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Abstract
Self-explainable deep neural networks are a recent class of models that can output
ante-hoc local explanations that are faithful to the model’s reasoning, and as
such represent a step forward toward filling the gap between expressiveness and
interpretability. Self-explainable graph neural networks (GNNs) aim at achieving
the same in the context of graph data. This begs the question: do these models fulfill
their implicit guarantees in terms of faithfulness? In this extended abstract, we
analyze the faithfulness of several self-explainable GNNs using different measures
of faithfulness, identify several limitations – both in the models themselves and in
the evaluation metrics – and outline possible ways forward.

1 Introduction
A number of self-explainable deep models for image data have been recently developed that sport
high performance without giving up on interpretability [1–6]. At a high level, they follow a two-level
architecture that first maps input images to a set of “concepts” – i.e., interpretable, higher-level
representations of the input, such as what objects are visible in the image and their attributes – using
a neural network and then infers predictions based on the extracted concepts only. This step is
implemented with a transparent inference layer (e.g., a sparse linear map) from which concept-based
explanations can be easily derived. This makes local explanations cheap to compute, expressive [7, 8],
and faithful to the model’s inference process [9]. We refer the reader to [10] for an overview.

These developments have spurred interest into self-explainable GNN architectures that follow a similar
setup and aim at achieving the same feat for graph data. A brief overview of these architectures is
given in Section 2. This begs the question: do self-explainable GNN architectures uphold the promise
of producing explanations that are faithful to the model’s reasoning?

In this preliminary investigation, we focus on graph classification and provide an initial answer to this
question for a representative selection of self-explainable GNN architectures. Namely, we empirically
analyze the faithfulness of explanations output by one information-constrained architecture (GISST
[11]) and two prototype-based architectures (ProtGNN [12] and PIGNN [13]) on four different data
sets, and according to different metrics. Our results highlight several interesting phenomena. First,
these architectures fail to guarantee faithfulness, thus falling short of the original desideratum.
Furthermore, their explanations exhibit widely different degrees of faithfulness depending on the data
set. Naturally, this hinders trustworthiness. Second, and equally importantly, we find that well-known
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measures of faithfulness lack a natural reference and therefore can paint an incomplete picture of
explanation quality. Summarizing, our results raise doubts on the interpretability of self-explainable
GNN architectures and call for stricter scrutiny of their properties and of the measures proposed to
evaluate them.

2 Post-hoc and Ante-hoc Explanations for Graph Neural Networks
Explainability and faithfulness. Graph Neural Networks (GNNs) are discriminative classifiers that,
given an input graph G = (V,E), annotated with node features X , output a conditional distribution
over the labels pθ(Y | G) parameterized by θ. In this abstract, we focus on graph classification, in
which case a prediction is readily obtained by solving argmaxy pθ(y | G). The inference process of
GNNs relies on opaque operations – chiefly, message passing of uninterpretable embedding vectors –
and as such it is difficult to interpret for laypeople and experts alike. Motivated by this, a number
of post-hoc explainers have been developed for translating the reasoning process of GNNs into
human-understandable terms. Roughly speaking, these algorithms extract an (attributed) subgraph E
of G highlighting those elements – nodes, edges, features, or some selection thereof – that are most
responsible for a GNN’s prediction. For details, please see [14–16].

A key desideratum is that of faithfulness, that is, explanations should portray an accurate picture of
the model’s decision making process [15, 17, 18]. Unless explanations are faithful, they can fool
users into, e.g., wrongly trusting misbehaving models, and can complicate debugging [8]. Metrics for
evaluating faithfulness will be discussed in Section 3. Post-hoc approaches give limited guarantees
about faithfulness [14, 15], prompting the development of self-explainable GNNs able to produce
explanations that are – at least on paper – faithful by design, see [16, Section 3.2].

Self-explainability via information constraints. A first group of approaches encourage interpretabil-
ity by ensuring the information used for prediction crosses an information bottleneck, oftentimes
implemented as a sparse subgraph, and read off an explanation from this [19–23]. We focus on a
representative of this group, GISST [11], a model-agnostic approach for turning any GNN into an
information-constrained self-explainable model. In short, GISST introduces an attention layer on
the model embeddings and encourages this layer – via an appropriate sparsification penalty over the
features and the edges of the graph – to focus on a subgraph E of G (and a subset of features X )
capturing all information necessary to infer a label. As for explanations, GISST derives the relevance
of each edge in the graph from the attention layer, and constructs an explanation subgraph by filtering
the most relevant edges that connect a predefined maximum number of nodes.

