
Fitting large mixture models using stochastic
component selection

Anonymous Author(s)
Affiliation
Address
email

Abstract

Traditional methods for unsupervised learning of finite mixture models require to1

evaluate the likelihood of all components of the mixture. This becomes computa-2

tionally prohibitive when the number of components is large, as it is, for example,3

in the sum-product (transform) networks. As a remedy, we propose an approach4

combining the expectation maximization and the Metropolis-Hastings algorithm5

to evaluate only a small number of, stochastically sampled, components, thus6

substantially reducing the computational cost. We put emphasis on generality of7

our method, equipping it with the ability to train both shallow and deep mixture8

models which involve complex, and possibly nonlinear, transformations. The9

performance of our method is illustrated in a variety of synthetic and real-data10

contexts, considering deep models, such as mixtures of normalizing flows and11

sum-product (transform) networks.12

1 Introduction13

Finite mixture models [40] constitute a fundamental class of density estimation models. They14

have been successfully applied in diverse fields, including bioinformatics [49], econometrics [10],15

engineering [33], etc. A mixture model relies on a weighted sum of probability distributions—here16

referred to as components—to cluster N unlabelled datapoints into K categories. The traditional17

maximum likelihood techniques train the model by optimizing either (i) the marginal likelihood via18

gradient-descent [50] or (ii) the evidence lower bound via variational methods [4], including the19

expectation-maximization (EM) [13]. The dependence structure among approximate, variational,20

distributions then ranges from the fully independent (mean-field) [25] to fully dependent [30]. The21

sampling-based techniques target the posterior distribution using sequential Monte Carlo [9] or22

Markov chain Monte Carlo [52], e.g. via the Gibbs [34] or Metropolis-Hastings sampling [38]. The23

computational cost of these methods typically scales with O(TKND) operations, where N and K24

are defined above, T is the number of iterations and D is the dimension of data.25

Various methods to decrease the computational cost via any factor inO(TKND) have been proposed.26

T can be lowered by proper initialization, e.g. the optimal seeding [5]; an efficient step-size schedule,27

e.g. the line-search [58]; or increased estimation precision, e.g. the variance reduction [8]. N is often28

reduced using the coreset methods, which approximate the original dataset by a weighted dataset29

such that the exact and approximate marginal likelihoods are close. The weighted variants of the30

variational [17, 59, 6] and sampling-based [39] methods then process the coresets. Reducing D relies31

on the compression of data into smaller representations via random projections [53, 2], which is32

achieved in two ways: (i) each data item is projected into an individual representation [11]; (ii) all33

data items are projected into an overall representation, commonly referred to as sketch [28, 22].34

Nevertheless, all the aforementioned techniques—including those with reduced computational cost—35

evaluate all K components. This is very demanding for large models, and the problem is even more36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Table 1: The computational features of various EM algorithms. We compare whether the methods (i)
perform the computations with a reduced number of data (minibatching), (ii) update a lower number
of statistics, (iii) make less evaluations of the conditional likelihood, and (iv) are suitable for training
of deep models. Here, EM, SA, S, T, MC and MH stand for expectation-maximization, stochastic
approximation, sparse, truncated, Monte Carlo and Metropolis-Hastings, respectively.

Feature / Algorithm EM SAEM SSAEM TSAEM MCSAEM MHSAEM
[13] [44] [24] [18] [1] (ours)

B < N datapoints 7 3 3 3 3 3
M < K statistics 7 7 3 3 3 3
M < K likelihoods 7 7 7 3 7 3
deep models 7 7 7 7 7 3

severe for mixtures involving intricate models, such as neural networks [21, 42], Gaussian processes37

[57], normalizing flows [48]; or deep mixtures, including sum-product (transform) networks [45, 47],38

deep Gaussian mixture models [55], etc. In spite of this, a little attention has been paid to the design39

of algorithms which does not evaluate all K components. The notable exceptions are the sparse EM40

algorithm [24] and the truncated variational EM algorithm [18], see Table 1 and Section 5 for details.41

Moreover, the methods are mostly tailored for a specific class of mixture models, e.g. the Gaussian42

mixture models.43

In this paper, we make the following contributions:44

• We propose an EM-based algorithm which relies on the MH sampler to stochastically evaluate less45

components in mixture models, substantially reducing the computational cost.46

• We design our method to enable optimization of fairly generic EM objective functions, making it47

suitable for training of both shallow and deep mixture models.48

• We apply our approach to Gaussian mixture mdoels (GMMs) and their generalizations: sum-49

product-transform networks (SPTNs) and mixtures of real-valued non-volume preserving (real50

NVP) flows [15], reaching approximately 100× speed-up compared to state-of-the-art methods.51

2 Problem formulation52

A finite mixture model characterizes the relation between an observed (known) variable, x ∈ X ⊆ RD,53

and a latent (unknown) variable, z ∈ Z := {1, . . . ,K}, via the marginal (incomplete-data) likelihood54

in the following form:55

pθ(x) =

K∑
k=1

pηk(x|z = k)pπk(z = k), (1)

where θ := (π1, η1, . . . , πK , ηK) ∈ Θ are unknown parameters. Here, ηz are the parameters of the56

conditional likelihood, pηz (x|z), and πz is the weight which parameterizes the prior, pπz (z) = πz ,57

and satisfies 0 ≤ πk ≤ 1 for each k ∈ Z and
∑K
k=1 πk = 1.58

Given a set of independent and identically distributed data, x := (xi)
N
i=1, our goal is to learn the59

unknown parameters of the marginal log-likelihood,60

L(θ) := log pθ(x) =

N∑
i=1

log

K∑
k=1

pηk(xi|zi = k)pπk(zi = k). (2)

The marginalization in (2) is tractable for almost all forms of pηz (x|z). Indeed, we consider pηz (x|z)61

to belong to an arbitrary family of ηz-differentiable probability distributions. However, we assume that62

