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ABSTRACT

Reasoning is essential for effective communication and decision-making. While
recent advances have equipped large language models (LLMs) and multimodal
models (MLLMs) with strong reasoning abilities in text and vision-language tasks,
integrating reasoning into large speech models (LSMs) remains at a preliminary
stage. Existing methods typically adopt the thinking-before-speaking paradigm
from textual models, where responses are delayed until reasoning is complete.
This sequential formulation introduces significant latency, hindering real-time
interaction. We propose Mini-Omni-Reasoner, a framework that enables reasoning
in speech through a novel Thinking-in-Speaking formulation. By interleaving silent
reasoning tokens with spoken response tokens at the token level, the model achieves
continuous speech generation while maintaining logical consistency. To support
this, we construct Spoken-Math-Problems-3M, a large-scale dataset designed for
interleaved reasoning and response, ensuring that each spoken token is grounded
in prior reasoning. Built on a Thinker—Talker architecture, Mini-Omni-Reasoner
delivers fluent and precise spoken responses. On the Spoken-MQA benchmark,
it achieves 19.1% improvement in arithmetic reasoning and 6.4% in contextual
understanding, with zero latency. These results show that structured reasoning and
natural spoken interaction can be effectively unified in a single framework.

1 INTRODUCTION

Reasoning is a fundamental faculty of human cognition, enabling precise, logically structured, and
contextually grounded understanding of the external world (Simon, 1990). In natural communication
and decision-making, humans frequently engage in internal deliberation prior to verbal expression, a
strategy shown to enhance the factual accuracy, completeness, and reliability of responses. Inspired
by this cognitive mechanism, recent advances in large language models (LLMs) (Jaech et al., 2024;
He et al., 2025; Team, 2025; Guo et al., 2025) have formalized this strategy into the computational
paradigm of “thinking-before-speaking”. In this formulation, models are prompted to construct an
explicit and logically structured reasoning trace, which subsequently informs the final response. This
reasoning-first formulation has demonstrated substantial benefits across a range of language tasks
that demand structured explanation and logical consistency, such as mathematical reasoning.

While “thinking-before-speaking” paradigm has proven effective in textual domains, its direct
extension to speech interfaces encounters inherent modality-specific constraints. Text affords spatially
parallel access: readers can scan, skip, and selectively attend to different portions of content, enabling
efficient comprehension of extended reasoning sequences at high reading speeds. In contrast, speech
is consumed sequentially over time, constrained by the fixed-rate, streaming nature of auditory
perception and human cognitive processing. Speaking out the reasoning trace before delivering
an answer may burden listeners with verbose or low-utility content, delaying access to the core
response. Conversely, keeping the reasoning silent leads to significant initial latency, as the model
must complete its internal reasoning before producing responses, compromising interaction quality.

To bridge the gap between language reasoning and speech communication, where the conventional
“thinking-before-speaking” paradigm proves ineffective for real-time spoken interaction, we introduce
MINI-OMNI-REASONER, a novel speech reasoning framework founded on the principle of “thinking-
in-speaking”. As shown in Figure 1, this formulation enables large speech-language models (LSLMs)
to perform high-frequency internal reasoning in tandem with the real-time generation of semantically
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Figure 1: Comparison of reasoning paradigms. In the traditional “thinking-before-speaking”
paradigm, models must complete reasoning before producing speech, leading to long latency or
verbose spoken reasoning. In contrast, our “thinking-in-speaking” paradigm interleaves internal
reasoning with continuous speech, enabling timely, fluent responses while preserving reasoning
quality. This design leverages the gap between model inference throughput and audio playback speed
to reduce latency and improve user experience without sacrificing depth.

informative spoken tokens. By decoupling the temporal resolution of internal inference from that of
speech emission, our framework supports low-latency, cognitively aligned spoken interaction without
sacrificing the depth, rigor, or interpretability of the underlying reasoning process.

MINI-OMNI-REASONER instantiates the “thinking-in-speaking” paradigm through an interleaved
generation scheme that capitalizes on the discrepancy between model-side inference throughput and
real-time audio playback constraints. Profiling results indicate that modern LSLMs can generate
over 100 tokens per second on GPUs, while naturalistic audio playback typically requires only 12.5
tokens per second. To exploit this underutilized capacity, the model interleaves speech and reasoning
tokens in a fixed proportion, enabling concurrent verbalization and latent inference. Specifically,
we constrain the emission rate of spoken tokens to 20 per second for smooth playback and allocate
the remaining generation bandwidth to reasoning. This yields a 2 vs. 8 speech-to-reasoning token
ratio, derived directly from the inference budget rather than empirical heuristics. The system is built
on the Thinker-Talker architecture (Xu et al., 2025a), ensuring that interleaved reasoning does not
compromise the model’s core language understanding or text-based reasoning performance.

To incentivize the reasoning capabilities of LSLMs under the “thinking-in-speaking” paradigm,
we construct a data pipeline and introduce a large-scale dataset, SPOKEN-MATH-PROBLEMS-3M,
tailored for audio-based mathematical reasoning. Building on prior evidence that mathematical
tasks effectively elicit structured cognitive processes in language models, we curate an audio-based
dataset of mathematical problems with difficulty comparable to the GSM8K (Cobbe et al., 2021)
benchmark. A key challenge in this setting is overshooting, where the verbal output stream advances
ahead of the internal reasoning process, leading to premature or hallucinated answers. To address
this, we generate two temporally aligned streams for each problem: a fluent, human-readable output
sequence and a symbolic, step-by-step reasoning trace. We introduce a prompting strategy that defers
substantive content in the output stream while frontloading reasoning steps in the internal stream,
thereby establishing a temporal buffer for inference. The resulting streams are tokenized, interleaved,
and verified to ensure causal consistency, i.e., no verbal content precedes its logical derivation. Upon
this pipeline, we construct a dataset of 3 million audio-based mathematical reasoning samples by
converting a broad collection of publicly available text-based datasets into speech format.

