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ABSTRACT

For years, Transformers have achieved remarkable success in various domains
such as language and image processing. Due to their capabilities to capture long-
term relationships, they are expected to give potential benefits in multivariate long-
term time-series forecasting. Recent works have proposed segment-based Trans-
formers, where each token is represented by a group of consecutive observations
rather than a single one. However, the quadratic complexity of self-attention leads
to intractable costs under high granularity and large feature size. In response, we
propose Efficient Segment-based Sparse Transformer (ESSformer), which incor-
porates two sparse attention modules tailored for segment-based Transformers. To
efficiently capture temporal dependencies, ESSformer utilizes Periodic Attention
(PeriA), which learns interactions between periodically distant segments. Fur-
thermore, inter-feature dependencies are captured via Random-Partition Attention
(R-PartA) and ensembling, which leads to additional cost reduction. Our empiri-
cal studies on real-world datasets show that ESSformer surpasses the forecasting
capabilities of various baselines while reducing the quadratic complexity.

1 INTRODUCTION

Time-series forecasting is a fundamental machine learning task that aims to predict future events
based on past observations. A forecasting problem often requires long-term prediction and includes
multiple variables: for example, stock price forecasting requires multiple market value predictions
over a long temporal horizon. For this problem called multivariate long-term time-series forecasting
(M-LTSF), it is important to capture both (i) long-term temporal dependencies between past and
future events and (ii) inter-feature dependencies among different variables. For decades, M-LTSF
has been of great importance in various applications such as health care (Nguyen et al., 2021; Jones
et al., 2009), meteorology (Sanhudo et al., 2021; Angryk et al., 2020), and finance (Qiu et al., 2020;
Mehtab & Sen, 2021).

In recent years, there have been developed a number of deep neural architectures for M-LTSF prob-
lems, including linear models (Chen et al., 2023a; Zeng et al., 2022), state-space models (Ranga-
puram et al., 2018; Gu et al., 2022), and RNNs (Lin et al., 2023b; Du et al., 2021). Among them,
Transformer-based methods have proliferated (Zhou et al., 2021; Liu et al., 2022b; Lim et al., 2020;
Wu et al., 2022; Zhou et al., 2022; Li et al., 2020; Chen et al., 2023b; Zhao et al., 2023; Zhang et al.,
2023; Shao et al., 2023; Yu et al., 2023; Lin et al., 2023a; Nie et al., 2023; Zhang & Yan, 2023) be-
cause of their intrinsic capabilities to capture long-term dependencies. In the realm of Transformers
for M-LTSF, segment-based Transformers, which encode a group of consecutive observations (i.e.,
a segment) into each token, have achieved state-of-the-art performance (Zhang & Yan, 2023; Nie
et al., 2023). The excellence of segment-based Transformers comes from their tokenization which
imbues each token with richer semantics, compared to conventional observation-based approaches
where each token encodes a single observation.1 However, when the number of segments is large
because of fine-grained segments or high-dimensional features, segment-based Transformers suffer
from high complexity which originates from the quadratic cost of self-attention.

Contribution. To address the inefficiency in the segment-based Transformers, we propose Efficient
Segment-based Sparse Transformer (ESSformer) based on our two efficient self-attention modules:

1According to granularity for tokenization, we call them observation-based or segment-based Transformers.
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Figure 1: Architecture of Efficient Segment-based Sparse Transformer (ESSformer) with Periodic
Attention (PeriA) and Random-Partition Attention (R-PartA) where ‘MHSA’ denotes vanilla multi-
head self-attention in (Vaswani et al., 2017).

(i) Periodic Attention (PeriA) across the temporal dimension and (ii) Random-Partition Attention
(R-PartA) across the feature dimension. To be specific, based on our observation that a periodic
pattern appears in the self-attention matrix of segment-based Transformers, we design an efficient
temporal attention module, Periodic Attention (PeriA), by composing a dilated attention with stride
P and a block-diagonal attention with a block size P . This leads to computational cost reduction
in a temporal attention layer from O(N2

S) to O(N1.5
S ) given NS number of segments as input.2 To

capture dependencies between numerous features, we also design an efficient inter-feature attention
module, Random-Partition Attention (R-PartA), by partitioning features randomly into groups of
equal size SG and masking the attention matrix between different groups. This also reduces the
attention cost from O(D2) to O(DSG) where D is the feature size. During training, we find that
inherent stochasticity in the random partitioning of R-PartA leads to efficient yet effective training.
In the inference stage, we use an test-time ensemble technique to overcome the limitation that entire
inter-feature relationships cannot be captured from this masked attention.

