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Abstract

Graph neural networks that leverage coordinates via directional message passing
have recently set the state of the art on multiple molecular property prediction
tasks. However, they rely on atom position information that is often unavailable,
and obtaining it is usually prohibitively expensive or even impossible. In this
paper we propose synthetic coordinates that enable the use of advanced GNNs
without requiring the true molecular configuration. We propose two distances as
synthetic coordinates: Distance bounds that specify the rough range of molecular
configurations, and graph-based distances using a symmetric variant of personalized
PageRank. To leverage both distance and angular information we propose a method
of transforming normal graph neural networks into directional MPNNs. We show
that with this transformation we can reduce the error of a normal graph neural
network by 55 % on the ZINC benchmark. We furthermore set the state of the art
on ZINC and coordinate-free QM9 by incorporating synthetic coordinates in the
SMP and DimeNet++ models. Our implementation is available online. 1

1 Introduction

Graph neural networks (GNNs) have set the state of the art on many tasks of molecular machine
learning, such as the prediction of quantum mechanical properties (Gilmer et al., 2017), solubility
(Wu et al., 2018), or the generation of new molecules (Jin et al., 2020). Thanks to their fast inference
time, good generalization and scalability, GNNs are thus promising to revolutionize large parts of
chemistry, from ab-initio quantum mechanical simulations and reaction kinetics to synthesis planning
and drug discovery. Atom positions are central to many of these tasks, but unavailable in most cases.
Many tasks in chemistry instead use a more coarse-grained representation: The molecular graph.
Unfortunately, this representation makes many predictive tasks substantially harder, and GNNs have
performed significantly better when they have access to the exact molecular configuration (Gilmer
et al., 2017). Missing atom positions furthermore preclude the use of many advanced GNNs that
were developed with coordinates in mind.

In this work we aim to fill in this information with well-defined coordinates constructed purely from
the molecular graph. Regular approximation methods for generating atom positions often do not
benefit model performance, due to the fundamental ambiguity of molecular configurations. The
energy landscape of molecules can have multiple local minima, and a molecule can be in any of
multiple different minima, known as conformers. In this work, we propose to circumvent this problem
by incorporating the conformational ambiguity via empirical distance bounds. Instead of yielding a
potentially wrong configuration, these bounds only estimate the range of viable molecular geometries.
They are thus valid regardless of which state the molecule was in when generating the data.

1https://www.daml.in.tum.de/synthetic-coordinates

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
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Figure 1: Illustration of transforming a regular molecular graph (ethanol) to a line graph with synthetic
coordinates. We first calculate all (bounds of) pairwise distances using our synthetic coordinates.
We then calculate the (bounds of) distances and angles for the molecular graph. Finally, we convert
the molecular graph to its line graph and embed the distances and angles as features. This process
allows us to convert a regular GNN to a directional MPNN, which improves its accuracy and allows
to incorporate angular information.

A molecular configuration is fully specified by the pairwise distances between all atoms, due to
rotational, translational, and reflectional invariance. We can thus obtain a molecular geometry from
any method that provides pairwise distances between atoms. Since directional message passing does
not require the full molecular geometry, these distances do not need to correspond to an actual three-
dimensional configuration. We leverage this generality and propose purely graph-based distances
calculated from a symmetric variant of personalized PageRank (PPR) as a second set of coordinates.
This distance performs surprisingly well, despite incorporating no chemical knowledge. Both the
distance bounds and the symmetric PPR distance require no hand-tuning and can be calculated
efficiently, even for large molecules.

We leverage these two variants of synthetic coordinates to transform regular GNNs into directional
message passing, as illustrated in Fig. 1. We first calculate the synthetic, pairwise distances for the
given molecular graph. Based on these, we calculate the edge distances and angles between edges.
Finally, we compute the molecule’s line graph. Executing a GNN on the line graph improves its
expressivity (Garg et al., 2020) and allows us to incorporate angular information. We use the original
node and edge attributes together with the distances as node attributes, and the obtained angles as edge
attributes. The GNN is then executed on this featurized line graph instead of the original graph. Our
experiments show this transformation can significantly improve the performance of the underlying
GNN, across multiple models and datasets. Incorporating synthetic coordinates reduces the error of a
normal GNN by 55 %, putting it on par with the current state of the art. Our enhanced version of the
SMP model (Vignac et al., 2020) improves upon the current state of the art on ZINC by 21 %, and
DimeNet++ (Gasteiger et al., 2020a) with synthetic coordinates outcompetes previous methods on
coordinate-free QM9 by 20 %. In summary, our core contributions are:

• Well-defined synthetic coordinates based on node distances and simple molecular bounds, which
significantly improve the performance of GNNs for molecules.

