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ABSTRACT

We present GOODFIT, one of the first optimizers that has been specifically de-
signed to operate on converged models that need to be incrementally fine-tuned on
a new task/dataset. Unlike standard optimizers like SGD or Adam, which operate
with minimal assumptions since the model weights might be randomly initialized,
GOODFIT takes advantage of the additional structure of a converged model to
regularize the optimization process for better results. GOODFIT uses a simple
temporal gradient orthogonalization process to outperform traditional fine-tuning
methods in a wide variety of settings, from long-tailed classification to large-scale
motion prediction. And because GOODFIT is fully encapsulated within the logic
of an optimizer, it can be trivially dropped into any model training pipeline with
minimal engineering effort. We believe that a new class of fine-tuning optimizers
like GOODFIT can help pave the way as fine-tuning and incremental training
become more and more prevalent within modern deep learning, and practitioners
move further and further away from expensively training models from scratch.

1 INTRODUCTION

Training large neural network models from scratch is expensive. As datasets and models increase
in size, having to train a new model for every new setting quickly becomes intractable. Imagine,
for example, the cost of having to train a new model every time an autonomous vehicle needs to
operate in a new city. The shift towards fine-tuning within the deep learning community has also been
accelerated by developments in large foundational models that were trained on vast quantities of data,
such as Large Language Models (LLMs)Brown et al. (2020). Indeed, hints abound that deep learning
is steadily inching towards a new paradigm where only simple models are trained from scratch.

At the same time, fine-tuning a model comes with its own set of challenges. For one, it is well
known that models tend to readily forget old information when fine-tuned on new information, in
a process known as “catastrophic forgetting.” Various mitigation methods have been proposed Li
& Hoiem (2017), but often require extensive additional data engineering and modifications of the
model architecture. The common practice within fine-tuning still seems to largely rely on training
on new tasks/data with a smaller learning rate or with a frozen backbone (or both). The difficulty of
developing widely-adopted fine-tuning methods often lies in the requisite generality and simplicity of
such a method. We aim to address both of these desirable properties in the present work.

Speaking of generality and simplicity, one ubiquitous element within deep learning training that is
also almost always implemented in a modular fashion is the optimizer. The majority of models set
the optimizer to some noncontroversial choice (such as Adam Kingma & Ba (2015); Loshchilov &
Hutter (2019) or Momentum Sutskever et al. (2013)). Yet, all current popular optimizers are designed
with training-from-scratch in mind, which forces their design to assume minimal structure about the
problem setting. In contrast, the fine-tuning setting usually starts from a well-trained, well-converged
model that we already trust. So we ask: how do we design an optimizer especially for the case where
we start from a converged model? Given the ubiquity and modularity of optimizers, such an optimizer
would be immediately applicable and easy to implement within any fine-tuning setting.

Works such as Learning Without Forgetting (LWF) Li & Hoiem (2017) have proposed mitigating
fine-tuning regression by sticking close to an old state of the model, but requires additional data
pipelining and model snapshots that serve as additional supervision to keep the model anchored to
its old “good” state. Instead of anchoring a model across tasks, we propose a slightly different but
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Figure 1: Schematic of a gradient update for GOODFIT. Unlike standard optimizers, which take
successive steps through parameter space, GOODFIT keeps track of a “good” model state and collects
reference information of how the system tries to move away from the “good” state (denoted by the
superscript “r” - for “reference” - in the figure). The functionality of the “good” state is then restored
by translating and orthogonalizing gradient updates with respect to that state. These processes allow
GOODFIT to take heavily regularized update steps and produce superior performance when in
challenging fine-tuning settings. The visualization in the bottom row is discussed in Section 4.1.

equally valid anchoring across time. For each iteration of the optimizer, we can take a step away from
equilibrium and balance further steps away from equilibrium with the model’s desire to return to
equilibrium using standard methods from the gradient-based multitask learning literature. The result
is a system that mimics data-driven anchor methods such as Li & Hoiem (2017) without actually
needing data and replaces the rigid anchors with a dynamically updated flexible one.

