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ABSTRACT

Visual Place Recognition (VPR) is a task of estimating the location of a query
image, predominantly executed through image retrieval using learned global de-
scriptors from a reference database of geo-tagged images. While recent approaches
have aimed to improve the scalability of VPR training by leveraging classification
loss as a proxy task, this leads to a task gap between classification and retrieval —
classification discretizes the feature space into distinct class regions, often overlook-
ing visual differences between classes. This gap makes VPR systems particularly
vulnerable to extreme visual changes such as lifelong variations. To remedy these
problems, we propose a novel Class-Relational Label Smoothing (CRLS) that
transforms one-hot labels into soft labels by considering visual information of
inter-class relations. We further enhance this method by dynamically adjusting
the influence of CRLS based on the stability of class weights, which is quanti-
fied by their magnitudes. Importantly, our findings suggest that the magnitude of
class weights serves as an indicator of class stability, which is also supported by
derivative analysis. We demonstrate that our method outperforms state-of-the-art
methods on the most extensive 17 benchmarks, effectively bridging the task gap
between classification and retrieval in visual place recognition. Code and trained
weights will be made publicly available.

1 INTRODUCTION

Visual Place Recognition (VPR) is an important task in various applications, such as robotics (Stumm
et al., 2013), autonomous driving (Bresson et al., 2017) and navigation (Mirowski et al., 2018), where
its goal is to identify a location based on visual data. Typically, VPR is approached as an image
retrieval problem (Wang et al., 2022; Zhu et al., 2023; Shen et al., 2023; Leyva-Vallina et al., 2023;
Hausler et al., 2021; Arandjelovic et al., 2016; Warburg et al., 2020; Torii et al., 2013a; Thoma et al.,
2020; Keetha et al., 2023; Lu et al.; 2024; Izquierdo & Civera, 2024), employing nearest neighbor
search based on the similarity of descriptors between a query image and gallery images. This process
enables the identification of the gallery image most similar to the query image, and subsequently,
localization is achieved using the geo-reference of the identified image.

Real-world applications of VPR face numerous challenges due to significant appearance changes in
various environments. These changes include well-known seasonal variations (Naseer et al., 2018;
Siinderhauf et al., 2013), weather conditions (Ros et al., 2016; Berton et al., 2021), illumination
changes (day/night) (Sattler et al., 2012; Maddern et al., 2017) and viewpoint changes (Carlevaris-
Bianco et al., 2016; Berton et al., 2023). Subsequently, several benchmark works (Warburg et al.,
2020; Ali-bey et al., 2022; Berton et al., 2022) have introduced lifelong datasets that include images
collected over a long temporal span. We find that changes over extended periods, such as building
modifications and remodeling, present extreme challenges for VPR, which we refer to as lifelong
variations. For instance, Fig. 1a shows how two buildings evolve over time, with one highlighted in
green and the other in orange. These buildings, located in San Francisco, undergo significant changes
due to frequent urban modifications, often requiring continuous updates to the VPR models. To
achieve effective retrieval for VPR, the trained model should continuously capture visual differences,
leading to a continuous representation space that can deal with lifelong variations.

To learn such representation spaces, existing VPR methods (Arandjelovic et al., 2016; Berton et al.,
2021; Hausler et al., 2021; Peng et al., 2021; Zhu et al., 2023; Leyva-Vallina et al., 2023; Wang
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Figure 1: An example of lifelong visual place recognition from SF-XL test vl (Berton et al., 2022).
(a) illustrates the evolution of buildings over time, using images of the same location from Google
StreetView and Flickr, linked by provided GPS data. Lifelong scenarios often show significant
changes due to frequent urban modifications. (b) and (c) compare retrieval results of our method
and a state-of-the-art method, respectively. Positive images are highlighted in green, while negative
images are highlighted in red.

et al., 2022) predominantly utilize metric learning losses such as contrastive or triplet loss, which
rely heavily on mining negative examples throughout the training database (Arandjelovic et al.,
2018). This mining process is notably resource-intensive and becomes prohibitively expensive as the
size of the dataset increases. To address this scalability issue, more recent methods (Berton et al.,
2022; 2023) have adopted a classification loss (i.e., CosFace (Wang et al., 2018)) as a proxy task,
thereby streamlining training by eliminating the need for the exhaustive negative mining. However,
while this improves scalability, it introduces a task gap between classification and retrieval tasks.
Specifically, classification tends to discretize the representation space into distinct class regions,
leading to overconfident predictions (Guo et al., 2017). This contrasts with retrieval tasks, which
require a continuous representation of subtle visual differences (Leyva-Vallina et al., 2021; Kim et al.,
2021; 2022) to capture gradual and continuous changes in environments. A naive approach to mitigate
the issue can be label smoothing (Szegedy et al., 2016), which prevents overconfidence by bringing
all classes closer together in the representation space (Miiller et al., 2019). While label smoothing can
partially relax the discretization of representation space, it assigns probabilities uniformly across all
classes, disregarding the visual differences between them, making it less effective for retrieval tasks.

In this paper, we propose Class-Relational Label Smoothing (CRLS) for lifelong VPR to better address
the task gap between classification and retrieval by incorporating visual similarities between classes
into the label smoothing process, as illustrated in Fig. 2. Unlike conventional label smoothing, which
treats all classes uniformly, we adjust the label distribution based on inter-class relationships, resulting
in a continuous representation space where visually similar classes are closer, better reflecting subtle
visual differences. However, the impact of CRLS may be influenced by fluctuations in class weights.
To address this issue, we further introduce Class Stability Weighting (CSW), which dynamically
adjusts the impact of CRLS based on the stability of class weights. Specifically, we empirically
observe that class weight magnitudes reflect the classification difficulty of each class, as further
supported by derivative analysis. Consequently, our method enables the model to learn a more robust
and continuous representation that captures gradual visual differences over time, making it particularly
effective in handling lifelong variations. Extensive experiments on 17 benchmarks demonstrate that
our approach effectively bridges the task gap between classification and retrieval, achieving superior
performance compared to state-of-the-art methods, especially under lifelong variations.