Given the immaturity of speech-language models and our aim to rigorously assess reasoning, we
follow the LLM literature and validate our paradigm in the mathematically challenging domain.
We conduct systematic experiments on six math word problem benchmarks, including Spoken-
MQA (Wei et al., 2025), AddSub (Hosseini et al., 2014), SimpleEQ (Koncel-Kedziorski et al., 2015),
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SimpleOP (Roy & Roth, 2016b), MultiArith (Roy & Roth, 2016a), and SVAMP (Patel et al., 2021b).
On Spoken-MQA, MINI-OMNI-REASONER surpasses Qwen2.5-Omni-3B in arithmetic (64.9% —
77.25%, +12.4%) and reasoning (64.0% — 68.1%, +4.1%), while halving response length (42.9
vs. 116.1 words). Comparable or improved accuracy with notable efficiency gains is also observed
across other datasets, with no overshooting after detokenization checks. These results highlight the
effectiveness of our “thinking-in-speaking” paradigm, which interleaves reasoning and responses but
only verbalizes the latter, thereby preserving correctness while enabling concise, real-time interaction.

2 INVOLVING REASONING IN SPOKEN DIALOGUE MODELS

We revisit the Thinker-Talker architecture, a state-of-the-art spoken dialogue paradigm. We then
analyze how to incorporate reasoning into this architecture, illustrating the transition from the con-
ventional “thinking-before-speaking” paradigm to our proposed “thinking-in-speaking” formulation.

2.1 THINKER-TALKER PIPELINE

The Thinker-Talker framework decouples audio understanding, linguistic inference, and speech
synthesis. It consists of three core modules: an audio encoder, a Thinker LLM, and a Talker
LLM. Given a raw audio input x,, the audio encoder first converts it into discrete audio tokens:
hj. . = &, (x,). These tokens, interpreted as linguistic actions, are passed to a Thinker LLM, which
autoregressively generates a sequence of response tokens:

t17% = Thinker(h.7) ()

resp

Each generated response token t

is immediately mapped into audio tokens via the Talker LLM:

a _ resp
z; = Walker(tj ) )
These audio tokens are concatenated to form a continuous stream: z{, ; = [z};2%;...;2%].

To generate audible output, an audio decoder operates on fixed-size sliding windows over this stream.
Each audio segment X7 is reconstructed from a windowed slice of the audio token stream:

i = Da (256,401 3)

where s; is the starting index of the i-th window and ¢ is the predefined audio token segment
length. This streaming formulation enables real-time spoken interaction while maintaining modular
separation between linguistic reasoning and audio synthesis. It also supports seamless integration of
advanced reasoning capabilities within the Thinker module.

2.2  THINKING-BEFORE-SPEAKING

To explore reasoning integration, we start with the “thinking-before-speaking” paradigm. Here,
the Thinker LLM is augmented to generate a latent reasoning sequence before emitting response
tokens. Given the audio token sequence hf.,,, the Thinker first generates: t47" = ﬂhinker(hzﬁT)-
Conditioned on both the audio and reasoning tokens, it then produces the verbal response: t - =
Tininker (13,7, t1757")- In this case, we consider two decoding strategies for the Talker LLM depending

on how it handles reasoning tokens t}°35°" and response tokens t}3;.

Full Verbalization. In this approach, both reasoning and response tokens are converted into audio:
f(zi:(M+N) = Da (ﬂalker([trlezz}elon§ trf?s])) “4)

This produces a complete narration including reasoning and answer, but requires the listener to hear

through reasoning content before the actual answer, introducing potential cognitive overload.

Silent Reasoning. Alternatively, the Talker LLM remains silent during reasoning token generation
and only begins decoding when the first response token segment is available:

. silent, if t; € tT"
%, = { 1:M )

Daudio (ﬁalker(ti)) 9 if ti S trle:s]{“
This strategy ensures that only essential information is verbalized, improving clarity and efficiency,
though it incurs a first-token delay due to the reasoning phase.
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2.3  THINKING-IN-SPEAKING

To address the trade-off between reasoning depth and response latency, we introduce a novel “thinking-
in-speaking” paradigm that interleaves reasoning and response generation. Unlike the conventional
thinking-before-speaking approach, which delays response until reasoning is complete, our method
enables the Thinker LLM to alternate between generating p response tokens and ¢ reasoning tokens:

K
_ resp resp reason reason
ti(ptq) K = U {t(i—l)(p+q)+17 SR t(i—l)(p+q)+p7 L) (o) o1 ti(p+q)} : ©)
i=1
During token prediction, the Talker LLM operates in a selective manner: it converts only the response
segments into audio while remaining silent for the reasoning tokens. Compared to thinking-before-
speaking, which waits for all t"*°" to finish before any speech is produced, our interleaved generation
scheme allows real-time response streaming while reasoning is still in progress.

resp
i

Once a response token t, " is generated, it passes the Talker for real-time conversion into speech:

)A(? = Daudio (ﬁalker(tzesp)) . (7)

This strategy exploits the empirical observation that token generation in autoregressive LLMs is
significantly faster than real-time audio rendering. Thus, response segments can be emitted promptly
while reasoning continues in the background, enabling continuous, low-latency interaction.

The (p, ¢) ratio serves as a tunable parameter, balancing reasoning granularity with responsiveness,
and can be adapted based on model throughput and deployment constraints. The full design and
implementation of this “thinking-in-speaking” pipeline are elaborated in the following section.

3  MINI-OMNI-REASONER

Grounded in our “thinking-in-speaking” paradigm, we present Mini-Omni-Reasoner, a framework
for real-time spoken dialogue with integrated reasoning. In this section, we detail three key aspects:
(1) Implementation: the realization of thinking-in-speaking within audio—language models, including
architectural design, token-ratio scheduling, and the use of special tokens; (2) Data preparation: an
in-depth analysis of the training corpus together with the construction of a tailored synthesis pipeline;
(3) Training methodology: a five-stage curriculum that progressively guides the base model toward
end-to-end integration of reasoning and speech generation in the spoken modality.

3.1 IMPLEMENTATION DETAILS MINI-OMNI-REASONER

Architecture. As shown in Figure 2, Mini-Omni-Reasoner adopts a hierarchical Thinker—Talker
architecture for real-time spoken reasoning. The core lies in the Thinker, which interleaves internal
reasoning and response under the Thinking-in-Speaking paradigm. It comprises an audio encoder,
an adapter, and a language model: raw audio is encoded into a semantic space and prefixed into the
language model. The Thinker is initialized from Qwen2.5-Omni-3B, trained with an interleaved
token-level objective, and then frozen to preserve reasoning capability. The Talker, a lightweight
model of the same architecture, is trained from scratch with the SNAC tokenizer (Siuzdak et al.,
2024) to transform response tokens into fluent, low-latency speech. When introducing the thinking-in-
speaking mechanism on the Thinker, only response tokens are passed to the Talker as effective inputs.
Thus, the speech synthesis process is identical to Mini-Omni (Xie & Wu, 2024), with no occurrence
of overshooting between audio and text tokens. This modular separation of reasoning and speech
generation enables Mini-Omni-Reasoner to unify logical inference with natural spoken output.