Self-explainability via structure constraints. Another class of self-explainable GNNs seek in-
terpretability by imposing some form of architectural bias [24–26]. A popular strategy involves
augmenting GNNs with prototypes. These are (embeddings of) concrete training examples or parts
thereof, and can be used to implement case-based reasoning [27]. One example is ProtGNN [12],
which first embeds inputs using a GCN [28] or a GAT [29], and then infers a prediction by matching
the input graph with learned prototypes. In turn, these prototypes are learned so as to activate highly
on training examples corresponding to a specific target class. Explanations are obtained by taking
those elements (i.e., nodes, edges) of the input that have triggered the activation of the prototypes
most responsible for the prediction. PIGNN [13] is similar, in that it infers concept activations based
on the similarity between the input graph and learned prototypes. The similarity is however computed
at the level of individual node embeddings. Node predictions are then computed directly from the
prototype activations, while graph predictions make use of a max pooling operator. PIGNN depends on
an underlying prototype-based neural network. This can be either ProtoPNet [2] (yielding PIGNN+P)
or TesNet [30] (yielding PIGNN+T). TesNet is a prototype architecture for images that encourages
disentanglement between concepts by enforcing orthonormality of the subspaces spanned by the
concepts. Both models return the subgraphs that activate the prototypes associated to a given class the
most by adapting existing image-based ProtoPNets by substituting convolutional layers with a GCN
and adding a max-pooling before the classification layer to aggregate node-prototypes into subgraphs.

3 Empirical Analysis
We address the following research questions: Q1: Do self-explainable GNNs guarantee faithfulness in
practice? Q2: Do existing faithfulness metrics properly gauge the quality of the model’s explanations?
To this end, we integrated the implementations of GISST, ProtGNN and PIGNN from the original
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papers into a unified framework built on Pytorch Geometric [31]. We publish the code and the data
for reproducibility at https://anonymous.4open.science/r/SEGNNEval.

Data sets. We consider four graph classification data sets, cf. Table 1. BBBP [32] and MUTAG [33, 34]
are data sets of chemical compounds labeled according to their blood-brain barrier penetration
ability and mutagenicity, respectively. Ba2Motif [35] and BAMultiShapes (BaMS for short) [36]
are synthetic data sets. Similarly to BA-Shapes [37], graphs are obtained by linking a random
Barabasi-Albert (BA) graph [38] to one or more motifs that cannot be generated by the BA process.
In Ba2Motif, the motif is either a house or a 5-node cycle, and it fully determines the label. In BaMS,
it is either a house, a wheel or a grid, and the label is determined by the presence of exactly two out
of three motifs. For the BA data sets, node features encode the number of edges and triangles the
node participates in, and the BA subgraphs were generated using a fixed seed, for reproducibility.

Faithfulness metrics. We evaluate faithfulness using three metrics. Let E be the explanation subgraph
induced by the nodes, edges, and features deemed relevant by the model, and C be its complement.
Unfaithfulness [15] measures how strongly a prediction Y depends on irrelevant (i.e., not part of the
explanation) nodes, edges, and features in G:

Unf = 1− exp
(
− KL

(
pθ(Y | G) ∥ pθ(Y | E)

))
(1)

Unfaithfulness is close to zero only if the Kullback-Leibler divergence KL is small, that is, if G and
E yield similar label distributions2. Fidelity [17, 18] includes two metrics assessing to what degree
explanations are necessary (Fid+) and sufficient (Fid−). These are defined as3:

Fid+ =
∣∣1{ŷ = y} − 1

{
ŷC = y

} ∣∣, Fid− =
∣∣1{ŷ = y} − 1

{
ŷE = y

} ∣∣ (2)

Here, ŷE = argmaxy pθ(y | E) and similarly for ŷC . High Fid+ means that E is necessary, in the
sense that the prediction does change when the model is fed the irrelevant subgraph C only, while low
Fid− means the explanation is sufficient, in that the prediction remains unchanged when considering
the relevant subgraph E only.