Specifically, a model converged in some state x0 will proceed along the states x1, . . .xt with a
standard optimizer. A further update would send the system to xt+1. However, because x0 was a
“good state,” the model also would benefit by returning to x0. We thus have two potentially conflicting
gradient directions (∆ := xt → x0 and g := xt → xt+1), which is a classic multitask learning
problem. We borrow some ideas from Yu et al. (2020) and assign g 7→ g ⊥ ∆, where ⊥ is the
orthogonalization operator. We then restore the model to state x0 (the “translate” operation on the top
right of Figure 1) and take a step in the orthogonalized g direction. We name our method GOODFIT,
which stands for Gradient Orthogonalization Optimizer Designed for Incremental Training, and a
schematic of the process is shown in Figure 1. To the best of our knowledge, GOODFIT is one of the
first optimizers that is specifically designed to work in the fine-tuning/incremental training setting.

Note that the mathematical operation of GOODFIT depends on the assumed compatibility of the fine-
tune setting with the baseline setting, as GOODFIT tries to dynamically keep the model state close to
that of the baseline. GOODFIT excels at gracefully adapting a model towards a nearby distribution
of interest, and this compatibility is therefore a core element of the setting we tackle. While this may
exclude some use cases that practitioners may refer to as “fine-tuning” (e.g. pretrain on ImageNet,
fine-tune on an unrelated dataset), we wish to be careful in separating those pretraining settings
with the majority of practical fine-tuning applications that fall under the compatibility constraint.
GOODFIT provides significant performance boosts in those cases, as we will demonstrate.

Our main contributions are as follows:

• We present GOODFIT, the first optimizer designed specifically for fine-tuning a good
baseline model, and which can be easily dropped into any deep learning training framework.

• We theoretically prove that GOODFIT allows us to train as if we still had access to the old
data/setting in an unsupervised way.
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• We experimentally show that GOODFIT beats standard fine-tuning methods in a large
number of settings, from a low-dimensional toy example to image classification to large-
scale motion prediction for autonomous driving.

2 RELATED WORK

Fine-Tuning Fine-tuning a pre-trained model on particular datasets Kornblith et al. (2019); Chen
et al. (2020) is a common technique in the era of deep learning. For fine-tuning purposes, practitioners
often use standard popular optimizers like Stochastic Gradient Descent (SGD) Bottou (2010) and
AdamW Kingma & Ba (2015); Loshchilov & Hutter (2019). Recent advanced modern architectures
such as ViTs Dosovitskiy et al. (2021); Caron et al. (2021); Radford et al. (2021) or ConvNeXts Liu
et al. (2022) use AdamW for fine-tuning, while it is also common to use SGD for fine-tuning models
like ResNets He et al. (2016); Kolesnikov et al. (2020) due to the optimizer’s efficiency. However,
SGD and AdamW do not assume that we want to stay close to our model’s start state, and thus lead to
models that tend to forget old data when fine-tuning on new data, also known as catastrophic forgetting
or catastrophic interference McCloskey & Cohen (1989). Our method serves as a regularization
approach to bridge the gap in the existing optimizers to mitigate this forgetting issue.

Continual Learning To address this issue, various approaches have been developed, such as
regularization-based methods Kirkpatrick et al. (2017); Chaudhry et al. (2020); Jung et al. (2020);
Titsias et al. (2020); Iman Mirzadeh et al. (2021), where the goal is to keep learned information
of the past tasks during continual learning. In particular, Mirzadeh et al. Iman Mirzadeh et al.
(2021) demonstrated a link between continual learning and multi-task learning, and Farajtabar et al.
Farajtabar et al. (2020) proposed projecting gradients from new tasks onto the subspace of prior task
gradients. Learning Without Forgetting (LWF) Li & Hoiem (2017); Masana et al. (2022) proposes
storing the old model response on new tasks/data for additional supervision. Our method draws
parallels with these approaches but does not rely on storing costly amounts of old data/statistics,
which makes our method much more plug-and-play and dynamic. Two other directions to address the
catastrophic forgetting are rehearsal-based methods Rebuffi et al. (2017); Chaudhry et al. (2019a);
Lopez-Paz & Ranzato (2017); Chaudhry et al. (2019b); Saha et al. (2022) that directly make use of
the old data source, and architecture-based methods that minimize the inter-task interference via new
architectures Mallya & Lazebnik (2018); Serra et al. (2018); Li et al. (2019); Wortsman et al. (2020);
Wu et al. (2019). These methods also generally add substantial infrastructural overhead, while our
approach is attractive in its simplicity of implementation.