Our contributions are summarized as follows:
* To address the task gap and challenges posed by lifelong variations, we introduce Class-

Relational Label Smoothing (CRLS) that transforms one-hot hard labels into soft labels while
considering visual similarities between classes.
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Figure 2: Conceptual comparison between previous and our works. (a) The target class y shows a
street scene with buildings, which is visually similar to class j;, while class j, shows a markedly
different scene inside a tunnel. (b) Hard label strictly assigns the probability to the target class y,
treating the visually similar class j; as a negative class. (c) Label smoothing (Szegedy et al., 2016)
distributes probability evenly across all classes, including the visually dissimilar class j5 as a positive
class. (d) Our CRLS smoothes the label distribution being aware of visual relationships, thus treating
class j; as a as pseudo-positive class and class js as a pseudo-negative class.

* Building on the insights from the behavior of class weights during training, we propose Class
Stability Weighting (CSW), which dynamically adjust the label smoothing process according to
the stability of class weights.

* We organize the lifelong category based on the given temporal span and conduct comprehensive
experiments on a diverse set of 17 benchmarks. We achieve state-of-the-art performance across
the majority of benchmarks, showing notable improvements on lifelong benchmarks.

2 RELATED WORK

Visual place recognition. The task of Visual Place Recognition (VPR) has been approached
through image retrieval techniques, where the location of a query image is determined by matching
to geo-tagged images within an extensive database. Traditionally, this involved the aggregation
of hand-crafted features, such as SIFT (Lowe, 2004) and SURF (Bay et al., 2008), for a task of
VPR (Knopp et al., 2010; Gronat et al., 2013; Torii et al., 2013a; 2015). With the advent of deep
learning, many recent works (Wang et al., 2022; Zhu et al., 2023; Shen et al., 2023; Leyva-Vallina
et al., 2023; Hausler et al., 2021; Arandjelovic et al., 2016; Ge et al., 2020; Warburg et al., 2020; Wang
et al., 2023; Lu et al.) have exploited metric learning losses, such as contrastive and triplet losses,
to get more discriminative image representations. StructVPR (Shen et al., 2023) enhances RGB
global features with structural knowledge through segmentation masks and knowledge distillation.
R?Former (Zhu et al., 2023) integrates retrieval and reranking with a transformer-based framework,
offering a more computationally efficient alternative to other RANSAC-based methods (Hausler
et al., 2021; Wang et al., 2022) in the reranking stage. GCL (Leyva-Vallina et al., 2023) extends the
traditional contrastive loss in a generalized manner and constructs soft labels based on view overlap,
enabling the consideration of continuous relations of viewpoints between images while training VPR
models. The methods introduced above are primarily built upon ranking losses, with the use of a
mining strategy such as hard negative mining.

More recently, CosPlace (Berton et al., 2022) newly proposes the extensive San Francisco eXtra
Large (SF-XL) dataset, showing the scalability issues of the mining strategy in existing VPR methods.
To overcome this problem, it leverages a classification loss as a proxy task, specifically Large Margin
Cosine Loss (LMCL) (Wang et al., 2018), achieving the superior performances on VPR benchmarks.
Furthermore, EigenPlaces (Berton et al., 2023) revises the labeling strategy of the SF-XL dataset to
incorporate classes with diverse views, effectively addressing a challenge of substantial viewpoint
changes in VPR methods. However, among the VPR methods under the study that utilize classification
loss as a proxy task for training, there has been no exploration into the effectiveness of using label
smoothing or incorporating class similarity to address the task gap.
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Label smoothing and its retrieval application. Label smoothing (Szegedy et al., 2016) is first
proposed to address the issue of overconfidence in model predictions, thereby enhancing the model’s
generalization ability with smoother decision boundaries. Since its introduction, it has been widely
used for network calibration (Wang, 2023) from many works (Pereyra et al., 2017; Miiller et al., 2019;
Liu et al., 2022; Park et al., 2023; Liu et al., 2023). MbLS (Liu et al., 2022) applies label smoothing
selectively, using the distance over logits and a controllable margin for flexible generalization.
Building upon the work, ACLS (Park et al., 2023) further adjusts the label smoothing intensity
according to the logit distances. CALS (Liu et al., 2023) is another calibration technique that
calculates class-wise penalty weights from the loss using the augmented Lagrangian multiplier
method. It adjusts label smoothing intensity based on these penalty weights, enabling class-wise
calibration. However, these methods were not proposed for image retrieval or VPR.

For a retrieval application of person re-identification (re-ID), Luo et al. (2019) proposed utilizing the
label smoothing as a recipe for establishing a strong baseline. It has since been adopted and modified
by several re-ID works to improve search accuracy (Zhu et al., 2020; Cho et al., 2022; Jia et al.,
2022). Zhu et al. (2020) introduced an instance-wise adaptive label smoothing that adjusts smoothing
strengths based on network predictions and viewpoint variability within each identity class. Another
instance-wise label smoothing was proposed by Cho et al. (2022), which applies different smoothing
levels to local features considering the relationship between global and local features. However, the
existing works including calibration have not considered visual similarity-based class relations to
make representation space continuous over visual changes.

3 METHODS

3.1 PRELIMINARIES

Recent works (Berton et al., 2022; 2023) in VPR utilize a classification loss as a proxy task, employing
CosFace (Wang et al., 2018) as the training loss. A margin-based logit function for any class j
including a target class y can be formulated with a margin m and a scale factor s as:

s(cosb; —m) j=y

[(cosb;) = .
(cos 6) {scos()j jFy
Predicted probability p; are calculated using cosine similarity and softmax, which is specifically
formulated as follows:

ey

exp (I (cosb;))
Wil T[]’ @

Pi= %:exp (I (cos b))’

where W, is a weight vector of class k and x is a feature vector of an input image. These probabilities
are then utilized to compute cross-entropy loss for CosFace loss as follows:

Leoskace (9,9) = H (¢,p) = =Y _ ai log (px), 3)
k

cos b, =

where hard target distribution ¢y, is 1 for the target class and O for the rest. Subsequently, the model
trained on the classification loss is deployed for a task of image retrieval, specifically in the context
of VPR.

