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Abstract001

In recent years, large language models (LLMs)002
have emerged as promising candidates for003
graph tasks. Many studies leverage natural lan-004
guage to describe graphs and apply LLMs for005
reasoning, yet most focus narrowly on perfor-006
mance benchmarks without fully comparing007
LLMs to graph learning models or exploring008
their broader potential. In this work, we present009
a comprehensive study of LLMs on graph tasks,010
evaluating both off-the-shelf and instruction-011
tuned models across a variety of scenarios. Be-012
yond accuracy, we discuss their computational013
overhead and assess their performance under014
few-shot/zero-shot settings, domain transfer,015
structural understanding, and robustness. Our016
findings show that LLMs, particularly those017
with instruction tuning, greatly outperform tra-018
ditional graph models in few-shot settings, ex-019
hibit strong domain transferability, and demon-020
strate excellent generalization and robustness.021
Our study highlights the broader capabilities of022
LLMs in graph learning and provides a founda-023
tion for future research. Code and datasets are024
available1.025

1 Introduction026

The rapid progress of large language models027

(LLMs), such as GPTs (Achiam et al., 2023),028

LLaMA (Touvron et al., 2023), Claude (Perez et al.,029

2022), and Deepseek (Liu et al., 2024), has revolu-030

tionized many natural language processing tasks,031

showcasing their ability to generalize across do-032

mains and reason with minimal supervision. Re-033

cently, researchers have begun extending LLMs to034

non-text domains like graphs, aiming to leverage035

their strong reasoning capabilities for graph tasks036

such as node classification and link prediction.037

Unlike text, graphs represent structured rela-038

tional data, posing new challenges for LLMs in039

terms of representation and reasoning. To bridge040

1https://anonymous.4open.science/r/
LLM-benchmarking-5B71

this gap, various approaches have emerged: some 041

utilize prompt engineering to describe graph struc- 042

tures in natural language (Cao et al., 2024; Zhang 043

et al., 2024b; Kim et al., 2023; Jiang et al., 2023; 044

Wang et al., 2024a; Fatemi et al., 2023a), while 045

others integrate graph embeddings from graph neu- 046

ral networks (GNNs) or graph transformers (GTs) 047

into LLMs (Chen et al., 2024b; Chai et al., 2023; 048

Tang et al., 2024a; Perozzi et al., 2024). To fur- 049

ther mitigate the semantic gap between graphs and 050

text, instruction tuning (Ye et al., 2023; Tang et al., 051

2024a; Zhang, 2023) is introduced, enabling LLMs 052

to better understand graph features and structures. 053

Meanwhile, graph-specific learning models con- 054

tinue to evolve. Classic GNNs (Kipf and Welling, 055

2016; Hamilton et al., 2017; Veličković et al., 2017; 056

Xu et al., 2018) rely on message passing and ag- 057

gregation to capture local graph structures, but 058

their performance often depends heavily on la- 059

beled data. To alleviate this reliance, graph self- 060

supervised learning (SSL) methods (You et al., 061

2020; Velickovic et al., 2019; Hou et al., 2022) 062

adopt a pre-training–fine-tuning paradigm, using 063

unlabeled data to learn meaningful structural rep- 064

resentations. In parallel, GTs (Ying et al., 2021; 065

Zhang et al., 2020) have been proposed to over- 066

come the locality constraints of GNNs by using 067

self-attention to model long-range dependencies. 068

More recently, foundational graph prompt mod- 069

els (Liu et al., 2023a; Huang et al., 2024a; Sun 070

et al., 2023) have introduced the concept of graph 071

prompts as a way to better align pre-trained models 072

with downstream tasks, thereby enhancing general- 073

ization and adaptability. 074

However, existing studies on applying LLMs to 075

graph tasks often adopt inconsistent experimental 076

settings, including variations in datasets, prepro- 077

cessing methods, and splitting strategies (Li et al., 078

2024b). These inconsistencies hinder systematic 079

comparison and obscure a clear understanding of 080

how LLMs truly perform relative to graph-specific 081
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models. To bridge this gap, we conduct a com-082

prehensive evaluation of LLMs alongside 16 di-083

verse graph learning models, encompassing GNNs,084

graph SSL, GTs, LM-augmented graph models,085

and foundational graph prompt methods. To en-086

sure fairness and reproducibility, we standardize087

data processing pipelines and splitting protocols088

across graph datasets, covering both node classifi-089

cation and link prediction tasks. Our benchmark090

further includes a broad spectrum of LLMs, rang-091

ing from open-source models such as Llama3B and092

Llama8B to proprietary systems like Qwen-plus,093

Qwen-max, GPT-4o, and Deepseek V3.094

Our benchmarking results (see details in Sec-095

tion 3.2) show that pure LLMs, especially larger096

LLMs, perform on par with or even surpass most097

baseline models in node classification and link pre-098

diction tasks. Instruction tuning further boosts099

LLM performance, enabling even smaller models100

to match or exceed the performance of top baseline101

models. Given the promising potential of instruc-102

tion tuning, we further explore how LLMs with103

instruction tuning perform in other critical cases.104

While instruction tuning significantly improves105

LLM performance, it typically requires abundant106

labeled data, which may not always be available in107

real-world scenarios (Xia et al., 2024). To better108

understand its effectiveness under data scarcity, we109

further investigate how instruction-tuned LLMs per-110

form when labeled data is limited. Specifically, we111

examine their performance in a few-shot setting, as-112

sessing whether they can maintain strong predictive113

capability with minimal supervision. Additionally,114

we explore the transferability of instruction-tuned115

LLMs, as models that generalize well with lim-116

ited data across different tasks and domains are117

more practical in low-resource settings. We further118

assess the robustness of instruction-tuned LLMs119

under structural perturbations commonly observed120

in real-world graphs, such as missing node features,121

edge deletions, and reduced topological similarity.122

In scenarios where node features are unavailable,123

models must rely purely on graph structure, posing124

a significant challenge. Evaluating LLMs in these125

settings helps determine their ability to capture and126

reason over structural patterns under incomplete or127

noisy graph conditions.128

Existing Benchmarks for LLMs in Graph Tasks129

There are some benchmarking works that explore130

the performance of LLMs on graph tasks. Studies131

like (Chen et al., 2024e) and (Yan et al., 2023) fo-132

cus on how LLMs can enhance graph models (e.g., 133

GNNs) rather than benchmarking pure LLMs on 134

graph tasks. GraphICL (Sun et al., 2025) aims to 135

improve LLM performance in node classification 136

and link prediction through various graph prompts, 137

with an emphasis on prompt engineering, but it 138

does not explore the impact of instruction tuning on 139

LLMs in graph tasks. GLBench (Li et al., 2024b) 140

also centers on how LLMs can better assist graph 141

models, without focusing on purely LLM-based 142

performance in graph tasks. Although (Wu et al., 143

2025) includes LLMs with instruction tuning, it 144

mainly focuses on their zero-shot capabilities and 145

their integration with graph models, without in- 146

vestigating the broader effects of instruction tun- 147

ing or exploring link prediction tasks. To the best 148

of our knowledge, our work is among the first to 149

comprehensively benchmark pure LLMs on graph 150

tasks while incorporating instruction tuning. More- 151

over, we go beyond prior studies by systematically 152

evaluating instruction tuning under practical data 153

scarcity scenarios, providing a more thorough un- 154

derstanding of its impact on LLM performance in 155

graph-based tasks. 156

2 Graph Learning with Pure LLMs 157

In this section, we introduce how we could utilize 158

pure LLMs for important real-world graph tasks 159

including node classification and link prediction. 160

2.1 Prompt Design 161

As shown in the graph encoding part of Figure 162

1, we combine the original graph datasets with 163

their corresponding raw text attributes to encode 164

the graph into a format that LLMs can understand, 165

i.e., prompts. The prompt formats required for 166

node classification and link prediction differ based 167

on the specific task. 168

Prompt formats for node classification Fol- 169

lowing (Huang et al., 2023), we adopt three 170

basic prompt formats that use only the target 171

node features, its 1-hop neighbors, or its 2-hop 172

neighbors. In the original design, neighbor labels 173

are included, which improves reasoning but 174

may overly simplify the task by providing direct 175

supervision. To better assess LLMs’ ability to 176

learn from structure alone, we introduce two 177

additional formats that exclude neighbor labels. In 178

total, we evaluate five prompt formats, and detailed 179

prompt structures are provided in Appendix I.1: 180

1. ego: Only the target node attributes. 181
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?

?

Off-the-shelf LLMs (LLMs without parameter optimization)

<Target node> <Node attribute>

<1-hop neighbors> <Node attributes>
<2-hop neighbors> <Node attributes>

<Target node1>
<Node attribute>

<Target node2>
<Node attribute>

…

…

Node classification
Link prediction

Encode graph to text

<1-hop neighbors>
<Node attributes>

Give you a graph language that describes a graph structure and node information from
Products dataset. <Target node> <Node attribute>, known neighbor papers at hop 1: <1-hop
neighbors> <Node attributes>, known neighbor papers at hop 2: <2-hop neighbors> <Node
attributes>
Question: please predict the most appropriate category for the Target node. Choose from
the following categories: <Categories>
#if original, add “Do not provide your reasoning”
#if CoT, add “Let’s think step by step”
#if BAG, add “Let’s construct a graph with the nodes and edges first”
#if in-context few-shot, add 3 concrete question-answer examples.

Books

Based on the Products dataset, determine whether two target nodes are connected by an edge.
<Target node1> <Node attribute>, known neighbor papers at hop 1: <1-hop neighbors>
<Node attributes>, known neighbor papers at hop 2: <2-hop neighbors> <Node attributes>
<Target node2> <Node attribute>, known neighbor papers at hop 1: <1-hop neighbors>
<Node attributes>, known neighbor papers at hop 2: <2-hop neighbors> <Node attributes>
Question: Are Target Node1 and Target Node2 connected? Do not provide your reasoning.
Only provide "Yes" or "No" based on your inference.

Yes

Llama3B
Llama8B

LoRA
Node classification instruct

?

?

Link prediction instruct

?

Link prediction
instruct

?

Llama3B
Llama8B

LoRA

Node classification
instruct

Unsupervisedinstruction tuning

Instr
uctio

n tun
ing

Step 1

Step 2

Standard Instruction Tuning

Continuous Pre-training

Graph encoding LLMs with instruction tuning

Figure 1: The overall experimental pipeline for LLMs. Graph encoding outlines how prompts for LLMs are
generated. Off-the-shelf LLMs show the question-answering process with LLMs. LLMs with instruction tuning
describe the process of fine-tuning LLMs specifically for graph tasks.

2. 1-hop w/o label: Attributes of the target node182

and its 1-hop neighbors, excluding labels.183

3. 2-hop w/o label: Attributes of the target node184

and its 2-hop neighbors, excluding labels.185

4. 1-hop w label: Same as above, but with 1-hop186

neighbor labels from the training set.187

5. 2-hop w label: Includes 2-hop neighbor labels188

from the training set.189

Prompt formats for link prediction We adopt190

two prompt formats to determine the existence of191

an edge between two target nodes: 1) 1-hop: Both192

target nodes are described using their own node193

attributes and those of their 1-hop neighbors. 2) 2-194

hop: extended to 2-hop neighbors. To avoid trivial195

cases, the two target nodes are never included in196

each other’s neighborhood. Full prompt examples197

are in Appendix I.2.198

2.2 Paradigm of Using LLMs for Graph Tasks199

As shown in Figure 1, we explore two usage200

paradigms: (1) off-the-shelf LLMs, which are used201

without parameter updates, and (2) LLMs with in-202

struction tuning.203

Off-the-shelf LLMs The LLMs we use are204

Llama-3.2-3B-Instruct (Llama3B), Llama-3.1-8B-205

Instruct (Llama8B), and the closed-source Qwen-206

plus (Bai et al., 2023). We directly evaluate them by207

feeding them carefully designed prompts encoding208

graph information and comparing their outputs to209

ground truth. Beyond basic prompts (Section 2.1),210

we experiment with Chain of Thought (CoT) (Wei211

et al., 2022), Build A Graph (BAG) (Wang et al.,212

2024a), and in-context few-shot prompting on 213

larger models like Qwen-max (Bai et al., 2023), 214

GPT-4o (Achiam et al., 2023), and Deepseek V3 215

(Liu et al., 2024). Results show that prompt strate- 216

gies vary widely in effectiveness across datasets 217

and model scales, and do not always lead to im- 218

provements. Full comparisons are provided in Ap- 219

pendix H.6. 220

LLMs with instruction tuning We fine-tune 221

Llama3B and Llama8B using LoRA (Hu et al., 222

2021a) and DeepSpeed (Rasley et al., 2020), with 223

one training epoch per model, as longer training 224

shows limited gains. For node classification, 225

tuning is limited to the ego, 1-hop w/o label, and 226

2-hop w/o label formats. For link prediction, we 227

examine both the benefits of tuning and the role 228

of prompt diversity, an aspect underexplored in 229

prior work. Two tuning modes are used: one aligns 230

with the test formats (1-hop, 2-hop), and the other 231

introduces nine diverse formats varying in question 232

style and neighbor scope. Full prompt details are 233

in Appendix I.2. 234

3 Comprehensive Benchmarking of 235

LLMs for Graph Tasks 236

Existing studies on LLMs for graphs (Tang et al., 237

2024a; Zhao et al., 2023; Li et al., 2024b) often dif- 238

fer in datasets, preprocessing, and splitting strate- 239

gies, making direct comparison difficult and hin- 240

dering a clear understanding of LLM performance. 241

Moreover, many works evaluate LLMs against only 242

a limited range of baselines. For instance, (Yan 243

et al., 2023; Ye et al., 2023) focus on classic GNNs 244
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and GTs, while (Tang et al., 2024a) considers only245