Multi-Task Learning For detailed background context in multitask learning, we refer the reader
to Zhang & Yang (2021). MTL Zhang & Yang (2021) is an optimization problem where we concur-
rently train a model on multiple tasks to take advantage of the structures of shared neural networks,
thus improving generalization. One MTL direction is to use gradient descent method to optimize
joint multi-task learning. Our problem setting shares some similarities with that. The difference is
that our problem is considered temporal multi-task learning. In MTL literature, Ozan Sener & Koltun
(2018) formulates the MTL problem as a multi-objective optimization problem and then learns the
loss weights that change dynamically. GradNorm Chen et al. (2018) tries to normalize the gradients
to balance the learning of multiple tasks. PCGrad Yu et al. (2020) suggests that to mitigate issues
with gradient direction conflicts, we should project a task’s gradient onto the normal plane of the
gradient of any other tasks where a gradient conflict is present. Our proposed technique modifies
some of the core PCGrad designs specifically for the fine-tuning setting.

3 METHODOLOGY

We now describe the complete GOODFIT algorithm, along with a discussion of hyperparameters and
implementation details. At a high level, GOODFIT consists of two separate standard optimizers, O
and O(ref). The latter “reference” optimizer perturbs the system from equilibrium, while the former
“main” optimizer uses this perturbation to make a final update. The entire logic of GOODFIT can be
encapsulated within the logic of this single optimizer class, which makes the method very portable
and modular. We finish with a few theoretical considerations relevant to GOODFIT.
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3.1 THE GOODFIT OPTIMIZER

The GOODFIT optimizer is exceedingly easy to understand and implement. All its logic can be
easily encapsulated within the definition of an optimizer step, and it relies on no mathematics more
complicated than vector orthogonal projections. We describe GOODFIT in Alg 1.

Algorithm 1 The GOODFIT fine-tuning optimizer
Require: Converged modelM(x; θ) to be trained on data X′ with loss L.
Require: Initialize reference model weights θref.
Require: Initialize batch size B, reference steps nref, training steps nsteps, standard optimizer O with

learning rate λmain, and reference optimizer O(ref) with learning rate λref. Each optimizer takes as
arguments the current weights and a gradient update direction, producing updated weight values.

1: for nstep steps do:
2: θref ← θ ▷ Save the model state.
3: for nref steps do
4: Take new B examples from X′ and calculate gradients g := ∇θL.
5: Take one step with reference optimizer θ ← O(ref)(θ,g).
6: end for

7: Calculate ∆ = θ − θref. ▷ Calculate total displacement during reference steps.
8: Find g := ∇θL for a new batch as in Line 4.
9: Calculate dot product ω = ⟨∆,g⟩.

10: if ω < 0 then:
11: g← g ⊥ ∆ ▷ a ⊥ b denotes orthogonal projection of a onto b
12: end if
13: θ ← θref. ▷ Restore original state.
14: θ ← O(θ,g) ▷ Take step with main optimizer.
15: end for

Given a modelM parameterized by weights θ which has been trained on data x corresponding to
an upstream task, and a data source X′ corresponding to a new task (with a task loss L), we aim to
fine-tuneM to work well on both the old and new tasks. Note that we make a strict assumption about
having a converged modelM available as an input to GOODFIT; any random or untrained weights
in the model can lead to poor performance. Additionally, our model also requires two instantiated
optimizers, a standard optimizer O and a reference optimizer O(ref).

At each step of training, we first store the current state of M by saving θ into θref. Next, we
sequentially draw nref batches from X′ and iteratively minimize L with the reference optimizer O(ref).
We have now perturbed the system from equilibrium and must re-establish said equilibrium.

To do so, we first calculate ∆ := θ − θref, the total displacement of our original position after nref

steps of the optimizer O(ref). We reason that if the stored equilibrium state corresponds to a good
critical point of the original model, then ∆ corresponds to the benign gradient direction that will
restore the original critical point. We thus have two potentially conflicting gradient updates: the one
corresponding to ∆, and the one corresponding to the next queried update by O(ref), which we call g.
We need to decide on how to take a single gradient step that is consistent with both of these options.

