentation network I∗(C,R) on a clean validation dataset519

Dval = {(tj , aj)}Nval
j=1, where Nval represents the number of validation examples. For each vali-520

dation tomogram tj , the segmentation network is used to detect macromolecules, and the resulting521

prediction f(tj ; I
∗(C,R)) is compared to the corresponding ground truth label aj , yielding a loss522

ℓ(f(tj ; I
∗(C,R)), aj). Let L(Dval, I

∗(C,R)) represent the total loss over the entire validation523

dataset:524

L(Dval, I
∗(C,R)) =

Nval∑
j=1

ℓ(f(tj ; I
∗(C,R)), aj). (3)

We optimize the parameters of the CL and DR networks C and R by minimizing the validation loss,525

which leads to solving the following optimization problem:526

minC,R L(Dval, I
∗(C,R)) (4)

Combining Equations 2 and 4, we obtain the following bi-level optimization problem:527

minC,R L(Dval, I
∗(C,R))

s.t. I∗(C,R) = argminI L(Dtr, I, C,R)
(5)

The two levels of optimization problems are interdependent. The solution from the lower level,528

I∗(C,R), is used to define the loss function at the upper level, while the optimization variables C529

and R from the upper level are also involved in defining the loss function at the lower level.530



D Optimization algorithm531

We address the optimization problem in Equation 5 using a hypergradient-based approach. Specifi-532

cally, we approximate the optimal solution I∗(C,R) through a single-step gradient descent update as533

follows:534

I∗(C,R) ≈ I ′(C,R) = I − ηI∇IL(Dtr, I, C,R). (6)
where ηI denotes the learning rate.535

We substitute the approximation I∗(C,R) ≈ I ′(C,R) into the upper-level loss function, yielding an536

approximate loss L(Dval, I
′(C,R)). We then update C and R using gradient descent with respect to537

the approximate loss:538

C ← C − ηc∇CL(Dval, I
′(C,R)), (7)

539
R← R− ηr∇RL(Dval, I

′(C,R)), (8)
where ηc and ηr denote the respective learning rates. The gradient ∇CL(Dval, I

′(C,R)) can be540

computed using the chain rule:541

∇CL(Dval, I
′(C,R)) =

∂I ′

∂C

∂L(Dval, I
′(C,R))

∂I ′
, (9)

where542
∂I ′

∂C
= −ηI∇2

C,IL(Dtr, I, C,R). (10)

Similarly, the gradient∇RL(Dval, I
′(C,R)) is computed as:543

−ηR∇2
R,IL(Dtr, I, C,R)

∂L(Dval, I
′(C,R))

∂I ′
. (11)

The updates in Equations 6, 7, and 8 are performed iteratively until convergence. The steps of the544

algorithm are outlined in Algorithm 1.545

In Equation 11, computing the matrix ∂I′

∂C = −ηI∇2
C,IL(Dtr, I, C,R) and performing multiplication546

with the vector ∂L(Dval,I
′(C,R))

∂I′ = ∇I′L(Dval, I
′(C,R)) incur noticeable computational cost. To547

mitigate this, we adopted the finite difference approximation method [46]. This method is a numerical548

technique for estimating derivatives when their analytical forms are either complex or infeasible to549

compute. By evaluating the function at perturbed points, finite difference approximation provides550

an efficient way to approximate derivatives. Let I+ and I− denote I + ϵ∇I′L(Dval, I
′(C,R))551

and I − ϵ∇I′L(Dval, I
′(C,R)), respectively, where ϵ is a small scalar. Using this approach, the552

matrix-vector multiplication can be approximated as:553

∇2
C,IL(Dtr, I, C,R)∇I′L(Dval, I

′(C,R)) ≈
∇CL(Dtr,I

+,C,R)−∇CL(Dtr,I
−,C,R)

2ϵ

(12)

Similarly,∇2
R,IL(Dtr, I, C,R)∇I′L(Dval, I

′(C,R)) can be approximated as:554

∇2
R,IL(Dtr, I, C,R)∇I′L(Dval, I

′(C,R)) ≈
∇RL(Dtr,I

+,C,R)−∇CL(Dtr,I
−,C,R)

2ϵ .
(13)

This bi-level optimization algorithm has been implemented in our Python library Betty [47], based555

on which RobPicker was implemented.556

E Model architecture557

We used PyTorch [48] to implement the macromolecule segmentation network. For the experiments558

in comparison with DeepFinder, we used the 3D U-Net [18] following DeepFinder [14]. The input559

of the macromolecule segmentation network is a 3D tensor (e.g., h × w × d), representing a 3D560

tomogram. The output of the macromolecule segmentation network is a 4D tensor (h×w×d×c) with561

c channels, where c matches the number of classes (number of species plus one for the background).562