Token-Level Thinking-in-Speaking. We introduce how MINI-OMNI-REASONER implements token-
level thinking-in-speaking within the Thinker module. Traditional LLMs (OpenAl, 2025; Guo et al.,
2025; Xu et al., 2025a) typically follow a thinking-before-speaking strategy, where a full reasoning
trace is generated before response. While effective in text, this paradigm causes excessive latency
in speech generation, as the verbal response is delayed until reasoning completes. To address this,
Mini-Omni-Reasoner adopts an interleaved generation strategy, where the model alternates between
silent reasoning and spoken response tokens. We use a 2-to-8 ratio: the model emits 2 response tokens
followed by 8 reasoning tokens in each cycle. This design enables continuous, fluent speech while
preserving sufficient internal reasoning to support accurate response generation. This mechanism



Under review as a conference paper at ICLR 2026

- Streaming Codec Decoder
t t t
Bm mm BE
o 0 0
Mini-Omni-Reasoner Talker 0.5B

vt e e ah ah b Sy e alal Y !
v

; ; ! ! ! diod o] o] . =g oo s log) o

That would be three minus two, which means she needs to add one more cup of ..

Mini-Omni-Reasoner Thinker 3B

[ |
t

ERfO00Ooo[moooo - aaoooo

speaking reasoning speaking reasoning speaking reasoning
2 tokens 8 tokens 2 tokens 8 tokens 2 fokens 8 tokens

1

Audio Encoder
1

EEEEN
i

-7 | A factory has two machines, X
and Y, that produce widgets. X

can produce ... how many hours ) ) -
will it take? Question | I Special token [ ] Reasoning token |} Reasoning hidden state  Pad token

B Audio feature [T Speaking token I} Speaking hidden state  [] Speaking audio foken

Figure 2: Overview of Mini-Omni-Reasoner. Given a raw audio instruction, the audio encoder
converts it into language-space tokens, which pre-fill the Thinker LLM for autoregressive generation.
The Thinker outputs an interleaved sequence of spoken response tokens and silent reasoning tokens.
Response tokens are streamed to the Talker and decoded into speech in real time, while reasoning
tokens remain unspoken but guide generation.

relies on two components. First, the interleaving ratio controls the trade-off between fluency and
reasoning depth. Second, special control tokens are introduced to delineate reasoning and response
segments during both training and inference, ensuring structured generation and stable alignment.

Reasoning—Response Token Ratio Design. The 2-to-8 ratio is chosen to balance latency, reasoning
quality, and decoding controllability. First, short response blocks help avoid premature verbalization
before reasoning is established. Second, the 2-to-8 schedule dedicates more capacity to internal
inference, enhancing logical depth. Notably, this design still preserves a four-to-one ratio of reasoning
tokens over output tokens, whereas dataset construction typically yields only a 1.5-2x ratio; this
margin is critical to preventing overshooting, i.e., reasoning lagging behind speech output. Third,
language models typically generates more than 100 tokens per second on a 3090 GPU, resulting
in at least 20 spoken tokens per second, which is sufficient for smooth, real-time speech synthesis.
Empirically, this configuration achieves a strong trade-off and is used as the default in Mini-Omni-
Reasoner, with subsequent experiments further confirming its effectiveness in avoiding overshooting.

Control Token Design. To ensure stable alternation between reasoning and response, we investigate
three control token strategies. No explicit marker: Training without any explicit token boundary
fails, as the model drifts from the intended alternation. (textbfExplicit markers: Inserting emphasized
split tokens destabilizes generation and causes misalignment. Masked markers: We insert split
tokens that are masked from the loss computation during training. This proves most effective. During
inference, we reintroduce split tokens to guide generation. Additionally, we append eight padding
tokens after each reasoning block to stabilize Talker alignment and reinforce the 2-to-8 schedule.

3.2 SPOKEN-MATH-PROBLEM DATASET

A key prerequisite for enabling reasoning in speech is the construction of high-quality, temporally
aligned training data. One central challenge is anticipation drift, where verbal responses appear
before sufficient reasoning is completed, leading to semantic misalignment. To address this, we
design a structured pipeline that tightly couples internal reasoning with coherent spoken outputs.

Thinking-in-Speaking Formulation. The Thinking-in-Speaking paradigm interleaves reasoning and
response tokens to enable real-time generation. However, naive interleaving can lead to early response
tokens appearing without sufficient prior reasoning. To enforce semantic precedence, we adopt a two-
stage strategy. First, we introduce an asynchronous alignment scheme inspired by human dialogue
patterns. Reasoning traces begin directly with logical content, while responses are encouraged to
start with light contextual cues before transitioning to reasoning-supported content. This temporal
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Figure 3: Pipeline for Constructing the Spoken-Math-Problem-3M Dataset. We aggregate
large-scale math problems from public text datasets, reformulate them into spoken-style prompts,
synthesize speech with TTS, and apply GPT-based verification to ensure fluency, coherence, and
semantic fidelity.

offset ensures that response segments are semantically grounded in preceding reasoning. Second, we
apply sequence-level verification to enforce local semantic coherence. Each reasoning—response pair
is tokenized and interleaved using a 2 vs. 8 ratio, detokenized, and evaluated by a GPT-based checker.
Only examples where reasoning correctly precedes response are retained.

Data Construction Pipeline. We build SPOKEN-MATH-PROBLEMS-3M, a 3M math word
problems dataset, with the construction pipeline illustrated in Figure 3. Questions are resampled
from high-quality text QA datasets, then rewritten into formal and spoken variants, with answers
split into symbolic reasoning traces and concise responses. Reasoning is about twice the length of
responses to preserve logical grounding. The rewritten questions are synthesized into audio with
CosyVoice2-0.5B (Du et al., 2024). Reasoning and response segments are tokenized and interleaved
at a fixed 2:8 ratio, preserving alternation. Finally, GPT-based verification ensures each response is
logically supported, yielding a dataset that reflects the intended Thinking-in-Speaking paradigm. For
more details, see the Appendix C.