We borrow an idea from PCGrad Yu et al. (2020), which reconciled conflicting gradients by orthog-
onally projecting them onto each other in a pairwise fashion. Crucially, we choose to only project
g onto ∆, and not the other way around, because ∆ represents a gradient on the old dataset which
may no longer be accessible and, therefore, must be treated with more care. Therefore, we end with
the two gradient updates g and g ⊥ ∆, and we take both steps by first restoring θ 7→ θref and then
allowing O to take a step in the g ⊥ ∆ direction. This process is repeated until training is complete.

3.2 HYPERPARAMETER DISCUSSION AND TRADEOFFS

GOODFIT introduces three main hyperparameters: nref, O(ref), and λref. As mentioned, higher nref
allows O(ref) more flexibility to explore, while λref controls the step size at each iteration of the
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reference step. The choice of O is flexible, but O(ref) should generally be set to standard SGD, as
the gradient calculations that drive GOODFIT are cleanest when the reference updates are simple.

The main practical concern of GOODFIT would be the cost of setting nref, as our model must take
nref additional optimization steps per training step. In practice, nref = 1 will often work well, and the
practitioner should only increase nref if they observe poor performance. Even then, the potentially
increased compute of GOODFIT is justifiable: (1) we find that GOODFIT generally converges
quicker, possibly due to better regularization effects, and (2) fine-tuning conventionally runs for fewer
steps than from-scratch training, which minimizes the impact of additional training time.

Mathematically, λref encodes how quickly we travel from equilibrium to study the general shape of
the loss surface, so that we can make an informed decision on where to go next. In practice, we
find that there is often a sweet spot somewhere between λmain/100 and λmain/10000, but the exact
value is heavily dependent on the loss surface for the specific problem. It may in fact turn out that the
optimal value of λref tells us something about the fundamental properties of that particular setting’s
loss surface, but such analysis falls outside the scope of the present work.

3.3 THEORETICAL CONSIDERATIONS

We now list a few simple theoretical properties of GOODFIT, along with sketches of proofs. We first
prove that GOODFIT is “correct,” in the sense that it is able to decrease the loss on the old model
task/setting. We also add a discussion of when GOODFIT might fail by enumerating all stable points
of GOODFIT, but argue why this is generally not an issue in practical settings.

(Correctness on old data.) Take a modelM(x; θ) converged on data Xold at a local minimum of
loss Lold. We would now like to fine-tune on data Xnew with loss Lnew. Suppose that O(ref) takes
θ 7→ θ′. A single step of GOODFIT on batch xnew with a sufficiently small learning rates λmain, λref
will decrease Lold(Xold) from its value at θ′.

Proof Sketch: IfM is converged on data Xold, then it must be at a local minimum of the old data. If
the learning rate is sufficiently small, then∇θ′Lold must point in the ∆ (as defined in Alg 1) direction,
and so an update with the gradient ∆+ ⟨∆,g⟩ will necessarily decrease Lold.

The prior theorem establishes that GOODFIT accomplishes precisely what it seeks to do: even if the
old data is no longer available, GOODFIT allows us to train as if we can still compute the full loss
function of the old data! As the system moves further away from the old equilibrium, we are able to
restore some of the function of that equilibrium through these regularized updates. However, it is
important to note an important case where GOODFIT results in a trivial update.

(Stable points.) Suppose a model has weights θ and O(ref) maps θ 7→ θ′ and O(ref) is SGD. If we
are not at a critical point of Lnew, GOODFIT will result in zero change in the model weights w if and
only if ∇̂θLnew = ∇̂θ′Lnew, where ∇̂ refers to the unit vector corresponding to∇.

Proof: ∆ in this case would point in the direction −∇θLnew, at which point ∇θLnew ⊥ ∆ = 0, and
the total update from GOODFIT will be just a restoration to θ. If the gradient equality does not hold,
∇θLnew ⊥ ∆ ̸= 0 will lead to a non-zero total update.

