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Abstract

The problem of combinatorial multi-armed bandits with probabilistically triggered arms
(CMAB-T) has been extensively studied. Prior work primarily focuses on either the online
setting where an agent learns about the unknown environment through iterative interactions,
or the offline setting where a policy is learned solely from logged data. However, each of
these paradigms has inherent limitations: online algorithms suffer from high interaction
costs and slow adaptation, while offline methods are constrained by dataset quality and
lack of exploration capabilities. To address these complementary weaknesses, we propose
hybrid CMAB-T, a new framework that integrates offline data with online interaction
in a principled manner. Our proposed hybrid CUCB algorithm leverages offline data
to guide exploration and accelerate convergence, while strategically incorporating online
interactions to mitigate the insufficient coverage or distributional bias of the offline dataset.
We provide theoretical guarantees on the algorithm’s regret, demonstrating that hybrid
CUCB significantly outperforms purely online approaches when high-quality offline data is
available, and effectively corrects the bias inherent in offline-only methods when the data is
limited or misaligned. Empirical results further demonstrate the consistent advantage of our
algorithm.

1 Introduction

Combinatorial multi-armed bandits with probabilistically triggered arms (CMAB-T) provide a powerful
framework for modeling a broad class of real-world sequential decision-making problems, including influence
maximization, learning to rank, and large language model cache (Chen et al., 2013; 2016; Wang & Chen,
2017; Wen et al., 2017; Kong et al., 2023; Liu et al., 2023; 2025; Pope et al., 2022; Zhu et al., 2023; Gim et al.,
2023; Qu et al., 2024). In these settings, a decision-maker repeatedly selects a combinatorial action, typically
a subset of base arms, and receives partial feedback governed by a probabilistic triggering process.

Most existing work on CMAB-T has focused on the online setting, where an agent learns through trial
and error by interacting with the environment over multiple rounds (Chen et al., 2013; 2016; Wang &
Chen, 2017; Wen et al., 2017; Kong et al., 2023; Liu et al., 2023; 2024). While this approach enables
adaptive learning and active exploration, it often incurs high feedback collection costs and suffers from slow
convergence—particularly in large-scale or high-stakes domains.

A study (Liu et al., 2025) has begun to explore the offline setting for CMAB-T, where the goal is to learn
decision policies from pre-collected data logs, thereby avoiding the expense of online interaction. However,
offline learning is highly sensitive to the quality and coverage of the logged data. For example, rare but
important action combinations may be missing, and distributional shifts between the offline data set and
online environment can lead to suboptimal performance. Moreover, the lack of active exploration limits the
learner’s ability to gather information about underexplored or high-uncertainty actions.

The limitations of purely online or offline learning motivate the study of hybrid learning methods, which use
offline data to warm-start online learning (Shivaswamy & Joachims, 2012; Song et al., 2023; Oetomo et al.,
2023; Agnihotri et al., 2024; Cheung & Lyu, 2024; Qu et al., 2025). These approaches balance the cost-free
nature of offline data with the adaptability of online exploration, often leading to improved sample efficiency
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in practice. While hybrid methods have been studied in the classical MAB problems, their extension to the
general CMAB-T setting remains largely unexplored.

The technical challenge arises when incorporating the offline data into the regret analysis of the online
CMAB-T. In particular, we must determine when to rely on the pure online observation and when the offline
data (may be biased) is sufficiently reliable to be used. In the MAB setting, the regret admits a clean
decomposition: it can be expressed as the sum over arms of the number of times each suboptimal arm is
pulled, multiplied by its corresponding sub-optimality gap. This makes it straightforward to quantify how
offline data reduces regret by decreasing the selection count of suboptimal arms (Cheung & Lyu, 2024). But
in our considered CMAB-T setting, such gap-based reasoning is no longer directly applicable, where the
per-round regret cannot be attributed to individual arms through simple suboptimality gaps. The regret
depends on the triggered arms and the combinatorial reward structure, making it much more difficult to
define a universal threshold for determining when to use offline data.

To overcome these challenges, our work focuses on the following fundamental questions:
(1) How to derive an algorithm that effectively leverages offline data in the online CMAB-T setting?

(2) Can we provide the corresponding theoretical guarantees that offline data leads to measurable improvement
compared with purely online algorithms?

We answer these questions through the following contributions:

Problem Formulation. We formally define the hybrid CMAB-T (H-CMAB-T) setting by extending the
classical CMAB-T framework to incorporate offline data. In particular, we define the offline dataset as a
collection of observations over base arms, and introduce a notion of bias based on the discrepancy between
the offline and online mean rewards of each arm. This formulation provides a principled basis for assessing
when offline data can be beneficial to online learning.

Algorithm Design. We propose a new algorithm hybrid CUCB leveraging the biased offline data to improve
the classic CUCB algorithm. This algorithm balances offline and online feedback through a dual-UCB
mechanism. Specifically, we construct two confidence bounds for each base arm: one purely based on the
feedback collected online, and another that hybridizes observations from both the offline data set and online
interactions with an explicit bias correction. By selecting the minimum of the two UCB estimates, the
algorithm adaptively leverages the offline data based on its quality.

Theoretical Analysis. To overcome challenge from the core difference between MAB and CMAB-T, we draw
on the intuition that while the bias may appear at the level of individual arms, the regret in CMAB-T arises
from actions that involve multiple arms and triggering mechanisms. Motivated by this, we explore a connection
between per-arm bias and action-level regret by considering a hypothetical allocation of the regret to the
arms that could be triggered in each round. This perspective allows us to bridge the arm-level discrepancy
introduced by offline data and the combinatorial nature of regret in CMAB-T. Leveraging this connection,
we construct a threshold condition that determines whether the offline estimates are reliable enough to be
used. Finally, We provide both gap-dependent and gap-independent regret bounds. To complement the upper
bound analysis, we further establish a regret lower bound for hybrid CMAB-T, which matches the structure
of the data-dependent saving term up to constant factors. This lower bound demonstrates that the regret
improvements enabled by offline data are near-optimal, and reveals a fundamental information-theoretic
limitation on the extent to which offline data can reduce regret in CMAB-T. Furthermore, our results show
that the algorithm achieves improved regret over standard online methods (Wang & Chen, 2017), with a
provable saving term that depends on the informativeness and reliability of the offline data. Our result
recovers the standard online regret when offline data is absent or adversarial, and it matches or improves
upon the results of Cheung & Lyu (2024) when the problem reduces to classical MAB.

Empirical Evaluation We complement our theoretical analysis with empirical evaluations. The results
consistently demonstrate that hybrid CUCB outperforms both purely online and purely offline baselines,
highlighting its adaptability and robustness across varying data conditions.
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2 Related Work

Online Bandits. MAB problems have been extensively studied as a foundational model for sequential
decision-making under uncertainty (Auer et al., 2002; Bubeck & Cesa-Bianchi, 2012; Lattimore & Szepesvari,
2020). The combinatorial multi-armed bandit (CMAB) framework (Chen et al., 2013) generalizes classical
MAB by allowing the learner to select subsets of arms (super arms) in each round, leading to richer modeling
power and broader applicability. In particular, the CMAB with probabilistically triggered arms (CMAB-T)
framework introduced by Chen et al. (2016); Wang & Chen (2017) captures the settings such as influence
maximization, online learning to rank where the reward depends not only on the chosen super arm but also on
a random triggering process. This framework has also been extended to incorporate contextual information
(Liu et al., 2023). A line of work has established algorithms with theoretical regret guarantees under structural
assumptions such as monotonicity and bounded smoothness (Chen et al., 2016; Wang & Chen, 2017; Wen
et al., 2017; Liu et al., 2022; 2023; 2024). All these approaches operate entirely in the online setting.