Label Smoothing (LS) (Szegedy et al., 2016) is a regularization technique that adjusts the hard target,
typically represented as one-hot encoded vectors, towards a smoother distribution. This adjustment
encourages the model to be less confident, thereby improving its generalization capabilities. The LS
technique modifies the target distribution g according to the smoothing parameter « and the number
of classes K, as shown in the following equations:

N (1_a)7 Jj=1y,
fLS(qJ){(K“U, i# )

Lis(q,p) = H(fus(q),p)-

In this work, we argue that assigning equal smoothing across all classes may be less effective
for image retrieval task. For the task, establishing a continuous representation space that reflects
visual differences is crucial for extreme changes such as lifelong variations, while a discretized
representation space is usually sufficient for classification tasks.
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Figure 3: Relationship between training accuracy and magnitude of class weight. (a)-(d)
show histograms depicting this relationship at different training epochs. The x-axis represents the
magnitude of the class weight, defined as the [5-norm of the weight vector, while the y-axis shows
mean classification accuracy for classes within the specific magnitude range. It appears that relatively
lower magnitudes consistently correspond to higher training accuracy throughout the overall training.

3.2 CLASS-RELATIONAL LABEL SMOOTHING

To better reflect the visual differences more within the representation space, we here introduce
Class-Relational Label Smoothing (CRLS) extending LS by integrating visual information from
inter-class relations. Thanks to the cosine-based classification loss demonstrated in Eq. 2 and 1,
the /o-normed class weight vectors are aligned within the same distance space as lo-normed feature
vectors, thereby enabling the calculation of visual similarity across classes. Hence, to capture the
visual difference between classes, the similarity-based affinity between classes is calculated using the
normalized dot product of their class weights W € R¥*¢ of dimensionality C, represented as:

Ay =o(W,) a(W;), Q)

where the [-normalization function o (f) = f/||/f||, and W, and W are the weights of the classifier
for the target class and any other classes, respectively. We then apply a softmax function to the class
relations to obtain a label distribution. Additionally, we leveraged a temperature parameter 7 to
enhance a contrast in visual similarities among classes, as follows:

G e(dyy/n)
- Zk;ﬁy exp(Ay,k/T)

Finally, our loss using CRLS is reformulated with the constructed label distribution Ay as follows:
_ (1 N Oé), .] =Y,
ferus(as) = {a!ly,j, iy, ™)
Leres(q,p) = H(feres(q), p)-

We assign labels in a sequence that mirrors the visual similarity to the target class, thereby enhancing
the model’s ability to generalize across visually similar scenarios, e.g., lifelong variation.

, Vie{l,....K}. (©6)

3.3 Lo0SS INTEGRATION WITH CLASS STABILITY WEIGHTING

Our CRLS approach builds a target distribution fcrrs(q) using class weights changing during training,
which may causes fluctuations in the target distribution during training. These rapid fluctuations can
destabilize the learning process. Classes that are more difficult to learn tend to require more updates
for their weights during training, which can lead to larger fluctuations. These frequent updates
may result in higher weight magnitudes for such classes. Therefore, we investigate a relationship
between training accuracy and magnitude of class weight. Figure 3 empirically shows an inversely
proportional relationship throughout the entire training epochs; specifically, as the magnitude of
class weights increases, we observe a decline in training accuracy. A class achieving high training
accuracy tends to exhibit less fluctuation in its weight during training, thus giving a chance for the
stable application of CRLS. We therefore define the magnitude as a measure of class stability, and
use it for final loss function. We integrate two losses of LS and CRLS to make the training more
stable through Class Stability Weighting (CSW) as:

L =y, Lrs + (1 — vy, ) Leres, ®)

where 7, is the loss weight for input image 4, determined for each target class y; by min-max
normalization of the magnitudes over all classes. Integrating CSW with CRLS enables dynamic
adjustment of each loss’s contribution, effectively mitigating potential fluctuations during training.
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Table 1: Overview of VPR benchmarks. This table provides dataset statistics, including the number
of images in the database and queries, and their categorization as lifelong, multi-view, or single-view.

Dataset | #Database  #Queries | Lifelong Multi-View  Single-View
SF-XL test vl (Berton et al., 2022) 2.8M 1000 v v

SF-XL test v2 (Berton et al., 2022) 2.8M 598 v v

MSLS Val (Warburg et al., 2020) 18.9k 740 v v
MSLS Challenge (Warburg et al., 2020) 38.7k 27k v v
AmsterTime (Yildiz et al., 2022) 1231 1231 v v

Eynsham (Cummins & Newman, 2009) 23.9k 23.9k v

Pitts30k (Torii et al., 2013b) 6.8k 10k v

Pitts250k (Torii et al., 2013b) 8.3k 84k v

Tokyo 24/7 (Torii et al., 2015) 76k 315 v

San Francisco Landmark (Chen et al., 2011) 1M 598 v

SVOX Night (Berton et al., 2021) 17k 823 v
SVOX Overcast (Berton et al., 2021) 17k 872 v
SVOX Rain (Berton et al., 2021) 17k 937 v
SVOX Snow (Berton et al., 2021) 17k 870 v
SVOX Sun (Berton et al., 2021) 17k 854 v
St Lucia (Milford & Wyeth, 2008) 1549 1464 v
Nordland (Siinderhauf et al., 2013) 27.5k 27.5k v

Gradient analysis on class weight. We assume that weight magnitude closely reflects the cumulative
gradient magnitude over training epochs. By analyzing gradient magnitude, we can understand
the relationship between training accuracy and magnitude of class weight. The training accuracy
is associated with a similarity to target class, and the similarity reflects the difficulty of a given
instance (Meng et al., 2021). The magnitude of the derivative of the loss function with respect to the
class weight W,,,, where y; is the target class of an input ¢, can be simplified with respect to cos 8,
as follows!:

OLcEk
oWy,

_ OLcg Ol(cosby,) ||0cosb,,
~ Ol(cos 0y,) Ocosby, oWy,

x (1 —py,) /1 —cos?8,, (withrespect to cosb,,).