We conduct comprehensive experiments on a variety of benchmark datasets for M-LTSF. Across
27 out of 28 experimental scenarios, ESSformer surpasses the forecasting performance of 11 re-
cent baselines achieving a 1.036 average rank (see Table 1). These baselines span a spectrum from
Transformer-based (Zhang & Yan, 2023; Nie et al., 2023; Zhou et al., 2022; Liu et al., 2022b; Zhou
et al., 2021; Chen et al., 2023b; Zhao et al., 2023; Xue et al., 2023; Gao et al., 2023; Lin et al.,
2023a), linear-based (Chen et al., 2023a; Zeng et al., 2022), and convolution neural network-based
(CNN) models (Wang et al., 2023; Wu et al., 2023) to implicit neural representations (INRs) (Woo
et al., 2023). Also, we demonstrate that ESSformer achieves the most efficient computational com-
plexity among various segment-based Transformers. Finally, we reveal the useful characteristic of
ESSformer in a challenging real-world scenario, the robustness under missing inputs.

To sum up, our contributions are summarized as follows:

• We propose Efficient Segment-based Sparse Transformer (ESSformer) for multivariate long-term
time-series forecasting (M-LTSF). To efficiently capture temporal dependencies even with a large
number of segments, we design Periodic Attention (PeriA) that reduces the computational cost
via approximation through periodically sparse attention (see Section 3.1).

• We also design Random-Partition Attention (R-PartA) that further reduces the computational cost
of inter-feature attention under a large feature size, by randomly partitioning features into mul-
tiple groups and capturing only intra-group connections. For inference, we utilize an test-time
ensemble method to capture complete inter-feature relationships (see Section 3.2).

• Our experimental results show the dual benefits of ESSformer equipped with PeriA and R-PartA:
improving forecasting performance in M-LTSF, as well as enhancing efficiency. For instance,
ESSformer achieves the best performance in 27 out of 28 tasks in M-LTSF (see Table 1).

2If P =
√
NS , the computational cost of our temporal attention becomes O(N1.5

S ).
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2 PRELIMINARIES

2.1 MULTIVARIATE LONG-TERM TIME-SERIES FORECASTING (M-LTSF)

Before getting into the main topic, for ease of notation, let [N : M ] denote the set of integers between
N and M , where N is inclusive and M is exclusive (i.e., [N : M ] := {N,N + 1, . . . ,M − 1}). A
D-variate time-series observation at time t can be written as xt = {xt,d ∈ R|d ∈ [0 : D]} ∈ RD,
with xt,d denoting the real-valued observation of the d-th feature at time t. The goal of time-
series forecasting is to predict future observations {xt}t∈[T,T+τ ] based on previous observations
{xt}t∈[0,T ], with T and τ indicating the length of past and future time steps, respectively. In this
work, we consider a challenging case where D > 1 and τ ≫ 1, a setting also known as multivariate
long-term time-series forecasting (M-LTSF).

2.2 SEGMENT-BASED TRANSFORMERS FOR M-LTSF

Leveraging the capability of Transformers in learning contextualized representations given a se-
quence of tokens via self-attention (Vaswani et al., 2017), many have proposed novel tokenization
techniques and attention-variants towards solving M-LTSF (Wu et al., 2022; Lim et al., 2020; Chen
et al., 2023b). While the most naı̈ve approach would be to have each token represent an observa-
tion in a single time step (Zhou et al., 2021; Liu et al., 2022b), recent works have shifted towards
segmenting time-series data across the temporal dimension and considering each token to embed ob-
servations within a fixed time span (Nie et al., 2023; Zhang & Yan, 2023), which intuitively leads to
semantically richer input tokens (e.g., the same stock price in a bull or bear market can have distinct
meanings). Throughout the paper, we distinguish the two lines of research as observation-based
and segment-based Transformers based on the granularity in tokenization. Our empirical study in
Section 4 verifies that segment-based approaches indeed outperform observation-based counterparts
in M-LTSF.

Prior to discussing our approach for segment-based M-LTSF, we finish the section by introduc-
ing several notations as well as our input tokenization procedure that follows previous work on
M-LTSF (Nie et al., 2023; Zhang & Yan, 2023). Given multivariate time-series observations
{xt,d}t∈[0:T ],d∈[0:D], we temporally divide the sequence into NS segments of equal length.3 In
other words, the b-th segment of the d-th feature can be written as

sb,d =

{
xt,d ∈ R|t ∈

[
bT

NS
:
(b+ 1)T

NS

]}
∈ R

T
NS . (1)

Then, we pass through a linear layer to embed observations to latent space and add learnable tem-
poral and feature-wise positional encodings, ETime ∈ RNs×dh and EFeat ∈ RD×dh :

H
(0)
b,d = Linear(sb,d) +ETime

b +EFeat
d ∈ Rdh , H(0) ∈ RNS×D×dh . (2)

Given the initial representations H(0) as input, a segment-based Transformer encoder with L layers
outputs the final representations H(L), which is forwarded through a decoder to predict future ob-
servations. In this paper, we employ a linear-based decoder like Nie et al. (2023), where {H(L)

b,d }NS

b=1

are concatenated and mapped into future observations {xt,d}t∈[T,T+τ ] by a single linear layer.