Offline Bandits. Offline learning in bandit and reinforcement learning has gained increasing attention due
to the high cost of online exploration and the availability of logged historical data. It has been explored in
many bandits settings like the classical MAB (Rashidinejad et al., 2021), contextual MAB (Rashidinejad
et al., 2021; Jin et al., 2021; Li et al., 2022) and neural contextual bandits (Nguyen-Tang et al., 2021; 2022).
For combinatorial bandits, Liu et al. (2025) recently propose CLCB, the first general framework for offline
learning in CMAB problems, which characterizes dataset quality through coverage conditions, and provide
near-optimal theoretical guarantees.

Hybrid Bandits. To mitigate the limitations of purely online or offline learning, hybrid methods aim to
combine their respective advantages by using offline data to initialize or guide online exploration. Hybrid
learning has been studied in various domains, including bandit problems (Shivaswamy & Joachims, 2012;
Oetomo et al., 2023; Agnihotri et al., 2024) and reinforcement learning (Song et al., 2023; Qu et al., 2025).
Most of these hybrid methods assume that offline data is unbiased and directly compatible with the online
environment (Shivaswamy & Joachims, 2012; Song et al., 2023; Oetomo et al., 2023; Agnihotri et al., 2024).
Qu et al. (2025) assume a strongly biased offline dataset with a lower bound on the discrepancy between
offline and online means. Cheung & Lyu (2024) do not require such assumptions and propose an algorithm
that adaptively incorporates offline data based on its reliability. To the best of our knowledge, the hybrid
learning problem in CMAB-T remains open.

3 Problem Setup

We first introduce the hybrid combinatorial mutlti-armed bandits with probabilistically triggered arms (H-
CMAB-T) problem. The H-CMAB-T problem explored in this paper is built upon the standard CMAB-T
framework (Wang & Chen, 2017). We begin by reviewing the classical CMAB-T setting, and then introduce
how offline data is incorporated in our extension.

The online environment consists of m base arms, represented as random variables X, Xo, ..., X,,, jointly
distributed according to an unknown distribution D°* € D, where D°" is supported on [0,1]™ and D is the
distribution family. For each base arm i € [m], let u$™ = Ex.pen[X;] denote its expected value, and define
the vector p°" = (ug", ..., p2") € [0,1]™ as the mean vector of all arms. Note that y°" is determined by the
underlying distribution D°". The learning process unfolds over discrete rounds ¢t = 1,2,...,T. In each round:

1. The learner selects a combinatorial action S; € S based on the previous rounds observation and feedback,
where S is a predefined action space, possibly subject to structural constraints. The combinatorial action Sy
is also called “super arm” and in many cases it is a subset of base arms.

2. The environment draws an independent sample X ) = (X{t)7 .. ,Xf,?) ~ D°m,

3. Playing action S; in the environment induces a random subset 7 C [m] of arms to be triggered. The
triggering process is stochastic: even given the environment outcome X and the chosen action S;, the
triggered set 7+ C [m] may still exhibit randomness. We model this using a probability triggering function
D%i8(S, X)), which defines a distribution over subsets of [m] conditioned on action S and environment
realization X. Formally, we assume that for each round ¢, the triggered set 7; is independently drawn from
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Dig(S,, X®)) ie., 7, ~ D™8(S;, X®). Moreover, to enable algorithms to estimate u™ from observed samples
during online learning, we make the following identifiability assumption: the outcome of each arm i does not
depend on whether it is triggered. That is, Ex . poen r~puis(s,x)[Xi | i € 7] = Exopon[Xy] = p$®, Vi € [m].

4. A non-negative reward R(S;, X, 1,) € R>q is revealed to the learner, which is a deterministic function of
the chosen action Sy, the sampled instance X, and the triggered set 7;. The expected reward of an action
S € S is given by r5(u) :== E[R(S, X, 7)], where the expectation is taken over X ~ D and 7 ~ D'8(S, X).
We emphasize that rg(p) is a function of S and the mean vector .

The goal of the learner is to maximize the total expected reward over T rounds, i.e., to design a learning
algorithm that selects S, ..., S7 to maximize Zthl E[R(S;, X 7).

While the classical CMAB-T framework captures the core structure of combinatorial bandit problems with
triggering, it assumes that all learning happens online from scratch. In many practical scenarios, however, a
significant amount of data is already available prior to online interaction—collected from historical logs or
prior deployments. For example, in online influence mazimization problem, the organizations often have
access to past propagation traces—records of how information spread—which can serve as valuable offline
data to accelerate online learning in new deployment scenarios.

Motivated by this, we consider an extension of CMAB-T that incorporates such offline data, and investigate
how it can be used to improve learning performance. More specifically, the key difference between H-CMAB-T
and CMAB-T problem is that before online learning, the player is given an offline data collection B. It is
worth noting that there may be discrepancies between offline data and the online environment. For example,
in the OIM problem, due to the characteristics of the product or shifts in user preferences, the diffusion
dynamics within social networks can differ. To characterize such phenomenon and avoid misleading of offline
data, we consider that the arms in the offline data set and the online setting may have different means.
Specifically, the outcomes of m base arms in the offline data set can be represented as random variables
Y1,Ys, ..., Y., jointly distributed according to an unknown distribution D°f and the mean vector of the
offline data is o = (u¢f, ..., uof). It is natural that |u$™ — poff| > 0, and equality holds if and only if
the offline data is unbiased. Without loss of generality, we denote IN; as the number of the independent
observations of arm i. Then the offline data set can be represented as B := {N;, {Vi ¢}V, },.

Bias control. Besides, to quantify this discrepancy, we adopt the bias control vector V = (V1,...,V,;,) as a
hyper-parameter which upper bounds the difference between the offline and online means for each arm:

" = p" < Vi, Vi€ [m)].

Since both means lie in [0, 1], we assume V; € [0, 1] for all . Smaller values of V; indicate higher alignment
between offline and online environments. In settings with prior knowledge—e.g., similar user populations or
stable network dynamics—we may set V; to be small. In fully agnostic cases where no such knowledge is
available, we conservatively set V; = 1.

Remark 1. As rigorously shown in Section 3 of Cheung € Lyu (2024), in the presence of biased offline
data, no hybrid algorithm in MAB can be guaranteed to outperform a purely online baseline unless some
prior knowledge about the bias is available. This theorem highlights that incorporating some form of prior
understanding of the bias is not just helpful but fundamentally necessary. To understand this challenge, one
can consider the unknown V setting and try to design a hybrid algorithm that learns V' during the online
interaction. This raises a challenging trade-off: if V is small, estimating it accurately may require excessive
online samples, outweighing the benefit of offline data; if V' is large, offline estimates are often too biased to be
useful, making a pure online strategy preferable. Exploring the unknown V' setting is valuable but technically
demanding, and we leave it as an important direction for future work.