The model has four down-blocks, where each down-block has four 3D convolutional layers (kernel563

size: 3x3x3, stride: 1x1x1, padding: 1x1x1). Each convolutional layer is followed by a 3D batch564



Algorithm 1: Bi-level optimization for RobPicker
Input: Training set Dtr, validation set Dval;
initial parameters for segmentation network I(0), label correction network C(0), data reweighting
network R(0);
learning rates ηI , ηC , ηR; maximum iterations T
Output: Learned parameters I , C, R
for t← 1 to T do

// Approximate inner optimum I∗(C,R) by a single-step gradient
descent

I ′ ← I(t−1) − ηI ∇IL
(
Dtr, I

(t−1), C(t−1), R(t−1)
)
;

// Update outer parameters C and R using hypergradient
// The hypergradient is approximated by Equations 12 and 13
C(t) ← C(t−1) − ηC ∇CL

(
Dval, I

′);
R(t) ← R(t−1) − ηR∇RL

(
Dval, I

′);
I(t) ← I ′

return I(T ), C(T ), R(T )

normalization layer [49] and a ReLU activation function [50]. There is a 3D max-pooling (kernel565

size: 2, stride: 2, padding: 1, dilation: 1) between the second and the third convolutional layer in566

each down-block. The model essentially predicts the probabilities of each voxel belonging to each567

class. If we perform the argmax operation along the channel dimension, we can get the predicted568

label of each voxel belonging to one of the classes (see post-processing below). The down-blocks569

are followed by a bottleneck block with two 3D convolutional layers, which is followed by four570

up-blocks. Each up-block has a transposed 3D convolutional layer (kernel size: 2x2x2, stride: 2x2x2)571

and two 3D convolutional layers (kernel size: 3x3x3, stride: 1x1x1, padding: 1x1x1). The final layer572

of this segmentation network is 3D convolutional layer (kernel size: 1x1x1, stride: 1x1x1). For the573

experiment on D5 where RobPicker was compared with DeePiCt, we used the same 3D U-Net as574

DeePiCt [15], which has a similar architecture as DeepFinder and it has 41 million parameters.575

The data reweighting network has a linear layer that expands the input dimension of 1 (i.e., the loss576

value) to a hidden dimension of 500, followed by a ReLU activation [50], and then a linear layer that577

shrinks the hidden dimension of 500 to the output dimension of 1, followed by a sigmoid function that578

converts the output to a weight between 0 and 1. The data reweighting network has only 1.5 thousand579

parameters. The label correction network takes as input the noisy label, denoted by L (4D tensor with580

c channels, where the channel dimension is one-hot), and the input tomogram (3D tensor). The label581

correction network starts with a sub-network that processes the input tomogram and outputs a feature582

map of the tomogram, denoted by M. The sub-network shares the same architecture and parameters583

as the macromolecule segmentation network for efficiency consideration. A 3D convolution layer584

maps the input channel size of M to the output channel size of the number of classes (with kernel585

size being 1, padding 1, and stride 1), followed by a softmax operation. The result of the softmax is586

denoted by S. Then, S is concatenated with the noisy label. The result feature map has a channel size587

of two times the number of classes. Then, a 3D convolution layer (with kernel size being 1, padding 1,588

and stride 1) shrink the channel size to the number of classes, followed by a ReLU activation, another589

3D convolution layer (with kernel size being 1, padding 1, and stride 1), and a sigmoid operation.590

The result, denoted by α, acts as a mixing coefficient of the noisy label S and the softmax result S to591

compute the corrected label C:592

C = α · S+ (1− α) · L. (14)

Due to the sharing of parameters between the label correction network and the macromolecule593

segmentation network, the label correction network only has around 1.3 thousand parameters. The594

small amount of parameters of the label correction and data reweighting networks has significantly595

reduced the computational complexity of the bi-level optimization in RobPicker.596



F Data preprocessing597

Data structure A tomogram is represented as a 3D tensor with shape h× w × d, while its label598

map is represented as a 4D tensor with shape h × w × d × c, where c is the number of classes599

for segmentation. For a label map denoted by M , and for a specific 3D coordinate (x, y, z), we600

have a ground-truth class, denoted by e ∈ {1, 2, . . . , c}. Then, the label map is constructed so that601