The derived equation consists of the product of two terms: (1 — p,,) and /1 — cos? 6,,,. Both of
these terms are inversely related to cos 6,,, which means cos 6, controls the emphasis on gradients
based on the difficulty during training. The change in class weight while updating tends to depend
on the magnitude of the gradient. Consequently, in CSW, the weight magnitude helps to identify
saturated classes that require minimal change, which aids in stabilizing the training process.

&)

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

We extensively evaluate our method on diverse benchmarks outlined in EigenPlaces (Berton et al.,
2023) for comprehensive and fair comparisons. These benchmarks are initially categorized into
Multi-View, featuring image pairs that include both frontal and lateral perspectives of the road, and
Single-View, where image pairs consist solely of frontal views relative to the road. Additionally, we
introduce a new category termed Lifelong, where the benchmark contains datasets with significant
temporal variations, capturing changes over extended periods. Among datasets providing temporal
span information, we classify those with at least a two-year gap between query and database images
as lifelong, allowing for long-term changes in the captured environments. Detailed statistics and the
category of each benchmark are shown in Table 1. For fairness and reproducibility, we conduct all
experiments using publicly available repositories?:* for VPR evaluation.

We summarize the details of five benchmarks in the lifelong category as follows:
SF-XL test vl and v2 (Berton et al., 2022). The SF-XL database, shared for evaluations in both

test vl and test v2, encompasses the entire city of San Francisco with 2.8M testing images captured
in 2013. The images are sourced from Google StreetView and provide a wide range of challenging

'The detailed derivation can be found in the Appendix.
Zhttps://github.com/gmberton/VPR-methods-evaluation
3https://github.com/gmberton/VPR-datasets-downloader
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Table 2: Comparison on the lifelong category. This table categorizes methods by backbone type
into three sections: Others, VGG, and ResNet. The best results are highlighted in bold, and the
second best results are underlined, excluding the Others. Recall@1 and Recall @5 (%) are reported.

SF-XL SF-XL MSLS MSLS Amster

Method Backbone Dim. test v1 test v2 Val Challenge T

R@] R@5 R@] R@5 R@] R@5 R@] R@5 R@] R@5
TransVPR - 256 | 12.0 210 31.8  47.0 709  85.0 49.0  68.7 106 21.1
StructVPR ~ MobileNetV2 448 - - - - 83.0 91.0 645 80.4 - -
R*Former ViT-S 256 | 203 319 371 604 80.8 909 56.6 75.8 129 268
GCL VGG-16 512 9.6 153 373 540 647 71.0 429 559 102 227
CosPlace VGG-16 512 | 659 753 83.1 913 824 904 61.2 738 387 613
EigenPlaces VGG-16 512 | 694 7184 86.3 93.6 84.6 903 60.9 727 38.0 592
Ours VGG-16 512 | 73.5 804 87.0 94.1 853 915 634 751 39.2 618
R’Former ResNet-50 256 | 19.0 304 47.0 659 79.6  90.7 57.0 741 16.7 314
MixVPR ResNet-50 512 | 612 720 85.6 918 835 920 60.0 73.6 357 530
MixVPR ResNet-50 4096 | 72.5 79.3 88.6 945 884 935 643  76.5 40.8 589
GCL ResNet-50 2048 | 11.4  20.6 423 570 662 778 432  59.7 146 30.1
CosPlace ResNet-50 2048 | 76.4 833 88.8 95.0 873  94.0 67.5 719 477  69.8
EigenPlaces ~ ResNet-50 2048 | 84.1 89.1 90.8 957 89.1 9338 67.9 7717 489 695
Ours ResNet-50 2048 | 86.0 90.4 923  96.0 90.1 94.1 68.8 78.9 511 725

scenarios such as significant viewpoint changes, with highly accurate GPS data. SF-XL test vl
consists of 1,000 query images sourced from Flickr, captured across various years from 2006 to
2020, leading to a temporal gap of up to 14 years. SF-XL test v2 uses a set of 592 queries from from
the San Francisco Landmark dataset (Chen et al., 2011), which was released in 2011, ensuring a
minimal temporal gap of two years since the SF-XL database images were captured in 2013. Given
the frequent modification of urban structures (e.g., buildings), SF-XL provides a realistic test for
lifelong scenarios with significant temporal variability.

MSLS Val and Challenge (Warburg et al., 2020) is a crowdsourced dataset for lifelong visual place
recognition, containing tens of thousands of images from 30 major cities across six continents. For
the challenge set, GPS data is withheld to ensure the integrity of evaluations, which are conducted
through an online competition platform (Pavao et al., 2023). Notably, it spans seven years of temporal
coverage, making it particularly suitable for evaluating lifelong VPR scenarios.

AmsterTime (Yildiz et al., 2022) consists of a set of 1,231 grayscale historical images as queries and
1,231 contemporary photos as the gallery in Amsterdam. It contains matching labels between queries
and gallery images, confirmed by human experts. This dataset presents one of the most challenging
lifelong scenarios, with an extreme temporal gap of over a century.