3.3 TRAINING METHODOLOGY

Training Mini-Omni-Reasoner requires a staged pipeline to stabilize convergence and transfer rea-
soning from text to speech. We design five progressive stages (Figure 4). Stage 1: Alignment.
Initialized from Qwen2.5-Omni-3B, we resolve architectural inconsistencies (e.g., RoPE variants)
and adapt interfaces. First, only the audio adapter is tuned on speech QA/dialogue while others
are frozen; then all modules except the audio encoder are unfrozen to incorporate special tokens
into the tokenizer. Stage 2: Mixed Mathematical Pretraining. The aligned model is enhanced
for mathematical reasoning using “thinking-before-speaking” datasets in text and speech, ensuring
strong reasoning before interleaved training. Stage 3: Textual Thinking-in-Speaking. Training
begins in text, where the model alternates reasoning and response tokens. Only LM parameters are
updated to internalize the interleaved structure. Stage 4: Acoustic Thinking-in-Speaking. Text
queries are replaced with audio; the audio encoder is tuned while the LM remains fixed, transferring
reasoning-augmented generation to speech. Stage 5: Talker Training. Finally, the frozen “thinker”
is paired with a talker module trained to synthesize fluent speech from interleaved outputs, ensuring
natural spoken responses while preserving logical grounding.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training Setup. Our training process build upon the mini-omni codebase, where we reconstruct the
foundational model architecture from scratch. Specifically, we adopt the Qwen2.5-Omni encoder
module as the audio encoder to extract speech features, and introduce a single linear adapter layer to
bridge the audio encoder and the language model. The core language model is based on Qwen2.5-3B,
which, together with the encoder and adapter, forms the MINI-OMNI-REASONER framework. To
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Figure 4: Training Pipeline of MINI-OMNI-REASONER. To enable interleaved reasoning and
speaking, we progressively adapt the system through a multi-stage training process.

ensure parameter alignment and stable convergence, all model components are initialized from the
corresponding modules of the pre-trained Qwen2.5-Omni-3B checkpoint. Training is conducted on
32 NVIDIA H100 GPUs, leveraging data parallelism for efficiency. We train on a large-scale dataset
containing 3 million samples, running for 6 full epochs with a batch size of 64. The learning rate
follows a cosine decay schedule, with the maximum learning rate set to 2e-4(details in Appendix B).

Benchmark. We evaluate our models on the Table 1: Statistics of benchmarks with sub-task
Spoken-MQA (Wei et al., 2025) benchmark, categories and sample counts.

which assesses spoken mathematical reasoning  Benchmark  Sub-task  Difficulty #Samples

across two tasks: Arithmetic and Reasoning. P sh s
The Arithmetic task focuses on basic numeri- rithmetic ort

. . . . . Arithmetic Long 155
cal operations with minimal context, while the Spoken-MQA R - Sinel 594
R ing task involves word problems requir- casoning - SIng e-step
. casoning . " p . q . Reasoning Multi_step 1402
ing contextual interpretation and multi-step in-

ference. It includes single-step samples from A,dds“b . ) 395
AddSub (Hosseini et al., 2014; Mishra et al., g;ng{egg Reasoning - Single_step ggg
2022) and SingleOp (Roy & Roth, 2016b), and &€

multi-step samples from GSM8K (Cobbe et al., ~ Svamp Reasoning Multi_step 1000
2021) and SVAMP (Patel et al., 2021a), reflect- ~ MultiArith 600

ing increasing complexity. Since Spoken-MQA
covers only a subset of reasoning skills, we additionally evaluate our models on the full versions of
AddSub, SingleEQ, SingleOp, SVAMP, and MultiArith. Sample statistics are provided in Table 1.

Baselines. We compare our model against three categories of baselines. Cascade models use
Whisper-v3-large (Radford et al., 2023) for ASR followed by strong text-based LLMs such as
Qwen2.5-Instruct-7B (Yang et al., 2024a) and Qwen2.5-Math-7B-Instruct (Yang et al., 2024b),
serving as upper bounds with full text supervision. Speech models (Chen et al., 2024; Xie & Wu,
2024; Défossez et al., 2024; Fang et al., 2024; Wang et al., 2024; Chu et al., 2024; Xu et al., 2025a),
with step-by-step prompting where applicable. Finally, we include our base model Qwen2.5-Omni-3B
under both standard and “think step by step” decoding modes. This setup enables comparison across
pipeline-based, end-to-end, and foundation-level models under a unified reasoning benchmark.

4.2 MAIN RESULTS

Table 2 reports results on Spoken-MQA. MINI-OMNI-REASONER achieves 92.9% on short-form and
66.1% on long-form arithmetic, surpassing cascade models (Radford et al., 2023) and conversational
baselines (Xu et al., 2025a). Most speech models collapse on long-digit computation (e.g., Mini-Omni
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Table 2: Spoken-MQA results (%). Best per column in bold. Models with * indicate that the prompt
includes “please think step by step.”

Arithmetic Reasoning

Models Size Avg
Short Long Avg Single Multi Avg
Cascade
Whisper-Qwen2.5-7B-Instruct 7B - - 70.0 - - 725 722
Whisper-Qwen2.5-Math-7B-Instruct 7B - - 71.3 - - 86.7 85.6
Conversational Models
SLAM-Omni 0.5B 0.0 0.0 0.8 14 122 1.1
Moshi 7B 0.0 0.0 0.2 0.2 02 02
LLaMA-Omni 7B 40.0 11.0 235 29.5 105 162 16.8
Mini-Omni 7B 5.0 23 35 0.8 1.9 1.6 1.7
Freeze-omni 7B 430 145 268 69.0 19.8 344 333
GLM-4-Voice 9B 40.0 225  30.1 54.4 285 362 353
Qwen2-Audio-7B-Instruct 7B 61.0 393 48.7 56.3 21.2  31.7 337
Qwen2-Audio-7B-Instruct* 7B 43.0 312 363 55.4 225 323 327
Qwen2.5-Omni-7B 7B 90.0 49.1 66.8 84.9 71.0 751 738
Qwen2.5-Omni-7B* 7B 83.0 451 615 852 715 75.6 73.6
Baseline
Qwen2.5-Omni-3B 3B 87.0 48.0 649 81.8 564 640 63.7
Qwen2.5-Omni-3B* 3B 84.0 433  60.1 81.5 571 644 63.6
Ours
Mini-Omni-Reasoner 3B 929 66.1 77.25 859 60.5 68.1 68.6

Table 3: Performance metrics on mathematical reasoning benchmarks. ACC: accuracy (%), Words:
average token count, EFF: efficiency (ACC/Words).