• A general scheme of converting a normal GNN into a directional MPNN, which can improve
performance and allows incorporating both distance and angular information.

2 Directional message passing

Graph neural networks. To use GNNs for molecules we represent them as graphs G = (V, E),
where the atoms define the node set V and the interactions the edge set E . These interactions are
usually the bonds of the molecular graph, but they can also be all atoms pairs within a given cutoff
of e.g. 5 Å. In this work we focus on an extension of message passing neural networks (MPNNs)
(Gilmer et al., 2017). MPNNs embed each atom u separately as hu ∈ RH , and can additionally use
interaction embeddings e(uv) ∈ RHe . These embeddings are updated in each layer using messages
passed between neighboring nodes, starting with the atom features h(0)

u = x
(V)
u (e.g. its type) and

the interaction features e(0)(uv) = x
(E)
(uv) (e.g. the bond type or a distance representation). Extended
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MPNNs can be expressed via the following two equations:

h(l+1)
u = fupdate(h

(l)
u , Agg

v∈Nu

[fmsg(h(l)
u ,h

(l)
v , e

(l)
(uv))]), (1)

e
(l+1)
(uv) = fedge(h

(l+1)
u ,h(l+1)

v , e
(l)
(uv)). (2)

The atom and interaction update functions fnode and fedge and the message function fmsg are learnable
functions, such as simple linear layers or arbitrarily complex neural networks. The aggregation Agg
over the atom’s neighbors Nu is usually a simple summation.

Line graph. The directed line graphL(G) = (VL, EL) expresses the adjacencies between the directed
edges in G. Its nodes are the directed edges of the original graph VL = {(u, v) | u ∈ V, v ∈ Nu}.
For undirected graphs like molecular graphs, every undirected edge {u, v} is split into two directed
edges (u, v) and (v, u). Two nodes in L(G) are connected if the corresponding edges in G share a
node, i.e. EL = {((u, v), (v, w)) | (u, v), (v, w) ∈ VL}. We obtain node features for the line graph
by embedding the original node and edge features as x

(VL)
(uv) = femb(x

(V)
u ,x

(V)
v ,x

(E)
(uv)). The line

graph can furthermore incorporate additional features for atom triplets as edge features x(EL)
(uvw), such

as the angle between bonds or interactions.

Directional message passing. Directional MPNNs improve upon regular MPNNs in two ways. First,
they embed the directed messages instead of the nodes in the graph, essentially operating on the
directed line graph. Models using only this first step are also known as directed MPNNs or line
graph neural networks (Dai et al., 2016; Yang et al., 2019; Chen et al., 2019). Directed MPNNs are
strictly more expressive than regular MPNNs (Morris et al., 2020). We can transform any MPNN to a
directed MPNN simply by executing it on the directed line graph instead of the original graph.
Second, for graphs with nodes that are embedded in an inner product space (such as molecules in 3D
space) the directed edges correspond to directions in that space, via x(VL)

(uv) = x
(V)
u −x

(V)
v . Directional

MPNNs leverage this connection to better represent the molecular configuration, usually by using the
angles in x

(EL)
(uvw) (Gasteiger et al., 2020b). To fully leverage both aspects of directional MPNNs we

therefore need some form of coordinates.

Expressivity of GNNs. A central limitation of GNNs is their inability of distinguishing between
certain non-isomorphic graphs. For example, GNNs are not able to distinguish between a hexagon
and two triangles if all nodes and edges have the same features. More specifically, Xu et al. (2019);
Morris et al. (2019) have shown that GNNs are only as powerful as the 1-Weisfeiler-Lehman (WL)
test of isomorphism. While it is still possible to construct indistinguishable examples for directional
MPNNs, this is significantly more difficult (Garg et al., 2020). Dym & Maron (2021) have shown
that MPNNs using SO(3) group representations and atom positions are even universal, i.e. able to
approximate any continuous function to arbitrary precision. This demonstrates that coordinates can
alleviate and even solve this central limitation of GNNs.