Mx,y,z,e = 1 and Mx,y,z,j = 0 for j ̸= e.602

Tomogram patching In the training phase of deep learning models for tomographic data of large603

sizes (e.g., 500 × 500 × 500), GPU memory capacity often becomes a bottleneck, often causing604

out of memory error. To circumvent this limitation, we divided a whole tomogram into distinct 3D605

subtomograms, or “patches”. Following DeepFinder [14], we used a patch size of 64× 64× 64. We606

also applied random rotation and random shift to the input for data augmentation during training. The607

labels were extracted using the same patch size accordingly. Therefore, the segmentation network608

only needs to take a 3D subtomogram as input and predict the label on the subtomogram. The609

advantage of this strategy lies in its memory efficiency—only the batch currently under scrutiny610

is loaded into the GPU memory. This ensures that our methodology remains adaptable across a611

spectrum of GPUs. During inference, the test tomogram is also divided into subtomogram to input to612

the segmentation network. However, the prediction on the boundary of the subtomograms can be613

less accurate due to the lack of sufficient tomographic context. Therefore, we extrated overlapping614

subtomograms (with an overlap of 20 voxels) and averaged the overlapping regions of the predicted615

segmentation maps.616

Resampling To make the particle classes (i.e., macromolecule species) distributed balanced in617

the validation data, we used resampling when extracting the subtomograms. Specifically, we first618

uniformly sample a particle class from {1,2,. . . , c} and then sample a particle from the chosen particle619

class. Then, the subtomogram with the sampled particle is extracted for training.620

G Data post-processing621

Similar to the methodology adopted by DeepFinder [14], RobPicker’s post-processing operation622

is a multi-step procedure involving classification and clustering. Applying the macromolecule623

segmentation network on the input tomogram results in a segmentation map, which is denoted by624

M . Then, the first step is classification of every voxel within the tomogram—ensuring each voxel625

is attributed to a specific macromolecule species—by selecting the class with the highest predicted626

probability. Mathematically, we compute Cx,y,z = argmaxi Mx,y,z,i to obtain a 3D tensor C, which627

effectively becomes the label map predicted by the model. Building on the voxel classification,628

RobPicker’s subsequent focus is clustering. In this phase, a robust clustering algorithm, called629

DBSCAN [51], groups the classified voxels into distinct units that represent individual particles. For630

the configuration of the DBSCAN algorithm, we set the radius of a neighborhood to 1 voxel and631

minimum number of voxels in a cluster to 5. After clustering, the exact location of each particle is632

revealed within the tomogram volume by calculating the gravity center of the voxel clusters. For the633

3D visualization of the particles, we use IMOD [52], Chimera [53], and ChimeraX [54].634

H Datasets635

D1 was obtained from DeepFinder [14]. It encapsulates 57 tomograms of C. reinhardtii cells. Experts636

manually annotated the 3D coordinates of 8,792 mb-ribos using a combination of template matching,637

subtomogram classification, and visual inspection. Ct-ribos were annotated by semi-automatic tools638

without expert supervision.639

D2 was generated to study co-translating 80S ribosomes in yeast cells [34]. It includes 6 tomograms640

from yeast lamellae, where PyTom [38] template-matching and manual expert annotations were used641

to annotate 80S ribosomes. Tomograms were collected at the pixel size of 2.63 Å and reconstructed642

at the pixel size of 10 Å in Warp [55]. All tomograms were denoised in IsoNet [56] to compensate643

for the missing wedge effects.644



Dataset Object Training Validation Test

D1
tomogram 48 1 8

ct-ribos 6,687 254 2,594
mt-ribos 6,834 222 1,736

D2 tomogram 4 1 1
ribosome 2,986 707 843

D3
tomogram 26 1 1

50S 6,013 443 238
70S 6,318 512 285

D4 tomogram 3 1 1
ribosome 6,467 1,238 1,496

Table 1: Dataset statistics. We report the number of tomograms, and number of annotated particles in the
training, validation, and test sets.

For D3, we collected 28 tomograms from E. coli cells. These tomograms were collected at pixel size645

of 1.66 Å and reconstructed and binned by 6 voxels at 9.98 Å using Warp and were not denoised any646

further. The annotation for this dataset was done through template-matching and classification in647

RELION [35] to separate the 70S and 50S classes.648

For D4, we collected 5 tomograms using the following procedure. Yeast cells in the logarithmic649

growth phase were vitrified and prepared for cryo-ET using cryo-FIB milling [57]. A ribosome650

particle picker was trained on this dataset and subsequently applied to eight additional tomograms of651

yeast (also prepared using cryo-FIB) without any supervision, yielding ~23,000 ribosome coordinates.652

These particles were subjected to refinement in RELION 3 [35]. The workflow included an initial653

refinement of all particles, followed by 3D classification. Particles belonging to the best-resolved654

class (~5,500 particles) were selected for subsequent refinements, resulting in the yeast ribosome655

map shown in Fig. 4b.656

The M. pneumoniae dataset that was used to demonstrate the pipeline in Fig. 4c was obtained from657