3 METHOD

In this section, we introduce our novel framework for M-LTSF, Efficient Segment-based Sparse
Transformer (ESSformer), with two novel sparse attention mechanisms: Periodic Attention (Pe-
riA) and Random-Partition Attention (R-PartA), that efficiently learn temporal and inter-feature de-
pendencies, respectively. Overall, given input segment representations H(0) as described in Section
2.2, each layer of ESSformer is formulated as follows:

H̄(ℓ−1) = H(ℓ−1) + R-PartA(H(ℓ−1), PeriA(H(ℓ−1))), (3)

H(ℓ) = H̄(ℓ−1) + MLP(H̄(ℓ−1)), ℓ = 1, . . . , L. (4)
3In most scenarios, we can reasonably assume the input time span T to be divisible by NS as we can adjust

T during data preprocessing as desired. In other cases when T is not adjustable, we can pad with zeros as
in Zhang & Yan (2023) and Wu et al. (2023).
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In following Sections 3.1 and 3.2, we describe the details of our sparse attention mechanisms, peri-
odic attention and random-partition attention, respectively. An overall illustration of our framework
can be found in Figure 1.

3.1 PERIODIC ATTENTION (PERIA)

To first capture temporal relationships from input segments H ∈ RNs×D×dh , PeriA processes the
input through two attention modules, each uncovering distinct temporal relationships: (i) for intra-
period relationships, a block-diagonal attention module with block size P mixes features amongst
segments within the same temporal period, and (ii) for inter-period relationships, a dilated attention
with stride P shares representations among periodically distant segments for longer-range contex-
tualization.4 Let MHSA(Q,K,V) denote the vanilla multi-head self-attention layer in Vaswani et al.
(2017) where Q,K, and V are queries, keys and values. Also, when a collection of number C is
given as index, it denotes to select all indices included in C (e.g., HC,d = {Hb,d}b∈C ∈ R|C|×dh ).
Then, the step-wise procedure of PeriA can be formulated as follows:

∀i ∈
[
0 :

T

P

]
, ṼPeriA(H)[iP :(i+1)P ],d = MHSA(H[iP :(i+1)P ],d,H[iP :(i+1)P ],d,H[iP :(i+1)P ],d),

(5)

∀j ∈ [0 : P ] , PeriA(H)[j::P ],d = MHSA(H[j::P ],d,H[j::P ],d, Ṽ
PeriA(H)[j::P ],d), (6)

where [j :: P ] denotes the set of indices starting from j with stride P (i.e., [j :: P ] := {j, j +
P, j+2P, . . . }. After the block-diagonal attention captures intra-period relationships in equation 5,
inter-period ones are considered in the dilated attention of equation 6.

Why periodic attention? Note that the cost of encoding NS segments through self-attention re-
quires O(N2

S) computational cost, which can be intractable when considering time-series data with
large T . While enlarging the span of each segment can reduce NS , previous works on Transformer-
based generative modeling have shown that low segment granularity can deteriorate inference qual-
ity (Peebles & Xie, 2023; Jiang et al., 2021). Considering that time-series forecasting is analogous
to generating future observations conditioned upon past signals (Rasul et al., 2021; Lim et al., 2023),
this calls for an efficient architecture with sub-quadratic asymptotic cost in terms of the number of
segments for practical deployment.
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Figure 2: Periodic properties
on attention maps.

In light of such limitation, PeriA effectively imposes block diag-
onal and strided sparse attention masks, which reduces the com-
putational cost without significantly sacrificing the expressivity of
self-attention. Specifically, the periodically dilated sparsity struc-
ture is inspired based on an empirical observation shown in Fig-
ure 2, which depicts the attention score matrix of Crossformer after
training on M-LTSF: the attention scores capturing temporal depen-
dencies tend to mix representations of periodically spaced tokens.
Additional visualizations from other segment-based Transformers
can be found in Appendix I.2.

In our experiments, we default to using period P∗ = 2⌈log2
√
NS⌉ ≈ √

NS , which ultimately reduces
the time and memory complexity from O(N2

S) to O(N1.5
S ). Our empirical results in Section 4 show

that periodically sparse attention with P∗ is sufficient in maintaining the downstream capabilities of
full attention. Furthermore, based on multi-periodicity in time series (Wu et al., 2023), we enlarge
representation capabilities by changing P in each layer (e.g., P1 = 2 ·P∗, P2 = P∗, P3 = 1

2 ·P∗ for
a 3-layer case). We further discuss the efficacy of our design choice in Appendix E.

