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Abstract

Lengthy documents pose a unique challenge001
to neural language models due to substantial002
memory consumption. While existing state-003
of-the-art (SOTA) models segment long texts004
into equal-length snippets (e.g., 128 tokens005
per snippet) or deploy sparse attention net-006
works, these methods have new challenges007
of context fragmentation and generalizability008
due to sentence boundaries and varying text009
lengths. For example, our empirical analy-010
sis has shown that SOTA models consistently011
overfit one set of lengthy documents (e.g.,012
2000 tokens) while performing worse on texts013
with other lengths (e.g., 1000 or 4000). In014
this study, we propose a Length-Aware Multi-015
Kernel Transformer (LAMKIT) to address the016
new challenges for the long document clas-017
sification. LAMKIT encodes lengthy docu-018
ments by diverse transformer-based kernels for019
bridging context boundaries and vectorizes text020
length by the kernels to promote model robust-021
ness over varying document lengths. Experi-022
ments on four standard benchmarks from health023
and law domains show LAMKIT outperforms024
SOTA models up to an absolute 10.9% improve-025
ment. We conduct extensive ablation analyses026
to examine model robustness and effectiveness027
over varying document lengths.028

1 Introduction029

Lengthy documents widely exist in many fields,030

while the input limit (512 tokens) of transformer031

models prevents developing powerful pre-trained032

language models on those long documents, such033

as BERT (Devlin et al., 2019) and RoBERTa (Liu034

et al., 2019). For example, a recent study shows that035

clinical documents have grown over 60% longer036

in a decade (Rule et al., 2021). Truncation is a037

common strategy to handle long documents and038

fit the input limit of BERT-based classifiers, how-039

ever, the method may lose many critical contexts040

beyond the first 512 tokens and hurdle model ef-041

fectiveness. One solution for lengthy documents is 042

long document modeling. 043

Among existing transformer-based models, long 044

document modeling has two major directions, hi- 045

erarchical transformer and sparse attention (Dong 046

et al., 2023; Qin et al., 2023). The hierarchical 047

approach (Wu et al., 2021; Chalkidis et al., 2022; 048

Dai et al., 2022; Li et al., 2023a; Chalkidis et al., 049

2023) splits document into small text chunks (e.g., 050

128 tokens) so that long document models can 051

take shorter input per step. As the self-attention 052

in transformer-style models causes quadratic com- 053

plexity O(n2), the sparse attention aims to lower 054

the complexity to linear and reduce context frag- 055

mentation caused by the segments (Beltagy et al., 056

2020; Zaheer et al., 2020; Guo et al., 2022; Zhang 057

et al., 2023). For example, sparse attention in Long- 058

former (Beltagy et al., 2020) lifts up the input limit 059

from 512 tokens to 4096 tokens. Popular eval- 060

uation benchmarks also switch from social me- 061

dia data (e.g., IMDb and Amazon reviews (Wu 062

et al., 2021)) to more complex data in health and 063

legal domains (Qin et al., 2023; Chalkidis et al., 064

2022). For example, the median document length 065

of IMDb is only 225 tokens (Li et al., 2023a), which 066

is much smaller than the lengths in Table 1. In- 067

deed, document lengths vary across datasets, and 068

model performance can vary across length-varied 069

corpora (Li et al., 2023a). However, very few stud- 070

ies have examined if long document models can 071

handle varying-length texts, ranging from short to 072

extremely long. A common question is: will a long 073

document model be capable to maintain robust per- 074

formance across varying-length data? Our analysis 075

on SOTA baselines in Figure 1 says “No.” 076

To understand the length effects and encounter 077

the long document challenges, we conduct exten- 078

sive analysis and propose Length-Aware Multi- 079

Kernel Transformer (LAMKIT) for robust long doc- 080

ument classification. LAMKIT diversifies learn- 081

ing processes by a multi-kernel encoding (MK) 082
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Dataset
Length-Quantile

L-mean Size |Label| Splits
25% 50% 75% Train Valid Test

Diabetes 408 608 945 720 1,265 10 885 190 190
MIMIC 1,432 2,022 2,741 2,200 11,368 50 8,066 1,753 1,729
ECtHR 668 1,328 2,627 2,139 11,000 11 9,000 1,000 1,000

SCOTUS 3,723 7,673 12,275 9,840 7,800 14 5,000 1,400 1,400

Table 1: Statistics of average token count per document (L-mean), data size (Size), and unique labels (|Label|).