M [30]. The same RobPicker trained on D4 was used to pick ~5,300 particles from 14 tomograms of658

M. pneumoniae. These picks were subjected to initial refinement and classification in RELION 3 [35].659

From these, ~2,000 particles belonging to the highest-quality class were selected for multi-particle660

refinement in M [30]. This refinement, coupled with tilt-series alignment fine-tuning, improved the661

ribosome map resolution from ~15 Å to 7 Å (Fig. 4c). All reported resolutions were estimated using662

the gold-standard Fourier shell correlation (FSC) at the 0.143 criterion.663

D5 was obtained from DeePiCt [15]. It includes 10 VPP tomograms of S. pombe cells. An iterative664

workflow was used to localize ribosome and FAS in 4×-binned tomograms (13.48 Å voxel size).665

Manually curated template matching was performed for ribosomes, and non-exhaustive manual666

picking was performed for FAS (step 1). The resulting annotations were used to train the 3D CNNs667

of DeePiCt (step 2). For ribosomes, step 2 was repeated three times (always trained on combined668

predictions of step 1 and the preceding round). Cumulative predictions were manually revised in669

tom_chooser in PyTom (for ribosomes) and in EMAN2 [58] (for FAS). This comprehensive pipeline670

ensured the labels were high-quality.671

The SHREC 2019 challenge [36] utilized 12 Protein Data Bank (PDB) identifiers (1bxn, 1qvr, 1s3x,672

1u6g, 2cg9, 3cf3, 3d2f, 3gl1, 3h84, 3qm1, 4b4t, and 4d8q) to generate tomogram density maps.673

Then, the density maps were subsequently transformed into a tilt series of projection images, which674

were then deliberately degraded with noise and contrast adjustments. The reconstructed tomograms675

from tilt series have a dimension of 512× 512× 512 with a 1 nm voxel resolution. Each tomogram676

contains approximately 200 particles per species on average. Nine tomograms were provided for677

training, while the tenth tomogram was reserved for testing. For RobPicker, we partitioned the nine678

training tomograms into two subsets, assigning eight tomograms for training and one for validation.679

These subsets were employed in Stage I and Stage II—respectively—of the training process shown in680

Fig. 1c.681



I Experimental Settings682

Loss function We used the Dice loss function following DeepFinder [14] and DeePiCt [15]. The683

Dice loss function is computed for each channel (i.e., class) and the final loss value is the averaged684

loss values of all the channels. Specifically, for a ground truth label map A (4D tensor of shape685

h× w × d× c) and a predicted label map B, whose values are in the interval [0, 1], the Dice loss is686

computed as:687

Dice(A,B) =
1

c

c∑
j=1

(
1− 2|Aj ∩Bj |
|Aj |+ |Bj |

)
(15)

where j is the index for the last dimension, and the intersection |Aj ∩Bj | =
∑

x,y,z Ax,y,z,jBx,y,z,j ,688

and the union |Aj | =
∑

x,y,z Ax,y,z,j and |Bj | =
∑

x,y,z Bx,y,z,j .689

Evaluation metrics We used the picking F1 score to assess particle picking performance. The690

F1-score is the harmonic mean of precision and recall:691

F1 = 2
precision · recall
precision + recall

(16)

precision =
tp

pred
(17)

recall =
tp

gt
(18)

where tp,pred, gt denote the numbers of true positives, predicted particles, and ground truth particles,692

respectively. A predicted particle was considered to be a true positive if the centroid of the predicted693

particle was located within the boundary of a ground truth particle with the same class label. For the694

evaluation of model performance on D5 from DeePiCt [15], we followed DeePiCt’s evaluation metric695

to define the true positives as those predicted particles whose coordinates overlap with a ground truth696

particle within a tolerance radius (10 voxels, 135 Å).697

Hyperparameters and Optimization The stochastic gradient descent (SGD) algorithm [59, 60]698

was used to update model parameters. SGD encompasses a learning rate of lr=0.0001, momentum699

parameterized at momentum=0.9, and a weight decay set to weight_decay=0.0005. Efficient700

training was facilitated with batches of size batch_size=25. The model was subjected to 10,000701

training iterations, as captured by train_iters=10000, with validation step performed at every702

500 iterations, valid_iters=500. The meta-learning facets of our architecture utilized parameters703

such as meta_alpha=0.0, and lamda=1.0, among other configurations which are available in the704

documentation of our code. For a dataset with 10 tomograms, the training process typically takes a705

few hours on an Nvidia Tesla A100 (80 GB) GPU.706
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