3.2 RANDOM-PARTITION ATTENTION (R-PARTA)

With segment-based Transformers for M-LTSF, tokenizing each feature separately and modeling
interactions among features in addition to temporal contextualization is known to boost downstream
performance (Zhang & Yan, 2023). Unfortunately, this imposes an additional O(D2) cost with full
attention, which can be intractable when processing a large set of features D similar to the previously
discussed computational cost of encoding temporally long time-series data.

4We also assume NS to be divisible by P , which can easily be achieved by adjusting T .
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To reduce the cost with respect to D, R-PartA first randomly partitions D features into NG dis-
joint groups {G(g)}g∈[0:NG], with all groups having equal size SG (i.e.,

⋂
g∈[0:NG] G(g) = ϕ,⋃

g∈[0:NG] G(g) = [0 : D], and ∀g ∈ [0 : NG], |G(g)| = SG).5 A single partition is sampled
prior to each forward step and is used throughout all layers of the model. Then, R-PartA mixes
representations amongst features within the same group via block-diagonal attention:

∀g ∈ [0 : NG] , R-PartA(H,V)b,G(g) = MHSA(Hb,G(g),Hb,G(g),Vb,G(g)). (7)
Note that this operation takes only intra-group interactions into account, thereby reducing the com-
putational cost from O(D2) to O(DSG).6 However, in the inference stage, if we run the forecasting
procedure once, only partial inter-feature information within each group is considered. To overcome
the limitation that entire information is not exploited, an test-time ensemble method involves run-
ning the forecasting procedure with random partitioning NE times and ensembling (i.e., averaging)
NE forecasting outputs.

Why does randomly partitioning features work? In an experiment section (Section 4), we observe
that this approach is helpful for not only efficiency but also forecasting performance. Our approach
shows better forecasting performance than naı̈vely capturing dependencies among all features at
once. We conjecture that this performance boost is due to R-PartA diversifying the training set by
allowing partial feature interactions. This is equivalent to data augmentation (Gontijo-Lopes et al.,
2021; Wen et al., 2021), as the partitioning process splits each multivariate time series into several
concurrent time series with a subset of entire features, and its randomness leads to a different data
sample at each iteration. As such, the random partitioning process generates diverse time series
of sufficient dataset size from a small time-series dataset, leading to improvement in performance.
In our later experiments (Figure 4), we find that the test-time performance of ESSformer is highly
correlated with the number of possible partitions, which supports our speculation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We mainly follow the experiment protocol of previous segment-based Transformers (Zhang & Yan,
2023; Nie et al., 2023). A detailed description of datasets, baselines, and hyperparameters can be
found in Appendix C.

Datasets. We evaluate ESSformer and other methods on the seven real-world datasets: (i-iv) ETTh1,
ETTh2, ETTm1, and ETTm2 (D = 7), (v) Weather (D = 21), (vi) Electricity (D = 321), and (vii)
Traffic (D = 862). For each dataset, four settings are constructed with different forecasting lengths
τ , which is in {96, 192, 336, 720}.

Baselines. We group existing baselines into five categories. First, Crossformer (Zhang & Yan, 2023)
and PatchTST (Nie et al., 2023) are included in the segment-based Transformers. For observation-
based Transformers, we use FEDformer (Zhou et al., 2022), Pyraformer (Liu et al., 2022b), and
Informer (Zhou et al., 2021). We also compare against TSMixer (Chen et al., 2023a) and NLin-
ear (Zeng et al., 2022) which are linear-based methods. We extend NLinear to a multi-variate ver-
sion and denote it as NLinear-m. Refer to Appendix C.3 for how to modify NLinear into NLinear-m.
Furthermore, we incorporate models based on CNNs and INRs: MICN (Wang et al., 2023), Times-
Net (Wu et al., 2023), and DeepTime (Woo et al., 2023). Finally, we compare ESSformer against
concurrent Transformer-based methods: JTFT (Chen et al., 2023b), GCformer (Zhao et al., 2023),
CARD (Xue et al., 2023), Client (Gao et al., 2023), and PETformer (Lin et al., 2023a). According
to code accessibility or fair experimental setting with ours, we select these concurrent models.

Other settings. ESSformer is trained with mean squared error (MSE) between ground truth and
forecasting outputs. Also, we use MSE and mean absolute error (MAE) as evaluation metrics, and
mainly report MSE. The MAE scores of experimental results are available in Appendix I.1. After
training each method with five different random seeds, we measure the scores of evaluation metrics
in each case and report the average scores.

5We assume that D is divisible by NG. We can overcome the cases where this divisibility doesn’t hold by
repeating or dropping some features. We elaborate on the solution in Appendix A.