These measures differ in that Fid+ and Fid− look at the hard predictions and depend on the ground-
truth label, whereas Unf considers the change in label distribution only. As such, it can be viewed as
a smoother version of Fid− and behaves similarly in our experiments.

Q1: Faithfulness of self-explainable GNNs is not perfect and varies across tasks. Table 2 shows
the average result of 5 runs of the algorithm with 80/10/10 train, validation, and test split. Most
architectures attained good (> 80%) and stable (< 10% std. dev.) graph classification accuracy on all
data sets. The exception is ProtGNN, which fared very poorly on the synthetic tasks. Since it tends to
over-predict the majority class (especially in Ba2Motif), faithfulness measures are unreliable. Hence,
we excluded ProtGNN from our analysis for these data sets.

In stark contrast, their faithfulness –indicated as Unf(E), Fid+(E), and Fid−(E) – is far from perfect.
All models tend to perform better at Unf and Fid− (best results are 0 and 0.07, respectively, the lower
the better) than at Fid+ (best result is 0.58, the higher the better), indicating they are better suited
at generating necessary, rather than sufficient, explanations. Note that in the case of ProtGNN on
MUTAG, Unf might be zero due to negligible changes in the prediction vector and rounding in the
results, while Fid−, although being very low, is 0.1 indicating that some of the predictions swaps
classes while the overall distribution is stable. This example shows how Fid− and and Unf captures
the same phenomenon but with different granularity.

2In [15], E is obtained by zeroing-out the irrelevant features from G. In this abstract, E is obtained by also
deleting irrelevant nodes and edges, so as to take the relevance of topological elements into account.

3Our definition pertains to graph classification. Fidelity is also defined for node classification [17].

Table 1: Overview of data sets used in our experiments. Numbers are averaged.

DATASET # GRAPHS AVG. # NODES AVG. # EDGES # FEATURES # CLASSES

MUTAG [33, 34] 188 17.9 39.6 7 2
BBBP [32] 2039 24.0 51.9 9 2
Ba2Motif [35] 1000 30.0 57.8 2 2
BaMS [36] 1000 40.0 87.4 2 2
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Table 2: Results for all models and data sets. We report average and std. dev. of classification
accuracy, faithfulness of the model explanations E , and faithfulness of random subgraphs R. Bold
entries indicate best result, red ones that the random subgraph is at least as faithful as the model’s
explanation, orange ones that it is at most 0.10 worse, and green the rest.

DATASET MODEL ACC (↑) Unf(E)(↓) Unf(R)(↓) Fid−(E)(↓) Fid−(R)(↓) Fid+(E)(↑) Fid+(R)(↑)

BBBP

GISST 0.87 ± 0.01 0.22 ± 0.15 0.15 ± 0.02 0.29 ± 0.25 0.21 ± 0.04 0.16 ± 0.01 0.20 ± 0.03
PIGNN+P 0.86 ± 0.01 0.07 ± 0.02 0.16 ± 0.03 0.07 ± 0.03 0.20 ± 0.03 0.33 ± 0.06 0.22 ± 0.03
PIGNN+T 0.86 ± 0.01 0.10 ± 0.01 0.15 ± 0.01 0.14 ± 0.02 0.22 ± 0.02 0.30 ± 0.05 0.27 ± 0.03
ProtGNN 0.85 ± 0.01 0.15 ± 0.08 0.27 ± 0.05 0.14 ± 0.02 0.23 ± 0.05 0.21 ± 0.06 0.20 ± 0.05

MUTAG

GISST 0.86 ± 0.04 0.11 ± 0.12 0.13 ± 0.06 0.31 ± 0.17 0.41 ± 0.16 0.50 ± 0.19 0.38 ± 0.13
PIGNN+P 0.82 ± 0.02 0.12 ± 0.08 0.18 ± 0.08 0.26 ± 0.26 0.59 ± 0.08 0.42 ± 0.17 0.52 ± 0.22
PIGNN+T 0.84 ± 0.07 0.14 ± 0.13 0.08 ± 0.07 0.40 ± 0.30 0.51 ± 0.12 0.37 ± 0.05 0.40 ± 0.15
ProtGNN 0.82 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.07 0.18 ± 0.04 0.34 ± 0.05 0.20 ± 0.05