K is high, making the marginalization in (2) computationally costly, thus rendering the optimization63

objective presumably intractable. Therefore, we want to design a computationally efficient algorithm,64

requiring only M < K evaluations of pηz (x|z) at each iteration.65

2

3 The EM algorithm66

The maximum likelihood estimation seeks the parameters maximizing the marginal log-likelihood,67

θML := argmaxθ∈Θ L(θ). The traditional EM algorithm [13] addresses this task indirectly, i.e. by68

optimizing the evidence lower bound (ELBO),69

L(θ) ≥ Q(θ) +H(θ̂) := ELBO(θ̂), (3)

whereH(θ̂) := −Epθ̂(z|x)[log pθ̂(z|x)] is the differential entropy at an estimate, θ̂ ∈ Θ, and70

Q(θ) := Epθ̂(z|x)[log pθ(z,x)] =

N∑
i=1

K∑
k=1

pθ(zi = k|xi) log pθ(zi = k, xi) (4)

is the EM objective function. Here, pθ(z,x) is the joint (complete-data) likelihood, and pθ(z|x) is71

the posterior distribution over the latent variables z := (zi)
N
i=1. Given an initial value, θ0, the EM72

algorithm produces a sequence of estimates, (θt)
T
t=1, by alternating between the expectation (E) and73

maximization (M) steps,74

E-step: Qt−1(θ), (5)
M-step: θt := argmax

θ∈Θ
Qt−1(θ). (6)

This sequence is guaranteed to monotonically tighten the ELBO, arriving at a local optimum of (2)75

under mild regularity assumptions [56].76

The EM algorithm is computationally expensive, since (4) evaluates pθ(zi, xi) for each zi ∈ Z and77

i ∈ (1, . . . , N). This has to be performed for all t ∈ (1, . . . , T) in (5). Albeit the marginal factor,78

pπz (z), is just the cheap categorical distribution, the conditional factor, pηz (x|z), typically involves79

high-dimensional operations (e.g., the inversion of the full D×D-dimensional covariance matrices80

in the GMMs). Moreover, the M-step (6) is also expensive for large K. This holds despite that (6)81

can be reduced to closed-form updates of expected sufficient statistics for pηz (x|z) belonging to the82

exponential family [44] (again, due to high D). All in all, the computational complexity of the EM83

algorithm scales with O(TDNK).84

If (6) cannot be computed under a closed-form solution, one can resort to direct gradient-descent85

optimization of Q(θ), where argmax is replaced by one (or more) step(s) of a gradient descent86

technique. The EM algorithm is then referred to as the generalized EM algorithm [56].87

4 The generalized MHSAEM algorithm88

We design a version of the generalized EM algorithm suitable for scenarios where (4) can represent89

deep, discrete, latent variable models, thus being parameterized by possibly complex nonlinear90

transformations. We particularly focus on decreasing the the number of operations in the generalized91

EM algorithm from O(TDNK) to O(TDBM), where B � N and M � K.92

4.1 E-step93

We reduce the cost of evaluating the EM objective function (4) by combining the minibatching (as94

used many times before) and the Monte Carlo sampling. Namely, the specific application of the latter95

to generic mixture models is the key contribution of this paper.96

Minibatching. At each iteration, t, we compute the conditional expectation in (4) only for a subset—97

here referred to as a minibatch—of the original full dataset, i.e. (xi)i∈I . Here, I is a set of B � N98

indices, i, sampled uniformly without replacement from (1, . . . , N). This substantially decreases the99

necessary computations compared to the full sweep over all N datapoints [23].100

Monte Carlo sampling. For each i ∈ I , we want to draw M � K random samples from pθ(zi|xi) in101

order to obtain a Monte Carlo estimate of (4). The straightforward way to do this would be to draw102

the samples directly from pθ(zi|xi). However, direct sampling from pθ(zi|xi) does not lead to any103

substantial decrease in the number of operations. This is caused by the fact that even for a single104

sample of zi, we have to first compute the normalizing factor, pθ(xi), to obtaining the posterior,105

3

pθ(zi|xi). This requires K expensive evaluations of pθ(zi, xi), which is precisely what we want to106

avoid. Our approach is to resort to the Markov chain Monte Carlo (MCMC), which allows us to107

sample from pθ(zi|xi), with the computational complexity decreasing to only a single evaluation of108

pθ(zi, xi) per a single sample of zi.109

MCMC methods obviate the computation of the normalizing factor in pθ(zi|xi) by simulating a110

Markov chain, (zi,t)
T
t=1, from a transition kernel, zi,t ∼ P (zi,t−1, ·), which leaves pθ(zi|xi) as its111

unique stationary (invariant) distribution, starting from an initial value zi,0. The specific form of P112

determines the structure of an MCMC method. We chose the Metropolis-Hastings (MH) sampler,113

which represents P (zi,t−1, zi,t) as follows: given z̄i := zi,t−1, draw a sample from the proposal114

distribution zi ∼ q(·|z̄i), compute the acceptance ratio,115

α(z̄i, zi) := min

{
1,
pηzi,t−1

(xi|zi)πzi,t−1q(z̄i|zi)
pηz̄i,t−1

(xi|z̄i)πz̄i,t−1q(zi|z̄i)

}
, (7)

and, if u < α(z̄i, zi)—where u is drawn from a uniform distribution, Uniform(0, 1)—accept the116

sample and set zi,t = zi; otherwise, set zi,t = z̄i. For each i ∈ I and t ∈ (1, . . . , T), we repeat117

this process M times, construing a set zi,t = (z1
i,t, . . . , z

M
i,t). Therefore, at every current iteration,118

t, we continue to extend the chain from the point where we left at the previous iteration, t− 1, by119

taking z̄i = zMi,t−1. Under mild regularity assumptions [52], the chain passes the transition period120

(the burn-in phase), and the samples can then be used to approximate the conditional expectation in121

(4) as follows:122

Q̂t−1(θ) =
1

M

∑
i∈I

∑
z∈zi,t

log pηz (xi|z)πz. (8)