6Our experiment (Figure 4(b)) shows that small SG is enough to attain good forecasting performance (e.g.,
SG = 20∼30 for 300∼800 features). Therefore, the empirical complexity is nearly linear.

5



Under review as a conference paper at ICLR 2024

Table 1: MSE scores of main forecasting results. OOM denotes out-of-memory in our GPU environ-
ments. The best score in each experimental setting is in boldface and the second best is underlined.

Data Segment-based Transformer Observation-based Transformer Linear Others
ESSformer Crossformer PatchTST FEDformer Pyraformer Informer TSMixer NLinear NLinear-m MICN TimesNet DeepTime

E
T

T
h1

τ = 96 0.361 0.427 0.370 0.376 0.664 0.941 0.361 0.374 0.463 0.828 0.465 0.372
192 0.396 0.537 0.413 0.423 0.790 1.007 0.404 0.408 0.535 0.765 0.493 0.405
336 0.400 0.651 0.422 0.444 0.891 1.038 0.420 0.429 0.531 0.904 0.456 0.437
720 0.412 0.664 0.447 0.469 0.963 1.144 0.463 0.440 0.558 1.192 0.533 0.477

E
T

T
h2

96 0.269 0.720 0.274 0.332 0.645 1.549 0.274 0.277 0.347 0.452 0.381 0.291
192 0.323 1.121 0.341 0.407 0.788 3.792 0.339 0.344 0.425 0.554 0.416 0.403
336 0.317 1.524 0.329 0.400 0.907 4.215 0.361 0.357 0.414 0.582 0.363 0.466
720 0.370 3.106 0.379 0.412 0.963 3.656 0.445 0.394 0.460 0.869 0.371 0.576

E
T

T
m

1 96 0.282 0.336 0.293 0.326 0.543 0.626 0.285 0.306 0.322 0.406 0.343 0.311
192 0.325 0.387 0.333 0.365 0.557 0.725 0.327 0.349 0.365 0.500 0.381 0.339
336 0.352 0.431 0.369 0.392 0.754 1.005 0.356 0.375 0.392 0.580 0.436 0.366
720 0.401 0.555 0.416 0.446 0.908 1.133 0.419 0.433 0.445 0.607 0.527 0.400

E
T

T
m

2 96 0.160 0.338 0.166 0.180 0.435 0.355 0.163 0.167 0.191 0.238 0.218 0.165
192 0.213 0.567 0.223 0.252 0.730 0.595 0.216 0.221 0.260 0.302 0.282 0.222
336 0.262 1.050 0.274 0.324 1.201 1.270 0.268 0.274 0.330 0.447 0.378 0.278
720 0.336 2.049 0.361 0.410 3.625 3.001 0.420 0.368 0.416 0.549 0.444 0.369

W
ea

th
er 96 0.142 0.150 0.149 0.238 0.896 0.354 0.145 0.182 0.162 0.188 0.179 0.169

192 0.185 0.200 0.194 0.275 0.622 0.419 0.191 0.225 0.213 0.231 0.230 0.211
336 0.235 0.263 0.245 0.339 0.739 0.583 0.242 0.271 0.267 0.280 0.276 0.255
720 0.305 0.310 0.314 0.389 1.004 0.916 0.320 0.338 0.343 0.358 0.347 0.318

E
le

ct
ri

ci
ty 96 0.125 0.135 0.129 0.186 0.386 0.304 0.131 0.141 OOM 0.177 0.186 0.139

192 0.142 0.158 0.147 0.197 0.386 0.327 0.151 0.154 OOM 0.195 0.208 0.154
336 0.154 0.177 0.163 0.213 0.378 0.333 0.161 0.171 OOM 0.213 0.210 0.169
720 0.176 0.222 0.197 0.233 0.376 0.351 0.197 0.210 OOM 0.204 0.231 0.201

Tr
af

fic

96 0.345 0.481 0.360 0.576 2.085 0.733 0.376 0.410 OOM 0.489 0.599 0.401
192 0.370 0.509 0.379 0.610 0.867 0.777 0.397 0.423 OOM 0.493 0.612 0.413
336 0.385 0.534 0.392 0.608 0.869 0.776 0.413 0.435 OOM 0.496 0.618 0.425
720 0.426 0.585 0.432 0.621 0.881 0.827 0.444 0.464 OOM 0.520 0.654 0.462

Avg. Rank 1.036 7.214 2.857 6.929 10.286 10.429 2.786 4.607 N/A 8.000 7.25 4.357

Table 2: Test MSE of ESSformer compared to concurrent Transformer-based models for M-LTSF.