Consequently, based on the above problem formulation, we define an H-CMAB-T instance as a tuple
([m],S,D, D& R, B). To make the learning problem well-defined and practically solvable, it remains to
specify how actions are selected given current estimates of the arm statistics. In many CMAB-T instances,
the action space is exponentially large and the underlying optimization problem of selecting the optimal
super arm is NP-hard (Chen et al., 2013; 2016). To decouple the statistical estimation from the combinatorial
optimization, prior works commonly assume the access to an offline oracle that returns an approximate
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solution. This allows the learning algorithm to focus on estimating arm statistics while relying on the oracle
to select actions.

Offline («, 3)-approximation oracle O. We assume access to an offline («, 3)-approximation oracle,
denoted by O. This oracle takes as input the mean vector y = (i1, ..., itm,) and returns an action S© € S
such that P [rgo(u) > a-opt,] > B, where a € (0,1] is the approximation ratio, and 3 € (0,1] is the
success probability. Here, opt, denotes the optimal expected reward under mean vector y, defined as
opt,, :=Supges rs(w). And we assume that opt,, is bounded for all y.

Further, the objective of the learner is to minimize the («, 3)-approximation regret defined as below (Chen
et al., 2013; 2016; Wang & Chen, 2017; Wen et al., 2017).

Definition 1 ((«, §)-approximation regret.). The («, 8)-approximation regret of a learning algorithm A over
T rounds under an H-CMAB-T instance ([m],S,D, D", R, B) is

T
Z R(SA, X, Tt)] =a-B T opt,m—E

t=1

Regfon’aﬁ(T) =a-f-T opt,m—E

T
Z TS{“ (,u‘on)‘| )

where StA is the action selected by algorithm A at round t, and the expectation is taken over the randomness of
the environment outcomes {XMYI_ | the triggered sets {T;}I_,, and the internal randomness of the algorithm.

This notion of regret captures how far the cumulative reward falls short of what could be obtained by always
playing a near-optimal action provided by the oracle.

We now introduce several conditions that are used to establish regret guarantees. These conditions are widely
adopted in the CMAB literature (Chen et al., 2016; Wang & Chen, 2017; Wen et al., 2017; Liu et al., 2023;
2025). To facilitate the presentation, we denote p-D’S

.7 as the probability that arm 7 is triggered when action S
is selected in environment D.

Condition 1 (Monotonicity). We say that a CMAB-T problem instance satisfies monotonicity, if for
any action S € S, for any two distributions D, D’ € D with expectation vectors p = (p1,..., fm) and
W= (s 11), we have rs(p) < (') if i < gl for all i € [m)].

Condition 2 (1-Norm TPM Bounded Smoothness). We say that a CMAB-T problem instance satisfies
1-norm TPM bounded smoothness, if there exists B € RT (referred as the bounded smoothness constant)
such that, for any two distributions D, D’ € D with expectation vectors p and p', and any action S, we have

Irs(p) = rs(W)| < B sepm P i — 1)

The two reward function conditions encode natural intuitions in the CMAB-T setting: Condition 1 reflects
monotonicity—if all arm means are higher in one set than another, any action should yield a higher expected
reward; Condition 2 captures the role of triggering probabilities—arms that are triggered more often contribute
more to the reward and thus require more accurate mean estimates, while less frequently triggered arms can
tolerate greater uncertainty.

4 The Hybrid CUCB Algorithm

In this section, we provide an algorithm, hybrid CUCB (Algorithm 1), aiming to leverage useful offline data
to accelerate the online learning efficiency. The hybrid CUCB algorithm runs as follows. In each round, the
algorithm computes two UCB vectors:

UCB; = (UCBy(1),...,UCB(m)), UCB? = (UCB$(1),...,UCBS(m)),
and then feeds the coordinate-wise minimum two of them into the (a, 8)-approximation oracle to select an
action.

The vector UCB; follows the standard CUCB construction (Wang & Chen, 2017) (Line 6 and 8), representing
the conventional UCB established with the pure online feedback, where T; denotes the number of times that
arm 7 has been triggered.
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Algorithm 1 Hybrid CUCB with Computation Oracle

Require: Valid bias bound V, number of arms m, offline data B := {N;, {Y;,S}iv;'l ™, horizon T, Oracle
1: for each arm i € [m] do

2 e =N Vi, Tie0, 0

3: end for

4: fort=1,2,...,T do

5: for each arm i € [m] do

6: rady (i) < o/ 2EEme) b =o00if T, =0
7: rad? (i) « QI?i(i%ts) + N]iT Vi p=ooif N;+T;=0
8: UCBt (Z) — ﬂ;)n + radt (l)

o: UCB§ (i) - ML 4 o (i)

10: fi; + min {UCBt(i), UCBS(4), 1}

11: end for

12: S < Oracle(fi1, .. -, fim)

13: Play action S, triggering a set 7 C [m] of base arms

14: for each i € 7 with feedback Xi(t) do

15: Ty Ti+1 Ao« pon + (X — pony/T;

16: end for

17: end for

As to H-CMAB-T problem, to effectively leverage offline data while remaining robust to distributional
mismatch, we design a hybrid confidence bound UCBtS that adaptively incorporates offline observations.
Intuitively, when the offline mean of an arm is close to its online counterpart, the offline data should be more
trusted. Conversely, if the discrepancy between the two is large, the algorithm should rely primarily on online
feedback.

Based on this intuition, we construct UCBtS (7) using a weighted empirical mean and a bias-adjusted confidence
radius (Line 7 and 9). The empirical mean aggregates offline and online samples proportionally to their
counts, while the confidence radius consists of two components: a standard deviation term based on the total
offline and online sample size N; + T;, and a bias penalty scaled by the discrepancy bound V;. The weight
N;/(N; + T;) ensures that the penalty becomes more prominent as more offline data is used.

Finally, by taking the minimum between the two UCB estimates, the algorithm can exploit useful offline
data. Intuitively, if N; is large and V; is small such that UCB; (i) < UCBy(i), then the offline data is useful
for online exploration and the algorithm utilizes the hybrid UCB? (i). Otherwise, if uof and pé™ are far
apart, then UCB? (i) becomes large. The algorithm would default to UCBy (i), effectively ignoring offline data.
In both cases, the selection rule ensures that the decision is made conservatively, based on the estimated
trustworthiness of the offline data. We next provide the regret upper bound for Algorithm 1 in Section 5.

5 Theoretical Analysis

In this section, we provide the theoretical results for hybrid CUCB. We first provide the gap-dependent regret
upper bound and the corresponding discussions. The gap-independent regret analysis comes later and the
lower bound is discussed in the end. The complete proof is provided in the appendix.

5.1 Gap-Dependent Bound

We first define the reward gaps used in the regret analysis.
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Definition 2 (Gap (Wang & Chen, 2017)). Fiz a distribution D and its expectation vector w. For each
action S, we define the gap As = max(0,a - opt,, — r5(p)). For each arm i, we define

Amin - Dlg,lf AS’ Amax - sup AS-
5€8:p; 7 >0,A5>0 SeSpP 5 >0,A5>0
As a convention, if there is no action S such that p; %> 0 and Ag > 0, we define Al = +oo, A . =0.