Linearity forces a stable point.) In the situation defined by Theorem 3.3, GOODFIT will encounter
a stable point if the loss surface is perfectly linear between θ and θ′.

The prior theorem and corollary demonstrate that GOODFIT will fail to move the system when
the loss surface becomes exactly locally linear at a point. Luckily, this almost never occurs for
high-dimensional loss surfaces that exist for deep models, and even in the 2-dimensional toy example
described in Section 4.1 we see a reasonable performance.

4 EXPERIMENTS

We now detail a number of experiments for GOODFIT in diverse settings, from a low-dimensional toy
setting to image classification to large-scale motion prediction. We primarily focus on comparisons
to standard fine-tuning with standard optimizers (on either the full model or just the model head), as
those are - by a large margin - still the most commonly used fine-tuning methods in the industry due
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Figure 2: Fine-tuning toy example visualizations.

to their known performance and ease of implementation. We will show that GOODFIT, while being
just as easy to implement, provides a significant performance boost in all cases.

4.1 A SIMPLE TOY EXAMPLE

We present results in this section on a simple, low-dimensional toy example. We find that testing new
algorithms in low-dimensional settings is always instructive and provides us with insight that cannot
be gleaned from the noise of higher-dimensional experiments.

Namely, we fit a number of simple MLP models onto a 2D function. We pick the 2D function
f(x) = sin(10|x|), because both radially symmetric and periodic functions are generally more
challenging for neural networks to fit. We further add N (0, 1) noise to the output. Even though we
want to fit to a low-dimensional example, it is still important for the problem to be difficult enough
to see interesting behavior within our models, especially given the dimensionality requirements as
discussed in Section 3.3. The original dataset consists of input-output pairs where input coordinates
are drawn independently from U [−1.0, 1.0], while the new dataset we wish to fine-tune on has input
coordinates drawn from U [0.8, 1.5]. This is clearly also challenging because, although the domains
of the two datasets overlap in the interval [0.8, 1.0], they are largely nonoverlapping.

Our MLP consists of three layers with weights of shape [2, 500] → [500, 500] → [500, 1], and we
use RMSProp as our baseline optimizer. The baseline model is trained on the original data split only
for 10000 steps at a learning rate of 1e-2, with fine-tuning runs trained at a learning rate of 5e-4 for
1500 steps. For exact details on the training procedure, please refer to the supplementary material.

Method Original Data Error (↓) New Data Error (↓)
Baseline Trained on Original Data 0.0054 1.907

fine-tune on New Data (Full Model) 0.705 0.504
fine-tune on New Data (Head Only) 0.110 0.572

GOODFIT on New Data 0.046 0.501

Table 1: Results on a 2D fitting problem. A baseline is trained on just the original data domain and
then fine-tuned at a lower learning rate on a new data domain (both the full model and the head only).
This is compared to GOODFIT, which is trained on the full model. As expected, there is a clear
tradeoff between training on the full model versus the head only; the latter provides some protection
against performance regression on the original data, but also is less able to adapt to the new data.
GOODFIT outperforms both baselines and shows impressive resilience in maintaining performance
on the original split. All results have standard error ≤ 0.01.
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The results are visualized in Figure 2. Visually, the benefits of GOODFIT are pronounced; fine-tuning
on the full model results in significant warping, and even fine-tuning on only the head layer still
produces undesirable shifts in the height of the output shape. GOODFIT effectively remembers the
original shape with only minimal regressions along the steep edges of the distribution.

Numerically, as shown in Table 1, GOODFIT outperforms the baseline in not forgetting the original
dataset distribution. Even though GOODFIT modifies all model weights, it mitigates forgetting
relative to the head-only fine-tuning baseline by a sizable margin, even though GOODFIT acts on
significantly more weights. Fine-tuning of the full model in a naı̈ve way weights leads to disastrous
results, with significant deformations of the predictions. GOODFIT allows us the flexibility of
full-model fine-tuning without the drawbacks of severe catastrophic forgetting.

Though GOODFIT is partially inspired by LWF Li & Hoiem (2017), it is worth noting that LWF is
ill-suited for shifting dataset domains, as it uses evaluation on the new data with the old model to
generate additional supervision. With large input domains shifts, this supervision would be of poor
quality. Thus, these experiments also serve to show that GOODFIT is a quite general fine-tuning tool.