Method ETTm2 Weather Electricity Traffic Avg. Rank
τ = 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

ESSformer 0.160 0.213 0.263 0.337 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426 1.250

JTFT 0.164 0.219 0.272 0.353 0.144 0.186 0.237 0.307 0.131 0.144 0.159 0.186 0.353 0.372 0.383 0.427 2.938
GCformer 0.163 0.217 0.268 0.351 0.145 0.187 0.244 0.311 0.132 0.152 0.168 0.214 0.377 0.393 0.414 0.445 4.563

CARD 0.159 0.214 0.266 0.379 0.145 0.187 0.238 0.308 0.129 0.154 0.161 0.185 0.341 0.367 0.388 0.427 2.813
Client 0.167 0.220 0.268 0.356 0.153 0.195 0.246 0.314 0.131 0.153 0.170 0.200 0.368 0.388 0.405 0.442 5.188

PETformer 0.160 0.217 0.274 0.345 0.146 0.190 0.241 0.314 0.128 0.144 0.159 0.195 0.357 0.376 0.392 0.430 3.625

4.2 FORECASTING RESULTS

Table 1 shows the test MSE of representative baselines along with the ESSformer. ESSformer out-
performs baselines in 27 out of 28 tasks and achieves second place in the remaining one. It is worth
noting that other segment-based Transformer baselines that do not take into account sparsity (e.g.,
Crossformer, PatchTST) underperform linear-based methods (e.g., TSMixer). We also provide visu-
alizations of forecasting results in three segment-based Transformers in Appendix I.2: ESSformer,
Crossformer, and PatchTST. In these figures, ESSformer catches temporal dynamics better than oth-
ers. On top of that, ESSformer is compared to the five concurrent Transformer-based methods in
Table 2. We use five datasets because the scores of the other cases are not available in JTFT and
GCformer. ESSformer shows top-1 performance in 12 cases and top-2 in 16 cases out of 16 cases,
attaining a 1.25 average rank.

4.3 ANALYSIS

While ESSformer aims to reduce the computational complexity of segment-based Transformers,
forecasting performance is also improved in general. In this section, we conduct a plethora of
ablation studies and hyperparameter analyses to better understand these results. We further test the
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Table 3: Ablation study for PeriA and R-PartA by replacing them with vanilla multi-haed full self-
attention (MHSA). Univariate ESSformer is the case where attention for inter-feature dependencies
is removed (N/A), not considering any connection between features.

ESSformer
Variants PeriA R-PartA ETTh2 (D = 7) Weather (D = 21) Electricity (D = 321) Traffic (D = 862)

τ = 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

Original (Multivariate) PeriA R-PartA 0.269 0.323 0.317 0.370 0.142 0.185 0.235 0.305 0.125 0.142 0.154 0.176 0.345 0.370 0.385 0.426

Ablated (Multivariate) MHSA R-PartA 0.273 0.328 0.319 0.373 0.142 0.185 0.236 0.305 0.125 0.144 0.156 0.178 0.348 0.373 0.391 0.430
PeriA MHSA 0.269 0.325 0.318 0.371 0.146 0.192 0.244 0.307 0.129 0.147 0.163 0.204 0.363 0.383 0.394 0.441

Ablated (Univariate) PeriA N/A 0.272 0.325 0.318 0.374 0.141 0.186 0.237 0.308 0.128 0.146 0.163 0.204 0.368 0.388 0.404 0.441
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Figure 3: The effect of PeriA on test MSE, the number of floating point operations (FLOPs), and
memory usage by changing NS .

robustness of ESSformer under challenging real-world scenarios where some features are missing.
In this section, we only include the main experimental results so refer the readers to Appendix I for
the additional experimental results or visualizations. Furthermore, we additionally explore the effect
of changing P per layer in Appendix E.

Effectiveness of PeriA on forecasting performance. We analyze the effect of PeriA during train-
ing. In Table 3, we substitute the PeriA with a full self-attention layer and compare its result against
the original ESSformer. Due to the inductive bias inherent in a periodic form of attention, ESS-
former with PeriA improves over its counterpart. Furthermore, in Figure 3(a), the influence of PeriA
on test MSE is amplified when there are more segments.

Effectiveness of R-PartA on forecasting performance. Similar to the case of PeriA, we conduct
an ablation study on R-PartA during training, in Table 3. Furthermore, we additionally explore the
univariate case where R-PartA is removed so any connection between features is not considered. In
both experiments, the original ESSformer with R-PartA outperforms all ablated cases. One interest-
ing point is that the improvement of performance by R-PartA tends to be large, when the number
of features is relatively large (e.g., in Electricity and Traffic). Because applying random partitioning
to a dataset of larger features results in a larger dataset size of more diversity, we think that the
amplified effect of R-PartA in Electricity and Traffic originates from more enhanced cardinality and
diversity in datasets like data augmentation.