Note that, to ensure this approach is truly efficient, we have to draw only M � K samples at each123

iteration, t; otherwise, for M ≈ K, we may rather compute the exact marginalization in (4), since it124

is tractable (but computationally costly).125

4.2 M-step126

Assume for a moment that (6) with Qt−1(θ) given by (8) has a closed-form solution, yielding an127

estimate of θ. Such an estimate would have a high variance, converging only for M → ∞ and128

T → ∞ [19]. The main reason is that the samples would not be reused over the iterations, t,129

thus wasting computational resources. We consider that there is no closed-form solution of (6),130

and—to ensure that the samples (and thus computations) are recycled over the iterations—we use131

the stochastic approximation (SA) [51] to optimize (8). This is analogous to applying a stochastic132

gradient-descent method, θt = θt−1+γt∇θQ̂t−1(θ), where γt is the step-size, satisfying the Robbins-133

Monro constraints, γt ∈ [0, 1],
∑
t≥1 γt =∞,

∑
t≥1 γ

2
t <∞, and∇θ is the gradient w.r.t. θ. In this134

way, the computations made in ∇θQ̂ are accumulated via θt and reused over the iterations.135

The parameters ηz have a different form based on a specific case of pηz (x|z), whereas πz is a136

permanent structure in (1). Therefore, without loss of generality, we split (6) into a generic part and a137

fixed part as follows:138

ηk,t = ηk,t−1 + γt∇ηkQ̂t−1(θ), (9a)

νk,t = νk,t−1 + γt∇νkQ̂t−1(θ), (9b)

where—to ensure that the probabilities, (πk,t)
K
k=1, satisfy the constraints (Section 2)—we transform139

∇πkQ̂ via νk = log πk and optimize w.r.t. νk. Then, to obtain (πk,t)
K
k=1 from νt := (νk,t)

K
k=1, we140

use the softmax function, i.e. πk,t := softmax(νt)k := exp(νk,t)/
∑K
l=1 exp(νl,t).141

Computing the gradients for all pairs of (νk, ηk)Kk=1 would be inefficient, especially since zi,t contains142

only a small number of unique values of Z for M � K. Consequently, we compute ∇ηkQ̂ and143

∇νkQ̂ only for k ∈ unique(zi,t). We summarize the proposed approach in Algorithm 1.144

4.3 Proposal distribution145

The choice of the proposal distribution has a significant impact on the speed of convergence and the146

computational cost of the proposed algorithm. Here, we discuss various possible choices of q(zi|z̄i).147

4

Algorithm 1 The generalized MHSAEM algorithm
Input: θ0, (zi,0)Ni=1, (xi)

N
i=1

Output: (θt)
T
t=1

for t ∈ (1, . . . , T) or until convergence do
form the set I = (ij)

B
j=1 by sampling (without replacement) B indices i ∼ (1, . . . , N)

for i ∈ I do
set z̄i as the last element of zi,t−1

for j ∈ (1, . . . ,M) do
sample zi ∼ q(zi|z̄i)
sample u ∼ Uniform(0, 1)
compute α(z̄i, zi) in (7)
if u < α(z̄i, zi) then

set zji,t = zi and z̄i = zi
else

set zji,t = z̄i
end if

end for
set zi,t = (z1

i,t, . . . , z
M
i,t)

end for
compute (8)
compute (9) for k ∈ unique(zi,t)
compute πk,t := softmax(νt)k for k ∈ Z

end for

Optimal proposal (O). The optimal proposal distribution is q(zi|z̄i) := q(zi) := pθ(zi|xi). This148

ensures that the acceptance rate (7) is always α(z̄i, zi) = 1. However, the need to perform K149

expensive evaluations of pθ(zi, xi) before sampling from pθ(zi|xi) is the reason we resorted to150

the MH sampler in the first place. We consider this case only to set the upper limit on admissible151

computational cost and to study the impact of sub-optimal proposal distribtions.152

Uniform proposal (U). The uniform distribution on the discrete interval from 1 to K, i.e. q(zi|z̄i) :=153

q(zi) := Uniform(1,K), is the simplest and computationally cheapest variant of the proposal154

distribution. However, due to poor mixing properties, the algorithm may converge slowly for high K.155

Tabular proposal with forgetting (TF). The key requirement to design a proposal distribution is to156

restrict its computational complexity somewhere between that of the U and O proposals. One way to157

satisfy this constraint is to use the Markov chain, (zi,t)
T
t=1, to learn a transition kernel, p(zi|z̄i), see,158

e.g. [3]. Unfortunately, this would require us to store a table with K2 entries for each i ∈ (1, . . . , N),159

which is very demanding even for moderate K and N . Therefore, we break the dependence in160

the Markov chain and define: q(zi|z̄i) := qαi(zi) := C(αi), where C(αi) ∝ ΠK
k=1α

1(zi=k)
k,i is the161

categorical distribution with the weights αi := (α1,i, . . . , αK,i). For L(αi) := Σtτ=1 log qαi(zi,τ),162

we obtain an estimate of αi at iteration t as follows: αi,t := argmaxαi L(αi) =
ni,t
t , with163

ni,t = Σtτ=1ezi,t , where ek is the standard basis vector (a one-hot vector) with one at kth position164

and zeros otherwise. This can be further rewritten into a recursive form: ni,t = ni,t−1 + ezi,t or,165

using the Robbins-Monro step-size, ni,t = (1− ezi,tγt)� ni,t−1 + γtezi,t , where 1 is the vector of166

ones, and � is the Hadamard product. We refer to this case simply as “table with forgetting” (TF)167

due to that it represents N ×K table in the memory and γt is a forgetting factor.168

5 Related work169

Stochastic approximation expectation-maximization. The application of SA to prevent the evaluation170

of all K components in mixture models has been overlooked for a long time. The reason is that the171

original motivation to combine the EM algorithm with SA is to address the analytical intractability172

of the expected value under pθ(z|x) in (4), which is, however, almost always tractable for mixture173

models. The intractability issue is addressed by either the Monte Carlo SAEM (MCSAEM) [12]174

or the Markov chain Monte Carlo SAEM (MCMCSAEM) [31]. Applying the former approach to175

mixture models would be inefficient, since it evaluates K joint distributions, pθ(z, x), before drawing176