3 Molecular configurations

To prevent any pitfalls when constructing synthetic coordinates for GNNs based on chemical knowl-
edge we first need to consider the properties of atomic positions in a molecule and how they are
obtained. At first glance these positions might seem like an obvious and straightforward property.
However, molecular configurations are actually ambiguous and difficult to obtain, even for small
molecules. This misconception has even led some works to suggest semi-supervised learning meth-
ods leveraging positions, effectively treating them as abundant input features (Hao et al., 2020). To
clarify this issue we will next describe the complexity behind molecular configurations and how to
approximate them efficiently.

Finding molecular configurations. The atoms of a molecule can in principle be at any arbitrary
position. However, most of these configurations will lead to an extremely high energy and are thus
very unlikely to be observed in nature. A molecular configuration thus usually refers to the atom
positions at or close to equilibrium, i.e. at the molecule’s energy minimum. To find these positions we
have to search the molecule’s energy landscape and solve a non-convex optimization problem. This
is in fact a bilevel optimization problem, where the atom positions are optimized in the outer and the
electron wavefunctions in the inner task. These wave functions can then be ignored in the outer task;
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they only influence the energy and the forces Fi = − ∂E
∂xi

acting on each atomic nucleus. We can
then use these forces for gradient-based optimization, and avoid saddle points by using quasi-Newton
methods.

Difficulties. The above optimization process is very expensive due to the quantum mechanical (QM)
computations required for optimizing the electron wavefunction at each gradient step. It is orders
of magnitude more expensive than calculating the energy of a given molecular configuration, since
we need to calculate the energy’s gradient for each optimization step. Furthermore, the optimization
will only converge to a local, and not the global minimum. And in fact, the global minimum is not
the only state of interest — any reasonably low local minimum of the energy landscape is a valid
configuration, known as a conformer. A molecule thus does not have a unique configuration; it can
be in any of these states. Their statistical distribution and the interaction between them is central
for many molecular properties. This ambiguity of atom positions poses a fundamental limit on how
precise molecular predictions can be without knowing the exact (ensemble of) configurations. For
example, without knowing the molecule’s conformer we can not reasonably predict its energy at a
precision below roughly 60 meV (Grimme, 2019) — except for small, rigid molecules that do not
have multiple conformers (e.g. benzene).

Approximating energies and forces. The most prominent way of accelerating the process of finding
a valid molecular configuration is by approximating its most expensive part: The quantum mechanical
optimization of the electron wavefunction. There is a large hierarchy of methods with various runtime
versus accuracy trade-offs (Folmsbee & Hutchison, 2021). The cheapest class of methods are force
fields. They allow running molecular dynamics simulations with millions of atoms, and can estimate
the equilibrium structure of a small molecule in less than one second. Force fields approximate the
quantum-mechanical interactions via a closed-form, differentiable function that only depends on the
atom positions. One common example is the Merck Molecular Force Field (MMFF94) (Halgren,
1996). MMFF94 calculates the molecular energy based on interatomic distances, angles, dihedral
angles, and long-range interaction terms. Each term is approximated using an analytic equation with
empirically chosen coefficients that depend on the involved atom types. Forces are obtained via
the analytical gradients Fi = − ∂E

∂xi
, and conformers via gradient-based optimization. Generating

configurations with force fields is fast enough to even generate a large ensemble of conformers.
However, the resulting conformers are highly biased and require corrections based on expensive
QM-based methods for reasonably approximating the molecule’s true distribution (Ebejer et al., 2012;
Kanal et al., 2018).

Directly predicting the configuration. There are multiple methods that circumvent the optimization
process to quickly generate low-energy conformers for a given molecular graph. Distance geometry
methods generate conformers using an experimental database of ideal bond lengths, bond angles,
and torsional angles (Havel, 2002). The ETKDG method combines this with empirical torsional
angle preferences (Riniker & Landrum, 2015). Multiple machine learning methods for generating
conformers have also recently been proposed (Weinreich et al., 2021; Lemm et al., 2021).

Restrictions for ML. All of the above methods yield reasonable molecular configurations. However,
they often require many initializations and a considerable amount of hand-tuning to yield a good
result for every molecule in a dataset. Furthermore, the obtained conformer might not even be the
correct one for the data of interest. The data could have been generated by a different conformer or
by a statistical ensemble of multiple conformers. The configuration of a wrong conformer can cause
our model to overfit to the false training data and cause bad generalization (see Sec. 6). To solve this
issue we could try to generate an ensemble of conformers and embed their distribution. However,
cheap generation methods yield strongly biased ensembles and would thus require expensive post-
processing, defeating the purpose of fast and scalable machine learning (ML) methods (Ebejer et al.,
2012; Kanal et al., 2018). We propose to instead solve this issue by using less precise synthetic
coordinates that are easier and cheaper to obtain.