Ba2Motif

GISST 0.98 ± 0.02 0.13 ± 0.16 0.32 ± 0.09 0.14 ± 0.16 0.32 ± 0.08 0.51 ± 0.02 0.52 ± 0.02
PIGNN+P 1.00 ± 0.00 0.50 ± 0.04 0.42 ± 0.01 0.59 ± 0.06 0.50 ± 0.00 0.01 ± 0.01 0.50 ± 0.00
PIGNN+T 0.98 ± 0.01 0.03 ± 0.02 0.08 ± 0.05 0.21 ± 0.06 0.57 ± 0.06 0.58 ± 0.14 0.56 ± 0.08
ProtGNN 0.51 ± 0.11 – – – – – –

BaMS

GISST 0.79 ± 0.13 0.11 ± 0.07 0.13 ± 0.06 0.20 ± 0.13 0.27 ± 0.12 0.42 ± 0.20 0.39 ± 0.19
PIGNN+P 0.96 ± 0.00 0.32 ± 0.00 0.32 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00 0.54 ± 0.00
PIGNN+T 0.92 ± 0.00 0.13 ± 0.01 0.30 ± 0.00 0.46 ± 0.01 0.56 ± 0.00 0.56 ± 0.00 0.56 ± 0.00
ProtGNN 0.64 ± 0.10 – – – – – –

Moreover, explanation faithfulness varies widely across learning tasks. For instance, PIGNN+P
attains excellent Unf and Fid− in BBBP (0.07 for both), but fares poorly in Ba2Motif (0.50 and
0.59, respectively). A 10-15% difference in unfaithfulness also exists for the other models. As for
Fid+, the delta across data sets is 34% for GISST, 0.53 for PIGNN+P, 0.18 for PIGNN+T, and 0.13 for
ProtGNN. Summarizing, no model yields consistent faithfulness across tasks for any of the metrics.
This makes it difficult to fully trust the explanations output by these models and raises doubts on their
applicability to high-stakes tasks.

Q2: Absolute faithfulness measures can be misleading. It is true, however, that faithfulness is
excellent for some combinations of models and tasks. This is especially the case for ProtGNN on
MUTAG and for PIGNN+T on Ba2Motif, which both attain near-perfect Unf and Fid−. Here, we argue
that the absolute values in faithfulness can lead to erroneous interpretations. In a nutshell, faithfulness
measures require a baseline method to establish the improvement. We offer such a term of reference
by compare each measure by the same measure computed on a random explanation model that
generates subgraphs R of G of the same size of the explanation E . That is, we replace E with R in
Eq. (1) and Eq. (2). We indicate the results as Unf(R), Fid−(R) and Fid+(R) in Table 2.

We can see that oftentimes the model’s explanations are in fact more faithful than the random ones,
especially for MUTAG data. Yet, in many cases the models produce worse or comparable explanations
to a random graph. Some results are especially interesting. For instance, ProtGNN is the most
faithful method in MUTAG, while our analysis displays the same behavior on random explanations.
Another interesting case is that of GISST, which performs the best on BaMS while exhibiting Unf
45% worse than random. In conclusion, while faithfulness measures offer an intuitive idea of the
model’s explanations, they provide only a partial view of their overall quality.

4 Discussion and Conclusion

Our initial results indicate that, at least when it comes to graph classification, it is hard to assert that
self-explainable GNNs are faithful by design. Specifically, faithfulness of these models seems to be
very data set dependent. This becomes even more clear when we compare the faithfulness of their
explanations to that of a completely uninformed baseline.

Naturally, our results are preliminary. In follow-up work, we will verify to what extent they carry
over to other self-explainable GNN architectures, like [23], and to extend our analysis to node
classification. Another major issue is whether the concepts (e.g., prototypes) learned by these models
are in fact guaranteed to be interpretable. Yet, this issue is shared by self-explainable models for
image data as well, and needs a separate investigation to be understood properly [5].
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