7
max*

Further define Amin = min;epm) AL, Amax = maX;epm A
Let S = {i € [m] | pf’s > 0} be the set of arms that could be triggered by S. Let K = maxges |S|. To
formally capture the influence of the discrepancy between offline and online environment, we introduce a
measure w; := V; + p — u, i € [m]. By the definition of V, we have that w; € [0,2V;]. Intuitively, the
quantity w; allows us to express how much the offline data for arm ¢ deviates from the true online behavior,
and plays a key role in determining the extent to which the offline data influences the online learning.

Theorem 1 (Gap-Dependent Regret Bound). For an H-CMAB-T problem ([m],S, D, D', R, B) that satisfies
monotonicity (Condition 1) and TPM bounded smoothness (Condition 2), the hybrid CUCB algorithm with an
input bias control vector V and an (a, 8)-approzimation oracle achieves an («, B)-approximate gap-dependent
regret bounded by:

64v/2B2K log(4mT? 2
Reg o o 5(T) < Zmax{ V2 N.Og( m )—8B,/2Nglog(4mT3),0}+4Bm+ %Amax, (1)

i€[m] min

where
2BKw; )°
~ Y

NZ-':NZwmax{l—
min

Following Theorem 1, we now provide a detailed interpretation of the regret bound and its implications for

how offline data is used by our algorithm.

A key quantity in the bound is N/, which represents the amount of effectively utilized offline data for arm
i. The multiplicative factor can be interpreted as the utilization rate of the offline data. For a fixed online
learning setting, the term 2BK /A’ is constant, so the utilization rate increases as the discrepancy w;
decreases. When the offline data is unbiased (i.e., V; = w; = 0), we have full utilization: N/ = N;. In contrast,
when w; > Al . /(2BK), the utilization rate drops to zero, and the offline data is effectively ignored. This
reflects our design intuition: offline data that closely matches the online environment should be trusted more
and used more aggressively. The result of Theorem 1 recovers the result of CMAB-T (Wang & Chen, 2017)
as a special case when N/ = 0 for all ¢. The setting may correspond to the case where the offline data do
not exist (i.e. N; = 0 for all i € [m]) or the case that the offline data is fully misaligned with the online
environment.

In general, our regret bound takes the form of the traditional regret in a purely online setting plus a benefit
term of order O(—+/N/). One might wonder why the adjustment is of order O(—+/N]) instead of O(—N})
in Cheung & Lyu (2024), which subtracts a term proportional to the effective number of plays, roughly
N/, times the per-play regret. This difference arises from the distinct analytical techniques used in the
MAB and CMAB-T settings. In MAB, the regret can be directly decomposed by counting the number of
times each sub-optimal arm is selected. Thus, the benefit from offline data is proportional to the number
of these selections avoided. In contrast, the CMAB-T analysis—enabled by the monotonicity and TPM
condition—bounds the regret by analyzing the discrepancy between the UCB estimates and the true mean
rewards. Intuitively, O(f\/]W ) comes from the regret saved in this discrepancy. With the offline data, we
can interpret the online learning process as beginning from the (N} + 1)-th observation for each arm 4. The
resulting saving in the discrepancy between the UCB estimates and the true mean rewards is approximately

Zi\[:i,l Vl9og(4mT3)/s = O(y/N/log(4mT?)). When N/ is larger than 64B?K?log(4mT?)/(Al;,)? , the

regret incurred during the online phase becomes bounded by a constant independent of T'. This aligns with
the same observations in the reduced MAB setting discussed in Cheung & Lyu (2024).
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5.2 Gap-Independent Bound

We then analyze the gap-independent regret upper bound. We obtain two candidate bounds, denoted as 1
and +y, each derived from a different proof technique. The final regret bound takes the minimum among them.

Theorem 2 (Gap-Independent Regret Bound). For an H-CMAB-T problem (Im],S,D, D% R,B) that
satisfies monotonicity (Condition 1) and TPM bounded smoothness (Condition 2), the hybrid CUCB algorithm
with an input bias control vector V and an («, B)-approzimation oracle achieves an («, 3)-approximate
gap-independent regret bounded by:

2
Reg,on o.5(T) < min{), 7} +4Bm + %Amax , 2)

where ¥ and v are two candidate bounds derived via distinct proof techniques:

Y = 8V2B\/log(4mT?) | > max {,/I;T - Wo} +VmKT |, (3)

i1€[m]

2log(4mT3
v = 16BKT | 28U | prer (4)
Tx
Here
2
KT
NN:NZ 1-— i max — )
; max{ VG mlog(4mT3)’0} , W maxwi, (5)

and T, 1s defined via

max T
T\ n

s.t. 7 < N;+n(i) where T € N;n(i) € N, Vi,

> n(i) < KT.

1€[m]

These two upper bounds capture different aspects of how offline data can reduce exploration cost in the
H-CMAB-T setting. We will interpret each bound, compare their relative strengths, and highlight how they
recover or generalize existing results in the literature as follows.

Formally, the first bound ¢ involves the quantity N/’, defined analogously to N/ in the gap-dependent bound,
and it is interpreted as the amount of effectively used offline data. Similarly, the quantity N;' embodies the
guiding principle behind our algorithmic design in Section 5.1: the more aligned the offline data is with the
online environment, the more confidently and extensively it can be incorporated into the learning process.
The setting where N/’ = 0 for all 7 recovers the pure online CMAB-T problem in (Wang & Chen, 2017), and
the resulting bound matches their gap-independent result in order. In this sense, 1 generalizes their analysis
by quantifying the potential reduction in regret due to informative offline data via an O(—\/W ) saving term.
Moreover, it is worth noting that the use of the max{-,0} operator implies that 1) ranges between a best-case
value (when N’ is so large that the max{-,0} =0, V ¢ ) and a worst-case value (when N/’ = 0, V i) matching
the pure online regret bound. Specifically, ¥ lies between 8B \/ mKT log(4mT3) and 16B \/ mKT log(4mT?3),
depending on the informativeness of the offline data. Therefore, although v reflects meaningful offline benefits
and can cut down half of the regret at the best case, it does not improve the regret order corresponding to
the specific problem parameters.

The second bound, 7, is derived via a relaxation of exploration constraints into a covering linear program. The
LP solution 7, appearing in ~y satisfies a uniform lower bound 7, > KT /m, which ensures that the first term
in +y is always at most the worst case of ¥. It can still be smaller when N; is large and wpax is small. In some
extreme cases where wWyax < 1/BKT and N; > (BKT)?log(4mT?) , the bound 7 tends to be of constant
order which is independent of T, highlighting the potential for offline data to fully eliminate exploration cost
under perfect alignment. Moreover, y structurally aligns with recent work on leveraging offline data in the
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classical MAB setting (Cheung & Lyu, 2024). By setting K = B = 1, our H-CMAB-T problem reduces to a
hybrid MAB scenario. In this special case, v recovers (and slightly tightens) Cheung & Lyu (2024): their
bound includes a saving term of the form 27'Vj,.x, whereas ours uses Twmax With wmax < 2Vinax-

We now compare the two bounds in terms of tightness and interpretability. The bound v provides a uniform
guarantee and reflects a conservative lower baseline. While it never diverges, it also does not yield a tighter
rate even when offline data is abundant. In contrast, v can become substantially tighter in favorable regimes.
When the offline data is highly informative (i.e., large N; and small w;), 7 can reduce the regret significantly.
For example, in the ideal case of N; > (BKT)?log(4mT?) and wyax < 1/BKT, the bound tends to be a
constant, matching our expectation that regret should vanish when offline information fully resolves arm
uncertainty.