4.2 LONG-TAILED IMAGE CLASSIFICATION

Next, we test our method on a challenging long-tailed image classification problem. For these
experiments, we work with the CIFAR100-LT Krizhevsky et al. (2009); Cui et al. (2019) dataset. The
frequencies per class are controlled using a smooth exponential decay function and the imbalance
ratio β, which corresponds to the frequency between the most and least frequent classes.

Our baseline is GLMC Du et al. (2023) using SGD with Momentum, a method which offers state-of-
the-art performance on CIFAR100-LT (we confirmed 72.89% accuracy with β = 10). GLMC uses a
ResNet-34 backbone and involves a single-stage training procedure. A contrastive consistency loss is
applied between these batches for robust feature extraction, in addition to classification losses for
each batch. For further details, we refer the reader to the supplementary material.

Figure 3: CIFAR100-LT Results. (a) Trade-off curves for β = 10 for performance on the base versus
the long-tailed classes. This is the most imbalanced data setting we tested and clearly demonstrates
the better performance of GOODFIT. (b) Some sample visualizations of images in the long-tailed
classes and their associated prediction outputs for GOODFIT versus the baseline fine-tuned model.

To test GOODFIT, we add a fine-tuning second stage to the training pipeline. In the first stage, we
train the networks with classes [90, 99] held out. Using this initial state, the fine-tuning stage involves
training the network only on the held-out classes [90, 99]. We test on imbalance ratios β = [2, 5, 10].

Our results are detailed in Figure 3 and Table 2. In general, by fine-tuning only on long-tailed data,
we trace out a sharp trade-off in performance on the base and long-tailed classes. The tradeoff shows
that the model has the tendency to catastrophically forget its knowledge of the base classes, making
this setting a perfect test for GOODFIT. In all cases and all ratios, the model fine-tuned by GOODFIT
outperforms those of the standard fine-tuning methods. The improvement is most pronounced for
cases of extreme imbalance (β = 10), as seen in the tradeoff curves displayed to the left of Figure 3.

Fine-tuning the classification head outperforms full model fine-tuning for LT Acc @ 30 with β = 5.
However, fine-tuning on the head only is particularly favorable within this setting, as freezing model
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Imbalance Method Weights LT Acc @ 40 (↑) LT Acc @ 35 (↑) LT Acc @ 30 (↑)

2 Baseline Head Only 16.99 35.62 54.26
GOODFIT Head Only 34.69 48.06 61.45

2 Baseline Full Model 27.49 38.24 49.19
GOODFIT Full Model 29.54 43.76 57.98

5 Baseline Head Only 20.02 35.19 50.36
GOODFIT Head Only 24.22 37.43 50.64

5 Baseline Full Model 20.89 33.97 47.03
GOODFIT Full Model 24.36 35.72 47.08

10 Baseline Head Only 9.56 24.52 39.48
GOODFIT Head Only 18.19 33.33 48.47

10 Baseline Full Model 6.47 22.05 37.63
GOODFIT Full Model 19.5 30.14 40.78

Table 2: Results on CIFAR100-LT. The standard error is within 0.01%. Due to the trade-off
between the performance on the base and long-tailed class, we evaluate the baselines and GOODFIT
performance on the long-tail class when the base class accuracy is 40%, 35%, and 30% respectively.

weights provides insulation from the severeness of forgetting. In fact, applying GOODFIT to the head
weights only provided an even further performance boost. Thus, although we generally recommend
applying GOODFIT to all model weights, in extreme incidents GOODFIT can be effective even when
applied to a subset of weights alone.

4.3 LARGE-SCALE ROBOTICS MOTION PREDICTION

We now go to the other end of the spectrum and show how GOODFIT performs on an extremely
challenging benchmark with a large, high-dimensional dataset. The Waymo Open Motion Dataset
(WOMD) Ettinger et al. (2021) is a large-scale driving dataset collected from realistic scenarios.
The task is to predict future trajectories of an agent over the next 8 seconds, given multi-modal
observations in the last second, including the agent’s history, nearby agent histories, map information,
and traffic light states. The prediction model follows a state-of-the-art early-fusion transformer
architecture Nayakanti et al. (2022), by fusing multi-modal input features through a self-attention
transformer and predicting future trajectory samples using learned latent queries.