so that the model can capture contexts from dif-083

ferent perspectives. The MK contains multiple084

neural encoders with diverse kernel sizes and can085

relieve context fragmentation caused by a unique086

segment encoder on short text chunks. LAMKIT087

promotes model robustness over varying-length088

documents by a length-aware vectorization (LaV)089

module. The LaV encodes length information in090

a hierarchical way, position embedding on seg-091

ment and length vectors on document level. We092

compare LAMKIT with 8 domain-specific mod-093

els on four datasets (MIMIC-III (Johnson et al.,094

2016), SCOTUS (Chalkidis et al., 2022), ECtHR-095

A (Chalkidis et al., 2019), Diabetes (Stubbs et al.,096

2019)) from health and legal domains evaluated by097

F1 and AUC metrics. Additionally, we also con-098

duct a case study on the performance of ChatGPT099

in these tasks. Classification results demonstrate100

that our LAMKIT approach’s outperforms compet-101

itive baselines by an absolute improvement of up102

to 10.9%. We conduct further experiments on the103

length-varying effects and ablation analysis to ex-104

amine the effectiveness of our individual modules.105

2 Data106

We have retrieved four publicly available data, Di-107

abetes (Stubbs et al., 2019), MIMIC-III (Johnson108

et al., 2016), ECtHR-A (Chalkidis et al., 2019),109

and SCOTUS (Chalkidis et al., 2022), which are110

popular benchmarks for the long document classifi-111

cation. We obtained Diabetes (Stubbs et al., 2019)112

from the 2018 National NLP Clinical Challenges113

(n2c2) shared task with a collection of longitudinal114

patient records and 13 selection criteria annota-115

tions. We exclude 3 annotations due to less than116

0.5 inter-rater agreements and discard documents117

with fewer than 40 tokens. MIMIC-III (Medical In-118

formation Mart for Intensive Care) (Johnson et al.,119

2016) is a relational database that contains patients120

admitted to the Intensive Care Unit (ICU) at the121

Beth Israel Deaconess Medical Center from 2001122

to 2012. We follow previous work (Mullenbach123

et al., 2018; Vu et al., 2021) to select discharge 124

summaries and use the top 50 frequent labels of 125

International Classification of Disease codes (9th 126

Edition, ICD-9), which are types of procedures and 127

diagnoses during patient stay in the ICU. ECtHR-A 128

collects facts and articles from law case descrip- 129

tions from the European Court of Human Rights’ 130

public database (Chalkidis et al., 2019). Each case 131

is mapped to the articles it was found to have vio- 132

lated in the ECHR, while in ECTHR-B (Chalkidis 133

et al., 2021), cases are mapped to a set of allegedly 134

violated articles. We follow the study (Chalkidis 135

et al., 2022) to process and obtain 11 labels. SCO- 136

TUS is a data collection of US Supreme Court (the 137

highest US federal court) opinions and the US 138

Supreme Court Database (SCDB) (Spaeth et al., 139

2020) with cases from 1946 to 2020. SCOTUS has 140

14 issue areas, such as Criminal Procedure, Civil 141

Rights, and Economic Activity. We summarize 142

data statistics and splits in Table 1. 143

Table 1 shows each data has a varying length 144

range, a critical yet under-explored question is: 145

does the varying length effect model performance 146

or will models be generalizable across all lengths? 147

For example, the document length in Table 1 is 148

either less than a few hundred or over ten thou- 149

sand tokens surpassing input limitations of regular 150

transformer-style models (e.g., BERT), and there 151

are significant length variations across the data. 152

While studies (Dong et al., 2023) have achieved im- 153

proving performance overall to encode more con- 154

texts beyond the 512 token limit, there is very few 155

work examining the effects of varying document 156

lengths over model robustness. To answer the ques- 157

tion, we conduct an exploratory analysis of existing 158

state-of-the-art (SOTA) models and evaluate their 159

performance. 160

Our exploratory analysis follows existing stud- 161

ies (Mullenbach et al., 2018; Dai et al., 2022; 162

Chalkidis et al., 2022; Qin et al., 2023) to split 163

data, includes three state-of-the-art transformer 164

classifiers (BigBird, Longformer, and Hierarchi- 165
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Figure 1: SOTA baseline performance across the quarter
splits.