5

0 500 1000 1500

0.0

2.5

5.0

7.5

10.0

computational time (sec)
L

(θ
t
)

(-
)

exact
EM
SAEM
SSAEM
TSAEM
MCSAEM
MHSAEM-U
MHSAEM-TF

Figure 1: The training log-likelihood, L(θt), versus the computational time (in seconds). Here, on the
x-axis, the computational time at a current iteration, t, is obtained by accumulating the time from the
previous iterations. corresponds to L(θt95), where t95 is the iteration of reaching 95% of maxL(θt).
The projection of on the x-axis gives the time to reach L(θt95

). This experiment was performed
with the following settings: (D,K,N, ω, B,M, T) = (10, 100, 10k, 0.1, 200, 2, 20k), see Section
6.1 for details. The results are averaged over five repetitions.

M samples from pθ(z|x). Therefore, this method reduces only the computational cost of updating the177

sufficient statistics. This is addressed by the latter approach, where M < K samples from a proposal178

distribution, q(z|x), is used to calculate pθ(z, x) and also the sufficient statistics. However, all these179

methods process all data at every iteration, providing only a limited advantage over the conventional180

EM algorithm. Minibatch versions of these techniques have recently been proposed [27, 32, 1].181

All the above methods commonly assume pθ(z, x) belonging to the exponential family. This provides182

a convenient, but limiting, property which allows (6) to be computed under a closed-form solution.183

The main contribution of our work is to release this restrictive assumption by admitting that pθ(z, x)184

(and thus Q) is given by possibly complex and intractable transformations.185

Sparse and truncated variational techniques. There is only a small body of methods explicitly186

reducing the number of evaluated components. Their common aspect is that they follow from the187

variational framework, where the exact posterior, pθ(z|x), is approximated by a variational posterior,188

q(z|x). This sparse, approximate, posterior is defined over a lower number of components, M � K,189

such that only the important components are selected, relying on relaxation of the hard EM algorithm190

from taking a single M = 1 assignment [26] to taking multiple M � K assignments. The sparse191

SAEM (SSAEM) algorithm [24] selects the components by a quick partial sorting of the posterior192

probabilities, pθ(z|x). Again, this requires K evaluations of pθ(z, x) before the sorting, thus only193

reducing the amount of updated statistics. Similarly, the truncated SAEM (TSAEM) algorithm [18]194

selects M < K cluster-to-cluster and M̄ < K cluster-to-datapoint minimal Euclidean distances,195

preventing the problem in the SSAEM algorithm. However, all these distances are evaluated for all196

components in a pairwise manner, leading to K2-computational complexity, which makes the saving197

dubious. Similarly as before, these methods assume pθ(z, x) to belong to the exponential family.198

We summarize the distinguishing features of the above discussed methods in Table 1.199

6 Experiments200

To demonstrate the key features of our algorithm—its low computational complexity, competitive201

learning performance, and generality—we use it below to train: (i) GMMs on synthetic datasets, and202

(ii) SPTNs [47] and (iii) mixtures of real NVP flows [48] on real datasets. All experiments have been203

performed on a Slurm cluster equipped with Intel Xeon Scalable Gold 6146 with 384GB of RAM.204

6.1 Gaussian mixture models205

Consider the special case of a data-generating distribution given by (1), with the components taking206

the form of the multivariate Gaussian distribution, pηz (x|z) = N (x;µz,Σz), where µz is the mean207

value and Σz is the covariance matrix. The difficulty of learning GMMs heavily depends on the208

degree of interaction among all mixture components, hence having the ability to generate synthetic209

datasets with arbitrary overlap characteristics between all pairs of components is crucial for systematic210

6

EM SAEM SSAEM TSAEM MCSAEM MHSAEM-U (ours) MHSAEM-TF (ours)

102 103
0

2

4

6

8

computational time (sec)

A
E

(-
)

K=25
K=50
K=75
K=100

102 103
0

2

4

6

8

computational time (sec)

A
E

(-
)

B=100
B=200
B=300
B=400

102 103
0

2

4

6

8

10

12

computational time (sec)

A
E

(-
)

M=1
M=2
M=4
M=8

Figure 2: The absolute error, AE = |L(θt95)−L(θ)|, versus the computational time (in seconds). All
experiments use the following settings: (D,K,N, ω, B,M, T) = (10, 100, 10k, 0.1, 200, 2, 20k),
where the number of components, K, (left), the batchsize, B, (middle) and the number of samples,
M , (right) change for different values denoted by (, , ,). At each of these points (marks), we
perform an experiment as illustrated in Figure 1, find L(θt95

) to compute the AE, and record the time
corresponding to t95. The results are averaged over five repetitions.

evaluation of performance of learning algorithms [43]. Traditional techniques usually define overlap211

(or separation) of components only in terms of their mean vectors and maximum eigenvalues of the212

covariance matrices, not accounting for their rotation and mixing weights (see [36] for a detailed213

treatment of the problem). We therefore use a more objective measure of the clustering complexity214

defined by the total probability of misclassification [41], which allows to generate data with a215

user-defined degree of maximum pairwise overlap, ω.216

Experiment settings: We generate the parameters of (1), and the corresponding dataset, uniquely for a217

given quadruple (D,K,N, ω). Therefore, the parameters of the generative model are known and we218

can measure and display the convergence of the training log-likelihood, L(θt), compared to the exact219

log-likelihood, L(θ), for t = (1, . . . , T). We are further interested in the absolute error between the220

training log-likelihood at the iteration of reaching 95% of its maximum value, t95, and the exact221

log-likelihood, i.e. AE = |L(θt95
)− L(θ)|.222

We also measure the computational time until reaching t95. We have used 95% of the maximum223

value instead of the maximum value to prevent cases, where the model oscillate around target value,224

making the estimate of convergence time very noisy (for example MCSAEM in Figure 1).225