For performance evaluation, we follow the evaluation protocol commonly adopted in previous VPR
studies (Arandjelovic et al., 2016; Ge et al., 2020; Warburg et al., 2020; Hausler et al., 2021; Wang
et al., 2022; Zhu et al., 2023; Leyva-Vallina et al., 2023). We use a distance threshold of 25 meters to
identify positive matches by calculating physical distances from the provided location data, except
for AmsterTime (Yildiz et al., 2022) and Nordland (Siinderhauf et al., 2013). AmsterTime provides
predefined query-positive pairs, and thus we use the labels directly without distance calculation. For
Nordland, which consists of aligned frames from four seasons, a query is considered accurately
localized if one of the top-N predictions falls within ten frames of its corresponding ground truth in
the database. As is standard in VPR, we utilize recall@K (R@XK) as the evaluation metric, measuring
the proportion of queries with at least one positive image among the top-K shortlisted results.

4.2 IMPLEMENTATION DETAILS

To validate the effectiveness of our method, we employ several deployable architectures, including
VGG-16 (Simonyan & Zisserman, 2014), ResNet-50 (He et al., 2016), DINOv2 (Oquab et al.,
2023), as backbone networks. For CNN backbones, we extract global descriptors using GeM
pooling (Radenovi¢ et al., 2018) followed by a fully connected layer. For DINOv2, following
Izquierdo & Civera (2024), we apply two-layer MLPs for token embeddings, followed by a fully
connected layer for the dimensionality reduction, and fine-tune only the last four blocks. Following
the class labeling strategy by EigenPlaces (Berton et al., 2023), we utilize the SF-XL training
dataset, cropping a total of 6.72M images from 3.43M panoramas. These images are classified
into approximately 263.9k classes and further organized into 18 groups, with each training epoch
involving two groups. For training stability, we temporarily freeze our CRLS during the initial 9
epochs as a warm-up, out of a total of 40 epochs. We set the smoothing parameter o = 0.2 and
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Table 3: Comparison on the multi-view category. The layout is the same as in Table 2.

Eynsham Pitts Pitts Tokyo San.
Method Backbone Dim. 30k 250k 24/7 Landmark
R@] R@5 R@] R@5 R@] R@5 R@] R@5 R@] R@5
TransVPR - 256 | 798 879 60.7 80.6 545 748 333 517 264 42.0
StructVPR MobileNetV2 448 - - 851 923 - - - - - -
R?Former ViT-S 256 | 824 903 73.1  88.7 70.2 875 48.3  65.1 428 614
GCL VGG-16 512 | 69.0 794 61.7  80.1 534 725 37.1 575 358 513
CosPlace VGG-16 512 | 883 927 884 946 89.7  96.6 82,5 90.8 80.8 87.5
EigenPlaces VGG-16 512 | 894 93.6 89.7 95.0 91.2 96.8 82,5 908 838 90.6
Ours VGG-16 512 | 89.5 937 90.1 95.2 91.6 969 81.0 924 84.8 90.6
R’Former ResNet-50 256 | 849 913 76.5 903 725  88.1 51.7 702 50.5 635
MixVPR ResNet-50 512 | 87.8  92.1 90.6 95.6 932 98.0 79.4  88.6 79.8  86.3
MixVPR ResNet-50 4096 | 89.6 932 91.6 95.6 94.1 98.1 863 91.1 84.6 903
GCL ResNet-50 2048 | 71.3  82.1 720 875 68.0 844 432 597 413  57.0
CosPlace ResNet-50 2048 | 90.0 939 90.9 957 923 974 873 94.0 87.1  91.1
EigenPlaces ResNet-50 2048 | 90.7 944 92.5 96.8 94.1 979 927 962 89.6 943
Ours ResNet-50 2048 | 90.9 94.6 923 963 942 98.2 94.0 96.8 91.6 95.2

Table 4: Comparison on the single-view category. The layout is the same as in Table 2. (¥) indicates
the use of high computational resources. Recall@1 (%) is reported.

SVOX  SVOX  SVOX SVOX SVOX

Method Backbone Dim. Night Overcast Rain Snow Sun StLucia Nordland
TransVPR - 256 6.4 61.1 26.9 47.0 13.3 814 222
StructVPR MobileNetV2 448 - - - - - - 56.1
R?Former ViT-S 256 13.5 75.7 47.6 60.7 28.1 934 24.6
GCL VGG-16 512 44 572 324 48.0 9.0 59.1 133
CosPlace VGG-16 512 44.8 88.5 85.2 89.0 67.3 95.3 58.5
EigenPlaces VGG-16 512 423 89.4 83.5 89.2 69.7 95.4 54.5
Ours VGG-16 512 47.6 91.5 85.3 90.5 70.8 96.2 59.5
R?Former ResNet-50 256 224 78.1 54.4 69.8 342 90.0 31.9
MixVPR ResNet-50 512 45.8 93.8 86.9 93.6 79.2 99.2 66.5
MixVPR ResNet-50 4096* | 62.9 96.2 92.1 97.0 85.4 99.5 76.7
GCL ResNet-50 2048 8.4 54.5 344 47.0 11.0 74.8 13.9
CosPlace ResNet-50 2048 50.7 922 87.0 92.0 78.5 99.6 71.8
EigenPlaces ResNet-50 2048 58.9 93.1 90.0 93.1 86.4 99.6 71.2
Ours ResNet-50 2048 64.6 94.0 90.3 94.1 85.5 99.6 73.1

temperature 7 = 0.1. The model is trained with a batch size of 320 using Adam (Diederik, 2014)
optimizer with a learning rate of 1 x 10~%. All training is performed on two RTX 3090 GPUs, and a
complete training takes approximately 17 hours.

4.3 COMPARISON WITH STATE-OF-THE-ARTS

We conduct comprehensive comparisons of our method with recent state-of-the-art methods, including
EigenPlaces (Berton et al., 2023), CosPlace (Berton et al., 2022), GCL (Leyva-Vallina et al., 2023),
R?Former (Zhu et al., 2023), MixVPR (Ali-Bey et al., 2023), StructVPR (Shen et al., 2023) and
TransVPR (Wang et al., 2022). We utilize author-released pre-trained networks for benchmark
evaluations. For StructVPR, as its code or pre-trained network has not been publicly released, we
reference its performance as reported in the original paper. Both CosPlace and EigenPlaces are
trained on the SF-XL dataset. GCL, R?Former, and StructVPR utilize MSLS for training, while
Mix VPR is trained on the Google StreetView (GSV) (Ali-bey et al., 2022) dataset. We also report the
performance of TransVPR, which is trained on MSLS and employs a custom-designed transformer-
based backbone. The extensive results are reported in Table 2, 3, 4, representing lifelong, multi-view,
and single-view category, respectively.