Together, these two bounds form a comprehensive characterization of the gap-independent regret in H-CMAB-
T. They offer different trade-offs between robustness, interpretability, and tightness, and demonstrate how
the size, bias, and coverage of offline data influence the learning performance

5.3 Lower Bound

Theorem 3 (Regret Lower Bound). For any H-CMAB-T algorithm A, there exists an H-CMAB-T environ-
ment ([m],S,D, D" R, B) such that :

KlogT
Reg(T) > B ) (BAO? - \/N{’-logT),

i€[m] min

o . Bwi 2
where N}’ = Nymin{1 — =&~ 0}2.

min

The lower bound in Theorem 3 complements our upper bound analysis in several important aspects. First,
the bound matches the gap-dependent saving term in our regret upper bound(Theorem 1) up to constant
factors, demonstrating that the improvement achieved by hybrid CUCB is near-optimal in its dependence on
the offline data size and bias level. In particular, the square-root term involving N/’ captures the maximal
benefit that any algorithm can extract from biased offline data, and this benefit cannot be further improved
without additional assumptions on the offline data distribution.

Second, the lower bound recovers known impossibility results in classical hybrid multi-armed bandits as a
special case. When the CMAB-T problem degenerates to a standard multi-armed bandit with K = 1 and
deterministic triggering, our bound reduces to the established regret lower bounds for hybrid MAB((Cheung
& Lyu, 2024)), indicating that our analysis generalizes prior results.

Finally, Theorem 3 reveals a fundamental limitation of hybrid learning in CMAB-T: even with access to
offline observations, the regret cannot be reduced arbitrarily unless the offline data is sufficiently informative
and well-aligned with the online environment.

6 Experiments

In this section, we compare our proposed hybrid CUCB with existing CUCB for the pure online setting
(Wang & Chen, 2017) and CLCB for the pure offline setting (Liu et al., 2025). To evaluate the performance
of CLCB, we first use this algorithm to select an action based on the offline data set and always select this
action in the following rounds. For simplicity, we assume that N; = N and V; = V for any arm 4. Due to the
space limit, more details about the reward function and triggering mechanism, as well as the experimental
setting and real-world validations, are deferred to appendix.

We evaluate on unbiased offline datasets with varying sizes N € {10,50,200}. As shown in Figure 1,
hybrid CUCB consistently outperforms both online CUCB and offline CLCB. The improvement stems from
the warm-start provided by offline data, which reduces early exploration. The advantage becomes more
pronounced with larger N, and when N is sufficiently large (e.g., N = 200), hybrid CUCB achieves constant
regret. Compared to CLCB, the hybrid approach is especially superior when offline data is scarce, since
CLCB relies solely on potentially inaccurate offline estimates.
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Figure 1: Performance comparison of hybrid CUCB against baselines with unbiased offline data set.

We further evaluate the robustness of the algorithms under distributional bias between the offline and online
environments. Specifically, we consider varying levels of bias V' € {0.2,0.3,0.4}, assuming a sufficiently
large offline dataset size (N = 200) to ensure reliable offline estimates. The results, presented in Figure 3,
demonstrate that our hybrid CUCB algorithm consistently outperforms or matches the baseline performance
across all tested levels of distributional bias.

V=0.2,N=200 V=0.3,N=200 V=0.4,N=200

— cLes — cLes — cLes

— cucs — cucs — cucs
250 — H-CUCB 250 — H-CUCB 2504 — H-CUCB

Cumulative Regret
g
Cumulative Regret
o}
g
Cumulative Regret

1000 2000 3000 4000 5000 6000 7000 8000
Time Step (t)

1000 2000 3000 4000 5000 6000 7000 8000
Time Step (t)

1000 2000 3000 4000 5000 6000 7000 8000
Time Step (t)

Figure 2: Performance comparison of hybrid CUCB against baselines with the biased offline data set.

7 Conclusion

We introduce H-CMAB-T, a new framework that extends classical CMAB-T by incorporating available
offline data into online learning. We propose the hybrid CUCB algorithm, which selectively leverages offline
observations via a minimum of two confidence bounds, controlled by a bias-aware mechanism. Theoretically,
we established both gap-dependent and gap-independent regret bounds, showing that our method effectively
reduces exploration through a data-dependent saving term. Empirical results further corroborate our
theoretical findings, demonstrating the effectiveness of the proposed method in benchmark CMAB-T scenarios.
The current CMAB-T framework does not naturally handle high-dimensional contexts or side information.
Extending hybrid learning to contextual CMAB-T represents a promising direction, with potential for broader
applicability in practical scenarios.
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Appendix
A Technical Lemmas

Definition 3 (Event-Filtered Regret (Wang & Chen, 2017)). For any series of events {&€ }1>1 indexed by
round number t, we define Regf’a(T, {&}i>1) as the regret filtered by events {&; }i>1, that is, regret is only
counted in round t if & happens in round t. Formally,

T
Regy, a(T {gt}t>1 Z O[ : Optu - TN<S£4))

For convenience, A, a, 1 and/or T' can be omitted when the context is clear, and we simply use Regﬁ‘ya(T &)
instead of Reg:! (T, {E}i>1)-

The regret upper bound relies on considering the following events of accurate estimations by UCB,(7) and
UCB?(i). For every t, define:

Ne= [ M) NNE(i),  where

1€[m]

Ni(i) = {12 < UCB,(i) < p2" + 2rady (i)},

n < UCBP(i) < pd™ + rad? (4)

2log(2t/8;)  Ni- (49" — ")
N+ T 1 N+ T -1

NE () =

Lemma 1. (Cheung & Lyu, 2024) For the event Ny defined above, we have Pr(N;) > 1 — 2md;. During the
part of discussion on regret bound, we set 6, = 1/(2mt?) fort =1,2,...,T.

In the following, we provide the useful lemmas for the gap-independent regret bound. We firstly define two
linear program (IP) and (LP):

Cr (i)
IP: max
Cr(i),i€[m) z;n ng:l N +n(i

s.t. ZCT ) < KT,

1€[m]

Cr(i) e Nt Vie [m].

LP :max 7

st. T<N;+n(i) Vie[m],
> n(i) < KT,
i€[m]

72>0, n()>0 Vie[m].
And we suppose that (C7(7))icm) € N2 and (7«, {n4(4) }icm)) are the solution to (IP) and (LP) correspond-
ingly.
Lemma 2. For the LP defined above, we have n, (i) = max{7. — N;,0}, Vi€ [m].