Algorithms: The GMMs belong to the exponential family of probability distributions. This allows us226

to find a closed-form, recursive, solution of (6), relying on a Robbins-Monro type of the step-size227

sequence, (γt)
T
t=1, [7, 44]. In this setting, we compare our MHSAEM algorithm with a number of228

related methods in Table 1. Note we use the acronyms U and TF to specify the proposal distribution of229

the MHSAEM algorithm (Section 4.3). However, we do not use the O-proposal, since the MHSAEM-230

O algorithm is equivalent to the MCSAEM algorithm. All the SA-variants in Table 1 use a minibatch231

of size B. The key quantity to reduce the number of evaluated components and/or sufficient statistics232

in the SSAEM, TSAEM, MCSAEM and MHSAEM algorithms is collectively denoted by M (Section233

5). Note that we always keep M = M̄ in the TSAEM algorithm (see Figure 1 and 2 for concrete234

numbers). We use the step-size given by γt = 1 for t = 1, . . . , 50 and γt = 0.05 otherwise. In235

this section, to counteract the issue of attaining poor local optima, we equip all algorithms with the236

anti-annealing schedule (βt)
T
t=1, starting with β1 = 0.1, reaching β2/3T = 1.2, and decreasing back237

to βT = 1.0, see [43] for details. The initial estimates of: (i) µk are uniformly drawn from the unit238

hyper-cube, (ii) Σk are fixed to unit diagonal matrix, and (iii) πk are uniformly drawn from the unit239

interval (followed by normalization).240

Results: Figure 1 shows that the EM [13] and SAEM [44] algorithms take the longest time to241

converge, attaining a poor local optima. On the other hand, the MCSAEM [1] and MHSAEM (U242

and TF) algorithms achieve L(θt95) closest to the likelihood L(θ) of the true model. Moreover, both243

MHSAEM algorithms reach this value in the shortest time compared to all the other methods. The244

SSAEM [24] and TSAEM [18] algorithms are comparable in terms of the computational time, but245

they both provide the lowest L(θt95). In Figure 2, we investigate sensitivity of fitting the model to246

7

increasing values of K, B and M by measuring the time and the likelihood again. In all the cases,247

the proposed MHSAEM algorithms achieve the lowest AE in the shortest time.248

SSAEM and TSAEM algorithms failed to converge for M > 2 and for K > 50 respectively. We249

believe this is caused by selecting only M maximal probabilities in the SSAEM (or distances in the250

TSAEM) algorithm (Section 5), which prevents certain, but not a negligible number of, components251

from being updated, thus providing only a crude approximation of pθ(z|x). The results then suffer252

from substantial variational gap to the exact log-likelihood (Figure 1). On the contrary, MH sampler253

provides samples which consistently approximate pθ(z|x) despite evaluating much lower number of254

components in each step.255

6.2 Sum-product transform networks256

The sum product networks (SPNs) are a deep learning extension of finite mixture models. They can257

be interpreted as a mixture of trees [60], where each tree corresponds to a component. Therefore,258

they can be cast into the form of (1), but the number of components grows exponentially with their259

depth. In this section, we use recently proposed SPTNs which introduce additional transformation260

nodes to provide better expressiveness than the SPNs (SPTNs effectively generalize SPNs and flow261

models into one large family of models).262

Experimental settings: We use 19 real datasets from the UCI database [16, 37, 35, 54], preprocessed263

in the same way as in [46]. For each experiment, we randomly split the data into 64%, 16% and 20%264

for training, validation and testing, respectively. We calculate the average log-likelihood on the test265

set and measure again the time to reach 95% of the maximal training log-likelihood, L(θt95
).266

To evaluate various (possibly shallow and/or deep) architectures of SPTNs, we fit each dataset with267

all the following combinations of hyper-parameters1: s ∈ (8, 32, 128), b ∈ (2, 4, 6, 8), l ∈ (2, 3, 4),268

where s is the number of children of each sum node, b is the number of partitions of each product269

node, and l is the number of layers (one layer contains sum and product nodes). The number of270

components of the SPTN, after its conversion into (1), is given as follows: K = sl. Note that the271

maximum number of components for the investigated parameters of the SPTN is 268,435,456. To272

reduce the space of possible architectures, we restrict ourselves only to (i) the leaf nodes given by273

N (0, I); (ii) affine transformations fixed to the singular value decomposition, choosing the the Givens274

parameterization for the unitary matrices [47]; and (iii) no sharing of any type of nodes [47].275

Algorithms: We evaluate only on the MHSAEM-U algorithm—due to its favourable computational276

complexity and simplicity—and compare it with the stochastic gradient-descent (SGD) algorithm,277

which is routinely used to train SP(T)Ns [45, 47]. In this case, SGD in each iteration performs278

computations over all subtrees of the network, whereas the MHSAEM-U algorithm computes with279

only M = 1 subtrees, thus we should observe speed-up of the computations. In our implementation,280

both these methods perform optimization of their respective objective functions—the log-likelihood281

(2) for SGD and the EM objective (8) for MHSAEM-U—via the use of the automatic differentiation282

and the ADAM optimizer [29], using B = 100 and T = 20000.283

Results: Since each dataset might benefit from a different architecture, Table 6.2 shows the test284

log-likelihood of the architectures selected according to the best likelihood measured on the validation285

set and the corresponding speed-up. The test log-likelihoods reveal that the MHSAEM-U algorithm286

outperforms the SGD algorithm on 10 out of 19 datasets, which was not originally the goal, but287

the added stochasticity helps to escape poor local minima. The speed-up demonstrates lower288

computational complexity of the MHSAEM-U algorithm on 17 out of 19 datasets, which was the289

main goal. The magic-telescope and wine datasets show approximately 102× and 75× speed-up,290

respectively, while on very small datasets (pima-indians and iris), the SGD is faster due to291

effective implementation. In the supplementary material, we present Table 3, exhibiting the same292

trends on a fixed architecture.293

6.3 Mixtures of real NVP flows294

We consider another class of mixture models (1), where each component pηz (x|z) is transformed by295

the flow model—real NVP [15]. These transformations are parameterized via deep neural networks,296

allowing for flexible adjustment of the learning capacity of each component.297

1We have set a hard limit to train a single model to 24h, which is default on our Slurm cluster.