GNNs and graph SSL models, overlooking more re-246

cent approaches such as foundational graph prompt247

models (e.g., OFA (Liu et al., 2023a)), which have248

become a recent hotspot in graph research due to249

their strong generalization and adaptability. This250

narrow scope limits insight into LLM strengths and251

weaknesses in graph tasks. Therefore, we establish252

a comprehensive benchmark covering a broader253

spectrum of graph models for node classification254

and link prediction.255

3.1 The Overall Setup256

This part outlines the overall setup of the bench-257

marking. We detail the baseline models, datasets,258

and evaluation metrics used for node classification259

and link prediction tasks.260

3.1.1 Baselines261

For baseline models, we conduct a comprehensive262

comparison across 6 graph learning paradigms, cov-263

ering a total of 16 graph models, including both264

traditional GNNs and more advanced architectures.265

This ensures a thorough evaluation of the capabil-266

ities of LLMs. The details about baseline models267

can be found in Appendix F.268

3.1.2 Datasets269

For both node classification and link prediction,270

we use the Cora (McCallum et al., 2000), PubMed271

(Sen et al., 2008), OGBN-ArXiv (Hu et al., 2020),272

and OGBN-Products (Hu et al., 2020) datasets. For273

baseline models, we use their original node fea-274

tures (Appendix D discusses the impact of differ-275

ent node feature embedding methods). For LLMs,276

we preprocess the raw data to transform the node277

attributes into textual representations. Detailed de-278

scriptions of the datasets and their splitting methods279

can be found in Appendix C.280

3.1.3 Evaluation Settings281

For both node classification and link prediction, we282

consistently use accuracy as the evaluation metric,283

the same as (Chen et al., 2024b) and (Ye et al.,284

2023). In the case of link prediction, where the285

ratio of positive to negative samples in the test set286

is 1:1, accuracy is a suitable measure. To select287

the best model, we perform hyperparameter tun-288

ing, as different hyperparameters may cause model289

performance to vary across datasets. Detailed ex-290

perimental settings and the hyperparameter search291

ranges for each model are provided in Appendix E.292

Table 1: Performance of different models on node clas-
sification tasks. The best results in each category are
highlighted. The underline means the overall best re-
sult.

Model Prompt Cora PubMed ArXiv Products Avg

GCN - 88.19 88.00 69.90 82.30 82.10
GraphSAGE - 89.67 89.02 71.35 82.89 83.23
GAT - 88.38 87.90 68.69 82.10 81.77
GraphCL - 83.58 82.86 67.87 80.20 78.63
GraphMAE - 75.98 82.82 65.54 77.32 75.42
Graphormer - 81.20 88.05 71.99 81.75 80.75
Prodigy - 77.32 83.6 70.86 80.01 77.95
OFA - 78.31 78.56 73.92 83.12 78.48
GIANT - 89.10 90.48 74.41 84.33 84.58
TAPE - 88.12 91.92 73.99 83.11 84.29
LLaGA - 88.94 94.57 76.25 83.98 85.94

Llama3B

ego 24.72 63.20 23.10 40.80 37.96
1-hop w/o label 39.48 64.50 29.50 53.00 46.62
2-hop w/o label 49.63 69.90 29.50 56.10 51.28
1-hop w label 77.49 70.90 66.00 68.80 70.80
2-hop w label 83.03 72.00 65.20 71.20 72.86

Llama8B

ego 43.39 77.80 59.35 50.12 54.02
1-hop w/o label 58.35 73.07 61.85 59.85 63.28
2-hop w/o label 62.84 83.29 68.33 59.60 68.52
1-hop w label 82.97 81.55 68.08 71.07 75.92
2-hop w label 84.79 82.54 64.09 77.06 77.12

Qwen-plus

ego 52.32 80.74 70.20 64.24 69.69
1-hop w/o label 68.87 85.73 73.83 72.19 75.16
2-hop w/o label 76.16 88.98 73.51 71.56 77.55
1-hop w label 87.42 88.74 73.55 74.83 81.14
2-hop w label 89.40 90.73 74.28 78.81 83.31

tuned Llama3B
ego 67.08 89.28 66.58 65.59 72.13

1-hop w/o label 82.04 90.02 71.32 73.07 79.11
2-hop w/o label 85.04 91.52 72.82 77.89 81.82

tuned Llama8B
ego 77.31 92.36 65.59 73.74 78.38

1-hop w/o label 84.54 93.90 69.33 80.33 83.28
2-hop w/o label 89.67 95.22 76.01 84.51 86.35

3.2 Results and Analysis 293

In this section, we present and analyze the perfor- 294

mance of various models across node classification 295

and link prediction tasks, providing insights into 296

the strengths and weaknesses of LLMs. 297

Node classification Table 1 summarizes the per- 298

formance across different datasets. We make the 299

following observations: 300

• Classic GNNs show consistent accuracy, while 301

GIANT (Chien et al., 2021) and TAPE (He 302

et al., 2023) outperform them by using lan- 303

guage models for improved node representa- 304

tions. Larger off-the-shelf LLMs perform com- 305

parably to GNNs under certain prompts, with 306

multiple-hop prompts yielding better results 307

than simpler prompts, indicating that LLMs ben- 308

efit from richer graph context. 309

• Label information improves performance by 310

strengthening the model decision-making pro- 311

cess, similar to in-context learning. 312

• For instruction-tuned LLMs, both Llama3B 313

and Llama8B show notable improvements, es- 314

pecially with multiple-hop prompts. Tuned 315

Llama8B achieves the highest average score, 316
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surpassing LLaGA (Chen et al., 2024b) and set-317

ting a new benchmark in node classification.318

Table 2: LLM performance on link prediction. The
best , second-best , and third-best are highlighted.
Models Prompts Cora PubMed ArXiv Products Avg

GCN - 87.78 86.22 90.34 89.75 88.52
GraphSAGE - 84.39 78.81 92.98 92.98 87.29
GAT - 86.88 82.81 83.33 85.57 84.65
GraphCL - 92.98 93.76 90.85 94.21 92.95
GraphMAE - 82.01 75.71 85.24 88.32 82.82
Prodigy - 90.9 91.67 89.22 92.99 91.2
OFA - 94.19 98.05 95.84 96.90 96.25
LLaGA - 87.01 90.10 93.88 95.67 91.67

Llama3B
1-hop 72.97 71.55 72.45 78.92 73.97
2-hop 68.21 59.95 68.55 79.17 68.97

Llama8B
1-hop 80.44 74.80 87.80 85.29 82.08
2-hop 89.39 77.30 92.30 90.77 87.44

Qwen-plus
1-hop 78.81 91.74 81.82 88.42 85.20
2-hop 90.91 95.04 93.39 90.12 92.37

tuned Llama3B (2 formats)
1-hop 83.12 93.95 92.20 90.07 89.84
2-hop 95.76 98.35 95.45 94.65 96.05

tuned Llama3B (9 formats)
1-hop 87.18 94.40 93.30 95.45 92.58
2-hop 95.94 99.20 95.42 97.84 97.10

tuned Llama8B (2 formats)
1-hop 88.65 95.12 93.65 93.23 92.66
2-hop 95.39 98.77 96.11 94.92 96.30

tuned Llama8B (9 formats)
1-hop 88.47 96.01 95.21 96.33 94.01
2-hop 95.15 99.20 95.89 97.98 97.06

Link prediction The results for link prediction319

are presented in Table 2. We make the following320

observations:321

• Among baseline models, GraphCL (You et al.,322

2020) outperforms both GNNs and LLaGA,323

likely due to its use of edge permutation in324

contrastive learning, which enhances structural325

understanding. In contrast, GraphMAE (Hou326

et al., 2022) performs worst, possibly because it327

focuses solely on node features. OFA (Liu et al.,328

2023a) achieves the best results, benefiting from329

LLM-derived edge features during pre-training.330

• Off-the-shelf Llama3B and Llama8B lag be-331

hind most baselines, while the larger Qwen-plus332

matches or surpasses them, underscoring the im-333

portance of model scale for graph reasoning.334

• Instruction-tuned LLMs achieve the best link335

prediction results. Using 2-hop prompts consis-336

tently outperforms 1-hop prompts, and tuning337

with 9 diverse formats yields better performance338

than with only 2, highlighting the value of rich339

structural prompts for reasoning.340

Remark 1 Although smaller off-the-shelf LLMs341

underperform most baseline models, their reason-342

ing ability improves significantly as the model size343

increases and graph structure information is incor-344

porated. Instruction tuning further enhances LLM345

performance on graph tasks, with even smaller346

models achieving performance comparable to or347

better than the best baseline models, particularly348

when more diverse instructions are applied.349

Instruction tuning greatly improves the perfor- 350

mance of LLMs on graph tasks. This section fo- 351

cuses on reporting empirical results and presenting 352

key remarks. A discussion of why instruction tun- 353

ing is effective is provided in Appendix G. Besides, 354

we further validated our observations using addi- 355

tional four datasets, and the corresponding experi- 356

ments are provided in Appendix H.1. 357

Data Leakage Concern The datasets we use for 358

evaluation are widely adopted in the community. 359

This raises a legitimate concern: LLMs may have 360

been exposed to these datasets during pre-training, 361

thereby introducing potential data leakage. Follow- 362

ing (Huang et al., 2023), we conduct experiments 363

to investigate this issue, and provide a detailed dis- 364

cussion in Appendix H.2. 365

4 Further Investigation on LLMs with 366

Instruction Tuning 367

Instruction tuning enables even small LLMs to per- 368

form well, but data scarcity remains a major chal- 369

lenge in real-world scenarios (Xia et al., 2024). Tra- 370

ditional graph models like GNNs and graph trans- 371

formers often suffer under limited labeled data due 372

to their reliance on structural and label information 373

(Yu et al., 2024). Recent models such as All in One 374

(Sun et al., 2023) and GPF-plus (Fang et al., 2024) 375

aim to improve performance in low-label settings, 376

yet the behavior of instruction-tuned LLMs under 377

such constraints is still underexplored. Therefore, 378

in this section, we discuss methods to alleviate data 379

scarcity and further explore the performance of 380

LLMs with instruction tuning in such scenarios. 381

Label scarcity is one of the most common forms 382

of data limitation. Improving few-shot learning 383

performance is a key goal for both graph models 384

(Yu et al., 2024; Zhao et al., 2024) and LLMs. For 385

LLMs, few-shot instruction tuning sheds light on 386

their robustness to label scarcity and their ability 387

to generalize from limited supervision—crucial for 388

real-world applicability. This motivates the follow- 389

ing research question: 390

RQ1: How well do LLMs perform in few-shot
instruction tuning scenarios?

When labeled data is scarce, leveraging unla- 391

beled data is a natural strategy to enhance model 392

performance. This principle is widely applied in 393

continual learning, where models are incremen- 394

tally trained to adapt to new information with- 395

out requiring extensive labeled supervision (Wang 396

5



Table 3: Performance of models under few-shot learning. The best results in each category are highlighted. The
underline means the overall best result.

Full fine-tune 5-shot 10-shot
Models Prompts Cora PubMed ArXiv Products Avg Cora PubMed ArXiv Products Avg Cora PubMed ArXiv Products Avg

GCN - 88.19 88.00 69.90 82.30 82.10 62.13 68.19 24.62 47.77 50.68 71.75 71.81 25.63 54.60 55.95
GraphSAGE - 89.67 89.02 71.35 82.89 83.23 58.91 65.58 19.12 45.94 47.39 70.29 70.90 22.91 51.29 53.85
GAT - 88.38 87.90 68.69 82.10 81.77 54.95 63.95 19.08 32.65 42.66 69.26 70.60 25.34 43.59 52.20
GraphCL - 83.58 82.86 67.87 80.20 78.63 54.03 54.86 11.24 34.10 38.56 57.96 55.23 16.84 46.08 44.03
GraphMAE - 75.98 82.82 65.54 77.32 75.42 24.44 70.47 24.26 50.61 42.45 30.59 73.63 28.64 57.55 47.60
All in one - - - - - - 50.98 60.49 16.34 41.18 42.25 51.66 61.93 20.42 47.73 45.44
GPF-plus - - - - - - 67.00 66.91 60.07 64.50 64.62 73.22 64.39 65.35 68.02 67.75
GraphPrompt - - - - - - 65.12 68.11 81.88 58.44 68.39 69.81 70.38 87.05 61.02 72.07

Llama3B
ego 67.08 89.28 66.58 65.59 72.13 59.10 67.08 49.65 59.12 58.74 63.09 80.30 52.10 60.73 64.06

1-hop w/o label 82.04 90.02 71.32 73.07 79.11 74.81 65.59 53.53 65.35 64.82 74.06 83.54 62.29 67.03 71.73
2-hop w/o label 85.04 91.52 72.82 77.89 81.82 76.81 71.32 55.24 67.32 67.67 77.81 85.53 63.33 68.11 73.70

Llama8B
ego 77.31 92.36 65.59 73.74 78.38 65.84 76.81 63.97 65.12 67.94 67.58 78.12 66.31 66.10 69.53

1-hop w/o label 84.54 93.90 69.33 80.33 83.28 74.56 76.81 65.98 70.50 71.87 79.55 85.10 68.24 72.33 76.31
2-hop w/o label 89.67 95.22 76.01 84.51 86.35 77.10 79.43 69.78 73.12 74.86 80.55 88.89 71.12 74.86 78.86

et al., 2024c; Van de Ven and Tolias, 2019). A397

well-established approach for adapting LLMs to398

specific domains is continual domain-adaptive pre-399

training (Ke et al., 2023; Yıldız et al., 2024), where400

models are further trained on domain-specific cor-401

pora to improve their performance on downstream402

tasks. Inspired by this strategy, we propose contin-403

uous pre-training for graph tasks, where an LLM404

undergoes unsupervised pre-training on graph-405

structured data before fine-tuning on task-specific406

objectives. Since unlabeled graph data is far more407

abundant than labeled data, this method could sig-408

nificantly enhance the adaptability of LLMs when409

paired with instruction tuning. Given the poten-410

tial of this approach, we seek to investigate the411

following research question:412

RQ2: How does continuous pre-training im-
pact the performance of LLMs?