cal BERT (H-BERT)) for long document and a166

BERT classifier, and evaluates models performance167

by F1-micro (F1-µ) score. We refer to the details168

of experimental settings and SOTA baselines un-169

der the Experiments section. For each quarter, we170

maintain similar data sizes and run the classifier171

multiple times to take average performance scores.172

Finally, we visualize the relation between model173

performance and document lengths in Figure 1.174

Figure 1 shows that model performance varies175

across document lengths, posing a unique chal-176

lenge to build robust models on varying lengthy177

data. For example, while the SOTA classifiers178

achieve better scores on mid-lengthy texts, the per-179

formance drops significantly in either short (e.g.,180

400 tokens) or super long (e.g., 10K tokens) doc-181

uments. The consistent observations can suggest182

that: 1) varying length can be a critical factor to183

make models perform better; 2) length-based splits184

are important to understand the capacity of clas-185

sifiers on long documents. The findings inspire186

us to propose the Length-Aware Multi-Kernel187

Transformer (LAMKIT) to encounter the length188

factor.189

2.1 Ethic and Privacy Concern190

We access four datasets in accordance with data191

agreements and underwent relevant training. To192

prioritize user privacy, we employ stringent data193

usage measures and conduct our experiments exclu-194

sively on anonymized data. For ethical and privacy195

reasons, we refrain from releasing any clinical data 196

linked to patient identities. However, we commit to 197

sharing our code, accompanied by comprehensive 198

guidelines to reproduce our findings. All data used 199

in this research is publicly accessible and has been 200

stripped of identifying information. Our investiga- 201

tion is centered on computational techniques, and 202

we do not gather data directly from individuals. 203

Our institution’s review board has confirmed that 204

this research does not mandate an IRB approval. 205

3 Length-Aware Multi-Kernel 206

Transformer 207

This section presents our Length-Aware Multi- 208

Kernel Transformer (LAMKIT) for robust long doc- 209

ument classification in Figure 2. LAMKIT consists 210

of three major modules, 1) multi-kernel encoding, 211

2) length-aware vectorization, and 3) hierarchical 212

integration, aiming to solve context fragmentation 213

and augment model robustness on lengthy docu- 214

ments. We deploy different encoding kernels to 215

diversify text segments with various contexts. In- 216

corporating length as vectors can adapt classifiers 217

across varying-length documents. Finally, we elab- 218

orate on how to learn robust document representa- 219

tions via a hierarchical integration. 220

3.1 Multi-kernel Encoding 221

Multi-kernel Encoding (MK) aims to diversify con- 222

text to segment and encode documents from mul- 223

tiple perspectives. The mechanism is to solve the 224

fundamental challenge of existing long document 225

modeling (Beltagy et al., 2020; Wu et al., 2021; 226

Dai et al., 2022; Dong et al., 2023) –– splitting and 227

vectorizing each document by a fixed size and a uni- 228

fied document encoder, which has been analyzed 229

in our previous data section. Our MK mechanism 230

gets inspirations from Convolutional Neural Net- 231

work (Kim, 2014) that encodes each document into 232

various sizes of text segments and deploys one doc- 233

ument encoder per segment size to obtain various 234

feature representations. By learning diverse doc- 235

ument features with varying-size text chunks, we 236

can enrich representations of lengthy documents 237

with various sizes. 238

Specifically, we empirically choose three kernel 239

sizes (m ∈ {128, 256, 512}) and three neural en- 240

coders to vectorize text chunks with a size of m. 241

Following the CNN, we tried the other sizes (e.g., 242

300) and a stride ranging between (2/3 ∗ m,m), 243

but we did not get significant improvements. In 244
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Figure 2: LAMKIT diagram overview. Our approach consists of three main components: multi-kernel encoding,
length-aware vectorization, and hierarchical integration. We denote one color of segments and vectors per kernel.
The arrows indicate model workflows,

⊕
is a sum operation.