8

Table 2: The speed-up and test log-likelihood, Ltest, for the SGD and MHSAEM-U algorithms. The
test log-likelihood (higher is better) is computed for the best model, with the corresponding K,
which is selected based on the validation log-likelihood. The speed-up is computed as the ratio of
MHSAEM-U to SGD, i.e. their time to reach 95% of the training log-likelihood. The results are
averaged over five repetitions. Then, the higher test log-likelihood is highlighted with bold blue, and
and no speed-up is highlighted with red. The average rank is computed as the standard competition
(“1224”) ranking [14] on each dataset (lower is better).

Sum-product transform networks Mixtures of real NVP flows
SGD MHSAEM-U SGD MHSAEM-U

dataset speed-up Ltest K Ltest K speed-up Ltest K Ltest K
breast-cancer-wisconsin 4.66 -4.66 64 1.43 1024 0.63 -99.85 32 -39.31 128

cardiotocography 10.55 59.52 512 31.04 1024 9.85 54.34 32 56.08 128
magic-telescope 102.53 -3.65 512 -5.03 1024 3.74 -3.97 8 -4.22 8

pendigits 4.89 0.88 1024 -4.86 16384 4.17 1.46 8 0.48 8
pima-indians 0.37 -8.54 64 -7.62 64 1.35 -20.09 128 -16.33 128

wall-following-robot 3.43 1.84 1024 -11.3 16384 22.21 -14.26 128 -17.56 128
waveform-1 4.35 -26.14 64 -23.91 1024 3.72 -34.12 8 -33.42 8
waveform-2 4.82 -26.21 64 -23.91 1024 4.12 -34.15 8 -33.64 8

yeast 20.57 10.26 512 5.18 1024 14.49 6.61 128 9.59 128
ecoli 1.86 -5.5 64 -0.22 1024 2.15 -11.37 128 -10.64 128

ionosphere 1.88 -20.27 64 -5.93 512 2.74 -87.01 128 -42.75 128
iris 0.23 -10.65 64 -1.49 16384 3.28 -16.34 128 -9.21 32

page-blocks 12.18 12.21 512 6.84 1024 44.95 17.13 128 17.94 32
parkinsons 1.46 -21.85 64 0.5 512 3.09 -566.58 128 -33.31 32

sonar 2.96 -95.39 512 -69.29 64 2.52 -622.2 128 -88.81 128
statlog-segment 1.44 47.35 512 26.53 16384 38.49 35.84 128 42.04 32
statlog-vehicle 2.97 -4.25 64 -5.45 1024 6.78 -31.34 32 -26.43 128

wine 75.42 -25.99 1024 -13.27 1024 2.05 -171.58 128 -25.57 128
rank 1.56 1.44 1.83 1.17

Experimental settings: We use the same experimental settings and evaluation metrics as in Section298

6.2. We apply the mixture model on all datasets, changing the number of components as follows:299

K ∈ (8, 32, 128). Each real NVP-based component in the mixture model has (i) the translation300

function parameterized via multi-layer perceptron with a single hidden layer of dimension 10, using301

the rectified linear activation function; and (ii) the scale function parameterized via the same network302

except with the hyperbolic tangent activation function. We do not use the batch normalization [15] and303

we stack two layers of the translation-scale transformation (we have used implementation from [20]).304

Algorithms: The algorithms and their settings are the same as those in Section 6.2.305

Results: The experimental results are presented in right part of Table 6.2. They are similar to those306

obtained in the previous section. In terms of the test log-likelihood, the MHSAEM-U algorithm307

outperforms the SGD algorithm on all but three datasets, and it provides a substantial speed-up on all308

datasets except one. The test likelihood of models with the real NVP flows is most of the time worse309

than that of SPTNs with the affine transformations. As explained in the supplementary, this is due to310

the overfitting, which has been observed in [47].311

7 Conclusion312

This paper has presented a method to decrease computational complexity of fitting mixture models,313

including their generalizations, such as sum-product-(transform) networks and mixtures of flow314

models. The speed-up is achieved by evaluating and updating only a single component (per iteration),315

where the Metropolis-Hasting algorithm ensures sampling of components from a proper posterior. An316

experimental comparison on all three classes of models mentioned above confirmed the theoretical317

expectations. The method significantly speeds-up the fitting time and, importantly, without sacrificing318

the quality of the fit. In fact, the likelihood was better than that of the models fitted by the EM319

algorithm or the SGD algorithm in more than 50% of cases. We attribute this to higher stochasticity,320

which helps to escape from poor local minima.321

In the experiments, the proposed method has used a uniform proposal distribution in the MH sampler.322

Despite outperforming the alternative methods, we conjecture that this limits the speed of convergence.323

Therefore, we believe that there is still a room for improvement in the implementation. We plan to324

address these issues in future work.325

9

8 Broader impact statement326

The presented method decreases the computational complexity of fitting large (and deep) mixture327

models, which leads to five to hundred time speed-up depending on a size of the problem (although328

negative exceptions occurs). We believe this line of research, which we want to continue, to have329

important benefits. First, it is directly related to decrease in energy consumption and in production of330

CO2 (we expect similar rates as the speedup). Second, it has a positive effect on financial aspects of331

deploying (and experimenting with) mixture models. Third, it decreases the hardware requirements,332

as in all experiments presented above the model was fitted on a single-core.333

References334

[1] S. Allassonnière and J. Chevallier. A new class of stochastic EM algorithms: Escaping335

local maxima and handling intractable sampling. Computational Statistics & Data Analysis,336

159:107159, 2021.337

[2] S. Ayesha, M. K. Hanif, and R. Talib. Overview and comparative study of dimensionality338

reduction techniques for high dimensional data. Information Fusion, 59:44–58, 2020.339