4 Synthetic coordinates

Molecular distance bounds. To circumvent the issues associated with conformational ambiguity, we
propose to use pairwise distance bounds instead of simple coordinates, i.e. minimum and maximum
distances d(min) and d(max) for every pair of atoms. These bounds only provide the chemical
information we are certain of, without being falsely accurate. Specifically, we use the distance bounds
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provided by RDKit (RDKit, 2021). These bounds provide different estimates depending on how the
atoms are bonded in the molecular graph. The edges in the molecular graph correspond to directly
bonding atoms, whose bounds are calculated as the equilibrium distance (as parametrized in the
universal force field (UFF) (Rappe et al., 1992)) plus or minus a tolerance of 0.01 Å. The angles
between triplets of atoms are estimated based on bond hybridization and whether an atom is part
of a ring. The distance bounds between two-hop neighbors are then calculated based on this angle,
the bond length, and a tolerance of 0.04 Å, or 0.08 Å for atoms larger than Aluminium. Pairwise
distances between higher-order neighbors are not relevant for our method, since we only use the
distances and angles of the molecular graph. The distance bounds are then refined using the triangle
inequality. Note that these bounds depend almost exclusively on the directly involved atoms. They
thus only provide local structural information.

Based on these distance bounds we calculate three different angles for directional MPNNs: The
maximally and minimally realizable angles, and the center angle. We obtain them using standard
trigonometry, via

α
(a)
ijk = arccos

(
d2(b),ij + d2(b),jk − d

2
(a),ik

2d(b),ijd(b),jk

)
, (3)

where (a) = (max) and (b) = (min) for the maximally realizable angle, (a) = (min) and (b) =
(max) for the minimally realizable angle, and (a) = (b) = (center) for the center angle, with
the center distance d(center) = (d(min) + d(max))/2. These distance and angle bounds hold for all
reasonable molecular structures and thus provide valuable, general information for our model. Their
calculation requires no hand-tuning, takes only a few milliseconds, and worked out-of-the-box for
every molecule we investigated.

Graph-based distances. Directional MPNNs only use the distances of interactions and the angles
between interactions; they do not require a full three-dimensional geometry. We leverage this gener-
ality to propose a second distance based on a common graph-based proximity measure: Personalized
PageRank (PPR) (Page et al., 1998), also known as random walks with restart. PPR measures how
close two atoms in the molecular graph are by calculating the probability that a random walker
starting at atom i ends up at atom j. At each step, the random walker jumps to any neighbor of the
current atom with equal probability, and teleports back to the original atom i with probability α.
To satisfy the symmetry property of a metric we use a variant of PPR that uses the symmetrically
normalized transition matrix, i.e.

Πsppr = α(IN − (1− α)D−1/2AD−1/2)−1, (4)

with the teleport probability α ∈ (0, 1], the adjacency matrix A, and the diagonal degree matrix
Dij =

∑
kAikδij . We found that this method works well even without considering any bond type

information in A. We convert Πsppr to a distance via

dsppr,ij =
√

Πsppr
ii + Πsppr

jj − 2Πsppr
ij . (5)

Figure 2: dsppr distance be-
tween direct neighbors on
ethanol.

Note that Πsppr defines a positive definite kernel, and this is the
induced distance in its reproducing kernel Hilbert space. It therefore
satisfies all properties of a metric, i.e. identity of indiscernibles,
symmetry, and the triangle inequality (Berg et al., 1984, Chapter 3,
§3). However, dsppr,ij is a general metric and does not yield atom
positions in 3D. This is a purely graph-based measure that does
not incorporate any chemical knowledge. It reflects how central
an atom is in the molecular graph, and how important another
atom is to this one, based on the overall network of bonds. It thus
only helps the GNN better reflect and process the molecular graph
structure. Fig. 2 shows an example of dsppr on ethanol. Since the
law of cosines holds for any inner product space we can calculate
the angles for directional message passing via

αijk = arccos

(
d2ij + d2jk − d2ik

2dijdjk

)
. (6)

5



Note that the bounds- and graph-based distances encode orthogonal information. The former is
solely based on the global molecular graph structure, while the latter provides purely local chemical
knowledge. Instead of just choosing one or the other we can therefore combine both to obtain the
benefits of both.