13
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Proof. Since optimal solutions must be feasible, then we have n. (i) > max{r. — N;,0}, Vi € [m]. We only
need to prove that if 3 such an arm ¢’ that n,(i') — max{r, — Ny,0} = € > 0, it will bring into a contradiction
statement. In fact, we can construct another solution (7', {n'(i) }iefm)) by this immediately:

’ g
T =T« + —
m

o )+ = if i
n(l)_{n*(i)"’;lf if i =i

Then we have 7 > 7., which contradicts the optimality of 7. O

Lemma 3. For the LP and IP defined above, we have C3(i) < max{[7.] — N;,0}, Vi€ [m].

Proof. Suppose that there exists an arm ¢’ such that C3.(¢') > max{[7.| — N;;,0} + 1, then there must exist
another arm i # ¢’ such that C5(i") < max{[7.] — N;»,0} — 1, or we will have:

Z Cr (i) > Z max{[7.| — N;,0} > Z max{7r. — N;,0} @ Z n. (i) = KT,

1€[m] 1€[m] i€[m] i€[m]

which contradicts the constraint of (LP). Here, (a) is from lemma 2. As a result, we can construct a feasible
solution Cr(i)ie[m) € NZy by the existence of two arms 4’ and " that:

Ca(i)—1 ifi=4d
Co(i)+1 ifi=qd"
Cn(i)  ifiem]\{¢, "}

By the property that C%(i') > 1, Cr(i') > 0, and (Cr(i))se c[m] 1 a feasible solution. But then we have

Cr (i) Cr(®)
DI SR S N N
i€[m] n(i)=1 i€[m] n(i)=1

1 1
\/C’*(”)+N~+1 \/Cq"«(i’)-l—Ni'
ERREA max{[7.], Ny} +1 ’

which contradicts the assumed optimality of (N7.(7))ie[m]-

B Proof of Theorem 1

We define the event
={rs,(n) < a- optu}

which captures that the oracle output based on the estimated means p at round t¢ achieves at least an
a-approximation of the optimal reward.

Let the filtration F;_; represent all the history observed up to and including the decision S, formally:

Fior =S, {Xiien), . S, A AXi—1i i € 1,5

14
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Here, 75 denotes the triggered set at round s, and X ; is the observed reward for arm 4 in round s if triggered.
We emphasize that the filtration F;_; already implicitly incorporates the information from the offline data.
In particular, the observations of arm i offline affect the initialization of arm statistics such as rad?and UCB?,
which in turn influence the selection of S; at each round ¢. Therefore, the subsequent triggered sets 7. and
observed rewards {X;; : ¢ € 73} are also conditioned on the offline data through the choice of S;.

The conditional expectation at round ¢ is defined as
B[] =E[ [ F-a],

which aligns with the algorithm’s access to the complete history F;_; when making decisions at round ¢.
Moreover, quantities such as S; and fi; + are F;_-measurable.

Proof. Since the p?" is the actual mean we focus to learn about for every arm ¢, we set p; = p" for every
arm ¢ for simplicity. To unify the proofs for the proof of Theorem 1 and the proof of bound ¢ in Theorem 2,
we introduce a positive parameter M; for every arm 4, which is introduced in Wang & Chen (2017). We also
further inherit the definition Mg := max; g M; for each action S and Mg = 0 if S = @ from Wang & Chen
(2017).

We first show that if {S; > Mg, }, N; and —F;, and given filtration F;_1, we have:

_ M;
ASt = Et[ASt]gEt 2B Z piD’St(Mi,t - /*’L’L) - 2BK:|] (6)
i€S,
: M;
<E. 2B Z pzD’St [(Mz‘,t — i) — QBK]] (7)
iES~t
. . M;
=E; [2B Y Iien} {(M,t — i) — ZBK} (®)
L i€S,
- ) o
-5 2% e =) 555 | )

where (6) comes from exactly the equation (11) of Appendix B.3 in Wang & Chen (2017), (7) comes from the
fact that pZD St <1 for every arm 14, (8) follows from the fact that since the algorithm choose S; using the
information of offline data, then S; and fi; ; are F;_; measurable and the only randomness is the triggering
set 7, at round ¢, which satisfies the conditions of TPE trick in Liu et al. (2023), so we can also use TPE
trick (Liu et al., 2023) to replace plp’s‘ = E[I{i € :}], and (9) is the change of notion 7.

Then we use ~ to describe the concentration for (fi; ¢ — p;) — M;/(2BK), the intuition is that we use different
UCBs depending on how informative the offline data is.

Case 1 When w; < M;/(2BK), let

4B, s=N;,=0
RT,N;,w; (Mlv S) =448 %jﬁfg)v 0<s< gT,Niywi (MZ)
0, 8 > 1N, w: (M;) or b N, w, (M;) <0,
where . ,
64B° K*log(4mT?) 2BKw; 4
KT,Ni,w,;(Mi) = MZQ - Nz . max{l - Mi ,O} .
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We first prove when w; < M;/(2BK), we have (ji;; — p;) — M;/(2BK) < Ky N, w0, (M, t):

2
Since w; < 53k, max{l — %Ki“’i,()}2 = (1 - %) > 0,

2 00 B2 2 3
1. if N; - (1 - 23}\?“’1’) > 32B°K Al/;’_gg(4mT ) then we have:

i

2

2log(4mT?3) <9 2log(4mT?3) < <1 B QBKwZ-) M;

. . 1
Nt T N, M, ) 2BK 10

(o) NO) 2log(4mT3 N;
= Hip < UCBE(Z) S pit?2 N-g-lfT'tfl) N._|_CZZ“-t,1

= H M, 9BK

- W

+ w;

i

~ T SBK

M;
= g — y — <0< (M
,Ufz,t i + 'BK _0 >~ HT,N“wl (Mut)

where (a) comes from the definition of fi; ; in Algorithm 1, (b) follows from the lemma 1 and the
definition of w;, and (c) follows from (10) and N;/(N; + T;—1) < 1.

2 2 -2 3
v 32B2K? log(4mT
2. when N; - (1 - 2315%) < A;_Zg( mT7) then we have:

_ 64B%K?log(4mT?)

1N, w; (M:) e

2BKw; \°> 32B2K2log(4mT?
—Nimax<1— w70) > og(4m )

2 2 3
(1) when T; y—1 > lp N, w; (M;) > %W, we have :

i

(a) () 2 log(4mt
foe € UCB () € iy + 2, 208me))
Tii—1
(o) Mz
< 11
< Wit g (11)

M;
<0 < Ky, N, w; (M, 1)

= it — Hi + SBRK S

where (a) comes from the definition of fi; ; in Algorithm 1, (b) follows from lemma 1, and (c) follows

2 2 . 3
from the condition that T} ;1 > LKAI;EM.

i

(2) when 0 <T; ;1 <l N, w (M), then we have:

M, (@ S, M;
_ ' 2 _
Pit = Hi — 557e UCB; (4) — i — 5B
(b) 3 . ,
9, 2log(4mT3) N; M;

“ N NAT. o T N+ T 2BK

16



Under review as submission to TMLR

- Ni+Tip1  N;i+Tij41 2BK  2BK

2 log(4mT3) Nz Mi

=2 —1)-
Ni+T; 1 Ni+Ti 1 ) 2BK

(d) 3
D, 2log(4mT )7
- Ni+ T 1

where (a) comes from the definition of fi; ; in Algorithm 1, (b) follows from lemma 1, (c) follows from
the condition that w; < M;/(2BK) and (d) follows from N;/(N; +T;;—1) —1 <0.