Models with strong transferability can mitigate413

performance drops under label scarcity by trans-414

ferring knowledge from other datasets. LLMs415

have shown impressive transferability in natural416

language tasks (Du et al., 2024; Ran et al., 2024),417

but their transferability in graph tasks has been less418

explored. If instruction-tuned LLMs can general-419

ize well across different graph domains, a one-time420

tuning process could support multiple downstream421

tasks, greatly reducing resource costs. This raises422

the following research question:423

RQ3: How well do LLMs transfer knowledge
across domains in node classification and
link prediction?

Further Probing Missing node attributes present424

another form of data scarcity where understand-425

ing graph structure becomes essential (Chen et al.,426

2024c). While prior works (Chen et al., 2024e; 427

Yan et al., 2023) have focused on node attributes 428

in graph tasks, less attention has been paid to how 429

well LLMs can learn and reason purely from struc- 430

tural information. Since structure is a key distinc- 431

tion between graphs and natural language, evalu- 432

ating LLMs’ structural comprehension is crucial. 433

Besides, real-world graphs often face perturbations 434

like missing edges or reduced similarity, making it 435

important to assess the robustness of LLMs under 436

such changes. In addition, the computational over- 437

head of LLMs on graph tasks warrants attention, as 438

it is a crucial factor for practical deployment. We 439

explore these aspects further in Appendix H.3, H.4, 440

and H.5. 441

5 Experiment and Analysis 442

In this section, we conduct empirical studies on 443

different research questions proposed in Section 444

4. In the following subsections, we first introduce 445

the experimental settings for each RQ, followed by 446

experimental results analysis and key remarks. 447

5.1 Few-Shot Instruction Tuning of LLMs 448

(RQ1) 449

We focus on few-shot instruction tuning for node 450

classification. Link prediction requires predicting 451

edges between nodes, relying on more complex 452

structural dependencies that are harder to capture 453

in a few-shot setting. 454

5.1.1 Experiment Settings 455

We use ego, 1-hop w/o label, and 2-hop w/o la- 456

bel as prompt formats and randomly select 5 or 457

10 target nodes per class for instruction tuning, 458

corresponding to “n-ways-5-shots” and “n-ways- 459

10-shots” learning. For baseline models, in ad- 460

dition to GNNs and Graph SSL models, we also 461

include models from foundational graph prompt 462
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approaches, including All in one (Sun et al., 2023),463

GPF-plus (Fang et al., 2024), and GraphPrompt464

(Liu et al., 2023b). The three models excel in few-465

shot scenarios, leveraging pre-trained knowledge466

and graph prompts to adapt quickly to new tasks467

with minimal labeled data.468

5.1.2 Results469

Table 3 summarizes the results. All models expe-470

rience a decline in accuracy under few-shot learn-471

ing compared to full fine-tuning, with GNNs and472

Graph SSL models showing the largest drops, par-473

ticularly in larger datasets like ArXiv and Products.474

In contrast, LLMs exhibit more consistent perfor-475

mance, indicating greater robustness in data-scarce476

scenarios. Notably, Llama8B achieves the highest477

classification accuracy in both 5-shot and 10-shot478

scenarios, showing LLMs’ ability to learn quickly479

from limited data.480

Remark 2 LLMs outperform all other models in481

few-shot scenarios. Only a few foundational graph482

prompt models achieve comparable results on cer-483

tain datasets, underscoring LLMs’ clear advantage484

in data-scarce situations.485

5.2 Impact of Continuous Pre-training (RQ2)486

As we can see from Figure 1, continuous pre-487

training (Con.PT) consists of two stages. First, a488

pre-trained model undergoes unsupervised learning489

on the target dataset. This phase is task-agnostic,490

meaning the model learns general graph represen-491

tations rather than optimizing for the final task.492

Next, the model is instruction-tuned on a task that493

matches the inference objective.494

5.2.1 Experiment Settings495

In this experiment, we evaluate both zero-shot and496

few-shot node classification. For the zero-shot497

setting, we begin by performing continuous pre-498

training on the relevant dataset using link predic-499

tion, treating it as an unsupervised learning task.500

We then carry out zero-shot node classification501

based on this pre-training. The baseline models502

compared in this setup include LLaGA and ZeroG503

(Li et al., 2024a), which is a foundational graph504

prompt model designed specifically for zero-shot505

scenarios. For the few-shot setting, we conduct506

few-shot instruction tuning on top of the link pre-507

diction task and compare the results with those508

from direct few-shot instruction tuning without the509

link prediction step.510

Table 4: Performance of continuous pre-training for
LLM. "w Con.Pt" means zero-shot inference after con-
tinuous pre-training. "w 5shot" means direct 5-shot
instruction tuning without continuous pre-training. "w
Con.PT & 5shot" means 5-shot instruction tuning after
continuous pre-training. The best , second-best , and
third-best are highlighted.

Models Prompts Cora PubMed ArXiv Products Avg

ZeroG - 68.61 78.77 70.50 55.23 68.28
LLaGA - 22.03 55.92 21.15 38.90 34.50

Llama3B
ego 24.72 63.20 23.10 40.80 37.96

1-hop w/o label 39.48 64.50 29.50 53.00 46.62
2-hop w/o label 49.63 69.90 29.50 56.10 51.28

Llama3B w Con.PT
ego 48.63 49.38 14.21 41.40 38.41

1-hop w/o label 49.38 69.33 30.01 55.86 51.15
2-hop w/o label 55.36 75.56 33.54 57.01 55.37

Llama3B w 5shot
ego 59.10 67.08 49.65 59.12 58.74

1-hop w/o label 74.81 65.59 53.53 65.35 64.82
2-hop w/o label 76.81 71.32 55.24 67.32 67.67

Llama3B w Con.PT & 5shot
ego 59.60 84.29 50.37 60.88 63.79

1-hop w/o label 75.08 85.04 53.12 66.09 69.83
2-hop w/o label 79.58 88.53 54.11 68.08 72.58

Llama8B
ego 43.39 77.80 59.35 50.12 54.02

1-hop w/o label 58.35 73.07 61.85 59.85 63.28
2-hop w/o label 62.84 83.29 68.33 59.60 68.52

Llama8B w Con.PT
ego 52.13 65.32 60.71 55.22 58.35

1-hop w/o label 64.44 80.20 63.10 62.84 67.65
2-hop w/o label 70.82 86.96 71.34 63.20 73.08

Llama8B w 5shot
ego 65.84 76.81 63.97 65.12 67.94

1-hop w/o label 74.56 76.45 65.98 70.50 71.87
2-hop w/o label 77.1 0 79.43 69.78 73.12 74.86

Llama8B w Con.PT & 5shot
ego 68.33 86.88 63.23 66.44 71.22

1-hop w/o label 76.82 86.83 66.77 70.99 75.35
2-hop w/o label 78.12 89.03 71.01 74.69 78.21

5.2.2 Results 511

Table 4 presents the results. LLMs perform bet- 512

ter after continuous pre-training compared to di- 513

rect zero-shot (e.g ZeroG) and few-shot learn- 514

ing, demonstrating its effectiveness in enhancing 515

the model understanding of graphs. For smaller 516

datasets like Cora and PubMed, Llama3B with 517

continuous pre-training matches or even surpasses 518

Llama8B. However, for larger and more complex 519

datasets like Arxiv and Products, Llama8B retains 520

an advantage even after Llama3B undergoes con- 521

tinuous pre-training. This suggests that increasing 522

the size of the LLM remains the most effective 523

approach for larger and more complex graphs. 524

Remark 3 Continuous pre-training can signifi- 525

cantly improve LLM performance in zero-shot and 526

few-shot learning. However, for larger and more 527

complex datasets, increasing the size of the LLM 528

proves to be a more effective approach. 529

5.3 Domain Transferability of LLMs (RQ3) 530
Domain transferability can be classified into in- 531

domain and cross-domain transferability based on 532

difficulty. The former refers to the ability to trans- 533

fer knowledge between different datasets within 534

the same domain, while the latter involves transfer- 535

ring knowledge across different domains. In this 536
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section, we explore the performance of LLMs with537

instruction tuning in both settings.538

5.3.1 Experiment Settings539

In the in-domain setup, we train the model on ci-540

tation graphs (Arxiv) and evaluate it using Cora,541

another citation graph. For the cross-domain sce-542

nario, we train on Arxiv and test on Products, an543

e-commerce graph. GNNs rely on task-specific544

classification heads, which limits their ability to545

perform zero-shot learning on node classification546

tasks, particularly when label sets differ. There-547

fore, our comparison focuses on LLaGA for node548

classification. For link prediction, since the feature549

dimensions vary across datasets, we use a simple550

linear mapping to unify them. The baseline models551

include GNNs, Graph SSL models, and LLaGA.552
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Figure 2: LLM domain transferability in node classifi-
cation

5.3.2 Results553

Node classification Figure 2 presents the accu-554

racy of different models in both in-domain and555

cross-domain scenarios. Instruction-tuned LLMs556

on Arxiv outperform off-the-shelf scenario, but the557

improvement is modest when additional structural558

information is incorporated. This is likely due to559

the fact that node classification relies heavily on560

category information, and adding more structural561

data does not significantly enhance performance.562

While LLMs learn graph information from Arxiv,563

adapting to unseen categories remains challenging,564

limiting performance gains. Besides, LLMs per-565

form comparably to LLaGA on Cora dataset, but566

on the more complex Products dataset, LLMs show567

a clear advantage. This suggests that the simple568

graph projector of LLaGA struggles to capture di-569

verse graph patterns, while LLMs can adapt better570

to varying structures and are capable of learning571

diverse feature information with their sophisticated572

instruction tuning mechanisms. 573

Table 5: LLM domain transferability in link prediction.
The best and second-best are highlighted.