the later section, our ablation analysis shows that245

the major performance drops come from the num-246

ber of kernels. We infer the performance of ker-247

nel and stride sizes as encoding contexts with dif-248

ferent kernels is more critical to augment clas-249

sifiers on lengthy documents. For each chunk250

size of text, we deploy a pre-trained RoBERTa251

model (Liu et al., 2019) so that our MK has three252

varied RoBERTa encoders. While our MK mech-253

anism allows other BERT variants, we choose the254

RoBERTa to keep consistent with existing SOTA255

approaches (Chalkidis et al., 2022; Li et al., 2023c;256

Dong et al., 2023) for fair comparisons. We take257

the embedding of the “[CLS]” token from each text258

chunk to represent its segment vector and feed to259

the following operation, combining with the seg-260

ment position embedding of length-aware vector-261

ization.262

3.2 Length-aware Vectorization263

We propose the Length-aware Vectorization (LaV)264

to incorporate lengthy contexts and augment model265

generalizability, as our Figure 1 presents that the266

model performance varies across document lengths.267

LaV achieves the grand goal by two levels: text268

chunk and document. On the text chunk level, we269

encode length information by the segment position270

embedding, and on the document level, we vector-271

ize text length with MK outputs.272

Segment Position Embedding vectorizes posi-273

tions of text chunks into a learnable embedding by274

a Transformer encoder in Equation 1, where |d|275

refers to the embedding size, i is the column index 276

of a vector scalar, and pos is the index of the text 277

chunk. For example, if we segment a 1024-token 278

document into 15 chunks (with a stride) by the 128 279

kernel encoder, the total will be the 15 and the sec- 280

ond chunk’s index (pos) will be 2. Similarly, we 281

can obtain segment position embeddings for other 282

multi-kernel encoders and equip the segment vec- 283

tors from the MK step with the length information, 284

segment position. Finally, we sum the segment po- 285

sition embeddings up with the segment vectors and 286

feed them to the document encoder. 287

PE(pos,i) =

sin
(

pos
100002i/|d|

)
, if i is even

cos
(

pos
100002i/|d|

)
, if i is odd

(1) 288

Note that, our position embedding differs from 289

previous studies. For example, majority of long 290

document classifiers (Wu et al., 2021; Li et al., 291

2023b; Zhang et al., 2023) deploy position embed- 292

dings for tokens rather than the segment. There 293

is one close study (Dai et al., 2022) that utilizes 294

segment position embedding in classification mod- 295

els. In contrast, our position embedding diversifies 296

segment positions from multiple kernels, aiming to 297

incorporate text lengths and augment model gener- 298

alizability over varying text lengths. 299

Length Vectors encode document length infor- 300

mation into feature vectors. Instead of directly 301

encoding a length scalar into a vector, we obtain 302

the length vectors by applying averaging pooling 303
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over each MK encoder’s outputs and vectorizing304