Benchmark  Mini-Omni-Reasoner Qwen2.5-Omni-3B Qwen2.5-Omni-3B 1 think)
ACC Words EFF ACC  Words EFF ACC Words EFF
Addsub 80.7 274 29 78.0 51.3 1.5 56.9 13.5 4.2
- - - 3.5%7T 46.6%] 93.3%1T 41.8%1 103.0%T 31.0%.
SingleEQ 839 299 2.8 82.6 56.7 1.5 47.7 11.6 4.1
- - - 1.6%1T 473%] 86.7%T 759%1 157.8%T 31.7%]|
SingleOP 90.1 26.6 34 88.2 74.1 1.2 19.0 124 1.5
- - - 22%7T 64.1%] 183.3%1 379.5%7T 114.5%1 126.7%1
SVAMP 79.1 348 23 76.9 71.1 1.1 38.5 132 2.9
- - - 29%1 51.1%] 109.1%1 105.5%1 163.6%1 20.7%.
MultiArith 854  31.1 2.7 86.8 714 1.2 46.7 15.2 3.1

R - - 1.6%) 564%| 1250%1 82.9%1 104.6%1 12.9%)

2.3%, LLaMA-Omni 11.0%). For reasoning, it obtains 85.9% on single-step and 60.5% on multi-step
tasks, outperforming cascade and end-to-end open-source models, including Qwen2.5-Omni-7B.
On average, it improves over the strongest cascade baseline by +4.0% in arithmetic and +4.1% in
reasoning, despite its smaller size. Additional evaluations (Table 3) show slightly higher accuracy
than the base model (83.8% vs. 82.5%) while halving response length (29.9 vs. 67.1 words). A
no-reasoning variant of Qwen2.5-Omni-3B yields shorter outputs but severe accuracy drops (e.g.,
88.2% — 19.0% on SVAMP), confirming the necessity of internal reasoning even without full
verbalization. Case comparisons in Appendix A further illustrate output differences.

4.3 REASONING EFFICIENCY COMPARISON

Figure 5 compares reasoning accuracy and spoken length. MINI-OMNI-REASONER matches or
outperforms larger models such as Qwen2.5-Omni-7B* on single-step (85.9%) and multi-step (60.5%)
reasoning, while producing significantly shorter spoken responses (42.9 vs. 116.1 words). This
efficiency stems from the Thinking-in-Speaking design: although total token generation is longer,
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Figure 5: Performance and response length on Spoken-MQA. Left: single-step reasoning (simple);
right: multi-step reasoning (hard). MINI-OMNI-REASONER-3B outperforms 3B-scale baselines and
matches 7B models while generating shorter spoken responses.

only response tokens are verbalized, reducing audible content to around 25% of the full sequence. In
contrast, models like Freeze-Omni (283.9 words) produce lengthy outputs without corresponding
accuracy gains. Other baselines also show limited reasoning capability. Overall, MINI-OMNI-
REASONER delivers a strong balance of accuracy and response efficiency.

Additionally, for the previously discussed overshooting phenomenon, we applied the same interleaving
and detokenization checks to the test data on Spoken-MQA as done during data preparation. No cases
showed reasoning lagging behind responses, and for complex problems reasoning length remained
within about 1.5x the response length. For more details, see the Appendix D.

5 RELATED WORK

Speech LLMs. Traditional speech systems rely on ASR—text—TTS pipelines, incurring high latency.
Large audio LLMs (Zhang et al., 2023; Chu et al., 2024) address this by processing speech directly,
while GPT-4o further enables ultra-low-latency interaction. MINI-OMNI (Xie & Wu, 2024) introduced
a text-guided paradigm that generates speech tokens in parallel with text, inspiring follow-ups like
FREEZE-OMNI, LLAMA-OMNI, and MOSHI. More recent systems, e.g., GLM4-VOICE (Zeng
et al., 2024) and QWEN2.5-OMNI (Xu et al., 2025a), still externalize long reasoning chains as speech,
causing latency, while our work internalizes reasoning as inner thinking to avoid unnecessary speech.

Inference Scaling and CoT Reasoning. COT prompting (Wei et al., 2022) improves reasoning by
step-by-step thinking. Building on this, models such as ol (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025) extend reasoning through test-time scaling and RL optimization, inspiring methods like
DAPO (Yu et al., 2025b) and GSPO (Yang et al., 2025). Recent approaches improve flexibility,
robustness, and extend reasoning to multimodal settings (Gao et al., 2025; Hao et al., 2024; Xu et al.,
2024; Huang et al., 2025; Xie et al., 2025).

Reasoning Efficiency. Long reasoning chains remain a bottleneck for real-time applications. In
text LLMs, efficiency has been improved by length-controlled fine-tuning, shorter CoTs, token
compression (Xia et al., 2025; Xu et al., 2025b), and RL-based adaptive reasoning (Fang et al., 2025;
Dumitru et al., 2025). Hybrid models further decide when to reason or respond directly (Jiang et al.,
2025; Yu et al., 2025a). However, these assume text outputs can be browsed asynchronously. In speech
LLMs, long reasoning chains directly increase latency. This motivates our “thinking-in-speaking”
paradigm, which internalizes reasoning without producing unnecessary speech.

6 CONLUSION

We presented Mini-Omni-Reasoner, a framework that integrates complex inner reasoning with real-
time verbalization through a novel “thinking-in-speaking” paradigm. Unlike conventional thinking-
before-speaking methods that incur high latency, our approach interleaves reasoning and response
tokens, enabling fluent and timely speech while preserving logical consistency. To support this, we
built the Spoken-Math-Problems-3M dataset and a progressive training pipeline that aligns reasoning
with spoken output. Comprehensive experiments on Spoken-MQA show consistent improvements in
arithmetic and contextual reasoning, with reduced response length and near-zero decoding latency.
These results demonstrate that high-quality reasoning and natural spoken interaction can be achieved
within a unified architecture, opening new directions for reasoning-aware speech systems.