For the lifelong category in Table 2, which is the primary focus of this paper, our approach consis-
tently achieves state-of-the-art performance across all benchmarks. By effectively utilizing visual
relationships across classes, our method successfully handles challenging lifelong variations with
superior performance, whereas no single previous method consistently outperforms others in this
category. For the multi-view category in Table 3, our results are either comparable to or surpass
the current state-of-the-art, with our method achieving better performance in most cases. For the
single-view category in Table 4, we report Recall@1 for clarity, with Recall@5 provided in the
Appendix. While MixVPR, using ResNet-50 with 4,096 feature dimensions, shows strong results
compared to other methods, it requires significantly more computational resources, utilizing 4,096 di-
mensions versus our method’s 2,048 dimensions. Nevertheless, our method demonstrates competitive
performance, and notably, we achieve superior results compared to other state-of-the-art methods
with the same feature dimensionality. Moreover, MixVPR does not achieve standout performance
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Table 5: Comparison with the methods using foundation models on the lifelong category. DI-
NOV2 (Oquab et al., 2023) is used as a backbone network. Recall@1 (%) is reported.

Method Backbone  Dim. | SF-XLtestvl SF-XLtestv2 MSLS Val MSLS Chall.  Amster. [ Avg.

AnyLoc DINOvV2-G 49152 66.4 83.8 65.0 39.6 40.0 59.0
SelaVPR  DINOv2-L 1024 55.1 72.1 87.7 69.6 36.9 64.3
CricaVPR  DINOv2-B 10752 65.8 83.3 89.1 68.1 38.6 69.0
SALAD DINOv2-B 8448 88.7 9.5 92.0 75.8 58.6 81.9
SALAD DINOv2-B 2112 82.2 93.3 90.8 74.4 54.3 79.0
Ours DINOv2-B 2048 93.7 94.0 92.2 71.3 59.9 834

Table 6: Ablation study of CRLS and CSW. We report Recall@1 (%) across five benchmarks in the
lifelong category.

CRLS CSW LS | SF-XLtestvl SF-XLtestv2Z MSLS Val MSLS Chall. Amster.

83.8 90.6 88.4 66.3 47.8
v 85.0 91.1 89.5 67.8 48.8
v v 85.6 91.8 90.1 68.9 50.4
v v 85.2 90.9 89.6 67.8 48.4
v v v 86.0 92.3 90.1 68.8 511

in the more challenging lifelong and multi-view benchmarks. In summary, our method consistently
achieves state-of-the-art or highly competitive performance across all three categories, demonstrating
its robustness and superiority compared to recent state-of-the-art approaches.

Given recent advancements in VPR through the discriminative power of foundation models, we
further evaluate our method built on DINOv2 (Oquab et al., 2023) as the backbone, with the
results presented in Table 5. We compare our method with other foundation model-based methods,
including AnyLoc (Keetha et al., 2023), SelaVPR (Lu et al.), CricaVPR (Lu et al., 2024), and
SALAD (Izquierdo & Civera, 2024). Anyloc is a zero-shot method without fine-tuning. For SALAD,
with a dimensionality of 2,112, we reproduce the method using the author-released code and provided
parameters. The experimental results show that our method, based on DINOv2-B with a compact
dimensionality of 2,048, achieves state-of-the-art performance across the lifelong benchmarks.
Specifically, our method outperforms all others in terms of average R@1, achieving 83.4% across
the five lifelong datasets. It surpasses methods using larger models (e.g., DINOv2-L,G) and higher
dimensionalities (e.g., 8,448 for SALAD). Notably, on the challenging SF-XL test v1, our method
achieves a substantial 5% improvement over the second-best, SALAD.

4.4 ABLATION STUDY

Effectiveness of CRLS and CSW. We explore the impact of CRLS, CSW, and naive LS on retrieval
performance in Table 6. As a baseline, we use the CosFace loss with one-hot encoded hard labels
as EigenPlaces. To solely assess the effectiveness of each component, we employ the vanilla
Lcoskace for cases without LS. Specifically, the loss of CRLS with only CSW is calculated as
L = vy, LcosFace + (1-— Yy, )LcrLs- These experiments are conducted using a ResNet-50 architecture
with a feature dimensionality of 2048. We adopt five evaluation datasets that reflect lifelong scenarios:
SE-XL test v1, SF-XL test v2, MSLS Val, MSLS Challenge, and AmsterTime. Table 6 demonstrates
that while using CRLS alone does provide a performance boost over the baseline, it achieves better
results when combined with CSW. This can be attributed to the fact that CRLS is more effective for
classes with low weight magnitudes, as these classes tend to exhibit less fluctuation during training.
The best performance is obtained under our final loss formulation with LS, where LS appears to
compensate for the classes having high magnitudes.

To further evaluate the impact of CSW on CRLS, we apply Table 8: Experiments on contrapositive
the computed CSW weights in a reversed manner (e.g., approach of CSW. R-CSW refers to the
Yy: — 1 — 7y,,). This reversal assigns higher weights to reverse CSW. Recall@1 (%) is reported.
classes with high magnitudes, which are more prone to MSLS

fluctuations during training. The performance degradation =~ Method Val  Chall, Amster.
observed in Table 8 demonstrz'lte?s that the contrapositive Ours %01 638 N
approach is harmful to the training process. Conversely,

. . . .o . +R-CSW | 88.9  66.6 48.5
this result validates the design choice implemented in
CSW, where weights inversely proportional to the magni-
tude are assigned to stabilize CRLS.
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Table 7: Ablation study of label smoothing strategies used as substitutes for CRLS in our training.