the chunk sizes per document by the position em-305

bedding. The length vectors not only encode docu-306

ment lengths by chunk sizes but also implicitly in-307

corporate lengthy contexts from the MK encoders.308

Finally, we feed the length vectors into the length309

encoder to obtain learnable length-aware vectors,310

which will be integrated with the document en-311

coder’s outputs.312

3.3 Hierarchical Integration313

We obtain length-aware document representations314

through the hierarchical integration process from315

segment and length vectors. The integration pro-316

cess starts with a document encoder to encode seg-317

ment vectors and a length encoder to encode length318

vectors. Both modules are Transformer (Vaswani319

et al., 2017) encoders but serve different purposes320

–– while both encoders take length-related vectors,321

the document encoder focuses on learning diversi-322

fied contexts from the MK encoders and the length323

encoder focuses on incorporating varying length324

features. We then combine the two encoders’ out-325

puts by a sum operation and feed the integration326

to a hierarchical pooling process to obtain length-327

aware document vectors.328

Hierarchical pooling operations has two major329

processes in order, max pooling and average pool-330

ing. The max pooling aims to squeeze length-aware331

multidimensional representations of text chunks332

from the length and document encoders. We con-333

catenate the pooling outputs and feed them to the334

average pooling operation. The average pooling ag-335

gregates the length-aware segment features into the336

length-aware document vectors. Finally we feed337

the document vectors to linear layer for classifica-338

tion. Our tasks cover both binary and multi-label339

classifications. We deploy a sigmoid function for340

binary prediction and a softmax function for the341

multi-label task.342

4 Experiments343

We follow the previous studies (Mullenbach et al.,344

2018; Stubbs et al., 2019; Chalkidis et al., 2022)345

on lengthy document to preprocess data and split346

data into training, validation, and test, as in Table 1.347

We follow SOTA baselines to set up our evalua-348

tion experiments. Our results include F1 and AUC349

metrics, covering both micro (µ) and macro (m)350

variations.351

Our evaluation presents performance compar- 352

isons and ablation analysis to understand the length 353

effects and the models better. More details of 354

the hyperparameter settings for the baselines and 355

LAMKIT are in the Appendix A, which allows for 356

experiment replications. 357

4.1 Baselines 358

To demonstrate the effectiveness of LAMKIT, we 359

compare it against both hierarchical transformer 360

and sparse attention transformer SOTA baselines 361

for long-document modeling, as well as with regu- 362

lar BERT. 363

Our experiments utilize baseline hyperparame- 364

ters that achieved their best results in the previous 365

studies. For example, we take publicly released 366

models or source codes to train long document 367

classifiers. As our data come from health and legal 368

domains, we choose the pre-trained models on the 369

domain data. For example, we report performance 370

of Clinical-Longformer (Li et al., 2023c) on health 371

data instead of vanilla Longformer (Beltagy et al., 372

2020). 373

BERT includes classifiers built on domain- 374

specific pre-trained BERT models. Specifically, 375

we include two types of pre-trained BERT model, 376

Legal-BERT (Chalkidis et al., 2020) for the legal 377

data and RoBERTa-PM-M3 (Lewis et al., 2020) for 378

the clinical data, which achieved the best perfor- 379

mance on broad text classification tasks in legal and 380

clinical domains. Due to the input limit, the BERT 381

baselines truncate and only take 512 tokens per en- 382

try. We experiment two types of truncation, first 383

and last 512 tokens of each data entry, and name 384

the two types as BERTFirst and BERTLast. 385

Hierarchical BERT (H-BERT) splits long doc- 386

ument into equal-length segments, hierarchically 387

integrate segment features into document vectors, 388

and yield predictions on the document vectors (Dai 389

et al., 2022; Qin et al., 2023; Dong et al., 2023). We 390

follow the existing SOTA studies that achieved the 391

best results using the H-BERT in health (Dai et al., 392

2022) and legal (Chalkidis et al., 2022) domains. 393

The H-BERT models are close to our hierarchical 394

architecture, while the H-BERT models do not in- 395

corporate our proposed multi-kernel mechanism 396

(MK) and length vectors. If LAMKIT achieves 397

better performance, the improvements over the 398

H-BERT can prove the effectiveness of adapting 399

varying-length texts. 400
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Model
Diabetes MIMIC ECtHR SCOTUS

F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m
BERTFirst 72.0 43.2 86.9 72.4 56.8 47.0 87.1 84.0 64.2 52.6 91.6 88.6 73.9 61.6 95.9 90.0
BERTLast 68.7 39.1 87.2 72.2 51.3 41.5 84.8 81.4 66.1 59.1 93.7 91.3 66.9 53.1 93.6 87.2
Longformer 71.5 41.2 88.4 71.6 67.2 58.2 92.5 89.8 71.4 59.0 95.4 93.3 74.3 62.9 95.6 89.9
BigBird 71.9 42.5 88.5 76.4 65.3 56.8 92.3 89.7 70.2 61.8 93.8 91.8 72.3 60.6 94.3 89.7
H-BERT 70.4 46.0 83.2 69.7 66.9 60.6 92.6 90.2 70.4 57.7 95.7 93.9 76.6 68.0 95.5 95.0
LAMKIT 73.4 49.9 88.4 74.5 69.5 63.7 93.3 91.2 73.0 65.0 96.0 94.7 78.5 67.8 97.1 94.9
∆ 2.5 6.9 1.6 2.0 8.0 10.9 3.4 4.2 4.5 7.0 2.0 2.9 5.7 6.6 2.1 4.5

Table 2: Overall performance in percentages of F1 and AUC metrics, both micro (µ) and macro (m). We bolden the
best performance and underline the second best value. ∆ denotes the absolute improvement of LAMKIT over the
baselines average.