To further explore the effect of increased dataset sizes, we conduct two experiments in Figure 4 by
adjusting NP , which is the number of all possible partition choices that can be generated by random
partitioning. In other words, NP can be regarded as the size of datasets. Firstly, we directly adjust
NP and report test MSE of each case, in Figure 4(a). While {Gg}g∈[0,NG] is sampled from pools with
all possible combinations in random partitioning, we instead limit the size of the partitioning pool
into NP during training. ‘Max’ denotes the maximum size that the partitioning pool can have and
original ESSformer is trained with NP = Max. Secondly, the other way is to change NP indirectly
by adjusting SG, in Figure 4(b). The dotted line in this figure shows NP is changed by SG. In
both figures, when NP is large enough, ESSformer tends to show good forecasting performance.
Therefore, from these results, we can infer that enhanced dataset size and diversity by the random
partitioning might positively influence forecasting results.

At last, we examine the effect of the test-time ensemble method which is introduced to overcome
the limitation that R-PartA cannot capture entire inter-feature relationships. In Figure 5, after train-
ing ESSformer with R-PartA, we use two types of attention for inter-feature dependencies in the
inference stage: full attention with entire features and R-PartA with ensembling NE times. When
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Figure 4: Sensitivity to NP in Traffic. Note that according to SG, NP is changed.
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Figure 5: Sensitivity to NE in Electricity. Note that ESSformer for both lines are commonly trained
with R-PartA but have different inter-feature attention in the inference stage.

NE is small, capturing entire dependencies between features has better performance than the other.
However, when NE is sufficiently large, R-PartA with ensembling has similar performance to the
case capturing entire information and sometimes even outperforms it. Therefore, with the test-time
ensemble method and sufficient large NE , ESSformer can address the constraint of not being able
to capture complete inter-feature relationships. Note that we set NE to 3 for our main forecasting
experiments, considering both efficiency and forecasting capabilities.

Robustness of ESSformer under feature dropping. In the real world, some features in multivari-
ate time series are often missing. Inspired by the works that address irregular time series where
observations at some time steps (Che et al., 2016; Kidger et al., 2020) are missing, we randomly
drop some features of input time series in the inference stage and measure the increasing rate of
test MSE in undropped features. For comparison, we use the original ESSformer and ablated one of
which R-PartA is replaced with full attention featured in Table 3. ESSformer deals with the situation
where some features are missing by simply excluding missing features in the random partitioning
process, while the other with full attention has no choice but to pad dropped features with zeros. In
Figure 7, unlike the ablated case, original ESSformer maintains its forecasting performance, regard-
less of the drop rate of the features. This robust characteristic gives ESSformer more applicability
in real-world situations where some features are not available.

4.4 COMPLEXITY ANALYSIS

ETTh2(D = 7) Weather(21) Electricity(321) Traffic(862)
Data

107

108

109

1010

1011

FL
OP

s

FLOPs when changing D
ESSformer
Crossformer
JTFT

CARD
PETformer

Figure 6: FLOPs of self-attention for inter-
feature dependencies in various segment-
based Transformers when changing D.

The theoretical complexity of two types of atten-
tion in various segment-based Transformers is com-
pared in Table 4. ESSformer achieves the most
efficient computation complexity in both attention
cases. For temporal attention, because we set P to
P∗ ≈ √

NS , it achieves O(N1.5
S ) complexity, which

is the most efficient under fine-grained segments.
Figure 3(b) shows that FLOPs and memory usage of
ESSformer with and without PeriA whose complex-
ities are O(N1.5

S ) and O(N2
S), respectively. These

figures verify the empirical effectiveness of PeriA.
Also, for inter-feature cases, Figure 4(b) shows that
small SG is enough to generate sufficient and diverse datasets (e.g., SG = 20∼30 for 300∼800
features). As a result, ESSformer achieves the lowest or the second lowest FLOPs compared to
Crossformer (Zhang & Yan, 2023), JTFT (Chen et al., 2023b), PETformer (Lin et al., 2023a), and
CARD (Xue et al., 2023), as shown in Figure 6. While some existing approaches try to cheaply ap-
proximate dependencies among entire features with low-rank approximation, we employ the simpler
yet enough effective approach of random feature partitioning.
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PartA.

Table 4: Complexity comparison of two types of self-attention in segment-based Transformers: self-
attention for temporal dependencies (Temp.) and for inter-feature dependencies (Feat.). For Temp.
(resp. Feat.), we ignore D (resp. NS), because all the complexities are proportional to it.