Representing distances and angles. The additional structural information can directly be incor-
porated into existing models as edge features. For this purpose, we propose to first represent the
distances using NRBF Gaussian radial basis functions (RBF), i.e.

hRBF,n(dij) = exp−1/2(dij−cn)
2/σ2

, (7)

where the Gaussian centers cn are set uniformly between 0 and the overall maximum distance,
n ∈ [0, NRBF], and σ = c1 − c0 is set as the distance between two neighboring centers. The angles
are similarly represented using NABF cosine angular basis functions (ABF), i.e.

hABF,n(αijk) = cos(nαijk), (8)

with n ∈ [0, NABF]. We then transform these features using two linear layers. The first layer is
global and uses a small output dimension to force the model to learn a well-generalizing intermediate
representation. The second layer is specific to each GNN layer, enabling more flexibility. Overall, we
obtain the distance-based edge features eij and angle-based triplet features aijk in layer l via

e
(l)
ij = W

(l)
RBF2WRBF1(hRBF(dij)‖x(E)

ij ), (9)

a
(l)
ijk = W

(l)
ABF2WABF1hABF(αijk), (10)

where W
(l)
RBF2 and W

(l)
ABF2 are layer-wise learned weight matrices, WRBF1 and WABF1 are global

learned weight matrices, ‖ denotes concatenation, and x
(E)
ij are bond (edge) features. We can

furthermore combine multiple synthetic coordinates by concatenating their representations hRBF and
hABF. Note that for DimeNet++ we use the original basis transformation instead of the one described
here.

5 Related work

Graph neural networks. Sperduti & Starita (1997); Baskin et al. (1997) proposed the first models
resembling modern GNNs. Gori et al. (2005); Scarselli et al. (2009) were the first to use the name
GNN, but these models are quite different to current GNNs, as described in Sec. 2. GNNs became
widely adopted after their potential in a wide range of graph-related tasks was shown by Kipf &
Welling (2017); Veličković et al. (2018); Gasteiger et al. (2019); Defferrard et al. (2016); Bruna et al.
(2014). Notably, Beaini et al. (2021) use the Laplacian eigenvectors of a graph to enable anisotropic
aggregation in MPNNs. This approach is related to our synthetic coordinates. However, it is not
rotationally invariant w.r.t. the directions induced by the eigenvectors, and unsuited for enabling
existing directional MPNNs.

GNNs for molecules. Molecules have always played a central role in the development of GNNs, both
for the very first GNNs (Baskin et al., 1997) and during the modern era of GNNs (Duvenaud et al.,
2015; Gilmer et al., 2017). GNNs have been particularly successful when leveraging coordinates
(Schütt et al., 2017; Unke & Meuwly, 2019), but many variants only rely on the molecular graph (Fey
et al., 2020).

Directionality in GNNs. Incorporating directionality in molecular MPNNs is currently a very active
and successful area of research. These methods can roughly be divided into two classes: Models
based on SO(3) group representations (Thomas et al., 2018; Anderson et al., 2019), and models
incorporating directional information directly (Gasteiger et al., 2020b). Multiple promising models
have recently been proposed for both classes (Fuchs et al., 2020; Batzner et al., 2021; Schütt et al.,
2021; Liu et al., 2021; Satorras et al., 2021). While we focus on directional message passing in this
paper, all of these methods can benefit from synthetic coordinates.

Molecular representations. Molecular fingerprints are a useful tool for comparing molecules, e.g.
for machine learning. Popular examples include extended connectivity fingerprints (ECFP), also
known as Morgan or circular fingerprints (Rogers & Hahn, 2010), MACCS keys (Durant et al.,
2002), MHFP (Probst & Reymond, 2018), the subgraph-based RDKit fingerprint (RDKit, 2021), and
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the SELFIES string representation (Krenn et al., 2020). These can be viewed as an alternative or
supplement to synthetic coordinates. However, unlike synthetic coordinates they do not leverage
the peculiarities of directional MPNNs, and can usually only be used with regressors that are not
graph-based. Another class of molecular representations aims at better encoding the geometry of a
molecule (Faber et al., 2017). Examples include FCHL (Faber et al., 2018; Christensen et al., 2020),
smooth overlap of atomic positions (SOAP) (Bartók et al., 2013), and atomic spectrum of London
and ATM potential (aSLATM) (Huang & von Lilienfeld, 2020). OrbNet is an example of a GNN that
enhances its input with such a representation (Qiao et al., 2020). Obviously, none of these can be
used without access to the molecular configuration.