Method | SF-XLtestvl SF-XLtestv2 MSLS Val MSLS Chall.  Amster.
LR (Lienen & Hiillermeier, 2021) 84.0 91.0 88.9 67.9 48.6
ACLS (Park et al., 2023) 82.2 91.1 87.7 67.2 474
CRLS (Ours) 86.0 92.3 90.1 68.8 51.1

(a) Images within two highest-norm classes (b) Images within two lowest-norm classes

Figure 4: Examples of classes according to magnitude. (a) tends to be hard to be trained and less
informative, while (b) shows pleasant classes for appropriate training.

Comparison with other label smoothing strategies. To further validate the effectiveness of CRLS,
we substitute it with alternative techniques in our final loss formulation and evaluate their performance.
Table 7 presents the results of this experiment, where we compare against LR (Lienen & Hiillermeier,
2021) and ACLS (Park et al., 2023), both variants of label smoothing designed for network calibration.
The results demonstrate that CRLS consistently outperforms these alternatives. While the other
techniques are optimized primarily for network calibration, CRLS is specifically tailored for VPR,
leveraging visual relationships between classes to learn a continuous representation space for handling
diverse appearance variations.

Qualitative analysis on the class weight magnitude. Fig. 4 illustrates that classes with the highest
magnitude tend to be less informative, while those with the lowest magnitude are more suitable
for training*. This distinction in weight magnitudes reflects diverse levels of informativeness and
trainability among the training classes. These properties of weight magnitude could be diversely
applied in robust training, such as in curriculum learning. Additional qualitative results such as CRLS
and retrieval results are presented in Appendix.

5 CONCLUSIONS

In this paper, we introduced a novel technique, CRLS, that effectively bridges the task gap between
classification and retrieval in visual place recognition, which is particularly vulnerable to extreme
visual changes such as lifelong variations. We further enhanced CRLS with CSW, a method that
dynamically adjusts the influence of CRLS based on the stability of class weights, quantified by
their magnitudes. Our findings, supported by derivative analysis, suggest that the magnitude of class
weights serves as an indicator of class stability.

We evaluated our approach through extensive experiments on 17 diverse benchmarks, covering a
wide range of scenarios including lifelong, multi-view, and single-view settings. In the majority of
cases, our method outperformed existing state-of-the-art methods, while in the remaining cases, it
achieved highly competitive performance. Particularly in the most challenging lifelong benchmarks,
our approach demonstrated state-of-the-art performance with substantial improvements over existing
methods. Furthermore, our method showed its effectiveness in leveraging foundation models, such as
DINOV2, for VPR. By integrating ours with DINOv2 backbone, we achieved superior performance
compared to other methods utilizing the same backbone, while maintaining a compact feature
representation. These results show the robustness and adaptability of our method in tackling lifelong
challenges in real-world environments, and in various backbones.

Interestingly, our analysis revealed that class weight magnitudes indicate the informativeness and
trainability of classes, which could potentially be utilized in robust training techniques such as
curriculum learning. Unfortunately, our analysis is based on the CosFace loss function, while our
analytical approach may facilitate such extensions to other losses.

*More examples can be found in the Appendix
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APPENDIX

A DERIVATION OF CLASS WEIGHT

The derivative of Lcg w.r.t Wy, is computed by chain rule as follows:

OLce  OLcp  Ol(cosf,,) Ocosb,

= 10
ow,,  0Ol(cosby,) Ocosb,, OW,, (10)
The derivatives w.r.t logits and cosine similarity can be computed as:
oL ol 0,,
CE — (cos by,) — s (11)
0l(cos by,) 0cos by,
By the quotient rule, the derivative of cosine similarity w.r.t the class weight is:
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Incidentally, the gradient vector results in a tangent vector at a point W,, on a unit sphere, as
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T
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Yi as follows:

magnitude of the derivative, we calculate the norm of S
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> . Hgiy = 0. Since the terms in Eq. 11 are constants, to compute the
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Finally, we can express the magnitude of the derivative of the loss function w.r.t the class weight as:

OLcgp|  OLcg 0l(cosb,,) || 0cosb,,
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Loy iy o

where the overwhelming majority of cos 6, are greater than zero, as empirically shown in Fig. 5.
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Figure 5: Histogram of cos 6, values calculated for all input ¢, with the vertical red dashed line
indicating cos ¢,,, = 0.
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Figure 6: Qualitative analysis of the impact by CRLS. The class weights are considered as
embedding features, with the class weight of the anchor class treated as the query feature and the
weights of other classes treated as database features. The results of top-1, 2 are obtained through the
execution of the retrieval procedure at the class level.

Table 9: Comparison on the single-view category. The layout is the same as in Table 2. (*) indicates
the use of high computational resources. Recall@5 (%) is reported.

SVOX  SVOX  SVOX SVOX SVOX

Method Backbone Dim. Night Overcast Rain Snow Sun St Lucia  Nordland
TransVPR - 256 15.2 80.5 49.3 72.0 29.2 90.4 37.6
StructVPR ~ MobileNetV2 448 - - - - - - 75.5
R?Former ViT-S 256 30.4 91.2 68.8 83.8 46.6 98.1 38.8
GCL VGG-16 512 12.8 74.5 46.9 69.4 15.9 75.3 22.6
CosPlace VGG-16 512 63.5 93.9 91.7 94.0 79.2 98.1 73.7
EigenPlaces VGG-16 512 61.0 944 91.6 944 82.2 98.3 70.1
Ours VGG-16 512 66.8 96.1 93.5 95.1 81.4 98.7 74.9
R2Former ResNet-50 256 43.4 92.9 73.7 88.5 55.6 95.5 48.6
MixVPR ResNet-50 512 62.7 97.8 93.8 97.6 90.7 99.9 80.8
MixVPR ResNet-50 4096* | 79.8 98.2 96.8 98.3 93.0 100.0 87.1
GCL ResNet-50 2048 16.4 74.2 56.1 67.7 25.6 86.6 24.7
CosPlace ResNet-50 2048 67.4 97.7 95.1 98.4 89.7 99.9 83.8
EigenPlaces ResNet-50 2048 76.9 97.9 96.4 97.6 95.0 99.9 83.8
Ours ResNet-50 2048 83.0 98.0 96.5 98.5 94.6 99.9 84.3

Table 10: Comparison with the methods using foundation models on the lifelong category.
DINOV2 (Oquab et al., 2023) is employed as a backbone network. Recall@5 (%) is reported.