Train −→ Test
Models Prompts Arxiv −→ Cora Arxiv −→ Products

GCN - 55.54 67.07
GraphSAGE - 50.00 51.11
GAT - 85.41 71.18
GraphCL - 78.30 82.62
GraphMAE - 71.90 73.94
LLaGA - 86.98 92.82

Llama3B
1-hop 87.55 91.16
2-hop 95.11 94.15

Llama8B
1-hop 88.98 91.97
2-hop 94.78 95.43

Link prediction From Table 5, we observe that 574

LLMs significantly outperform traditional graph 575

models. Only LLaGA achieve comparable perfor- 576

mance, likely because it also leverages LLMs for 577

predictions. In the in-domain transfer scenario, 578

LLMs achieve performance on Cora comparable to 579

models directly instruction-tuned on Cora, indicat- 580

ing they can effectively transfer knowledge from 581

larger datasets to downstream tasks. In the cross- 582

domain scenario, although LLM performance on 583

Products is slightly lower than direct tuning, it still 584

remains strong, possibly due to shared topological 585

patterns across domains. 586

Remark 4 LLMs with instruction tuning exhibit 587

strong domain transferability, particularly in link 588

prediction tasks, where they effectively generalize 589

across different datasets. This may be because link 590

prediction tasks across domains share more simi- 591

larities, as they can be viewed as binary classifica- 592

tion problems. In contrast, node classification is 593

more challenging, as adapting learned knowledge 594

to unseen categories is difficult. 595

6 Conclusion 596

This paper demonstrates that LLMs, especially 597

with instruction tuning, achieve strong performance 598

and surpass most graph models in node classifica- 599

tion and link prediction through a fair and com- 600

prehensive benchmarking approach. Our findings 601

emphasize the potential of LLMs in few-shot learn- 602

ing, transferability, and understanding graph struc- 603

tures in data-scarce scenarios. The introduction of 604

continuous pre-training further boosts LLM per- 605

formance in such environments. These insights 606

provide valuable guidance for the future applica- 607

tion of LLMs in graph tasks, paving the way for 608

more efficient and adaptable graph learning models 609

in real-world settings. 610
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7 Limitations611

Despite providing a comprehensive benchmark of612

LLMs on graph tasks, our study still has several613

limitations:614

• Limited dataset coverage. Due to the high615

computational cost of instruction tuning, we fo-616

cus our main analysis on four commonly used617

datasets. Although we include additional exper-618

iments on four more datasets in Appendix H.1,619

we do not extend this evaluation to all possible620

scenarios and tasks.621

• Task coverage. This work focuses solely on622

node classification and link prediction, which623

are among the most widely studied graph tasks.624

However, other tasks such as graph classifica-625

tion, shortest path reasoning, and flow-based626

computations (e.g., maximum flow, connectiv-627

ity) are not considered, limiting the generality628

of our findings.629

• Prompt sensitivity. Although we evaluate dif-630

ferent prompt formats, we do not systematically631

study the sensitivity of LLMs to variations in632

natural language descriptions. As LLMs are633

known to respond differently to semantically634

equivalent but syntactically distinct prompts,635

this remains an important area for future work.636

• Limited access to frontier models. While our637

benchmark includes both open-source and pro-638

prietary LLMs, many state-of-the-art models639

remain inaccessible or too resource-intensive640

for large-scale instruction tuning, which may641

affect reproducibility and scalability of future642

research.643
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A More about our benchmarking1051

A.1 Comparison between our benchmark and1052

existing works1053

In Table 6, we summarize the key differences be-1054

tween our benchmarking study and other papers.1055

Comprehensive Baselines refers to whether the1056

baseline models cover a wide range of model types.1057

In our paper, we include GNNs, Graph SSL models,1058

Graph Transformers, Foundational Graph Prompt1059

Models, and LLMs with Graph Projectors. Com-1060

prehensive Settings examines the performance of1061

models across various scenarios, such as vanilla1062

fine-tuning, few-shot learning, and zero-shot learn-1063

ing. Diverse LLMs highlights the use of multiple1064

LLMs for comparison, such as Llama, GPT, and1065

Qwen. LLM Tuning indicates whether the paper1066

fine-tunes the LLMs or simply uses the original1067

models as they are. Lastly, Transferability Study1068

explores whether the paper investigates the cross-1069

task or cross-domain transfer capabilities of the1070

models.1071

A.2 Scope of this paper1072

This paper focuses on evaluating the performance1073

of LLMs on graph tasks. Instead of covering a wide1074

range of tasks, it emphasizes depth over breadth1075

by concentrating on the two most common graph1076

tasks: node classification and link prediction. Tasks1077

such as graph classification, node degree counting,1078

graph cycle detection, and shortest path compu-1079

tation are not included in the scope. The study1080

goes beyond simply applying pre-trained LLMs for1081

reasoning. It incorporates instruction tuning and1082

investigates the performance of LLMs under fine-1083

tuning, few-shot, and zero-shot settings, as well as1084

their transferability across tasks. The goal is to pro-1085

vide insights and guidance for future applications1086

of LLMs in the graph domain.1087

B Related Works1088

In this section, we review the existing literature on1089

the application of LLMs and related techniques in1090

graph tasks. We highlight two primary categories: 1091

the use of LLMs for graph reasoning and their in- 1092

tegration with traditional graph models to enhance 1093

performance. 1094

B.1 Large Language Models for Graph 1095

Reasoning 1096

Recent studies suggest that LLMs have the poten- 1097

tial to solve graph reasoning tasks by understand- 1098

ing graph structures (Fatemi et al., 2023b; Tang 1099

et al., 2024b). NLGraph (Wang et al., 2024a) in- 1100

dicates that LLMs can track paths within graphs, 1101

enabling them to solve tasks such as node connec- 1102

tivity and shortest path detection. Moreover, (Dai 1103

et al., 2024a) suggests that LLMs understand graph 1104

pattern concepts, which are fundamental to graph 1105

structure mining and learning. Additionally, fine- 1106

tuning further enhances the LLMs’ reasoning abil- 1107

ity in graph tasks (Dai et al., 2024b). (Zhang 1108

et al., 2024a) suggest that LLMs can transfer 1109

their understanding of substructures through fine- 1110

tuning on graphs with different node features. Be- 1111

sides, GraphWiz (Chen et al., 2024a) indicates that 1112

LLMs learn path reasoning across various tasks 1113

and datasets. These findings highlight that LLMs 1114

can be effectively tuned to improve their compre- 1115

hension of graph structures. 1116

B.2 Language Model Aided Graph Models 1117

With the advancement of language models, their 1118

presence in graph-related tasks has become in- 1119

creasingly prominent. Their natural strengths in 1120

language processing and intrinsic reasoning make 1121

them particularly valuable, especially in test at- 1122

tribute graph (TAG) tasks. Broadly, the role of 1123

language models in graph learning can be catego- 1124

rized into two main approaches: language models 1125

as enhancers and large language models as predic- 1126

tors (Chen et al., 2024d). 1127

B.2.1 Language models as enhancers 1128

Language models serve as enhancers by assist- 1129

ing graph models in representation learning and 1130

knowledge integration. Pre-trained language mod- 1131

els (PLMs) like BERT (Devlin, 2018), DeBERTa 1132

(He et al., 2020), and XLNet (Yang, 2019) are com- 1133

monly used to transform raw textual descriptions 1134

into embeddings, improving graph models’ ability 1135

to capture node semantics. For instance, OFA (Liu 1136

et al., 2023a) encodes text descriptions of nodes 1137

and edges into fixed-length vectors, unifying graph 1138

data from different domains and enabling strong 1139

13



Table 6: Comparison between our benchmark and existing works

Model Node Classification Link Prediction Comprehensive Baselines Comprehensive Settings Diverse LLMs LLM Tuning Transferability Study

InstructGLM (Ye et al., 2023) ✓ ✗ ✗ ✗ ✗ ✓ ✗

LLaGA (Chen et al., 2024b) ✓ ✓ ✗ ✗ ✓ ✗ ✓

InstructGraph (Wang et al., 2024b) ✓ ✓ ✗ ✗ ✓ ✓ ✗

NLGraph (Wang et al., 2024a) ✗ ✗ ✗ ✓ ✗ ✗ ✗

Talk Like a Graph (Fatemi et al., 2023b) ✓ ✗ ✗ ✓ ✗ ✗ ✗

All in One (Sun et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗ ✓

OFA (Liu et al., 2023a) ✓ ✓ ✓ ✓ ✗ ✗ ✓

GraphGPT (Tang et al., 2024a) ✓ ✓ ✗ ✗ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

performance in supervised, few-shot, and zero-shot1140

settings. Similarly, GraphAlign (Hou et al., 2024),1141

BooG (Cheng et al., 2024), and ZeroG (Li et al.,1142

2024a) utilize PLMs to embed textual node fea-1143

tures, ensuring feature consistency across diverse1144

datasets during pre-training.1145

Beyond embedding textual features, large lan-1146

guage models (LLMs) contribute to graph repre-1147

sentation enrichment. TAPE (He et al., 2023) gen-1148

erates textual explanations for model predictions,1149

which are then transformed into additional node1150

features, enhancing GNN-based learning. On the1151

other hand, LLMGNN (Chen et al., 2023) uses1152

LLMs to annotate a subset of nodes with high qual-1153

ity labels, which are then leveraged by GNNs to pre-1154

dict the remaining unlabeled nodes. This method1155

effectively combines LLMs’ semantic reasoning1156

with the structured learning power of GNNs.1157

B.2.2 Large language models as predictors1158

LLMs can serve as direct predictors for graph-1159

related tasks such as node classification and link1160

prediction. Instruction tuning is a widely used1161

technique to enhance LLMs’ predictive accuracy1162

(Ouyang et al., 2022; Sanh et al., 2021), helping1163

them better interpret graph structures through task-1164

specific prompts. For instance, InstructGLM (Ye1165

et al., 2023) employs multi-prompt tuning to in-1166

tegrate multi-hop structural information, improv-1167

ing its ability to capture complex relationships.1168

GraphGPT (Tang et al., 2024a) follows a dual-stage1169

approach: first, it aligns structural information with1170

language tokens via self-supervised graph match-1171

ing, and second, it fine-tunes the model on task-1172

specific instructions, leading to more accurate pre-1173

dictions.1174

Beyond standalone LLMs, hybrid models com-1175

bine them with GNNs or graph transformers to1176

better leverage graph structure. UniGraph (He1177

and Hooi, 2024) enhances zero-shot learning by1178

aligning textual instructions with category labels1179

while incorporating GNNs for structural learning.1180

GraphLLM (Chai et al., 2023) conbines LLM with 1181

graph transformer to enrich LLM attention lay- 1182

ers with structural and semantic information, en- 1183

abling more effective graph reasoning. In contrast, 1184

LLaGA (Chen et al., 2024b) avoids full LLM tun- 1185

ing and instead fine-tunes a lightweight graph pro- 1186

jector, reducing computational cost while main- 1187

taining strong predictive performance. These ap- 1188

proaches highlight the evolving role of LLMs in 1189

graph learning, demonstrating their flexibility in 1190

both direct prediction and hybrid architectures. 1191

C Datasets 1192

We summarize the details of used datasets in Table 1193

7. We convert all graphs into undirected graphs and 1194

remove self-loops. 1195

For Cora, PubMed, and OGBN-Arxiv, each 1196

node represents a paper and the edges denote co- 1197

citations. For OGBN-Products, nodes represent 1198

Amazon products and edges act as co-purchases. 1199

Due to the large size of OGBN-Products, we use 1200

Cluster-GCN (Chiang et al., 2019) to process it in 1201

smaller partitions. The structural information and 1202

label information of these datasets can be achieved 1203

from Pyg, and we will release the codes for raw 1204

feature processing. Below is some relevant infor- 1205

mation about each datasets: 1206

• Cora (McCallum et al., 2000). Cora 1207

has seven categories: ["Rule Learning", 1208

"Neural Networks", "Case Based", "Ge- 1209

netic Algorithms", "Theory", "Reinforce- 1210

ment Learning", "Probabilistic Methods"]. 1211

The raw text attributes can be obtained 1212

from https://people.cs.umass.edu/ mccallum/- 1213

data.html 1214

• PubMed (Sen et al., 2008). PubMed has three 1215

categories: ["Diabetes Mellitus, Experimen- 1216

tal", "’Diabetes Mellitus Type 1", "Diabetes 1217

Mellitus Type 2"]. The raw text attributes 1218

can be obtained from TAPE (He et al., 2023) 1219

(https://github.com/XiaoxinHe/TAPE) 1220
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Table 7: Datasets

Dataset Domain Task #Node #Edge #Classes Metrics Default feature

Cora citation Node, Link 2,708 5,429 7 Accuracy Bag-of-Words (Wang et al., 2024a)
Pubmed citation Node, Link 19,717 44,338 3 Accuracy TF-IDF
OGBN-Arxiv citation Node, Link 169,343 1,166,243 40 Accuracy Skip-gram (Mikolov et al., 2013)
OGBN-Products e-commerce Node, Link 2,449,029 61,859,140 47 Accuracy Bag-of-Words
Computer e-commerce Node 87,229 721,081 10 Accuracy -
Reddit social network Node 33,434 198,448 2 Accuracy -
Instagram social network Node 11,339 144,010 2 Accuracy -
WikiCS web link Node 11,701 215,863 10 Accuracy -

• OGBN-Arxiv and OGBN-Products (Hu1221

et al., 2020). OGB benchmark provides1222

these two datasets. For OGBN-Arxiv, the1223

raw text attributes can be downloaded from1224

https://snap.stanford.edu/ogb/data/misc/1225

ogbn_arxiv/titleabs.tsv.gz. For OGBN-1226

Products, the raw text attributes can be1227

downloaded from http://manikvarma.1228

org/downloads/XC/XMLRepository.html.1229

In extended experiments, we use Computer, Red-1230

dit, Instagram, and WikiCS datasets. Computer is1231

from E-Commerce Network, Reddit and Instagram1232

are from Social Networks, and WikiCS represents1233

web link network. We list the details below:1234

• Computer. Computer is from Amazon Elec-1235

tronics dataset (Ni et al., 2019), where each1236

node represents an item in the Computer cate-1237

gory. We use the processed dataset released in1238

(Liu et al., 2023a).1239

• Reddit and Instagram. A node represents a1240

user, and edges denote whether two users have1241

replied to each other. The raw text data is col-1242

lected from (Huang et al., 2024b).1243

• WikiCS. Each node represents a Wikipedia1244

page, and each edge represents a reference link1245

between pages. The raw text data is collected1246

from (Liu et al., 2023a).1247

Data Split. For node-level tasks, we use the stan-1248

dard train/validation/test splits (Hu et al., 2020):1249

6:2:2 for Cora, Pubmed, Computer, Reddit, In-1250

stagram, and WikiCS, 6:2:3 for the OGBN-Arxiv1251

dataset ,and 8:2:90 for OGBN-Products. For link1252

prediction, we randomly sample node pairs from1253

the training nodes for training and from the testing1254

nodes for evaluation. The size of the edge-level1255

training set matches that of the node-level training1256

set.1257

D Impacts of Different Node Feature 1258

Embedding Methods 1259

Node features play a crucial role in node classifica- 1260

tion and link prediction tasks. For LLMs, raw text 1261

attributes are directly used as node features, while 1262

datasets like Cora, PubMed, Arxiv, and Products 1263

provide default preprocessed features generated 1264

through feature embedding methods (as shown in 1265

Table 7). This raises an important question: is it 1266

fair to compare baseline models using default 1267

features with LLMs that rely on raw text at- 1268

tributes? 1269

To address this, we embedded the raw text at- 1270

tributes using various pre-trained LLMs and fed 1271

these embeddings into GraphSAGE for node clas- 1272

sification tasks. The results are summarized in Ta- 1273

ble 8. Specifically, all-MiniLM-L6-v2 is the latest 1274

Sentence-BERT model, and text-embedding-ada- 1275

002 is the latest embedding model from OpenAI. 1276

From the results, we observe no significant accu- 1277

racy improvements when using pre-trained LLM 1278

embeddings over the default node features. In some 1279

datasets, LLM-based embeddings perform better, 1280

while in others, default node features yield stronger 1281

results. Therefore, we believe that using the default 1282

node features provided by corresponding datasets 1283

is reasonable and fair. 1284

Table 8: Impacts of different node feature embedding
methods. Task: node classification. Model: Graph-
SAGE