Type ESSformer Crossformer PatchTST JTFT CARD PETformer

Temp. O(N1.5
S ) O(N2

S) O(N2
S) O(N2

S) O(N2
S) O(N2

S)
Feat. O(D) O(D) N/A O(D) O(D) O(D2)

5 RELATED WORK

To capture temporal and inter-feature dependencies well, various approaches have been explored for
time-series forecasting (Liu et al., 2022a; Bai et al., 2020; Liu et al., 2022c; Kollovieh et al., 2023;
Shen & Kwok, 2023; Naour et al., 2023). However, because segment-based Transformers are mainly
addressed in our work, we provide a brief explanation of existing segment-based Transformers. The
first works that proposed the segment-based tokenization are Crossformer (Zhang & Yan, 2023) and
PatchTST (Nie et al., 2023). Crossformer captures both temporal and inter-feature dependencies
between segments, while PatchTST doesn’t consider any relationships between features. Chen et al.
(2023b) proposed a joint time-frequency domain Transformer (JTFT) which utilizes representation
on frequency domains with learnable frequencies as well as one on time domains. Also, Channel
Aligned Robust Dual Transformer (CARD) (Xue et al., 2023) introduces a robust loss function for
time series forecasting to alleviate the potential overfitting issue with a new transformer architecture
that considers 3 types of connections: relationships across temporal, feature, and hidden dimensions.
Finally, Transformer with Placeholder Enhancement Technique (PETformer) (Lin et al., 2023a) pro-
posed encoder-only structures, unlike other approaches which have encoder-decoder architectures.

Prior to finishing this section, because our work also focuses on sparse attention, we introduce
some approaches to sparse attention for observation-based Transformers. Informer (Zhou et al.,
2021) reduces complexity by selecting some valuable queries via the estimation of KL divergence
between query-key distribution and uniform distribution. Pyraformer (Liu et al., 2022b) compute
attention between nodes with different resolution to address both long-term and short-term temporal
dependencies. Fedformer (Zhou et al., 2022) utilizes sparsity in the frequency domain by keep-
ing the constrained number of frequency components. Note that these methods (i) do not achieve
competitive performance on M-LTSF and (ii) only take account of the temporal dimension, unlike
segment-based Transformers.

6 CONCLUSION

In segment-based Transformers, quadratic costs become inefficient under the high granularity of
segments and a large feature size. To tackle the intractable costs, we propose ESSformer with PeriA
and R-PartA which employ dilated temporal attention and random feature partitioning, respectively.
In PeriA, based on observations about a periodical form of attention maps in segment-based Trans-
formers, intra-period and inter-period relationships between different time steps are considered. As
for R-PartA, we attain efficiency by randomly partitioning all features into multiple groups and cap-
turing dependencies within each group. During inference, an test-time ensemble method enables
R-PartA to consider entire relationships. Extensive experiments demonstrate the efficacy of ESS-
former with two sparse attention modules in term of both forecasting performance and efficiency.
Finally, we reveal the useful characteristics of our ESSformer in a challenging real-world scenario:
robust forecasting under incomplete inputs.
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Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces, 2022.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make one
strong gan, and that can scale up, 2021.

Spencer S Jones, R Scott Evans, Todd L Allen, Alun Thomas, Peter J Haug, Shari J Welch, and
Gregory L Snow. A multivariate time series approach to modeling and forecasting demand in the
emergency department. Journal of biomedical informatics, 42(1):123–139, 2009.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. In Advances in Neural Information Processing Systems, 2020.

Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang,
and Yuyang Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic
time series forecasting, 2023.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting, 2020.

Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting, 2020.

10

https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=bWcnvZ3qMb
https://openreview.net/forum?id=vpJMJerXHU
https://openreview.net/forum?id=WS7GuBDFa2
https://openreview.net/forum?id=WS7GuBDFa2
https://openreview.net/forum?id=ZcKPWuhG6wy


Under review as a conference paper at ICLR 2024

Haksoo Lim, Minjung Kim, Sewon Park, and Noseong Park. Regular time-series generation using
sgm, 2023.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Songbo Wang, and Yongxiang Wang. Petformer: Long-
term time series forecasting via placeholder-enhanced transformer, 2023a.

Shengsheng Lin, Weiwei Lin, Wentai Wu, Feiyu Zhao, Ruichao Mo, and Haotong Zhang. Segrnn:
Segment recurrent neural network for long-term time series forecasting, 2023b.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X. Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International Conference on Learning Representations, 2022b. URL https:
//openreview.net/forum?id=0EXmFzUn5I.

Yijing Liu, Qinxian Liu, Jian-Wei Zhang, Haozhe Feng, Zhongwei Wang, Zihan Zhou, and Wei
Chen. Multivariate time-series forecasting with temporal polynomial graph neural networks. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022c. URL https://openreview.net/forum?id=
pMumil2EJh.

Sidra Mehtab and Jaydip Sen. Stock price prediction using convolutional neural networks on a
multivariate time series. aug 2021. doi: 10.36227/techrxiv.15088734.v1. URL https://doi.
org/10.36227%2Ftechrxiv.15088734.v1.
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