Under review as a conference paper at ICLR 2026

7 ETHICS AND REPRODUCIBILITY STATEMENT

7.1 ETHICS STATEMENT

We follow the ICLR Code of Ethics.

Subjects, Data, and Safety. All speech data used for model training and evaluation has been
rigorously screened. We do not use any unauthorized or improperly de-identified personal recordings
or conversations. We strictly comply with data privacy regulations and relevant data licenses. We
did not collect Personally Identifiable Information (PII) or biometric data (e.g., voiceprints without
consent or proper de-identification). Any released media, such as speech excerpts or transcriptions
used for qualitative analysis or demonstration, will be carefully checked to remove any identifying
information (e.g., proper names, specific locations). All data sources we use (such as public academic
speech benchmarks, crowdsourced datasets, or existing licensed data) will strictly adhere to their
respective licensing terms.

Fairness, Environment, and Disclosure. Our models primarily process speech and language,
and thus potential biases related to speaker attributes (e.g., accent, speaking rate, gender, age),
socioeconomic background, or language/dialect may still appear. We are committed to responsible
deployment of our models and will take steps to prevent their use for misinformation, deception, or
privacy invasion. Upon acceptance, in line with the ICLR Code of Ethics, we will release our code,
checkpoints, data schemas, and filtered datasets, along with licenses, clear documentation, and
known limitations to facilitate reproduction.

7.2 REPRODUCIBILITY STATEMENT

We aim to maximize reproducibility. The main paper specifies model architectures with infer-
ence/decoding strategies (Section 3), training pipelines (Figure 4 and Section 4). The appendix
details experimental setup, the data synthesis pipeline, and qualitative analysis (e.g., case studies).
For datasets, we use open-access academic speech benchmarks as cited. For the datasets we collected
or synthesized ourselves, we will release the training datasets, model training scripts (or detailed
specifications), and licensing information upon acceptance.
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Figure 6: Comparison of three speech model paradigms. Early models like Mini-Omni perform
simple dialogue with speaking-without-thinking. Qwen2.5-Omni, built on Thinker-Talker, supports
reasoning but verbalizes the full chain, causing long and delayed outputs. Mini-Omni-Reasoner
adopts thinking-in-speaking, delivering high-quality reasoning while keeping responses concise.

In this section, we provide a case study to compare the effectiveness of the proposed “thinking-in-
speaking” paradigm against three alternative end-to-end speech models, as illustrated in Figure 6.
Specifically, we consider: (i) Mini-Omni, which represents “speaking-without-reasoning” by directly
mapping inputs to spoken answers without any reasoning traces, (ii) Qwen2.5-Omni-3B, which
follows a “thinking-before-speaking” strategy by conducting full reasoning in the speech domain
such that the entire reasoning trajectory is synthesized into speech, and (iii) MINI-OMNI-REASONER,
our model, which adopts the “thinking-in-speaking” paradigm by interleaving reasoning tokens
and response tokens, while only synthesizing the response into speech. The results reveal clear
differences across paradigms. Models like Mini-Omni, despite achieving highly efficient responses,
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consistently fail to ensure correctness due to the absence of reasoning. In contrast, Qwen2.5-
Omni-3B successfully produces accurate answers by synthesizing its complete reasoning process,
but this leads to extremely long spoken outputs, requiring tens of seconds for users to obtain the
final answer. MINI-OMNI-REASONER achieves a favorable balance: although it generates more
reasoning tokens than Mini-Omni, it drastically reduces response latency by using concise phrases
(e.g., “after calculating”) to summarize the computation, thereby halving the overall response time
while preserving correctness. Finally, we summarize the comparison in the table at the bottom, which
demonstrates that “thinking-in-speaking” combines the correctness of reasoning-based paradigms
with the efficiency of direct-answering approaches.

B TRAINING ANALYSIS
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Figure 7: Training and Validation Loss Curves.

We initially hypothesized that frequent alternation between the “speak” and “think” modes might
destabilize training by perturbing the data distribution and impeding convergence. Nevertheless,
the loss curves presented in Figure 7 indicate stable optimization. The training loss decreases
from approximately 0.6 to 0.1 over 200k steps, with smoothed curves confirming a consistent
downward trend. The validation loss exhibits a nearly identical trajectory, converging closely with
the training loss in later stages. This steady and coherent reduction, without signs of divergence or
instability, demonstrates that MINI-OMNI-REASONER successfully mitigates the potential challenges
associated with alternating “speak” and “think” modes, thereby validating the robustness of our
training methodology.
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C DETAILS OF THE DATA GENERATION PIPELINE

C.1 TEXT TO SPEECH PIPELINE
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Figure 8: TTS pipline.

In this section, we detail the text-to-speech (TTS) pipeline employed for the construction of the
Spoken-Math-Problem-3M dataset. Extensive preliminary experiments revealed that prevailing TTS
models exhibit suboptimal performance when tasked with synthesizing long, intricate mathematical
problems containing multiple sentences. Specifically, these models frequently introduce undesirable
artifacts such as prolonged inter-sentence pauses, a decline in synthesis accuracy, and a lack of
phonetic clarity. To mitigate these deficiencies, we devised a multi-stage TTS synthesis pipeline,
which systematically integrates five discrete processes: sentence splitting, single-sentence TTS
synthesis, ASR-based filtering, energy-based trimming, and a final quality assessment facilitated by a
large language model.

Sentence Splitting The initial stage involves segmenting lengthy sentences at each punctua-
tion mark. Following each split, a verification is performed to ensure that all resulting sub-sentences
contain fewer than ten words. Should any sub-sentence exceed this predefined length, the original
sentence is re-segmented until the criterion is satisfied. Our empirical findings indicate that an overly
granular splitting strategy detrimentally impacts synthesis efficiency, while an overly coarse approach
yields speech of inferior quality. The proposed methodology strikes a critical balance between these
two trade-offs.

Single-Sentence TTS Synthesis For the synthesis of individual sentences, we utilize the Cosy Voice-
0.5B model (Du et al., 2024). We observed that decomposing long, complex linguistic units into
discrete sentences effectively eliminates issues commonly associated with multi-sentence synthesis,
such as erroneous pauses and a significant degradation in accuracy at sentence terminals. This
approach is instrumental in ensuring the high fidelity and reliability of our synthesized dataset.