6 Experiments

6.1 Experimental setup

We use three common benchmarks to evaluate the proposed synthetic coordinates: Coordinate-free
QM9 (Ramakrishnan et al., 2014, CC0 license), ZINC (Irwin et al., 2012), and ogbg-molhiv (Hu
et al., 2020, MIT license). QM9 contains various quantum mechanical properties of equilibrium
conformers of small molecules with up to nine heavy atoms. To exclude effects from regular chemical
information we use all available edge (bond types) and node features (acceptor/donor, aromaticity,
hybridization). However, unlike previous work we do not use the Mulliken partial charges. These
are computed by quantum mechanical calculations that use the molecule’s configuration. They thus
lead to information leakage and defeat the purpose of QM9’s regression task. We use the same data
split as Brockschmidt (2020) for QM9, i.e. 10 000 molecules for the validation and test sets, and
the remaining ∼110 000 molecules for training. Note that the properties in QM9 fundamentally
depend on the molecular configuration. The predictions in coordinate-free QM9 should thus be
viewed as estimates for the equilibrium configurations. There are fundamental limits to the accuracy
achievable in this setup, as discussed in Sec. 3. The goal in ZINC is to predict the penalized logP
(also called “constrained solubility” in some works), given by y = logP−SAS− cycles (Jin et al.,
2018), where logP is the water-octanol partition coefficient, SAS is the synthetic accessibility score
(Ertl & Schuffenhauer, 2009), and cycles denotes the number of cycles with more than six atoms.
Penalized logP is a score commonly used for training molecular generation models (Kusner et al.,
2017). We use 10 000 training, 1000 validation, and 1000 test molecules, as established by Dwivedi
et al. (2020) and provided by PyTorch Geometric (Fey & Lenssen, 2019). For ogbg-molhiv we need
to predict whether a molecule inhibits HIV virus replication. It contains 41 127 graphs, out of which
80 % are training samples, and 10 % each are validation and test samples, as provided by the official
data splits. We report the mean and standard deviation across five runs for ZINC and ogbg-molhiv.
Due to computational constraints we only report single results on QM9. The experiments were run
on GPUs using an internal cluster equipped mainly with NVIDIA GeForce GTX 1080Ti.

We aim to answer two questions with our experiments: 1. Do synthetic coordinates improve the
performance of existing GNNs? 2. Does transforming existing GNNs to directional MPNNs improve
accuracy? To answer these questions we investigate three GNNs: DeeperGCN (Li et al., 2020, MIT
license), structural message passing (SMP) (Vignac et al., 2020, MIT license), and DimeNet++

(Gasteiger et al., 2020a, Hippocratic license). We show step-by-step how the changes affect the
resulting error of each model. For easier comparison we also provide published results of other
state-of-the-art GNNs: Gated GCN, MPNN-JT (Fey et al., 2020), GIN (Xu et al., 2019; Fey et al.,
2020), PNA (Corso et al., 2020), DGN (Beaini et al., 2021), SMP (Vignac et al., 2020), GNN-FiLM
(Brockschmidt, 2020), and GNN-FiLM+FA (Alon & Yahav, 2021).

6.2 Model hyperparameters

To prevent overfitting we use the SMP and DimeNet++ models and hyperparameters largely as-is,
without any further optimization. Similarly, we chose the DeeperGCN variant and hyperparameters
based on the ogbg-molhiv dataset, and did not further tune on ZINC. More specifically, we use the
DeeperGCN (Li et al., 2020) with 12 ResGCN+ blocks, mean aggregation in the graph convolution,
and average pooling to obtain the graph embedding. For SMP (Vignac et al., 2020) we use 12 layers,
8 towers, an internal representation of size 32 and no residual connections. For both DeeperGCN and
SMP we use an embedding size of 256, and distance and angle bases of size 16 and 18, respectively,
with a bottleneck dimension of 4 between the global basis embedding and the local embedding in
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Table 1: Ablation study for transforming DeeperGCN and SMP
to directional MPNNs (MAE on ZINC). Every step improves
the error of DeeperGCN, resulting in a 55 % improvement. The
combined bounds+PPR encoding performs best. *Replicated
using the reference implementation.