[3] D. S. Bai. Efficient estimation of transition probabilities in a Markov chain. The Annals of340

Statistics, pages 1305–1317, 1975.341

[4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.342

Journal of the American statistical Association, 112(518):859–877, 2017.343

[5] J. Blömer and K. Bujna. Adaptive seeding for Gaussian mixture models. In Pacific-asia344

conference on knowledge discovery and data mining, pages 296–308. Springer, 2016.345

[6] T. Campbell and B. Beronov. Sparse variational inference: Bayesian coresets from scratch.346

arXiv preprint arXiv:1906.03329, 2019.347

[7] O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models.348

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613,349

2009.350

[8] J. Chen, J. Zhu, Y. Teh, and T. Zhang. Stochastic expectation maximization with variance351

reduction. Advances in Neural Information Processing Systems, page 7967, 2018.352

[9] N. Chopin. A sequential particle filter method for static models. Biometrika, 89(3):539–552,353

2002.354

[10] G. Compiani and Y. Kitamura. Using mixtures in econometric models: A brief review and some355

new results. The Econometrics Journal, 19(3):C95–C127, 2016.356

[11] S. Dasgupta. Learning mixtures of Gaussians. In 40th Annual Symposium on Foundations of357

Computer Science (Cat. No. 99CB37039), pages 634–644. IEEE, 1999.358

[12] B. Delyon, M. Lavielle, E. Moulines, et al. Convergence of a stochastic approximation version359

of the EM algorithm. The Annals of Statistics, 27(1):94–128, 1999.360

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data361

via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological),362

39(1):1–22, 1977.363

[14] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine364

Learning Research, 7:1–30, 2006.365

[15] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In 5th Interna-366

tional Conference on Learning Representations, ICLR 2017, 2017.367

[16] D. Dua and C. Graff. UCI machine learning repository, 2017.368

10

[17] D. Feldman, M. Faulkner, and A. Krause. Scalable training of mixture models via coresets. In369

Proceedings of the 24th International Conference on Neural Information Processing Systems,370

pages 2142–2150, 2011.371

[18] D. Forster and J. Lücke. Can clustering scale sublinearly with its clusters? A variational EM372

acceleration of GMMs and k-means. In International Conference on Artificial Intelligence and373

Statistics, pages 124–132. PMLR, 2018.374

[19] G. Fort, E. Moulines, et al. Convergence of the Monte Carlo expectation maximization for375

curved exponential families. Annals of Statistics, 31(4):1220–1259, 2003.376

[20] J. Franců. Continuousflows.jl. https://github.com/janfrancu/ContinuousFlows.jl,377

2020.378

[21] K. Greff, S. van Steenkiste, and J. Schmidhuber. Neural expectation maximization. In Proceed-379

ings of the 31st International Conference on Neural Information Processing Systems, pages380

6694–6704, 2017.381

[22] R. Gribonval, A. Chatalic, N. Keriven, V. Schellekens, L. Jacques, and P. Schniter. Sketching382

datasets for large-scale learning (long version). arXiv preprint arXiv:2008.01839, 2020.383

[23] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal384

of Machine Learning Research, 14(5), 2013.385

[24] M. C. Hughes and E. B. Sudderth. Fast learning of clusters and topics via sparse posteriors.386

arXiv preprint arXiv:1609.07521, 2016.387

[25] K. Humphreys and D. Titterington. Approximate Bayesian inference for simple mixtures. In388

COMPSTAT, pages 331–336. Springer, 2000.389

[26] B.-H. Juang and L. R. Rabiner. The segmental K-means algorithm for estimating parameters390

of hidden Markov models. IEEE Transactions on acoustics, speech, and signal Processing,391

38(9):1639–1641, 1990.392

[27] B. Karimi, M. Lavielle, and É. Moulines. On the convergence properties of the mini-batch EM393

and MCEM algorithms, 2019.394

[28] N. Keriven, A. Bourrier, R. Gribonval, and P. Pérez. Sketching for large-scale learning of395

mixture models. Information and Inference: A Journal of the IMA, 7(3):447–508, 2018.396

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint397

arXiv:1412.6980, 2014.398

[30] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation399

variational inference. The Journal of Machine Learning Research, 18(1):430–474, 2017.400

[31] E. Kuhn and M. Lavielle. Coupling a stochastic approximation version of EM with an MCMC401

procedure. ESAIM: Probability and Statistics, 8:115–131, 2004.402

[32] E. Kuhn, C. Matias, and T. Rebafka. Properties of the stochastic approximation EM algorithm403

with mini-batch sampling. Statistics and Computing, 30(6):1725–1739, 2020.404

[33] A. Lagrange, M. Fauvel, and M. Grizonnet. Large-scale feature selection with Gaussian mixture405

models for the classification of high dimensional remote sensing images. IEEE Transactions on406

Computational Imaging, 3(2):230–242, 2017.407

[34] M. Lavine and M. West. A Bayesian method for classification and discrimination. Canadian408

Journal of Statistics, 20(4):451–461, 1992.409

[35] M. Little, P. McSharry, S. Roberts, D. Costello, and I. Moroz. Exploiting nonlinear recurrence410

and fractal scaling properties for voice disorder detection. Nature Precedings, pages 1–1, 2007.411

[36] R. Maitra and V. Melnykov. Simulating data to study performance of finite mixture modeling412

and clustering algorithms. Journal of Computational and Graphical Statistics, 19(2):354–376,413

2010.414

11

https://github.com/janfrancu/ContinuousFlows.jl

[37] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming. Technical415

report, University of Wisconsin-Madison Department of Computer Sciences, 1990.416

[38] J.-M. Marin, K. Mengersen, and C. P. Robert. Bayesian modelling and inference on mixtures of417

distributions. Handbook of statistics, 25:459–507, 2005.418

[39] C. A. McGrory, D. C. Ahfock, J. A. Horsley, and C. L. Alston. Weighted Gibbs sampling for419

mixture modelling of massive datasets via coresets. Stat, 3(1):291–299, 2014.420

[40] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake. Finite mixture models. Annual review of421

statistics and its application, 6:355–378, 2019.422

[41] V. Melnykov, W.-C. Chen, and R. Maitra. MixSim: An R package for simulating data to study423

performance of clustering algorithms. Journal of Statistical Software, 51(12):1, 2012.424