Embedding Methods Cora PubMed Arxiv Products

default 89.67 89.02 71.35 82.89
all-MiniLM-L6-v2 (Reimers, 2019) 89.88 89.91 72.03 81.82
t5-small (Raffel et al., 2020) 86.71 87.78 70.28 79.64
e5-base (Wang et al., 2022) 88.10 87.12 71.52 80.33
text-embedding-ada-002 89.30 89.72 72.20 82.45
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E Detailed Experimental Settings1285

E.1 Computation Environment1286

In this paper, all the experiments were conducted1287

on one single server with 4 80G Nvidia A1001288

GPUs.1289

E.2 Model Settings1290

• GCN & GraphSAGE1291

num_layers=3, hidden_channels=256,1292

dropout=0.5,1293

norm='batchnorm', activation='relu',1294

optimizer=torch.optim.AdamW, lr1295

=0.005, weight_decay=1e-4,1296

scheduler=torch.optim.lr_scheduler.1297

StepLR, step_size=20, gamma=0.5,1298

patience=20, min_delta=1e-3, epochs1299

=80001300

• GAT1301

num_layers=3, hidden_channels=256,1302

dropout=0.5, heads=2,1303

norm='batchnorm', activation='relu',1304

optimizer=torch.optim.AdamW, lr1305

=0.005, weight_decay=1e-4,1306

scheduler=torch.optim.lr_scheduler.1307

StepLR, step_size=20, gamma=0.5,1308

patience=20, min_delta=1e-3, epochs1309

=80001310

• MixHop1311

num_layers=2, hidden_channels=256,1312

powers=[ [0,1,2], [0,1] ],1313

dropout=0.6,1314

add_self_loops=True, activation='relu1315

', aggregation='mixhop',1316

optimizer=torch.optim.AdamW, lr1317

=0.005, weight_decay=1e-4,1318

scheduler=torch.optim.lr_scheduler.1319

StepLR, step_size=20, gamma=0.5,1320

early_stopping=dict(patience=20,1321

min_delta=1e-3), max_epochs=8000,1322

log_interval=101323

• GraphCL1324

Graph Encoder:1325

-Backbone: GCN, -Hidden Channels:1326

128, -Activation: ReLU, -1327

Optimizer: Adam, -lr=0.01, -1328

Epochs: 1001329

Data Augmentations: 1330

-Feature Masking: mask_rate=0.3, - 1331

Edge Perturbation: 1332

perturb_rate=0.1 1333

Contrastive Loss: 1334

-Normalization: L2 (dim=1), - 1335

Temperature: 0.5 1336

Linear Classifier: 1337

-Input Features: 128, -Optimizer: 1338

Adam, -lr=0.01, -Epochs: 50 ( 1339

supervised training) 1340

• GraphMAE 1341

Graph Encoder: 1342

-Backbone: GCN, -Hidden Channels: 1343

256, -Activation: ReLU, - 1344

Optimizer: Adam, -lr=0.01, - 1345

Epochs: 200 1346

Data Augmentations: 1347

-Feature Masking: mask_ratio=0.5 1348

(encoder-level), -Random 1349

Masking: mask_rate=0.3 ( 1350

training-level) 1351

Reconstruction Loss: 1352

-Loss Function: MSE Loss, - 1353

Reconstruction Target: Masked 1354

node features 1355

Linear Classifier: 1356

-Input Features: 256, -Optimizer: 1357

Adam, -lr=0.01, -Epochs: 100 1358

(supervised training) 1359

• Graphormer We follow the hyper-parameter 1360

settings in the original paper (Ying et al., 2021). 1361

• Prodigy We follow the hyper-parameter set- 1362

tings in the original paper (Huang et al., 2024a). 1363

• OFA We follow the hyper-parameter settings in 1364

the original paper (Liu et al., 2023a). 1365

• GIANT & TAPE 1366

gnn_type='GraphSAGE', num_layers= [2, 1367

3, 4], hidden_channels= [128, 1368

256], 1369

optimizer=torch.optim.Adam, lr=0.001, 1370

weight_decay=0, dropout= [0.3, 1371

0.5, 0.6] 1372

• All in one & GPF-plus & GraphPrompt 1373
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gnn_type='GCN', num_layers=2,1374

hidden_channels=128, JK='last',1375

prompt_type=['All in one', 'GPF-plus1376

', 'GraphPrompt'],1377

optimizer=torch.optim.Adam, lr=0.001,1378

weight_decay=0, dropout=0.5,1379

epochs=800, batch_size=128, shot_num1380

=5,1381

For detailed prompt designs, we follow the orig-1382

inal papers (Sun et al., 2023), (Fang et al., 2024),1383

and (Liu et al., 2023b).1384

• ZeroG We follow the hyper-parameter settings1385

in the original paper (Li et al., 2024a).1386

• LLaGA We follow the hyper-parameter settings1387

in the original paper (Chen et al., 2024b).1388

• Llama3B & Llama8B1389

LLM Configuration:1390

-Base Model: [meta-llama/Llama1391

-3.2-3B-Instruct, meta-llama/1392

Llama-3.1-8B-Instruct],1393

-Use LoRA: true, -Max Sequence1394

Length: 1024, -Model Precision1395

: bfloat161396

LoRA Configuration:1397

-LoRA Rank (r): 16, -LoRA Alpha:1398

32, -LoRA Dropout: 0.05,1399

-Target Modules: [o_proj,1400

gate_proj, down_proj, up_proj]1401

Training Configuration:1402

-Optimizer: adamw_torch, -1403

Learning Rate: 4e-4, -Train1404

Batch Size: 2 x 12 (per_device1405

x grad_accum),1406

-Total Epochs: 1, -Gradient Accu1407

Steps: 12, -Pad Token ID: -1001408

(IGNORE_INDEX)1409

DeepSpeed Optimization:1410

-Zero Stage: 2, -Offload Strategy:1411

[-Optimizer -> CPU (pinned)1412

,-Activation Checkpointing:1413

true],1414

-Pipeline Parallel: [-Enabled:1415

true, -Micro Batch Size: 1]1416

Data Processing:1417

-Data Sources: [Cora, PubMed,1418

Arxiv, Products], -Input1419

Format: System Prompt + User1420

Query + Answer,1421

-Data Limits: [-Product/node: max 1422

3,000 samples, -Product/link: 1423

max 2,000 samples], 1424

-Preprocessing Workers: 20, 1425

-Cora & PubMed & Arxiv: [-Max 1- 1426

hop neighbors: 20, -Max 2-hop 1427

neighbors: 5], 1428

-Products: [-Max 1-hop neighbors: 1429

30, -Max 2-hop neighbors: 10] 1430

F Baseline models 1431

In this paper, we evaluate multiple baseline mod- 1432

els and provide detailed descriptions of their im- 1433

plementations as follows. These models were ap- 1434

plied to a consistently preprocessed version of the 1435

datasets to ensure fair comparisons and produce 1436

the experimental results presented in this study. 1437

1. GNNs: For GCN (Kipf and Welling, 1438

2016), GraphSAGE (Hamilton et al., 1439

2017), GAT (Veličković et al., 2017), 1440

and Mixhop (Abu-El-Haija et al., 2019), 1441

we follow the models on OGB Leaderboards 1442

(https://ogb.stanford.edu/docs/leader_nodeprop/). 1443

Specifically, the first three mod- 1444

els are all from (Luo et al., 2024), 1445

and the codes can be obtained from 1446

https://github.com/LUOyk1999/tunedGNN. 1447

2. Graph SSL Models: We choose GraphCL (You 1448

et al., 2020) and GraphMAE (Hou et al., 2022) 1449

in this categories. GraphCL employs contrastive 1450

learning by distinguishing augmented views 1451

of the same graph from others, while Graph- 1452

MAE uses masked autoencoding, reconstruct- 1453

ing masked graph components to learn node rep- 1454

resentations without requiring augmented views. 1455

For GraphCL, we follow the implementation 1456

from https://github.com/Shen-Lab/GraphCL. 1457

For GraphMAE, we follow the implementation 1458

from https://github.com/THUDM/GraphMAE. 1459

3. Graph Transformers: We use Graphormer 1460

(Ying et al., 2021) in this categories. 1461

Graphormer is a transformer-based model 1462

designed specifically to handle graph- 1463

structured data, enabling efficient processing 1464

and analysis of complex relational in- 1465

formation.The implementation is from 1466

https://github.com/microsoft/Graphormer. 1467

4. Foundational Graph Prompt Models: We use 1468

Prodigy (Huang et al., 2024a), OFA (Liu et al., 1469
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2023a), All in one (Sun et al., 2023), GPF-plus1470

(Fang et al., 2024), GraphPrompt (Liu et al.,1471

2023b), and ZeroG (Li et al., 2024a) in this1472

categories.1473

• Prodigy enables in-context learning over1474

graphs by utilizing a novel prompt graph1475

representation and a family of in-context pre-1476

training objectives, achieving superior per-1477

formance on diverse downstream classifica-1478

tion tasks without the need for retraining.1479

• OFA represents nodes and edges as human-1480

readable text, mapping them from various1481

domains into a unified space using LLMs.1482

The framework then adapts to different tasks1483

by embedding task-specific prompts within1484

the input graph.1485

• All in one proposes a novel method to unify1486

graph prompts and language prompts, en-1487

hancing the performance of various graph1488

tasks through effective prompt design and1489

meta-learning techniques.1490

• GPF-plus is an enhanced graph prompt tun-1491

ing method that assigns independent learn-1492

able vectors to each node, offering great flex-1493

ibility and expressiveness and consistently1494

outperforming other methods in various ex-1495

periments.1496

• GraphPrompt leverages a common task tem-1497

plate based on subgraph similarity, enhanced1498

with task-specific learnable prompts to im-1499

prove performance across different tasks1500

such as node and graph classification.1501

• ZeroG uses a language model to encode1502

node features and class labels, incorporat-1503

ing prompt-based subgraph sampling and1504

efficient fine-tuning techniques to tackle the1505

challenges of cross-dataset zero-shot trans-1506

ferability in graph learning.1507

The implementations of Prodigy1508

and OFA can be obtained from1509

https://github.com/snap-stanford/prodigy and1510

https://github.com/LechengKong/OneForAll,1511

respectively. For All in one, GPF-plus,1512

and GraphPrompt, we use the implemen-1513

tation from ProG (Zi et al., 2024) (Code:1514

https://github.com/sheldonresearch/ProG). For1515

ZeroG, we follow the implementation from1516

https://github.com/NineAbyss/ZeroG.1517

5. LM-Augmented Graph Learning Models:1518

We choose GIANT (Chien et al., 2021) and1519

TAPE (He et al., 2023). GIANT conducts neigh- 1520

borhood prediction using XR-Transformers 1521

(Zhang et al., 2021), resulting in an LLM that 1522

generates superior feature vectors for node 1523

classification compared to traditional bag-of- 1524

words and standard BERT embeddings. TAPE 1525

uses explanations from LLMs as features to 1526

enhance the performance of GNNs on text- 1527

attributed graphs, achieving state-of-the-art re- 1528

sults on various benchmarks with significantly 1529

lower computation time. For GIANT and 1530

TAPE, we follow the implementation from 1531

https://github.com/NineAbyss/GLBench 1532

6. LLM with Graph Projectors: LLaGA (Chen 1533

et al., 2024b) is chosen for this category. The im- 1534

plementation is from https://github.com/VITA- 1535

Group/LLaGA. 1536

G Discussion: Why Instruction Tuning 1537

Enhances LLMs for Graph Tasks 1538

According to Section 3, we observe that instruc- 1539

tion tuning significantly improves the performance 1540

of LLMs on graph tasks. However, due to space 1541

limitations, we only focus on reporting empirical 1542

results without discussing the underlying reasons 1543

for such improvements. In this section, we provide 1544

several our ideas towards why instruction tuning is 1545

so effective in this context. 1546

Graphs represent complex, structured relational 1547

data that differ fundamentally from the sequential 1548

text on which LLMs are pre-trained. As a result, 1549

off-the-shelf LLMs often struggle to fully under- 1550

stand and reason over graph structures when graph 1551

data is simply represented as natural language. In- 1552

struction tuning addresses this gap by explicitly 1553

aligning graph-specific tasks with the LLM’s text- 1554

based reasoning capabilities through supervised 1555

fine-tuning on graph-encoded prompts. 1556

To be specific, instruction tuning provides the 1557

model with task-specific supervision, teaching it 1558

to associate particular prompt formats with corre- 1559

sponding graph reasoning behaviors, such as node 1560

classification or link prediction. This process helps 1561

the model distinguish between different compo- 1562

nents in the input (e.g., target node vs. neigh- 1563

bors) and understand their semantic roles within 1564

the graph structure. Such alignment is essential be- 1565

cause, without tuning, LLMs may interpret graph 1566

prompts as generic text, ignoring the latent struc- 1567

tural dependencies crucial for accurate prediction. 1568
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Table 9: Node classification performance of different models on more datasets. The best , second-best , and
third-best are highlighted.