Longformer (Beltagy et al., 2020; Guo et al.,401

2022; Saggau et al., 2023) solves the 512-length402

limit by replacing self-attention with a local (slid-403

ing window) attention and unidirectional global at-404

tention and thus can process sequences up to 4096405

tokens. We deploy domain-specific Longformer to406

keep consistent experimental settings. Specifically,407

we utilize Clinical-Longformer (Li et al., 2023c)408

and Legal-Longformer (Chalkidis et al., 2023) to409

build our document classifiers for the health and410

legal data, respectively.411

BigBird deploys a block sparse attention to re-412

lieve the length limit that reduces the Transformer413

quadratic dependency to linear (Zaheer et al., 2020).414

BigBird utilizes a fusion of local, global, and ran-415

dom attention, extending the maximum process-416

able sequence length to 4096 tokens. We utilize417

its domain-specific variants, Clinical-BigBird (Li418

et al., 2023c) and Legal-Bigbird (Dassi and Kwate,419

2021) to conduct experiments.420

5 Result Analysis421

This section reports the performance of SOTA base-422

lines and LAMKIT in terms of F1 and AUC met-423

rics, both micro (µ) and macro (m) modes. Be-424

sides the overall performance, we examine varying-425

length effects and conduct ablation analysis on our426

individual modules (e.g., MK and LaV). The re-427

sults show that LAMKIT not only surpasses the428

baselines by a large margin on long documents429

from both health and legal domains but also shows430

more stable performance on documents of varying431

lengths.432

5.1 Overall Performance433

We present the results of long document classifi-434

cation benchmarks in Table 2 that our LAMKIT435

significantly outperforms the other SOTA baselines.436

For example, compared to the baselines’ average437

performance, LAMKIT shows an improvement of438

5.2% in F1-micro and 7.9% in F1-macro. Long 439

document models do not perform better than reg- 440

ular BERT models on shorter texts. For example, 441

BERTfirst outperforms most of the SOTA base- 442

lines on Diabetes, of which 50% clinical notes are 443

less than 608 tokens. In contrast, we can observe 444

our LAMKIT is robust on both shorter and longer 445

text documents, highlighting the unique contribu- 446

tion and effectiveness of our approach. 447

Document characteristics of health and legal data 448

can impact baselines performance. For example, 449

we find that H-BERT performs better on the SCO- 450

TUS compared to models with sparse attention net- 451

works (e.g., Longformer and BigBird), while its 452

performance on other datasets is comparable. We 453

infer this as the SCOTUS dataset has clear segment 454

boundaries that H-BERT can utilize the boundaries 455

as segments, however, other data is compressed 456

and dense, which can cause context fragmenta- 457

tion (Beltagy et al., 2020) and weaken effectiveness 458

of H-BERT. However, our LAMKIT demonstrates 459

superior performance on the issue, and we think 460

the MK and length-aware vectors play critical roles, 461

which is shown in our ablation analysis. 462

5.2 Performance on Varying-length Splits 463

To assess the model’s robustness and generalizabil- 464

ity across documents of varying lengths, we follow 465

the approach described in the Data Section, divid- 466

ing each dataset into quarters based on the lengths 467

of the documents, ensuring similar data sizes in 468

each quarter. 469

Table 3 presents F1-micro scores across four 470

quarters of each dataset that LAMKIT outperforms 471

baselines on most quarters across the datasets. Sur- 472

prisingly, SOTA baselines tend to favor and overfit 473

one quarter data with a specific length, which does 474

not exceed their input limit (e.g., 4096 for Long- 475

former). In contrast, our LAMKIT shows more gen- 476

eralizable performance across varying-length doc- 477

uments. The stable performance of our LAMKIT 478
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Model
Diabetes MIMIC ECtHR SCOTUS

Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4 Q-1 Q-2 Q-3 Q-4
BERTFirst 65.7 74.1 73.4 74.2 57.9 63.0 57.5 52.9 74.9 73.4 62.6 54.4 75.0 74.3 80.9 70.0
BERTLast 63.4 66.9 71.6 71.8 51.6 57.8 50.3 48.4 72.6 73.0 62.5 61.6 68.8 64.4 69.4 66.0
Longformer 64.6 72.7 72.2 75.8 63.8 71.0 68.1 66.4 79.0 74.0 72.4 65.7 69.3 73.4 76.9 74.5
BigBird 61.0 72.1 71.7 79.9 62.9 70.2 66.3 62.6 68.8 65.9 73.9 70.7 65.3 70.4 77.2 72.1
H-BERT 61.2 67.6 74.2 77.8 62.1 69.6 66.8 66.5 79.1 75.3 69.1 64.1 64.2 75.8 82.9 76.5
LAMKIT 66.0 71.2 77.0 78.1 66.4 72.6 70.4 68.0 79.7 74.6 74.3 67.5 72.2 76.4 83.0 78.5
∆ 2.8 0.5 4.4 2.2 6.7 6.3 8.6 8.6 4.8 2.3 6.2 4.2 3.7 4.7 5.5 6.7

Table 3: F1-micro scores across four quarters following our Figure 1. We bolden the best performance and underline
the second best value. ∆ refers to the absolute improvement of LAMKIT over the average of baselines.