[42] T. Monnier, T. Groueix, and M. Aubry. Deep transformation-invariant clustering. In Conference425

on Neural Information Processing Systems (NeurIPS 2020), 2020.426

[43] I. Naim and D. Gildea. Convergence of the EM algorithm for Gaussian mixtures with unbalanced427

mixing coefficients. In Proceedings of the 29th International Coference on International428

Conference on Machine Learning, pages 1427–1431, 2012.429

[44] H. D. Nguyen, F. Forbes, and G. J. McLachlan. Mini-batch learning of exponential family finite430

mixture models. Statistics and Computing, pages 1–18, 2020.431

[45] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, and Z. Ghahra-432

mani. Random sum-product networks: A simple and effective approach to probabilistic deep433

learning. In Uncertainty in Artificial Intelligence, pages 334–344. PMLR, 2020.434

[46] T. Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2):275–304,435

2016.436

[47] T. Pevný, V. Šmídl, M. Trapp, O. Poláček, and T. Oberhuber. Sum-product-transform networks:437

Exploiting symmetries using invertible transformations. arXiv preprint arXiv:2005.01297,438

2020.439

[48] G. G. Pires and M. A. Figueiredo. Variational mixture of normalizing flows. arXiv preprint440

arXiv:2009.00585, 2020.441

[49] A. Rau, C. Maugis-Rabusseau, M.-L. Martin-Magniette, and G. Celeux. Co-expression analysis442

of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics,443

31(9):1420–1427, 2015.444

[50] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.445

SIAM review, 26(2):195–239, 1984.446

[51] H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical447

statistics, pages 400–407, 1951.448

[52] C. Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business Media,449

2013.450

[53] W. Siblini, P. Kuntz, and F. Meyer. A review on dimensionality reduction for multi-label451

classification. IEEE Transactions on Knowledge and Data Engineering, 2019.452

[54] J. P. Siebert. Vehicle recognition using rule based methods. 1987.453

[55] C. Viroli and G. J. McLachlan. Deep gaussian mixture models. Statistics and Computing,454

29(1):43–51, 2019.455

[56] C. F. J. Wu. On the convergence properties of the EM algorithm. The Annals of statistics, pages456

95–103, 1983.457

[57] D. Wu and J. Ma. An effective EM algorithm for mixtures of Gaussian processes via the MCMC458

sampling and approximation. Neurocomputing, 331:366–374, 2019.459

12

[58] W. Xiang, A. Karfoul, C. Yang, H. Shu, and R. L. B. Jeannès. An exact line search scheme to460

accelerate the EM algorithm: Application to Gaussian mixture models identification. Journal of461

computational science, 41:101073, 2020.462

[59] M. Zhang, Y. Fu, K. M. Bennett, and T. Wu. Computational efficient variational Bayesian Gaus-463

sian mixture models via coreset. In 2016 International Conference on Computer, Information464

and Telecommunication Systems (CITS), pages 1–5. IEEE, 2016.465

[60] H. Zhao, P. Poupart, and G. Gordon. A unified approach for learning the parameters of sum-466

product networks. In Proceedings of the 30th International Conference on Neural Information467

Processing Systems, pages 433–441, 2016.468

13

Checklist469

1. For all authors...470

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s471

contributions and scope? [Yes]472

(b) Did you describe the limitations of your work? [Yes] Our main contribution is compu-473

tational speedup. Cases where it was not achieved are highlighted in the experimental474

section.475

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not476

foresee any potential negative impact.477

(d) Have you read the ethics review guidelines and ensured that your paper conforms to478

them? [Yes]479

2. If you are including theoretical results...480

(a) Did you state the full set of assumptions of all theoretical results? [N/A]481

(b) Did you include complete proofs of all theoretical results? [N/A]482

3. If you ran experiments...483

(a) Did you include the code, data, and instructions needed to reproduce the main exper-484

imental results (either in the supplemental material or as a URL)? [Yes] The code is485

available in a github repository. All dataset are public from the UCI database.486

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they487

were chosen)? [Yes] See Section 6.488

(c) Did you report error bars (e.g., with respect to the random seed after running experi-489

ments multiple times)? [No] We report only average of Monte Carlo repetitions, the490

error bars were too small to have any visual impact in the reported logarithmic scale.491

(d) Did you include the total amount of compute and the type of resources used (e.g., type492

of GPUs, internal cluster, or cloud provider)? [Yes]493

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...494

(a) If your work uses existing assets, did you cite the creators? [Yes] We use 20 datasets495

from UCI, we cite the required papers for each dataset, mostly the UCI database and496

few additional publications.497

(b) Did you mention the license of the assets? [No] The data are publically available, we498

comply with the requirement on citing appropriate publications.499

(c) Did you include any new assets either in the supplemental material or as a URL? [No]500

(d) Did you discuss whether and how consent was obtained from people whose data you’re501

using/curating? [N/A]502

(e) Did you discuss whether the data you are using/curating contains personally identifiable503

information or offensive content? [N/A]504

5. If you used crowdsourcing or conducted research with human subjects...505

(a) Did you include the full text of instructions given to participants and screenshots, if506

applicable? [N/A]507

(b) Did you describe any potential participant risks, with links to Institutional Review508

Board (IRB) approvals, if applicable? [N/A]509

(c) Did you include the estimated hourly wage paid to participants and the total amount510

spent on participant compensation? [N/A]511

14

	Introduction
	Problem formulation
	The EM algorithm
	The generalized MHSAEM algorithm
	E-step
	M-step
	Proposal distribution

	Related work
	Experiments
	Gaussian mixture models
	Sum-product transform networks
	Mixtures of real NVP flows

	Conclusion
	Broader impact statement