Case 2 When w; > M;/(2BK), we firstly define:

4B, s=0

R (My,s) = Q 4By 218UmT2) -4 < g < 0 (M)

0, s > gT(Mi),

where
32B%2K?log(4mT?)

Or(M;) = —

2BKw;

Since w; > max{1 — 2204 (0} = 0. Follow the similar analysis in case 1, we have:

M,
2BK’

M;
B = @) = 1= 555
2log(4mT3) M;
- Tii—1  2BK
(a)
< k(M s),

Hig — Hi —

where (a) follows from: if T; ;1 > p(M;) = w then from (11) we have fi; ; —p; — M; /(2BK) <

0, and if T; ;1 < ¢p(M;) we have 2,/ 2107%(%7”171 ) 2BK < ,/2103;7(%"?3)

Notice that if we set IN; = 0, then the definition of x in case 1 can cover the definition of k in case 2. As a

result, we use K7 N, w; (M;, s) for the following statement for simplicity. From the case 1 and case 2, then
we can derive the regret into two parts:

|3 as
>E,

t=1

Reg({St > Mst} /\/t,_'Ft

(a)
<E Z KT N (M, T 1)

1ETE

T
®E lz Z K N s (M, T 1)

t=1i€T,

|

Tr—_1,;

(_C)E Z Z KT,Ni,wi(Mias)

i€[m] s=0
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Tr—1,i

< Z Z KT,N; w: (M, )

i€[m] s=0

T

= Z Z KT, N; i (Mis ) + Z K (M, t)
t=1 |ieS;,w;<M;/(2BK) i€S;,wi>M;/(2BK)

= A+ B,

where (a) follows from the discussion on case 1 and case 2, (b) follows from the tower rule, (c) follows from
that T;_; ; is increased by 1 if and only if the arm ¢ is triggered at round t.

We then compute A+B:

For part A:
L, Ny w; (M)

A= Z KT N, wi (M, 8).

w;<M,;/2BK s=0

For simplicity we set N/ = N, - max{l — %Kiwi, 0}2. Since when N} > 1 N, ., (M;) 67N, w; (M, ) =0, we
consider the case that N} < lp n, ., (M;) :

8, Ny w; (M) L, Ny w; (M) 1
KT N, w; (M, s) = 4B+/2log(4mT3) ———=ds+ 4B
% % A
(a) . L1 Ny w; (M) 1
< 4B+/2log(4mT / ———ds+4B
V/2log( ) | NS

(b) = L, Ny w; (M) 1
< 4B+\/2log(4mT* / ———ds+4B
= ABvloglmT?) | NoET

4v2B2K log(4mT?
_ 64v2 M?g( mT”) — 8B1/2N!log(4mT?) + 4B,

where (a) is by the sum & integral inequality fLU_l flz)dz > Z7U=L f@) > LUH f(z)dz for non-increasing
function f, (b) follows from N/ < N; and the monotonicity of integrals.

For part B, similar as part A, we have:

L (M;)
64v/2B% K log(4mT?
B = Z Z K (M, s) < Z ( Mig( ) —|—4B) :
wi>Mi/QBK s=0 UJi>Mi/QBK

Sum up A + B, plus the case that N/ may be > {1 n, ., (M;) := MBZKLM, we have

64v/2B% K log(4mT?3
Reg({S; > Mg, } Nis~Fi) < Y max{ V2 M(_)g( mI”) —83,/2Nglog(4mT3),o} +4Bm.  (12)

i€[m]

For the gap-dependent bound, take M; = A’ . | then Reg(S; < Ms,) = 0. And following Wang & Chen
(2017) to handle small probability events —A; and F} we have

2 3 2
Reg(T) < Z max { 64v283 i(ilog(élmT ) _ 8B,/2N] 10g(4mT3),O} +4Bm + %Amaxa (13)

1€[m)] min
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where

9BKw; )
N;:Ni.max{l— N“,o}.

min

C Proof of Theorem 2

To prove Theorem 2, we present two candidate regret bounds, each derived via a distinct analysis technique.
We denote these bounds as ¥ and -y, and show that the regret is upper bounded by the minimum of the two.

C.1 Proof of Bound v

Proof. We further discuss (12) and (13). For the gap-independent bound, take M; = M =

\/64\/§mBQKlog(4mT3)/T, then Reg(S: < Mg,) < TM. (Naturally the N/ would change correspond-
ingly.) Then we have

64v/2B2K log(4mT?
Reg(T) < Y max{ V2 Mf)g( mT”) —8B\/2Ni”log(4mT3),0} + Reg(S; < Mg,)

i€[m]
64v/2B2K log(4mT3
<y maX{ v2 Mf)g( mT) —8B\/2Ni”log(4mT3)7O} +TM
i€[m] g
[KT
< 8v2B+/log(4mT?) | > max{ — - VN, o} +VmKT |,
1€[m]

where

2
[ KT
N'=Nj. R ol .
! e { 4+/2\| mlog(4mT3)’

C.2 Proof of Bound ~

Intuition. The key idea behind the « bound lies in adopting a different perspective for establishing early
stopping conditions. In the gap-dependent analysis, the number of times each arm ¢ needs to be triggered is
directly related to its gap. However, when such gap information is unavailable, we must seek alternative ways
to characterize how offline data effectively reduces the required online exploration for each arm.

To this end, we observe that the regret incurred by an arm depends on both the amount of offline data N;
and the number of times it is triggered online T;. Motivated by this and Cheung & Lyu (2024), a formulation
based on a linear program is obtained, which captures how much exploration can be saved through leveraging
informative offline data, even without explicit gap knowledge.

Proof. Under the events N; and —F;, and given filtration F;_1, follow the similar analysis from (6) to (9) we
have:

Ag, = E[As,]<E; | B Z P 5 (i — pi)
i€S;
=FE, |B Z i€ 7} [(jae — )]

z‘eS}
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=B, | B> (jtis — Mz’)] : (14)

1ETE

Focusing on the regret analysis on UCB® then we have:

T

2 As
T
ZEtZB /~L7,t /~L7,‘|

PETE

BY > (UCB}(i) )]

t=11i€Ts

Reg({St > MS't} ./\/;57_‘Ft =K

(a)
< E

!

(b
<E

where (a) follows from (14), and (b) follows from the tower rule and fi;; < UCB? (7). Follow from the lemma 1,
we have:

BY Y (UCBS() — )

t=11€m,

(a)BzT:Z 2log(dmt?) N

< w;)
=1 1o Ni+Tis—1 Ni+Tia
(b) 210g (4mt3)
< 2B + BKTwmax
= ;Z Ni+ Tiet v
1ETE
CT(Z)
2log(4 t
©9p Z PO ) + BE T
€[m] n(i)=0

CT(Z)
(d) 2log(4mt3)
<2B> > N rn@) T BETwmx +2Bm, (15)

i€[m] n(i)=1

Where (a) is from lemma 1, (b) follows from N; + T;,_1 > N; and the definition of K, Cp(i) in (c) is an
undetermined coefficient discuss next, and (d) considers the case that n(i) + N; may equal to zero, which in
that case we treat the log-term as one as algorithm 1 designed in line 7.