We first train a WOMD model on car trajectory prediction, and then fine-tune that model on data from
the same class (car) as well as different classes (pedestrian). The WOMD is not just a large-scale
version of the CIFAR classification setting described in Section 4.2, but offers an important difference
in that we can see how well GOODFIT performs on (1) fine-tuning a model on the same exact
data, and (2) fine-tuning a model on a completely different domain-shifted task. The long-tailed
data in CIFAR100 was still explicitly part of the same distribution as the other data, but pedestrian
trajectories have semantically different behavior than car trajectories.

The results are shown in Figure 4 and Table 3. Average Distance Error (ADE) measures the average
distance between ground truth and prediction at each point of the predicted trajectories, while Final
Distance Error (FDE) only considers the error in the final point of the predicted trajectories. We can
see that in all cases GOODFIT outperforms the baseline fine-tuning methods, with sizable benefits in
the car-to-pedestrian fine-tuning task. Consistent with the results in other settings, fine-tuning with
head only provides subpar performance on the car-to-pedestrian task, while full model fine-tuning
does reasonably well but is still outstripped by GOODFIT. We conclude that GOODFIT provides a
superior ability to repurpose a model for a new, correlated setting.

Interestingly, we also see minor but noticeable improvements in the car-to-car benchmark, suggesting
that GOODFIT can be used to extract more performance from any model that has already converged.
We could even imagine a scenario in which regular additional training runs using GOODFIT are
enabled as a standard model maintenance practice.
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Figure 4: Results for GOODFIT on Waymo Open Motion Dataset. (a) Error curves through training
tabulated for FDE at 3s and 8s (top) and ADE at 3s and 8s (bottom). GOODFIT outperforms both
fine-tuning baselines by a sizable margin. (b) Visualizations of motion prediction outputs for both the
baseline fine-tune model (top) and GOODFIT (bottom). Trajectory ground truth is shown as a shaded
bar and denser lines represent more confident predictions. Although the differences are often subtle,
GOODFIT generally produces more confidently correct predictions.

Method Target Class ADE@3s (m) ADE@8s (m) FDE@3s FDE@8s

Baseline - 0.461 1.327 1.024 2.581

fine-tune (F) Car 0.458 1.322 1.021 2.548
fine-tune (H) Car 0.456 1.303 1.009 2.507
GOODFIT Car 0.454 1.299 1.008 2.489

fine-tune (F) Ped 0.214 0.621 0.465 1.242
fine-tune (H) Ped 0.232 0.724 0.508 1.544
GOODFIT Ped 0.203 0.579 0.427 1.145

Table 3: Results on Waymo Open Motion Dataset. F stands for full-model fine-tuning and H stands
for head only. Standard errors are within 0.005m for 3s metrics and 0.015m for 8s metrics. There is
a minor but noticeable improvement for GOODFIT on the car-to-car benchmarks and a substantial
improvement for GOODFIT on the car-to-ped benchmarks.

5 CONCLUSION

We proposed GOODFIT, an optimizer that is specifically designed to robustify models during fine-
tuning. Unlike standard optimizers which cannot assume much about a training setting, our ability to
assume confidence about the prior state of a model allows GOODFIT to act as an effective regularizer
and prevent a model’s weights from diverging too much from its previously good state. We showed
that GOODFIT performs well in various settings: (1) fine-tuning to new data off the data manifold in
our toy example, (2) fine-tuning to new data from new classes on CIFAR100-LT, and (3) fine-tuning
a model on a completely new task as well as on the same exact task on large-scale motion prediction.
In all cases, GOODFIT surpassed the performance of the near-ubiquitously used, standard fine-tuning
approaches, while being just as easy to integrate within a generic model training pipeline. We believe
that GOODFIT should not only be an important new tool in the deep learning practitioner’s arsenal
but opens the discussion around developing a new class of optimizers that will crucially support the
new age of deep learning where fine-tuning becomes the primary training paradigm.
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