SMP DeeperGCN
Basic 0.159± 0.028* 0.317± 0.021

+distance
Bounds 0.124± 0.002 0.264± 0.003
PPR 0.151± 0.008 0.227± 0.006
Bounds+PPR 0.121± 0.006 0.228± 0.005

+distance Bounds 0.112 ± 0.004 0.212± 0.008
& line graph PPR 0.150± 0.003 0.194± 0.009

+distance, Bounds 0.113 ± 0.003 0.180± 0.007
line graph PPR 0.153± 0.005 0.158± 0.005
& angle Bounds+PPR 0.109 ± 0.004 0.142 ± 0.006

Table 2: MAE on ZINC. SMP with
synthetic coordinates outcompetes
previous models by 21 %, without
any hyperparameter tuning.
Model MAE
Gated GCN 0.282
GIN 0.252
PNA 0.188
DGN 0.168
MPNN-JT 0.151
SMP 0.138
DeeperGCN-SC 0.142± 0.006
SMP-SC 0.109 ± 0.004

Table 3: Comparison of different distance generation methods for DeeperGCN on ZINC (MAE). Our
simpler, faster, and more principled methods (bounds, PPR) perform better than more sophisticated
conformer generation methods.

MMFF94 ETKDG Bounds PPR Bounds+PPR
Distance 0.324± 0.012 0.329± 0.022 0.264± 0.003 0.227 ± 0.006 0.228 ± 0.005
Distance & line graph 0.232± 0.008 0.234± 0.007 0.212± 0.008 0.194± 0.009 0.178 ± 0.009
Distance, line graph & angle 0.236± 0.011 0.274± 0.012 0.180± 0.007 0.158± 0.005 0.142 ± 0.006

each layer. We train all models on ZINC with the same training hyperparameters as SMP, particularly
the same learning rate schedule with a patience of 100 and minimum learning rate of 1× 10−5.

For DimeNet++ we use a cutoff of 2.5 Å, radial and spherical bases of size 12, embedding size 128,
output embedding size 256, basis embedding size 8 and 4 blocks. We use the same optimization
parameters - learning rate 0.001, 3000 warmup steps and a decay rate of 0.01.

6.3 Results

Transforming existing GNNs. Table 1 shows that DeeperGCN’s errors improve for each step of
the transformation: Adding distance information, switching to the line graph, and adding angles.
Interestingly, the PPR distance reduces the error more than molecular distance bounds do. This
suggests that this structural information is more relevant for the GNN than the rough bounds. SMP
benefits less from using the line graph and angles. This is likely due to SMP already encoding
structural information as part of its architecture. Using both the PPR distance and molecular distance
bounds improves the performance further for both models. Table 3 shows that using more expensive
methods of generating conformers yields a higher error than our simple and fast methods. As discussed
in Sec. 3, this can be attributed to the ambiguities of different molecular conformers. DeeperGCN
with synthetic coordinates performs similarly well to the best models proposed previously, while the
enhanced SMP sets a new state of the art on this dataset, as shown in Table 2.

Enhancing DimeNet++. DimeNet was originally developed for molecular dynamics and other use
cases that provide the true atom positions, such as the full QM9 dataset. Despite this, we can still use
it as-is without available positional information by setting the used distance and angle embeddings to
constants. DimeNet++ still performs surprisingly well in this form, as shown in Table 4. However,
its performance increases significantly if we provide it with the proposed synthetic coordinates.
Notably, the PPR distance again causes a larger improvement than the molecular distance bounds.
Combining both distances still performs best, though. Table 5 furthermore shows that DimeNet++

sets the state of the art for coordinate-less QM9 on eight out of twelve targets — without any further
hyperparameter optimization. Interestingly, the achieved energy error lies significantly below the
limit of 60 meV we mentioned in Sec. 3. This is likely due to two reasons. First, QM9 only contains
small molecules, many of which are very rigid. These molecules do not have multiple conformers
and their energy will thus be more deterministic. Second, QM9’s data was generated by initializing
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Table 4: MAE on coordinate-free
QM9 (meV) for DimeNet++ with
synthetic coordinates. Both syn-
thetic distances and angles yield sig-
nificant improvements, together re-
ducing the error by 24 % on average.