Model Prompt Cora PubMed ArXiv Products Computer WikiCS Reddit Instagram Avg

GCN - 88.19 88.00 69.90 82.30 88.28 82.95 65.31 64.32 78.66
GraphSAGE - 89.67 89.02 71.35 82.89 88.22 81.78 60.97 63.70 78.45
GAT - 88.38 87.90 68.69 82.10 87.40 82.10 64.33 64.05 78.12
GraphCL - 83.58 82.86 67.87 80.20 76.52 84.84 62.19 63.10 75.15
GraphMAE - 75.98 82.82 65.54 77.32 73.28 83.91 64.03 61.85 73.09
Graphormer - 81.20 88.05 71.99 81.75 77.61 86.17 66.30 62.32 76.93
OFA - 78.31 78.56 73.92 83.12 87.70 78.52 63.91 61.70 75.72
GIANT - 89.10 90.48 74.41 84.33 89.02 83.01 66.50 64.32 80.15
TAPE - 88.12 91.92 73.99 83.11 89.70 83.60 63.97 65.11 79.94
LLaGA - 88.94 94.57 76.25 83.98 90.11 80.01 67.10 66.60 80.95

Llama3B
ego 24.72 63.20 23.10 40.80 40.30 30.10 24.60 32.77 34.95

2-hop w/o label 49.63 69.90 29.50 56.10 49.15 42.11 40.40 38.97 46.97

Llama8B
ego 43.39 77.80 59.35 50.12 55.72 39.72 42.10 39.02 49.08

2-hop w/o label 62.84 83.29 68.33 59.60 67.00 70.31 51.92 46.60 63.74

Qwen-plus
ego 52.32 80.74 70.20 64.24 60.83 65.35 50.77 49.30 63.13

2-hop w/o label 76.16 88.98 73.51 71.56 71.33 71.30 57.05 56.29 70.77

tuned Llama3B
ego 67.08 89.28 66.58 65.59 57.92 67.99 58.00 51.42 65.48

2-hop w/o label 85.04 91.52 72.82 77.89 77.78 79.40 63.83 59.12 75.93

tuned Llama8B
ego 77.31 92.36 65.59 73.74 69.10 73.82 58.19 57.03 71.46

2-hop w/o label 89.67 95.22 76.01 84.51 86.40 85.31 66.62 68.31 81.51

Moreover, the tuning process introduces graph1569

inductive biases into the LLM. By training on1570

prompts that include multi-hop neighborhood infor-1571

mation (e.g., 1-hop or 2-hop neighbors), the model1572

learns to implicitly aggregate and reason over local1573

substructures. This is functionally mimicking the1574

behavior of message passing process in GNNs.1575

H Extended Experiments1576

H.1 More Datasets for Node Classification1577

Due to the high computational cost and time re-1578

quired for instruction tuning, we focus in the main1579

text on evaluating baseline models and LLMs on1580

four widely used datasets. To strengthen the relia-1581

bility of our findings, we additionally conduct node1582

classification experiments on four other datasets.1583

The results, presented in Table 9, are consistent1584

with the key remarks from Section 3: incorporating1585

graph structure significantly enhances LLM per-1586

formance, and instruction tuning further amplifies1587

their effectiveness on graph tasks.1588

H.2 Data Leakage Concern in LLMs1589

Benchmarking1590

One of our primary concerns is that the datasets we1591

use are widely adopted, and it is highly likely that1592

LLMs have already been exposed to them during1593

pre-training, posing a risk of data leakage. Follow- 1594

ing (Huang et al., 2023), we conduct experiments 1595

using the original ogbn-arxiv dataset and a newly 1596

collected arxiv-2023 dataset, which contains arXiv 1597

computer science papers published in 2023. Arxiv- 1598

2023 and ogbn-arxiv share strong similarities in 1599

their network structures, with consistent in-degree 1600

and out-degree distributions indicating analogous 1601

citation patterns. We evaluate the LLaMA-2-13B 1602

(Llama13B) model (trained on data up to Septem- 1603

ber 2022) (Touvron et al., 2023) on node classifica- 1604

tion tasks over both datasets. Other experimental 1605

settings follow those described in Section 3. 1606

H.2.1 Results 1607

The experimental results are presented in Table 1608

10. If data leakage were a key factor driving LLM 1609

performance on ogbn-arxiv, we would expect a no- 1610

ticeable performance drop when switching to the 1611

leakage-free arxiv-2023 dataset—greater than that 1612

observed for baseline models trained from scratch. 1613

However, the accuracy difference between the two 1614

datasets for LLMs is comparable to that of baseline 1615

models, and in some cases, LLMs even achieve 1616

better accuracy on arxiv-2023. Moreover, we find 1617

that graph structure information and instruction 1618

tuning remain the most influential factors in im- 1619

proving LLM performance. These findings suggest 1620
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Figure 3: LLM performance on node classification with-
out node attributes

that even if data leakage exists, its impact on LLM1621

effectiveness in graph tasks is minimal. In sum-1622

mary, our results provide no strong evidence for1623

data leakage being the main driver of performance,1624

and instead highlight the robustness and general-1625

ization capability of LLMs across datasets with1626

different temporal distributions.1627

H.3 LLM Understanding of Graph Structures1628

The structure of a graph sets it apart from natu-1629

ral language, and the model ability to comprehend1630

these structures is vital for enhancing its perfor-1631

mance on graph tasks. In this section, we explore1632

the ability of instruction-tuned LLMs to understand1633

graph structures.1634

H.3.1 Experiment Settings1635

We remove all node attributes and retain only node1636

IDs to eliminate the influence of attributes on LLM1637

reasoning. Examples of these prompt formats are1638

provided in Appendix I.3.1639

Table 10: Performance of different models on node
classification tasks. The datasets are ogbn-arxiv and
arxiv-2023. The best results in each category are high-
lighted. The underline means the overall best result.

Model Prompt ogbn-arxiv arxiv-2023

GCN - 69.90 65.33
GraphSAGE - 71.35 67.29
GAT - 68.69 64.90
GraphCL - 67.87 66.82
GraphMAE - 65.54 62.36
Graphormer - 71.99 69.08

Llama13B

ego 55.24 57.70
1-hop w/o label 59.03 59.42
2-hop w/o label 65.90 63.02
1-hop w label 66.33 63.50
2-hop w label 67.87 66.75

tuned Llama13B
ego 66.17 65.20

1-hop w/o label 75.45 76.01
2-hop w/o label 76.51 75.82

H.3.2 Results 1640

Node classification We present the results of 1641

node classification in Figure 3. “Original” refers 1642

to Llama3B or Llama8B without parameter opti- 1643

mization, while “1-hop” and “2-hop” correspond 1644

to 1-hop w/o label and 2-hop w/o label, respec- 1645

tively. From the figure, we observe that off-the- 1646

shelf LLMs perform similarly to random guess- 1647

ing in node classification. For instance, with 7 1648

classes in Cora, the probability of random guessing 1649

correctly is 14.28%, and the experimental results 1650

align closely with this probability. This is because 1651

LLMs struggle to make accurate predictions based 1652

purely on graph structure without semantic infor- 1653

mation. After instruction tuning, LLMs start to 1654

learn some graph structural information, leading to 1655

improved accuracy. However, the improvement is 1656

limited, likely because the classes in these datasets 1657

are strongly correlated with node features, and the 1658

graph structural differences between categories are 1659

minimal. This explains why simpler models like 1660

MLPs (Hu et al., 2021b) and our ego prompt for- 1661

mat perform relatively well, as they rely more on 1662

the node features than on the graph structure itself. 1663

Table 11: LLM performance on link prediction without
node attributes. Llama3B w attributes and Llama8B w
attributes are for comparison. The best , second-best ,
and third-best are highlighted.

Models Prompts Cora PubMed ArXiv Products Avg

Llama3B w attributes
1-hop 72.97 71.55 72.45 78.92 73.97
2-hop 68.21 59.95 68.55 79.17 68.97

Llama8B w attributes
1-hop 80.44 74.80 87.80 85.29 82.08
2-hop 89.39 77.30 92.30 90.77 87.44

Llama3B w/o attributes
1-hop 66.61 55.44 64.94 78.47 66.37
2-hop 72.22 58.62 65.62 74.52 67.75

Llama8B w/o attributes
1-hop 63.19 55.81 68.62 81.30 67.23
2-hop 85.58 69.50 84.88 87.78 81.94

tuned Llama3B w/o attributes
1-hop 75.88 74.70 78.30 77.38 76.57
2-hop 93.20 97.66 89.00 94.09 93.49

tuned Llama8B w/o attributes
1-hop 85.15 78.81 89.34 87.98 85.32
2-hop 94.11 97.44 93.67 94.54 94.94

Link prediction From Table 11, we observe that 1664

LLMs with node attributes outperform those with- 1665

out, highlighting the positive role of node attributes 1666

in LLM reasoning. However, after instruction tun- 1667

ing without node attributes, the LLMs show a sig- 1668

nificant improvement in link prediction accuracy. 1669

This demonstrates that LLMs can effectively learn 1670

and understand graph structures, achieving high 1671

link prediction accuracy even in the absence of 1672

node attributes. 1673

Remark 5 LLMs can learn graph structures ef- 1674

fectively through instruction tuning. While node 1675
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attributes improve performance, LLMs can still1676

achieve high accuracy in link prediction by lever-1677

aging structural information alone. However, the1678

improvement in node classification is limited, likely1679

because the classes are closely related to node fea-1680

tures and the structural differences between cate-1681

gories are minimal.1682

H.4 Robustness of LLMs1683

We aim to investigate the robustness of LLMs under1684

two challenging conditions: missing edge informa-1685

tion and decreasing graph homophily. Graph ho-1686

mophily refers to the tendency of similar nodes to1687

connect. Our goal is to understand whether LLMs1688

primarily rely on node similarity when performing1689

graph reasoning and how reducing this similarity1690

affects their performance.1691

H.4.1 Experiment Settings1692

We conduct experiments on the Cora and ArXiv1693

datasets, designing two scenarios: drop same and1694

drop random. The former examines how reducing1695

node similarity affects LLM performance, while1696

the latter investigates the impact of simply reducing1697

the number of edges.1698

• Drop Same: We randomly remove 0%, 20%,1699

40%, 60%, 80%, and 100% of edges connect-1700

ing nodes of the same class. This reduces node1701

similarity, effectively lowering the homophily1702

ratio (Loveland et al., 2024; Huang et al., 2023).1703

• Drop Random: We randomly remove edges1704

but have to ensure that the number of dropped1705

edges matches the corresponding "drop same"1706

setting. For example, if 40% "drop same" re-1707

sults in 1,000 removed edges, then 40% "drop1708

random" also removes 1,000 edges.1709

For LLMs, we use DeepSeek V3 and Llama3B.1710

As baselines, we include GCN, GraphSAGE, and1711

MixHop (Abu-El-Haija et al., 2019) (which per-1712

forms well on heterophilic graphs). All train-1713

able models (GCN, GraphSAGE, MixHop, and1714

Llama3B) are trained on graphs with varying levels1715

of edge removal. Specifically, for each dataset1716

(Cora and ArXiv), we train twelve models per1717

method—six under "drop same" and six under1718

"drop random", corresponding to the six drop per-1719

centages.1720

H.4.2 Results1721

We summarize the experimental results in Figure 4.1722

As expected, accuracy declines across all models1723

and datasets as the edge drop percentage increases. 1724

However, the impact of edge removal is not uni- 1725

form. The "drop same" condition leads to a sharper 1726

decline compared to "drop random", suggesting 1727

that reducing node similarity (homophily) has a 1728

greater negative effect than simply removing edges 1729

at random. 1730

Interestingly, DeepSeek V3 and tuned Llama3B 1731

show more resilience to homophily reduction com- 1732

pared to GCN, GraphCL, and even Mixhop, in- 1733

dicating that they rely less on node similarity for 1734

classification. Among them, tuned Llama3B stands 1735

out, not only preserving high accuracy despite edge 1736

removal but also showing the lowest dependency 1737

on node similarity. This highlights that instruc- 1738

tion tuning significantly enhances the robustness of 1739

LLMs, making them more adaptable to structural 1740

perturbations. 1741

Remark 6 Reducing homophily (via “drop same”) 1742

has a more significant negative impact than ran- 1743

domly removing edges. LLMs, especially those 1744

after instruction tuning are more resilient to struc- 1745

tural perturbations compared to GNNs like GCN, 1746

GraphSAGE, and even MixHop. 1747

H.5 Computational Overhead Analysis 1748

Computational overhead is an important considera- 1749

tion for real-world deployment. We evaluate both 1750

the training and inference times of several baseline 1751

models and LLMs with instruction tuning. The 1752

results are presented in Table 12 and Table 13. All 1753

measurements were conducted on a single NVIDIA 1754

A100-80G GPU. 1755

Based on the results, we observe that during 1756

training, graph-specific models incur significantly 1757

lower computational overhead compared to LLM- 1758

based methods. For instance, the training time of 1759

Llama8B exceeds that of classic GNNs by more 1760

than 100×. This highlights the importance of LLM 1761

transferability (discussed in Section 5.3): if a one- 1762

time training process can support multiple down- 1763

stream tasks, the high training cost may be justified. 1764

Therefore, a promising research direction is to fur- 1765

ther improve the adaptability and generalization of 1766

LLMs across different graph domains and tasks. 1767

As for inference, although LLM-based models 1768

still require more time than graph-specific ones, the 1769

difference is less critical since all inference times 1770

are within the millisecond range. Thus, unless strict 1771

real-time performance is required, the overhead gap 1772

is relatively negligible. 1773
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Figure 4: Robustness of LLMs

Table 12: Training times of different models on node classification and link prediction tasks. We use 9 prompt
formats to train LLMs on link prediction. LLM tuning was done on 4 A100-80G GPUs, so all reported times are
multiplied by 4.