ASR-Based Filtering While an initial evaluation considered Whisper (Radford et al., 2023)
for the ASR filtering stage, its accuracy on longer audio segments was found to be notably low.
Consequently, we adopted SenseVoice (An et al., 2024) as our ASR model of choice. We compute the
Word Error Rate (WER) between the ASR-transcribed text and the ground-truth text. A sub-sentence
is deemed successfully synthesized if its WER is below 0.1. Any audio segment that fails this
validation is re-routed to the single-sentence TTS synthesis stage for reprocessing until it meets the
filtering criteria.

Energy-Based Trimming Upon successful synthesis of all individual audio segments, they
are concatenated sequentially. An energy-based analysis is subsequently performed on the complete
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audio file. Regions where the energy level falls below a predetermined threshold are trimmed, as
these typically correspond to silent gaps introduced during synthesis that can disrupt the natural

prosodic flow.

Final GPT-Based Assessment The energy-trimmed audio is then provided as a prompt to a
large language model (GPT). The GPT model performs a final qualitative assessment to confirm that

the overall quality of the synthesized speech is acceptable and meets the dataset’s requirements.

C.2 PROMPT FOR GENERATING REASONING DATA

7

We are generating data that simulates a human thinking-and-speaking process while solving
math problems. You will be given a math problem along with its standard solution.

Your task is as follows:
First, generate the most efficient yet logically sound reasoning process to solve the problem.

Then, produce a spoken-style verbal response that expresses the full thought process and
answer in a natural, conversational way.

Most importantly, keep the following points in mind:
1.The reasoning process should be 2 to 3 times longer than the spoken response.

2.In natural speech, we tend to “think” 2—3 times more words than we actually say—so do
not overgenerate. In other words, your spoken output must not exceed roughly twice the
amount of content derived from your internal reasoning.

My suggestion is: during the reasoning phase, focus on solving directly and efficiently;
during the spoken phase, you may choose to expand a little—if the reasoning is short (e.g.
for simple problems), give a quick explanation before the final answer; if the reasoning is
long, you can describe the problem, outline your thinking strategy, and go through early steps
to delay reaching the answer.

You can think of it this way: in the thought part, ’put reasoning first—avoid unnecessary
chatter and quickly work toward the answer’; in the output part, ’delay the reasoning’—start
with some descriptive content or even early-stage thoughts from the thought section to buy
time before reaching the final answer.

Format: <thought>...</thought><output>...</output>.

Here is a sample:

<thought>With 5 people, each handshake is a unique pair.

The number of such pairs is C(5, 2) = 5x4/2 = 10. Or count
manually: first person shakes 4 times, second 3 (excluding
previous), and so on: 4+3+2+1 = 10.</thought>
<output>There are five people, and each handshake is between
a unique pair. So it’s just five choose two, which is ten
handshakes in total.</output>.

Notice: the output content will be used to generate speech, so use only English words, with
no digits, symbols, or even hyphens—every part must be readable words.

Here is the question:
*#*% question here *%*,

Here is the answer process you can refer to:
**% answer here **%*,

Begin with <thought > and follow strictly with my format and sample. Give me a string
not json format.

Keep the think process shorter than 4-5 sentences, make it don’t be too long and super
efficient, and make it directly begin with math reasoning and do not say something like ’the
problem is about... I will ...” these are useless in thinking process.

Let the <thought> part be 1-2 times longer than the <output> part, and in the
<thought> section, you can use all mathematical symbols.
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C.3 PROMPT FOR COLLOQUIAL MATH PROBLEMS

7

You are an Al assistant whose job is to the symbols from a math problem and turn it into a
problem that can be read out.
Be careful not to change the original sentence structure, try to maintain the original structure.

Follow these guidelines:
1.Describe every quantity in words. For example, say “four T-shirts” instead of “4x T-shirts,
and “one hundred fifty dollars” instead of “$150.”

2.Spell out operations and relationships. Use phrases like “multiplied by,” “added to,” or “in
total” rather than symbols like “x,” “+,” or “=."

3.Keep units and discounts explicit. Always include words like “dollars,” “percent,” “pairs,”
or “each.”

Here is the original math problem you can refer to:
**% math problem here **%,

C.4 PROMPT FOR SCREENING DATA VALIDITY

7

The following are two texts. ‘user’ is the original math problem, and ’text’ is obtained after
text-to-speech synthesis and speech recognition.

Determine whether ’text’ fully includes all key information from ’user’, especially math
conditions, numbers, and units.

If yes, reply with true; otherwise, reply with false.

Be lenient, but do not allow missing conditions or misread problems. There may be a lot of
differences between the two texts because of different text-to-speech synthesis and speech
recognition techniques. Focus on the information.

Here is the original text you can refer to:
*#*% original text here **%*,

Here is the generated text you can refer to:
*#*% generated text here ***,
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D CASE STUDY

Table 4: Example of Mini-Omni-Reasoner’s response of the most difficult data in the test set.

for $2.50 or in
packages of 2 for
$1. How much
money does he
save by buying
18 flowers at the
better price?

If Vincent picks packages of
3 (each $2.50), that’ll cost
$15 total, and if he goes for
packages of 2 (each $1), it’ll
only be $9. Obviously, pack-
ages of 2 are the better deal
here. After figuring out both
costs, it’s easy to see he saves
$6 by choosing that option.

Question Corrected Response Corrected Inner Thinking

Vincent can | Good question! Let’s quickly | First, I need to figure out the two possible
buy flowers in | sort out the cost for buying | ways Vincent can buy 18 flowers, calculate
packages of 3 | 18 flowers in both ways first. | the total cost for each way, compare the two

costs to find the better price, and then com-
pute the savings. For the first way (pack-
ages of 3), since each package has 3 flowers,
the number of packages needed is 18 + 3 =
6, and with each package costing $2.50, the
total cost is 6 x $2.50 = $15. For the second
way (packages of 2), each package has 2
flowers, so the number of packages needed
is 18 + 2 =9, and with each package cost-
ing $1, the total cost is 9 x $1 = $9. Then,
comparing $15 and $9, $9 is cheaper, so
the better price is the package of 2, and the
savings is the difference between the two
costs, which is $15 - $9 = $6.