εHOMO U0

No dist/angle 74.1 41.9
No angle 63.5 32.1(bounds+PPR)
distance & angle:
Bounds 63.6 29.4
PPR 63.0 29.5
Bounds+PPR 61.7 28.7

Table 5: MAE on coordinate-free QM9. DimeNet++ with syn-
thetic coordinates outperforms previous models by 20 %, with-
out any hyperparameter tuning. *Uses Mulliken partial charges.

Unit GNN-FiLM* GNN-FiLM+FA* DimeNet++-SC
µ D 0.238 0.226 0.303
α a0

3 0.375 0.193 0.171
εHOMO meV 52.5 47.7 61.7
εLUMO meV 55.9 52 54.3
∆ε meV 84.3 77 86.2〈
R2
〉

a0
2 18.7 14.3 12.7

ZPVE meV 13.2 5.62 2.98
U0 meV 233 68.8 28.7
U meV 256 75.2 29.6
H meV 240 83 29.6
G meV 222 76.1 28.2
cv

cal
mol K 0.173 0.082 0.076

each molecule’s position with a fast force field method. This can bias the final conformer towards a
deterministic state, which might be learnable by a GNN.

Table 6: Ablation of DeeperGCN on QM9 U0 (MAE,
meV) and ogbg-molhiv (ROC-AUC). Using the line
graph does not always provide benefits. However, syn-
thetic coordinates help even in these cases.

QM9, U0 ogbg-molhiv
Basic 106 0.728± 0.008

+distance
Bounds 114 0.724± 0.014
PPR 88 0.734± 0.014
Bounds+PPR 100 0.733± 0.024

+distance Bounds 233 0.705± 0.011
& line graph PPR 204 0.697± 0.009

+distance, Bounds 205 0.703± 0.021
line graph PPR 164 0.700± 0.014
& angle Bounds+PPR 186 0.767 ± 0.016

Synthetic coordinates without direc-
tional message passing. In some cases
we found that using synthetic coordi-
nates yields performance improvements
while transforming the model to a direc-
tional MPNN does not. Table 6 demon-
strates this using DeeperGCN on QM9
and ogbg-molhiv. Using the line graph
significantly impairs performance on both
datasets. Whether directional MPNNs pro-
vide a benefit thus seems to depend on both
the underlying model and the dataset. This
is likely due to the directional MPNN’s
different training dynamics, which require
further architectural and hyperparameter
changes. Moreover, directional MPNNs
are likely more prone to overfitting due to their better expressivity. This affects ogbg-molhiv in
particular, since it uses a scaffold split for the test set. However, the additional information provided
by synthetic coordinates still yields improvements in both cases.

7 Limitations and societal impact

Limitations. Converting a GNN to a directional MPNN incurs significant computational overhead,
since the line graph is usually substantially larger than the molecular graph. However, just incorporat-
ing the information provided by graph distances or molecular distance bounds without transforming
to directional message passing can also provide benefits, with almost no computational overhead. We
furthermore found that transforming a GNN to a directional MPNN does not yield improvements in
many cases, while synthetic coordinates still do (see Sec. 6 for details). There are likely also cases
where synthetic coordinates lead to overfitting and do not improve accuracy. Directional MPNNs
appear to be most successful when the molecular configuration is directly relevant.

Societal impact. Improving the predictions of molecular models can positively affect various
applications in chemistry, biology, and medicine. Our research is general and not focused on a
field where malicious use should be expected. However, similar to most methodological research,
our improvements can be misused to accelerate the development of chemical agents and biological
weapons. We do not think that this potential for harm goes beyond regular research in theoretical
chemistry and related fields. Still, to slightly reduce these negative effects our code will be published
under the Hippocratic license (Ehmke, 2020).
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8 Conclusion

We proposed two methods for providing synthetic coordinates: Molecular distance bounds based
on the interacting atom types, and graph-based distances based on personalized PageRank scores.
Both of these methods provide well-defined pairwise distances, which can then be used to calculate
distances for edge features in the molecular graph, and angles for edge features in its line graph.
These synthetic coordinates improve GNN performance for various models and datasets, and allow
transforming a regular GNN into a directional MPNN. This transformation leads to substantial
improvements, resulting in state-of-the-art accuracies on multiple datasets.
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