Node classification Link prediction
Models Cora PubMed ArXiv Products Cora PubMed ArXiv Products

GCN 15.9s 34.9s 8.4m 15m 9.5s 26.8s 7.7m 13.4m
GraphSAGE 14.1s 33.3s 7.8m 13.8m 8.2s 23.7s 7.2m 12m
GAT 20.5s 45s 10.1m 18.4m 10.8s 32.9s 8.1m 15.2m
GraphCL 2.1m 4.1m 53m 1.2h 2m 3.2m 48.2m 1.1h
GraphMAE 3.8m 6.3m 1.1h 1.5h 3.2m 4.9m 1h 1.4h
LLaGA 13.8m 29m 6h 8.4h 12m 27.5m 5.2h 7.9h

Llama3B 1.2h 1.9h 18.3h 23.9h 1.7h 2.3h 23.2h 26.9h
Llama8B 1.8h 2.6h 25.7h 31.1h 2.1h 3h 30h 35.8h

Table 13: Inference times of different models on node classification and link prediction tasks.

Node classification Link prediction
Models Cora PubMed ArXiv Products Cora PubMed ArXiv Products

GCN 8ms 12ms 33ms 40ms 3ms 5ms 26ms 38ms
GraphSAGE 12ms 29ms 35ms 3ms 4ms 24ms 27ms 33ms
GAT 8ms 10ms 35ms 38ms 4ms 5ms 29ms 41ms
GraphCL 12ms 19ms 69ms 71ms 7ms 10ms 50ms 71ms
GraphMAE 15ms 22ms 76ms 80ms 8ms 11ms 57ms 69ms
LLaGA 40ms 69ms 112ms 159ms 27ms 37ms 99ms 134ms

Llama3B 186ms 211ms 338ms 401ms 113ms 139ms 172ms 228ms
Llama8B 231ms 238ms 381ms 459ms 127ms 151ms 203ms 273ms
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H.6 Comparison of Different LLMs on Node1774

Classification1775

In Section 3, we provided a detailed summary of1776

the performance of Llama3B, Llama8B, and Qwen-1777

plus on the node classification task. This served as1778

a foundation for understanding how different model1779

sizes and architectures influence performance on1780

graph-related problems. In this subsection, we1781

expand our exploration by introducing additional1782

large language models (LLMs) and examining di-1783

verse prompt formats.1784

H.6.1 Experiment Settings1785

We compare the performance of Llama3B (Tou-1786

vron et al., 2023), Llama8B (Touvron et al., 2023),1787

Qwen-plus (Bai et al., 2023), Qwen-max (Bai1788

et al., 2023), GPT-4o (Achiam et al., 2023), and1789

Deepseek V3 (Liu et al., 2024) on node classifica-1790

tion tasks in the ego scenario, where no structural1791

information about the target node is provided. The1792

evaluation uses four distinct prompt formats: the1793

original prompt, Chain of Thought (CoT) (McCal-1794

lum et al., 2000), Build A Graph (BAG) (Wang1795

et al., 2024a), and in-context few-shot. Below, we1796

provide a brief overview of each prompt format:1797

• Original Prompt: This prompt is identical to1798

the one used in Section 3. It provides the basic1799

context and query format for node classification1800

tasks. Specific examples can be found in Table1801

15.1802

• CoT: Based on the original prompt, this for-1803

mat appends the instruction “Let’s think step1804

by step” to encourage the model to output a1805

structured reasoning process in a step-by-step1806

manner.1807

• BAG: Building upon the original prompt, this1808

format adds the instruction “Let’s construct a1809

graph with the nodes and edges first”. This is1810

designed to guide the model toward construct-1811

ing an implicit graph representation before rea-1812

soning about the classification task.1813

• In-Context Few-Shot: This format supple-1814

ments the original prompt with three concrete1815

question-answer examples. These examples1816

aim to provide additional context and demon-1817

strate how similar tasks should be handled.1818

H.6.2 Results1819

We summarize the results in Table 14. The overall1820

trend suggests that larger models tend to perform1821

better. For instance, Llama8B consistently outper- 1822

forms Llama3B, and Qwen-max generally achieves 1823

higher accuracy than Qwen-plus. 1824

Across most models, CoT improves performance 1825

over the original prompt in Cora and PubMed, 1826

particularly for smaller models like Llama3B and 1827

Llama8B. This suggests that breaking down the rea- 1828

soning process helps the model make better predic- 1829

tions. However, on ArXiv and Products, CoT leads 1830

to performance degradation. One possible reason 1831

is that small-class datasets (like Cora and PubMed) 1832

have clear category boundaries, making structured 1833

reasoning effective. In contrast, large-class datasets 1834

(like ArXiv and Products) have high inter-class sim- 1835

ilarity, increasing ambiguity. In such cases, CoT 1836

may introduce erroneous reasoning steps by misas- 1837

sociating nodes with semantically similar classes. 1838

BAG results in significant accuracy drops for 1839

smaller models (e.g. Llama3B and Llama8B), 1840

while larger models show more stability but still do 1841

not outperform CoT or in-context few-shot. This 1842

could be due to the additional reasoning complexity 1843

introduced by BAG. Smaller models may struggle 1844

with multi-step inference and instead rely on more 1845

direct input-output mappings. Constructing a graph 1846

before classification might exceed their reasoning 1847

capacity, leading to performance declines. 1848

In-context few-shot prompting improves results 1849

on Cora and PubMed but underperforms on ArXiv 1850

and Products. Due to token limitations, only three 1851

example categories are included in the few-shot 1852

prompt. This coverage is insufficient for datasets 1853

with a large number of classes, making it difficult 1854

for the model to generalize to unseen categories. 1855

Finally, incorporating structural information is 1856

more effective than using CoT, BAG, or in-context 1857

few-shot prompting for improving LLM perfor- 1858

mance. The greatest improvement comes from 1859

instruction tuning, as even smaller models with 1860

proper tuning can significantly outperform larger 1861

untuned models. However, the trade-off is the 1862

higher computational cost and longer training time 1863

required for instruction tuning. 1864

Remark 7 Larger models generally outperform 1865

smaller models in node classification tasks. CoT 1866

and in-context few-shot prompting significantly im- 1867

prove performance on small-class datasets, but 1868

may backfire on large-class datasets due to cat- 1869

egory ambiguity and token limitations. BAG im- 1870

poses a heavy burden on smaller models, leading 1871

to noticeable performance drops. Instruction tun- 1872
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ing combined with structural information yields the1873

best results, though it requires careful considera-1874

tion of computational costs.1875

I Prompt Formats1876

I.1 Prompt Formats for Node Classification1877

As discussed in Section 3.1, there are five different1878

prompt formats in node classification. We list them1879

in Table 15 and describe them in detail.1880

I.2 Prompt Formats for Link Prediction1881

In Section 3.1, we design nine different prompt1882

formats for link prediction, which are used for both1883

instruction tuning and testing. These formats in-1884

clude:1885

Table 14: Comparison of different LLMs on node clas-
sification. The bolded parts are used to compare the
effects of using structural information and instruction
tuning. The best results in each category are high-
lighted. The underline means the overall best result.

Model Prompt Cora PubMed ArXiv Products Avg

Llama3B

original 24.72 63.20 23.10 40.80 37.96
CoT 42.19 71.43 29.90 50.21 48.43
BAG 15.68 35.32 2.00 30.00 20.67

in-context few-shot 39.48 62.20 25.63 42.85 42.52

Llama8B

original 43.39 77.80 59.35 50.12 57.67
CoT 53.51 81.80 53.24 47.41 58.99
BAG 23.80 21.08 5.80 32.13 20.68

in-context few-shot 51.29 80.13 54.60 52.20 59.41

Qwen-plus

original 52.32 80.74 70.20 64.24 66.88
CoT 61.59 83.21 66.23 67.55 69.65
BAG 57.62 85.11 64.90 64.82 68.11

in-context few-shot 52.32 82.01 70.86 59.60 66.20

Qwen-max

original 58.60 89.53 68.08 69.33 71.39
CoT 59.20 82.79 64.72 61.99 67.18
BAG 57.61 88.28 67.33 66.33 69.89

in-context few-shot 59.35 87.78 64.59 63.84 68.89

GPT-4o

original 52.63 82.32 71.32 67.92 68.55
CoT 57.12 84.90 67.53 62.18 67.93
BAG 53.73 85.11 66.92 63.36 67.28

in-context few-shot 56.52 85.40 66.10 64.91 68.23

Deepseek V3

original 54.97 83.79 70.20 66.89 68.96
CoT 59.60 85.29 62.91 65.56 68.34
BAG 54.77 89.53 64.24 56.95 66.37

in-context few-shot 58.28 85.54 63.58 62.25 67.41

Llama3B
1-hop w/o label 39.48 64.50 29.50 53.00 46.62
2-hop w/o label 49.63 69.92 29.51 56.10 51.28

Llama8B
1-hop w/o label 58.35 73.07 61.85 59.85 63.28
2-hop w/o label 62.84 83.29 68.33 59.60 68.52

Qwen-plus
1-hop w/o label 68.87 85.73 73.83 72.19 75.16
2-hop w/o label 76.16 88.98 73.51 71.56 77.55

tuned Llama3B
ego 67.08 89.28 66.58 65.59 72.13

1-hop w/o label 82.04 90.02 71.32 73.07 79.11
2-hop w/o label 85.04 91.52 72.82 77.89 81.82

tuned Llama8B
ego 77.31 92.36 70.12 73.74 78.38

1-hop w/o label 84.54 93.90 74.33 80.33 83.28
2-hop w/o label 89.67 95.22 76.01 84.51 86.35

1. 1-hop: The task is to determine if there is an1886

edge between target node1 and target node2.1887

The prompt provides the 1-hop neighbors and1888

their descriptions for both nodes.1889

2. 2-hop: Similar to the 1-hop prompt but includes 1890

2-hop neighbors and their descriptions for both 1891

target nodes. 1892

3. 1-hop node judge: Determine whether a spe- 1893

cific node is a 1-hop neighbor of the target node. 1894

4. 2-hop node judge: Determine whether a spe- 1895

cific node is a 2-hop neighbor of the target node. 1896

5. 3-hop node judge: Determine whether a spe- 1897

cific node is a 3-hop neighbor of the target node. 1898

6. Middle node connection: Determine if target 1899

node1 and target node2 are connected via a mid- 1900

dle node. 1901

7. 1-hop node fill-in: Given the 1-hop neighbors 1902

of a target node, identify an additional node that 1903

is also a 1-hop neighbor. 1904

8. 1-hop node selection: Choose the correct 1-hop 1905

neighbor of the target node from four options 1906

(A, B, C, D). 1907

9. 2-hop node selection: Choose the correct 2-hop 1908

neighbor of the target node from four options 1909

(A, B, C, D). 1910

To ensure the reasoning is non-trivial, target 1911

node1 and target node2 must not appear in each 1912

other’s 1-hop or 2-hop neighborhoods. Table 16 1913

provides a detailed description of these nine prompt 1914

formats. 1915

I.3 Prompt Formats for Pure Graph Structure 1916

In Section H.3, we propose removing all node at- 1917

tributes and keeping only node IDs to focus solely 1918

on the structural reasoning capabilities of LLMs. 1919

We refer to these graph prompts as “prompts for 1920

pure graph structure”. In Table 17, we use the 1- 1921

hop w/o label prompts for node classification and 1922

1-hop prompts for link prediction as examples, as 1923

the logic for other prompt formats follows a similar 1924

approach. 1925
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Table 15: Prompt formats for node classification.