highlights the effectiveness of our multi-kernel and479

length vectors in adapting classifiers on varying480

lengths and promoting classification robustness on481

the health and legal domains.482

5.3 Ablation Study483

We conduct an ablation analysis to assess the ef-484

fectiveness of individual LAMKIT modules fo-485

cusing on the multi-kernel mechanism (MK) and486

length-aware vectorization (LaV). w/o MK replaces487

multi-kernel encoders with a single kernel encoder488

(RoBERTa) and shrinks segment vectors accord-489

ingly. w/o LaV removes length-related vectors and490

encoders from LAMKIT. And, w/o MK and LaV491

removes both MK mechanism and length-related492

encoding.493

We can observe that removing one of the mod-494

ules or removing all modules can significantly re-495

duce model performance. Replacing the MK mech-496

anism can result in a 1.3% and 1.8% drop in F1-497

micro and F1-macro on average, respectively. The498

performance drop indicates multi-kernel encoding499

mechanism can relieve context fragmentation to500

promote model performance by diversifying doc-501

ument representations. Removing LaV leads to502

1.4% and 2.5% drops in F1-micro and F1-macro503

on average, respectively. The performance drop504

shows that the length information can be critical to505

building robust classifiers on the health and legal506

data.507

We can observe the most significant performance508

drop in LAMKIT after removing both MK and509

LaV modules, with F1-micro and F1-macro scores510

decreasing by 3.0% and 3.5%, and AUC-micro and511

AUC-macro scores by 1.5% and 1.8%, respectively,512

demonstrating the effectiveness of these methods513

6 Case Study on ChatGPT514

To examine the ability of large language models515

on the long document classification task. Due to516

privacy concerns and data usage agreement, we do 517

not test ChatGPT (OpenAI, 2022) on MIMIC and 518

Diabetes. We utilize GPT-3.5-Turbo via ChatCom- 519

pletion API1 in a zero-shot strategy with multiple 520

templated instructions summarized by (Lou et al., 521

2023; Chalkidis, 2023), and report the best per- 522

forming template results. The results in Table 5 523

suggest that large language models do not exceed 524

the performance of task-specific models in long- 525

text classification. For the prompt template, we 526

refer more details in the Appendix Figure 3. 527

7 Related Work 528

7.1 Transformers for Text Classification 529

Pretrained language models (PLMs) based on 530

vanilla self-attention, such as BERT (Devlin et al., 531

2019) and its variants (He et al., 2021; Liu et al., 532

2019; Ma et al., 2021; Alsentzer et al., 2019), have 533

achieved state-of-the-art (SOTA) results in regular 534

text classification tasks. However, with their input 535

typically limited to 512 tokens, truncation becomes 536

necessary when handling long texts (Ding et al., 537

2020). Such truncation might cause the text to 538

lose a significant amount of valuable information, 539

thereby affecting the model’s performance. There- 540

fore, long document modeling serves as a solution 541

to applying pretrained models to lengthy texts. 542

7.2 Long Document Modeling 543

To enable transformers to accept longer sequences, 544

two primary approaches have been employed in 545

long document modeling: efficient transformers 546

(e.g., sparse attention transformers) and hierarchi- 547

cal transformers (Dong et al., 2023). Hierarchical 548

transformer models (Li et al., 2023a; Ruan et al., 549

2022; Chalkidis et al., 2023) rely on chunking the 550

text into slices of equal size and obtaining the doc- 551

ument representation based on the representations 552

1https://platform.openai.com/docs/guides/gpt/
chat-completions-api
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Model
Diabetes MIMIC ECtHR SCOTUS

F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m F1-µ F1-m AUC-µ AUC-m
LAMKIT 73.4 49.3 88.4 74.5 69.5 63.7 93.3 91.2 73.0 65.0 96.0 94.7 78.5 67.8 97.1 94.9
w/o MK 72.1 47.6 88.2 72.3 68.5 61.9 92.8 90.5 72.0 62.7 95.5 93.9 76.7 66.3 97.0 93.3
w/o LaV 71.5 42.1 87.5 72.7 68.4 62.9 93.0 90.8 71.5 64.2 95.6 94.3 77.6 66.6 97.1 93.1
w/o MK and LaV 69.9 46.6 85.3 71.1 66.3 60.0 92.3 89.9 70.4 61.3 94.9 93.4 76.0 63.9 96.4 93.6

Table 4: Ablation performance of LAMKIT modules in F1 and AUC, both micro (µ) and macro (m), shown in
percentages.

Model
ECtHR SCOTUS

F1-µ F1-m F1-µ F1-m
ChatGPT 51.1 47.7 49.9 42.0

Table 5: F1 metrics (in %) of ChatGPT on Legal Data.