Out of the 200
Grade 5 students,
2/5 are boys and
2/3 of the girls are
in the girl scout.
How many girls
are not in the girl
scout?

Good question! Let’s start
by figuring out the key num-
bers here. First, two fifths of
the two hundred Grade Five
students are boys, so that’s
eighty boys total. Subtract-
ing that from two hundred
means there are one hundred
and twenty girls. Then, since
two thirds of these girls are
in the girl scout, that’s eighty
girls in the scout. After work-
ing through those numbers,
it’s clear that the number of
girls not in the girl scout is
forty.

First, I need to find the number of boys
first because the question is about girls, so
subtracting boys from total students gives
the number of girls. The number of boys
is 2/5 of 200, which is calculated as 200 x
(2/5) = 80. Then, the number of girls is total
students minus boys: 200 - 80 = 120. Next,
since 2/3 of the girls are in the girl scout, I
need to find that number first to get the girls
who are not in it. The number of girls in the
girl scout is 120 x (2/3) = 80. Finally, the
number of gitls not in the girl scout is total
girls minus girls in the scout: 120 - 80 = 40.

Gary likes to walk
around the edge
of the local park,
which is a rect-
angle that mea-
sures 1.5 miles
by 6 miles. If
he walks at 3
miles/hour, how
many hours does
he spend walk-
ing?

Good question! Let’s work
through this step by step.
First, since Gary walks
around the edge of the rect-
angular park, we need to
find the park’s perimeter first.
Then, we just divide that
perimeter by Gary’s walking
speed, and that will give us
the time he spends walking.
After calculating, we’ll find
that the time he spends is five
hours.

The park is a rectangle, so to find the dis-
tance Gary walks (which is the perimeter
of the rectangle), we use the perimeter for-
mula for a rectangle: 2 times length plus 2
times width. Here, the length is 6 miles and
the width is 1.5 miles, so that’s 2 times 6
plus 2 times 1.5. Calculating that gives 12
plus 3, which equals 15 miles. Gary walks
at a speed of 3 miles per hour, so to find
the time spent walking, we divide the total
distance (perimeter) by his speed: 15 miles
divided by 3 miles per hour, which equals 5
hours.
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Question

Corrected Response

Corrected Inner Thinking

Steve decides to
start eating more
tomatoes and de-
cides to grows his
own cherry toma-
toes. He eats
twice as much
as his girlfriend.
He eats 6 per
day. If a vine can
produce 3 toma-
toes per week how
many vines does
he need?

Good question! Let’s break
this down step by step. First,
we need to find out how
many tomatoes Steve’s girl-
friend eats each day, since
Steve eats twice as much
as her and we know Steve
eats six per day. Once we
have her daily amount, we
can find the total number of
tomatoes Steve and his girl-
friend eat together each day.
Next, we’ll calculate their to-
tal weekly tomato consump-
tion. Finally, we’ll divide
that weekly total by how
many tomatoes each vine
produces per week to find out
how many vines Steve needs.
After working through these
steps, we’ll see that Steve
needs twenty-one vines.

First, find how many tomatoes Steve’s girl-
friend eats per day: Steve eats twice as
much as her, and Steve eats 6 per day, so
his girlfriend eats 6 + 2 = 3 tomatoes per
day. Then, calculate their total daily tomato
consumption: Steve’s 6 plus his girlfriend’s
3 equals 9 tomatoes per day. Next, find
their weekly consumption (since a week
has 7 days): 9 tomatoes/day x 7 days = 63
tomatoes per week. Each vine produces 3
tomatoes per week, so the number of vines
needed is total weekly tomatoes divided by
tomatoes per vine: 63 + 3 =21 vines.

There are 36
penguins sun-
bathing in the

snow. One-third
of them jump in
and swim in the
ocean. Another
one-third go
inside the cave to
eat their dinner.
How many pen-
guins are still left
sunbathing?

Good question! Let’s work
through this step by step.
First, we know some pen-
guins leave to swim and
others to eat dinner—both
groups are one-third of the to-
tal sunbathing penguins. So
first, we can figure out how
many penguins leave in total,
then subtract that from the
original number to find how
many stay. After calculating,
we’ll see that the number of
penguins still left sunbathing
is twelve.

First, find the number of penguins that jump
into the ocean: that’s one-third of 36, so 36
divided by 3 equals 12 penguins. Then, find
the number of penguins that go to eat din-
ner: that’s also one-third of 36, so another
36 divided by 3 equals 12 penguins. Next,
calculate the total number of penguins that
leave sunbathing: 12 (swimming) plus 12
(eating) equals 24 penguins. Finally, sub-
tract the number of penguins that left from
the original number of sunbathing penguins:
36 minus 24 equals 12 penguins. So 12 pen-
guins are still left sunbathing.

A car in the fast
lane is traveling
at 60 miles/hour.
A car in the slow
lane is traveling
at half that speed.
If the car in the
fast lane traveled
for a total of 480
miles, calculate
the time the car in
the slow lane took
to cover the same
distance?

Good question! Let’s walk
through this together. First,
we need to find out how fast
the car in the slow lane is
going, since we know it’s
half the speed of the fast lane
car. Once we have the slow
lane car’s speed, we can use
the distance it needs to cover
(which is the same as the fast
lane car’s distance) to find
the time it takes. After work-
ing through these steps, we’ll
see the time the slow lane car
took is sixteen hours.

First, calculate the speed of the car in the
slow lane: it’s half the speed of the fast lane
car, which is 60 miles/hour. So that’s 60
divided by 2, which equals 30 miles/hour.
Next, we know both cars cover the same
distance of 480 miles, and time is calculated
by dividing distance by speed. So for the
slow lane car, time = distance / speed = 480
miles / 30 miles/hour. Calculating that gives
16 hours. So the car in the slow lane took
16 hours to cover 480 miles.
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E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) to support several aspects of this work. This included
using LLMs to assist with data generation , performing data screening and quality filtering, and for
validation checks on generated outputs. Additionally, an LLM provided final-stage assistance in
refining the manuscript’s grammar and style. We explicitly state that all core model development
and scientific conclusions were the result of our human research team’s independent efforts, and we
maintained stringent final oversight and validation for all LLM-assisted tasks.
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