Prompt
Formats Description

ego

"Context": "You are a good graph reasoner. Given a graph language that describes
the target node information from the Cora dataset, you need to understand the graph
and the task definition and answer the question. (<Target node>, <Node attributes>)",
"Question": "Please predict the most appropriate category for the Target node.
Choose from the following categories: <Categories>. Do not provide your reasoning.
Answer: ", "Answer": "<Correct answer>"
Example:
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 540 \nTitle: A
Model-Based Approach to Blame-Assignment in Design
<Categories>: Rule Learning \nNeural Networks \nCase Based \nGenetic Algorithms
\nTheory \nReinforcement Learning \nProbabilistic Methods
<Correct answer>: Case Based

1-hop w/o label

"Context": "You are a good graph reasoner. Give you a graph language that de-
scribes a graph structure and node information from cora dataset. You need to
understand the graph and the task definition and answer the question. (<Target
node>, <Node attributes>), (<1-hop neighbors>, <Node attributes>)", "Question":
"Please predict the most appropriate category for the Target node. Choose from the
following categories: <Categories>. Do not provide your reasoning. Answer: ",
"Answer": "<Correct answer>"
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 197 \nTitle: Optimal
Navigation in a Probibalistic World
(<1-hop neighbors>, <Node attributes>): Known neighbor papers at hop 1 (partial,
may be incomplete): \nPaper id: 295 \nTitle: A Neuro-Dynamic Programming
Approach to Retailer Inventory Management 1 \nPaper id: 749 \nTitle: On the Com-
plexity of Solving Markov Decision Problems \nPaper id: 3 \nTitle: Planning and
Acting in Partially Observable Stochastic Domains \nPaper id: 633 \nTitle: Chapter
1 Reinforcement Learning for Planning and Control <Categories>: Rule Learning
\nNeural Networks \nCase Based \nGenetic Algorithms \nTheory \nReinforcement
Learning \nProbabilistic Methods
<Correct answer>: Reinforcement Learning
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Prompt
Formats Description

2-hop w/o label

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and the task definition and answer the question. (<Target node>,
<Node attributes>), (<1-hop neighbors>, <Node attributes>), (<2-hop neighbors>,
<Node attributes>)", "Question": "Please predict the most appropriate category
for the Target node. Choose from the following categories: <Categories>. Do not
provide your reasoning. Answer: ", "Answer": "<Correct answer>"
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 546 \nTitle: GREQE
a Diplome des Etudes Approfondies en Economie Mathematique et Econometrie
(<1-hop neighbors>, <Node attributes>): Known neighbor papers at hop 1 (partial,
may be incomplete): \nPaper id: 163 \nTitle: 4 Implementing Application Specific
Routines Genetic algorithms in search, optimization, and machine learning (<2-hop
neighbors>, <Node attributes>): Known neighbor papers at hop 2 (partial, may
be incomplete): \nPaper id: 1573 \nTitle: Genetics-based Machine Learning and
Behaviour Based Robotics: A New Synthesis complexity grows \nPaper id: 1069
\nTitle: Extended Selection Mechanisms in Genetic Algorithms \nPaper id: 2232
\nTitle: Facing The Facts: Necessary Requirements For The Artificial Evolution of
Complex Behaviour
<Categories>: Rule Learning \nNeural Networks \nCase Based \nGenetic Algorithms
\nTheory \nReinforcement Learning \nProbabilistic Methods
<Correct answer>: Genetic Algorithms

1-hop w label

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and the task definition and answer the question. (<Target
node>, <Node attributes>), (<1-hop neighbors>, <Node attributes>, <Labels>)",
"Question": "Please predict the most appropriate category for the Target node.
Choose from the following categories: <Categories>. Do not provide your reasoning.
Answer: ", "Answer": "<Correct answer>"
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 2156 \nTitle:
WORST CASE PREDICTION OVER SEQUENCES UNDER LOG LOSS
(<1-hop neighbors>, <Node attributes>, <Labels>): Known neighbor papers at hop 1
(partial, may be incomplete): \nPaper id: 2098 \nTitle: Predicting a binary sequence
almost as well as the optimal biased coin \nLabel: Theory \nPaper id: 453 \nTitle:
How to Use Expert Advice (Extended Abstract) \nLabel: Theory
<Categories>: Rule Learning \nNeural Networks \nCase Based \nGenetic Algorithms
\nTheory \nReinforcement Learning \nProbabilistic Methods
<Correct answer>: Theory
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Prompt
Formats Description

2-hop w label

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and the task definition and answer the question. (<Target node>,
<Node attributes>), (<1-hop neighbors>, <Node attributes>, <Labels>), (<2-hop
neighbors>, <Node attributes>, <Labels>)", "Question": "Please predict the most
appropriate category for the Target node. Choose from the following categories:
<Categories>. Do not provide your reasoning. Answer: ", "Answer": "<Correct
answer>"
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 1443 \nTitle:
Residual Q-Learning Applied to Visual Attention
(<1-hop neighbors>, <Node attributes>, <Labels>): Known neighbor papers at hop
1 (partial, may be incomplete): \nPaper id: 1540 \nTitle: MultiPlayer Residual
Advantage Learning With General Function Approximation \nPaper id: 1540 \nTitle:
MultiPlayer Residual Advantage Learning With General Function Approximation
(<2-hop neighbors>, <Node attributes>, <Labels>): Known neighbor papers at hop 2
(partial, may be incomplete): \nPaper id: 565 \nTitle: Machine Learning Learning to
Predict by the Methods of Temporal Differences Keywords \nLabel: Reinforcement
Learning \nPaper id: 842 \nTitle: Metrics for Temporal Difference Learning
<Categories>: Rule Learning \nNeural Networks \nCase Based \nGenetic Algorithms
\nTheory \nReinforcement Learning \nProbabilistic Methods
<Correct answer>: Reinforcement Learning

Table 16: Prompt formats for link prediction.

Prompt
Formats Description

1-hop

"Context": "You are a good graph reasoner. Based on the cora dataset, determine
whether two target nodes are connected by an edge. When you make a decision,
please carefully consider the graph structure and the node information. If two nodes
share similar structure or information, they are likely to be connected. (<Target
node1>, <Node attributes>), (<1-hop neighbors>, <Node attributes>), (<Target
node2>, <Node attributes>), (<1-hop neighbors>, <Node attributes>)", "Question":
"Are Target Node1 and Target Node2 connected? Do not provide your reasoning.
Only provide "Yes" or "No" based on your inference. Answer: ", "Answer":
"<Correct answer>"

2-hop

"Context": "You are a good graph reasoner. Based on the cora dataset, determine
whether two target nodes are connected by an edge. When you make a decision,
please carefully consider the graph structure and the node information. If two nodes
share similar structure or information, they are likely to be connected. (<Target
node1>, <Node attributes>), (<1-hop neighbors>, <Node attributes>), (<2-hop neigh-
bors>, <Node attributes>), (<Target node2>, <Node attributes>), (<1-hop neighbors>,
<Node attributes>), (<2-hop neighbors>, <Node attributes>)", "Question": "Are
Target Node1 and Target Node2 connected? Do not provide your reasoning. Only
provide "Yes" or "No" based on your inference. Answer: ", "Answer": "<Correct
answer>"
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Prompt
Formats Description

1-hop node
judge

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need
to understand the graph and answer the question. When you make a decision,
please carefully consider the graph structure and the node information. (<Target
node1>, <Node attributes>), (<1-hop neighbors>, <Node attributes>), (<Target
node2>, <Node attributes>), (<1-hop neighbors>, <Node attributes>)", "Question":
"Based on the available partial information. Are Target Node1 and Target Node2
connected? Do not provide your reasoning. Only provide "Yes" or "No" based on
your inference. Answer: ", "Answer": "<Correct answer>"

2-hop node
judge

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and answer the question. When you make a decision, please
carefully consider the graph structure and the node information. (<Target node1>,
<Node attributes>), (<1-hop neighbors>, <Node attributes>), (<2-hop neighbors>,
<Node attributes>), (<Target node2>, <Node attributes>)", "Question": "Based on
the available partial information. Can Target node2 be a 2-hop neighbor of Target
node1? Do not provide your reasoning. Only provide "Yes" or "No" based on your
inference. Answer: ", "Answer": "<Correct answer>"

3-hop node
judge

"Context": "You are a good graph reasoner. Give you a graph language that de-
scribes a graph structure and node information from cora dataset. You need to under-
stand the graph and answer the question. When you make a decision, please carefully
consider the graph structure and the node information. (<Target node1>, <Node
attributes>), (<1-hop neighbors>, <Node attributes>), (<2-hop neighbors>, <Node
attributes>), (<Target node2>, <Node attributes>), (<1-hop neighbors>, <Node at-
tributes>)", "Question": "Based on the available partial information. Can Target
node2 be a 3-hop neighbor of Target node1? Do not provide your reasoning. Only
provide "Yes" or "No" based on your inference. Answer: ", "Answer": "<Correct
answer>"

Middle node
connection

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need
to understand the graph and answer the question. When you make a decision,
please carefully consider the graph structure and the node information. (<Target
node1>, <Node attributes>), (<1-hop neighbors>, <Node attributes>), (<Target
node2>, <Node attributes>), (<Middle node>, <Node attributes>)", "Question":
"Can Target node1 be connected with Target node2 through the Middle node? Do
not provide your reasoning. Only provide "Yes" or "No" based on your inference.
Answer: ", "Answer": "<Correct answer>"

1-hop node
fill-in

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and answer the question. When you make a decision, please
carefully consider the graph structure and the node information. (<Target node1>,
<Node attributes>), (<1-hop neighbors>, <Node attributes>)", "Question": "Based
on the available partial information. Which other node will be connected to Target
node1 within one hop? Do not provide your reasoning. The answer should be the
paper id. Answer: ", "Answer": "<Correct answer>"
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Prompt
Formats Description

1-hop node
selection

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need to
understand the graph and answer the question. When you make a decision, please
carefully consider the graph structure and the node information. (<Target node1>,
<Node attributes>), (<1-hop neighbors>, <Node attributes>)", "Question": "Based
on the available partial information. Which other node can be connected to Target
node1 within one hop? A.(<Node A>,<Attribute>) \nB.(<Node B>,<Attribute>)
\nC.(<Node C>,<Attribute>) \nD.(<Node D>,<Attribute>) Do not provide your
reasoning. The answer should be A, B, C or D. Answer: ", "Answer": "<Correct
answer>"

2-hop node
selection

"Context": "You are a good graph reasoner. Give you a graph language that
describes a graph structure and node information from cora dataset. You need
to understand the graph and answer the question. When you make a deci-
sion, please carefully consider the graph structure and the node information.
(<Target node1>, <Node attributes>), (<1-hop neighbors>, <Node attributes>),
(<2-hop neighbors>, <Node attributes>)", "Question": "Based on the avail-
able partial information. Which other node can be a 2-hop neighbor of Tar-
get node1? A.(<Node A>,<Attribute>) \nB.(<Node B>,<Attribute>) \nC.(<Node
C>,<Attribute>) \nD.(<Node D>,<Attribute>) Do not provide your reasoning. The
answer should be A, B, C or D. Answer: ", "Answer": "<Correct answer>"

Table 17: Prompt formats for pure graph structure.

Prompt Formats Description

1-hop w/o label
(Node

classification)

"Context": "You are a good graph reasoner. Give you a graph language that de-
scribes a graph structure and node information from cora dataset. You need to
understand the graph and the task definition and answer the question. <Target node>,
<1-hop neighbors>", "Question": "Please predict the most appropriate category
for the Target node. Choose from the following categories: <Categories>. Do not
provide your reasoning. Answer: ", "Answer": "<Correct answer>"
(<Target node>, <Node attributes>): ## Target node: \nPaper id: 197
<1-hop neighbors>: Known neighbor papers at hop 1 (partial, may be incomplete):
\nPaper id: 295 \nPaper id: 749 \nPaper id: 3 \nPaper id: 633 <Categories>: Rule
Learning \nNeural Networks \nCase Based \nGenetic Algorithms \nTheory \nRein-
forcement Learning \nProbabilistic Methods
<Correct answer>: Reinforcement Learning
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Prompt Formats Description

1-hop
(Link prediction)

"Context": "You are a good graph reasoner. Based on the cora dataset, determine
whether two target nodes are connected by an edge. When you make a decision,
please carefully consider the graph structure and the node information. If two nodes
share similar structure or information, they are likely to be connected. <Target
node1>, <1-hop neighbors>, <Target node2>, <1-hop neighbors>", "Question":
"Are Target Node1 and Target Node2 connected? Do not provide your reasoning.
Only provide "Yes" or "No" based on your inference. Answer: ", "Answer":
"<Correct answer>"
Example:
<Target node1>: ## Target node1: \nPaper id: 172
<1-hop neighbors>: Known neighbor papers at hop 1 (partial, may be incomplete):
\nPaper id: 635 \nPaper id: 430
<Target node2>: ## Target node2: \nPaper id: 245
<1-hop neighbors>: Known neighbor papers at hop 1 (partial, may be incomplete):
\nPaper id: 1636
<Correct answer>: Yes
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