of these slices, ensuring that the model’s input does553

not exceed the limit in each instance. For example,554

HiPool (Li et al., 2023a) employs Transformers for555

sentence modeling and then uses Graph Convolu-556

tional Neural Networks for document information557

modeling. HiStruct+ (Ruan et al., 2022) encodes558

the hierarchical structure information of the docu-559

ment and infuses it into the hierarchical attention560

model. Due to the full-rank attention mechanism561

in transformer models leading to quadratic compu-562

tational complexity, efficient transformers (Beltagy563

et al., 2020; Zaheer et al., 2020; Choromanski et al.,564

2021; Kitaev et al., 2020; Wang et al., 2020; Zhang565

et al., 2023) aim to use sparse attention or low-rank566

methods to reduce the complexity and minimize567

context fragmentation caused by segmentation. For568

instance, to reduce computational complexity from569

O(n2) to O(n), Longformer (Beltagy et al., 2020)570

employs a mix of local attention (through a slid-571

ing window) and global attention on certain special572

tokens. Similarly, BigBird (Zaheer et al., 2020)573

incorporates both these attention mechanisms and574

introduces an additional random attention strategy.575

Both models have expanded their input limits to576

4096 tokens. However, they do not perform well577

on documents of all lengths.578

Prior research (Li et al., 2023a) has noted that579

document lengths differ among datasets, and model580

performance can be inconsistent across corpora581

with varying lengths. Studies (Dai et al., 2022) have582

also shown that segmenting documents inevitably583

leads to issues of context fragmentation. How-584

ever, no previous work has centered on the afore-585

mentioned two inherent issues of long document586

models: context fragmentation and generalizability587

across varying text lengths. In this study, we pro-588

pose a novel approach Length-Aware Multi-Kernel589

Transformer (LAMKIT). By using multi-kernel en-590

coding (MK), LAMKIT obtains multi-perspective 591

context representations to mitigate the context frag- 592

mentation issue caused by using a unique chunk 593

size. LAMKIT also enhances model robustness for 594

documents of varying lengths through its Length- 595

Aware Vectorization (LaV) module. This LaV mod- 596

ule encodes length information hierarchically, us- 597

ing segment position embedding at the segment 598

level and length vectors from the MK outputs at 599

the document level. 600

8 Conclusion 601

In this study, we posit that for long document clas- 602

sification tasks, the length of the text might be a 603

pivotal determinant for model performance. Our 604

exploratory experiments demonstrate that the cur- 605

rent state-of-the-art models display inconsistent 606

results across samples of differing lengths, sug- 607

gesting their lack of robustness and affirming our 608

hypothesis. 609

To address this issue and the inherent problem 610

of context fragmentation in long-text models, we 611

propose Length-Aware Multi-Kernel Transformer. 612

Through extensive experiments, LAMKIT consis- 613

tently outperforms all baseline models across four 614

standard long document classification benchmarks. 615

Moreover, we follow our exploratory experiments 616

to examine model robustness over varying docu- 617

ment lengths. We also conduct ablation studies 618

on two modules. The results show that LAMKIT 619

exhibits better robustness and stability across dif- 620

ferent lengths. 621

Additionally, the case study on ChatGPT (Ope- 622

nAI, 2022) reveals that large language models do 623

not outperform task-specific models in long-text 624

classification. Furthermore, due to input length 625

constraints of large language models, our experi- 626

ments are limited to zero-shot, posing challenges 627

in harnessing their in-context learning strengths via 628

few-shot(Brown et al., 2020). The source code for 629

this study have been included in the supplementary 630

attachment. 631
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Limitations632

LAMKIT has a flexibility to be applicable on other633

tasks by changing its prediction layer, while we634

experiment it on the text classification task. Dong635

et al. demonstrated the importance of long docu-636

ment modeling in other NLP scenarios. We plan637

to explore this direction for a more comprehensive638

understanding on long document modeling.639
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A Experimental Details 922

For all baseline models, we maintain the same 923

model architecture and optimization parameters 924

as described in their respective papers. For Long- 925

former (Beltagy et al., 2020), Bigbird (Zaheer et al., 926

2020), and BERT(Devlin et al., 2019), we fine-tune 927

the pre-trained models obtained from huggingface 928

transformers (Wolf et al., 2020) library based on 929

their given configurations and produce predictions. 930

For H-BERT(Dai et al., 2022), we train using the 931

code released by the authors and obtain our results. 932

For our proposed LAMKIT model. The kernel 933

sizes are set to {32, 64, 128} in the ECTHR dataset 934

and {128, 256, 512} in the other three datasets. The 935

kernel stride is set by default to be equal to the ker- 936

nel size. To make the results reproducible, we set 937

the random seed in training to 1. For the MIMIC- 938

III and Diabetes datasets, we employ pretrained 939

Roberta-PM-M3-base (Lewis et al., 2020) as our 940

multi-kernel encoder. For SCOTUS and ECtHR, 941

we opt for pretrained Legal-BERT-base (Chalkidis 942

et al., 2020). Both encoders have 12 layers, 12 at- 943

tention heads, and hidden states of 768 dimensions. 944

Additionally, we set a Transformer (Vaswani et al., 945

2017) encoder with 1 layer, 12 attention heads, 946

and 768-dimensional hidden states as the length en- 947

coder, and another with 2 layers, 12 attention heads, 948

and 768-dimensional hidden states as the document 949

encoder. The dropout between the two linear layers 950

of the classifier is set at 0.1. Due to our limited 951

computational resources, we empirically set the 952

learning rate and tried two batch sizes: 32 and 16. 953

Each experiment is set with a maximum of 20 train- 954

ing epochs and an early stopping patience of 3. We 955

utilize the AdamW (Loshchilov and Hutter, 2019) 956

optimizer, with a weight decay of 0.01. To expedite 957

model convergence, we make use of 16-bit float 958

point numbers (half-precision). Finally, we select 959

the best-performing model based on F1-micro on 960

the validation set. The chosen hyperparameters for 961

the model are presented in table 6. 962

All experiments are conducted on a device 963

equipped with an NVIDIA 3090 GPU with 24GB 964
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Dataset Learing Rate Batch Size Kernel Size
MIMIC 3.5e-5 16 128 256 512
ECtHR 1.0e-5 32 32 64 128
SCOTUS 3.5e-5 16 128 256 512
Diabetes 2.5e-5 16 128 256 512

Table 6: Chosen hyperparameters for LAMKIT.

memory, running the Ubuntu system, and utilizing965

the PyTorch (Paszke et al., 2019) framework.966

B Prompt Template of Case Study967

For ChatGPT (OpenAI, 2022), we set the tempera-968

ture to 0, and the Top P sampling value to 1. The969

prompt template is shown in Figure 3.970
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Figure 3: The best performing zero-shot template of the legal data.
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