And we use linear program to consider the Cr(4):

Cr(i)
lez[ﬂ:l]ngzl \/N +n(i Z Z \/N +n(i

®) max{ [7+]—N;,0}
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4
< Z max{[7.| — N;,0} -
i€[m] Vﬁi

> (max{r., — N;,0} +1) -

1€[m]

) 4
Y (i) + 1) N

i1€[m]

8KT

< Y

=

where (a) comes from the definition of (LP), (b) from lemma 3, (c) follows from the feasibility of
(7w {n« (i) }iepmy) to (LP).

Combine (15) and (16), and following Wang & Chen (2017) to handle small probability events —A; and Fy
then we the final regret bound:

IN

N

—~
3]
~

IN

(16)

2log(4mT?3) 2

Reg(T) < 16BT + BKTwpax + 4Bm + FAmax'

Tx

D Proof of Theorem 3

Step 1. Problem Setup.

We consider a CMAB-T instance with m base arms. An action (super-arm) is a subset S C [m] with fixed
size |S| = K

Triggering distribution. When action S is played at round ¢, exactly one arm in S is triggered:

1/K, ieS
7 ::P 'E AS ZZS = ’ '
psi=Pr(i €7 |5 =5) {0, ids.

Let T; denote the number of rounds in which arm ¢ is triggered.

Reward model. When arm ¢ is triggered, its outcome is XZ-(t) ~ Bern(u;). The reward is defined as

R(S,X,7)=B-Y_ X,=B-X-,
1ET
where j* is the unique triggered arm.
Thus the expected reward of action S under mean vector p is

rs(n) =E[R(S, X,7)] = BY psji; = KZMJ

JjES jeSs

Verification of TPM smoothness. For any two mean vectors p, i/,
B
Irs(u) —rs(W)l = | 72 > (-
JjES

72'”3 1| = BZPS,]|M] 15

JES

I /\
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Therefore this instance satisfies the TPM condition with constant B.
Gaps. Assume the optimal arm is arm 1, and its mean dominates:
M1 =H2 =" = UK Z PK+1 = 2 fhme

The optimal action is S = {1,..., K} with reward

rs(p) = — - Kpi = Bua.

=

For any suboptimal arm ¢ > K, define an action

S, ={1,1,...,1,4} (K — 1 copies of arm 1, and 7).

(Since Pl =g == ,LLK)
Its expected reward is

(1) = 2 ((K = Dy + ).

Thus the action gap is

B

Ag, =rs(p) —rs, (1) = — (1 — i) =

B
7Ai7
K

K

where we define the base-arm gap A; := 1 — ;.

Regret decomposition. Let N?* be the number of times the algorithm selects action S;. Then the regret
contributed by arm 14 is

Rog,(T) = As, - B [NI) = D OB, [N:).

Because arm 1 is triggered with probability 1/K under S;, we have
1
ET) = £ EJNT & B[N} = K-E,[T].

Thus

9

| Reg,(T) = BA; -E,[T}] ]

This establishes the link between regret and the required online triggering counts.
Step 2. Construct Two Instances.

For arm ¢, we consider two environments v and v(0);

online: ™ — u™ + A, and for all j # i, p§" unchanged.

A <2V;: the offline means can fully align,
offline:

A > 2V; . match as closely as possible, but cannot fully align.

Since,

izt A=Vt <+ v
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Hence the difference cannot be smaller than

) (R R T A A

Trigger-i outcomes are Bernoulli(;) in both online and offline data (with different means under the two
environments).

KL terms.

KL(PS" || P2") = E,[T] - KL(Bern(¢") || Bern(ug™ + A)).

KL(P;)H | PO ) =N;-KL (Bern( ) Bern(/u‘l’ff (U))
By standard bandit lower bounds or the Bretagnolle-Huber inequality, we have

E,[T;] - KL(Bern(16™) || Bern(u™ + A)) + N; - KL(Bern( )\\Bern(ujﬁ“)) > logT.

Since
KL(Bern(u) || Bern(u + A)) = ©(A?) (from A%/2u(1 — p) < KL < A2/u(1 - ),
we obtain
E,[Ti]- A% + N;- (A =2V;)* Z logT.
Therefore,
logT A=2V,\> logT
] > _ .. v — _ N
E.[Ti] Z A2 N; ( A ) = N/,
where

" o__
N; =

Step3. Summary

Finally, we have:

Reg,(T) > B - A; - E,[T}]

<logT — N/ ) (Setting A = A;)

( VN Tog T logT> <N{/< e T . A —a< logT>.

A2 ! N/
? 2
Notice that A; = gap = %Amm, and w; = 2V}, then we have:

Reg(T) = ) Reg(T)>B ) <IO§Z_T - VN 10gT>

i€[m] 1€[m]
KlogT Bu;
> B EE[ j (B Aoim VN logT> ;where N/ = N;min{1 - - A“;nm 0}2.
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E Experimental Details and Real-World Validation

We compare our proposed hybrid CUCB with existing CUCB for the pure online setting (Wang & Chen,
2017) and CLCB for the pure offline setting (Liu et al., 2025). We mainly focus on the task of online learning
to rank for the considered CMAB-T problem, where the agent selects k from m base arms. The outcome
distribution of each base arm is Bernoulli. We set m = 10 and k& = 5. All results are averaged over 20 runs,
and the error bar is defined as the standard deviation divided by 1/20. The triggering process and reward
function are introduced as below following existing literature (Chen et al., 2016; Liu et al., 2025):

o Triggering process: The super arm S; is a permutation over k arms. The environment would check
the Bernoulli outcome from the first to the last one. If the first arm has outcome 1, then the triggering
stops. Otherwise, the environment would check the second arm. Similar process continues until one
arm has the outcome 1. All arms ranked before this arm are observed with outcome 0 and this arm
is observed with outcome 1. The following arms have no observations.

¢ Reward function: The reward function is defined as:

r(Se, ) =1— [ (1= p)

1€ES

We evaluate the performances of algorithms in both unbiased (V' = 0) and biased (V # 0) environments. For
the unbiased case, we generate u™ uniformly in the interval (0,0.5) and set u?ﬂ = pg". For the biased setting,
we test different values of discrepancy V' € {0.2,0.3,0.4}. To ensure both u2" and pf fall into interval [0, 1]
when evaluating different values of V;, we generate p$™ uniformly in the interval (0.4,0.5) and uniformly
choose V; =V or V; = —V. We set u‘jﬂ ="+ V.

Finally, we validate the performance of our hybrid CUCB algorithm on a real-world dataset. Specifically,
we use the MovieLens dataset, where we randomly select 10 movies as the arms and split the data into two
disjoint parts to represent online and offline feedback. The bias level V' is computed as the mean difference
between the two parts. As shown in Figure 3, our algorithm consistently outperforms or matches the baselines
across different offline dataset sizes. Notably, hybrid CUCB achieves significantly lower regret compared
to CLCB, while maintaining performance comparable to CUCB even under distributional shift. These
results highlight the robustness of hybrid CUCB in practical settings, demonstrating that the algorithm can
effectively leverage real-world offline data despite inherent biases and variability.
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Figure 3: Performance comparison of hybrid CUCB against baselines in a real-world dataset.
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