Method Backbone Dim. \ SF-XL testvl SF-XLtestv2 MSLS Val MSLS Chall. Amster.

AnyLoc DINOv2-G 49152 78.1 92.3 754 53.1 63.8
SelaVPR  DINOv2-L 1024 68.1 87.1 95.8 86.9 59.8
CricaVPR DINOv2-B 10752 76.5 91.0 95.0 80.0 60.0
SALAD DINOv2-B 8448 93.5 97.4 96.2 89.2 78.9
SALAD DINOv2-B 2112 89.4 97.3 96.1 87.1 75.1
Ours DINOv2-B 2048 96.6 97.5 95.7 87.9 80.7
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Table 11: Ablation studies on the hyper-parameters. We report Recall@1 (%) across five bench-
marks in the lifelong category.

(a) Experiments on the smoothing intensity « used in LS and CRLS.

«@ \ SF-XL test vl SF-XL test v2 MSLS Val MSLS Chall. Amster.

0.0 83.8 90.6 88.4 66.3 47.8
0.1 85.1 91.6 89.2 68.1 494
0.2 86.0 92.3 90.1 68.8 511
0.3 84.5 91.3 89.2 68.7 51.6

(b) Experiments on the temperature parameter 1/7.
1/7 | SF-XLtestvl SF-XLtestv2 MSLS Val MSLS Chall.  Amster.

0 85.1 91.1 88.7 67.8 50.1
10 86.0 92.3 90.1 68.8 51.1
20 84.6 91.8 90.3 68.7 49.8
30 84.9 91.5 88.2 68.7 49.5

B FURTHER QUALITATIVE AND QUANTITATIVE RESULTS

We prepared examples of the lifelong scenarios and retrieval results to show the effectiveness of
our approach. As shown in Fig. 7, AmsterTime uses historical images as queries, which leads to a
scenario where buildings in the query and positive images have undergone extreme changes. For
EigenPlace, which is trained using classification loss, a goal of the loss is to find an exactly same
object. This makes EigenPlace hard to find the matching pairs with extreme changes. In contrast, our
method learns in a visually similar-aware manner, and thus the lifelong examples can be handled.

To further validate the effectiveness of CRLS, we conduct retrieval at the class level using class
weights in Fig. 6. Upon comparison with the baseline, our method demonstrates that our class weights
on representation space better capture semantic or visually-similar information while considering
visual differences.

We provide additional quantitative results to further demonstrate the effectiveness of our method.
Table 9 presents the Recall@5 performance on the single-view category benchmarks, complementing
the Recall@1 results shown in the main paper. Similarly, Table 10 reports the Recall@5 performance
of our method and other approaches utilizing the DINOv2 foundation model on the lifelong category
benchmarks, providing a more comprehensive evaluation of their performance.

C ABLATIONS ON HYPER-PARAMETERS

In addition, we study varying the hyper-parameter «, representing the intensity of smoothing as shown
in Table 11a. The ablation study finds that o = 0.2 delivers the best performances in most cases,
validating its selection as the optimal setting for our experiments. We also examine the effect of the
temperature parameter 7 in our CRLS approach, with results shown in Table 11b. The experiments
reveal that a value of 1/7 =10 (7 = 0.1) generally yields the best performance across the five lifelong
datasets, providing an optimal balance.

D CLASSIFICATION-BASED APPROACHES IN VISUAL GEO-LOCALIZATION

Contrasting with retrieval-based approaches, another significant area of research in Visual Place
Recognition (VPR) is focused on classification-based approaches Weyand et al. (2016); Vi-
vanco Cepeda et al. (2023); Izbicki et al. (2020); Pramanick et al. (2022); Trivigno et al. (2023);
Kordopatis-Zilos et al. (2021). Unlike retrieval methods that strive to match a query image with a
large database of reference images, classification-based approaches divide the geographic area into
discrete cells or regions, with each cell treated as a separate class. This framework transforms the task
into a classification problem, where the objective is to identify the correct geographic cell for a given
query image. These methods are advantageous for their faster inference times, as they bypass the need
for extensive similarity searches required by retrieval-based methods. However, despite the efficiency
of classification-based methods, retrieval methods can leverage the fine-grained similarities between
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query and database images, enabling more precise localization. Moreover, they are not limited by
predefined classes and can potentially localize images at any location covered in the database.

Query Ours EigenPlace
- Query Ours EigenPlace

G

=7

(a) AmsterTime (b) SF-XL test v1

Figure 7: Examples of lifelong scenarios and their top-1 retrieval results from the AmsterTime
and SF-XL test vl datasets. The query and positive images demonstrate significant changes in
structure and appearance due to building remodeling over time. We compare the retrieval results of
our method with those of EigenPlace, highlighting our method’s ability to handle these challenging
scenarios effectively.
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Figure 8: : Relationship between class weight magnitudes and their corresponding loss weights used in CSW. The loss weights are obtained through a simple min-max
normalization, resulting in a linear relationship with the magnitudes. Example images from classes at different magnitude levels are displayed in color-coded boxes,
with images within the same box belonging to the same class. As the magnitude increases, the classes tend to have no view overlap and significant occlusion, or
contain less informative scenes such as forests. We use class weights from epoch 9, as shown in Fig. 3a, for the visualization.
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