
PT-MoE: An Efficient Finetuning Framework for
Integrating Mixture-of-Experts into Prompt Tuning

Zongqian Li
University of Cambridge

zl510@cam.ac.uk

Yixuan Su
University of Cambridge

ys484@cam.ac.uk

Nigel Collier
University of Cambridge

nhc30@cam.ac.uk

Abstract

Parameter-efficient fine-tuning (PEFT) methods have shown promise in adapting
large language models, yet existing approaches exhibit counter-intuitive phenom-
ena: integrating either matrix decomposition or mixture-of-experts (MoE) individ-
ually decreases performance across tasks, though decomposition improves results
on specific domains despite reducing parameters, while MoE increases parameter
count without corresponding decrease in training efficiency. Motivated by these
observations and the modular nature of PT, we propose PT-MoE, a novel framework
that integrates matrix decomposition with MoE routing for efficient PT. Evaluation
results across 17 datasets demonstrate that PT-MoE achieves state-of-the-art perfor-
mance in both question answering (QA) and mathematical problem solving tasks,
improving F1 score by 1.49 points over PT and 2.13 points over LoRA in QA tasks,
while improving mathematical accuracy by 10.75 points over PT and 0.44 points
over LoRA, all while using 25% fewer parameters than LoRA. Our analysis reveals
that while PT methods generally excel in QA tasks and LoRA-based methods in
math datasets, the integration of matrix decomposition and MoE in PT-MoE yields
complementary benefits: decomposition enables efficient parameter sharing across
experts while MoE provides dynamic adaptation, collectively enabling PT-MoE
to demonstrate cross-task consistency and generalization abilities. These findings,
along with ablation studies on routing mechanisms and architectural components,
provide insights for future PEFT methods. 1

1 Introduction

Background. Large language models (LLMs) have shown remarkable capabilities but require
resources for fine-tuning [41, 18, 19]. PEFT methods address this challenge by updating only a small
subset of parameters [8, 21, 22]. Prompt tuning (PT) stands out among PEFT approaches with its
unique advantages: minimizing trainable parameters through soft prompt optimization, enabling
modular deployment through task-specific prompts without model modifications, and supporting
flexible knowledge composition [14, 20]. These properties make it particularly effective for low-
resource and multi-task applications where efficient adaptation is essential [17].

Motivation. Despite these advantages, we observe three counter-intuitive phenomena in prompt
tuning. First, applying either matrix decomposition or MoE routing individually leads to performance
decrease in both QA and mathematical tasks compared to standard PT (PT vs DPT, PT vs SMoP;
Figure 1). Second, matrix decomposition, while reducing parameter count, improves performance
on specific subsets of tasks (PT vs DPT; Tables 2, 3, 4), revealing task-dependent optimization
dynamics. Third, integrating additional routing components or multiple experts increases parameter
count without corresponding decrease in training efficiency (PT vs SMoP, LoRA vs HydraLoRA;
Figure 4). These phenomena indicate that the relationship between parameter efficiency and model

1https://github.com/ZongqianLi/PT-MoE

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/ZongqianLi/PT-MoE

Figure 1: Performance and parameter ef-
ficiency comparison of PEFT methods on
QA and mathematical tasks. The upper sub-
graph shows average F1 scores on 12 MRQA
benchmark datasets, while the lower subgraph
shows average accuracy on 5 mathematical
datasets. The x-axis represents the number
of trainable parameters, with corresponding
parameter ratio shown at the top. ↑ indi-
cates higher is better; ↓ indicates lower is bet-
ter. Red arrows indicate method transforma-
tions: +MD (matrix decomposition), +MoE
(mixture-of-experts), or their combination.
PT excels in QA tasks while LoRA demon-
strates advantages in mathematical tasks. PT-
MoE achieves the best performance on both
task types while using fewer parameters than
alternative methods, demonstrating that com-
bining matrix decomposition and MoE yields
complementary benefits despite each com-
ponent individually decreasing performance
when applied to PT.

effectiveness in prompt tuning is more nuanced than previously understood, motivating the need for a
more sophisticated approach to prompt optimization.

Based on these observations, we propose a novel framework, Prompt Tuning with Efficient Mixture-
of-Experts (PT-MoE), that combines matrix decomposition with MoE routing. As shown in Figure
1, our approach not only achieves state-of-the-art performance, but also keeps modular and uses
minimal trainable parameters and moderate training steps.

Contributions. Our work offers three key developments:

• Novel finetuning framework: We propose PT-MoE, integrating matrix decomposition with MoE
for prompt tuning. Our framework achieves state-of-the-art performance with fewer parameters
while outperforming either technique alone, demonstrating their complementary benefits.

• Design dynamics: We analyze key variables influencing the performance of PT-MoE, including
prompt length, expert count, routing mechanisms, and model size. Our findings provide design
guidelines for future parameter-efficient tuning approaches.

• Key insights: Our comprehensive analysis across diverse tasks reveals several important find-
ings: First, prompt tuning methods excel in QA tasks while LoRA-based methods demonstrate
advantages in mathematical reasoning; Second, matrix decomposition reduces parameters while
potentially improving domain-specific performance, whereas MoE integration increases parameter
count without compromising training efficiency; and Third, combining matrix decomposition and
MoE enables PT-MoE to achieve superior performance across all tasks while maintaining minimal
parameter count and moderate training costs, whereas applying either of them individually can
decrease average performance.

Organization. The remainder of this paper is organized as follows: Section 2 reviews related work
in prompt tuning, covering both direct tuning approaches and transfer learning methods. Section 3
presents our PT-MoE framework, detailing the matrix decomposition strategy, dynamic router design,
and training methodology. Section 4 describes our experimental design across QA and mathematical
problem-solving tasks. Section 5 presents comprehensive results, including detailed ablation studies
analyzing the influences of prompt length, parameter count, expert number, routing mechanisms,
and model size, followed by efficiency analysis. Section 6 concludes with key findings and future
directions.

2

2 Related Work

To contextualize our approach, we review existing prompt tuning methods, which fall into two
categories: direct prompt tuning approaches focusing on architectural innovations, and transfer
learning methods enabling cross-task knowledge sharing.

Direct prompt tuning methods have evolved into four main branches: (1) General approaches that
directly optimize prompt parameters, including Prompt Tuning that prepends trainable vectors to
input while freezing the language model [14], XPrompt that employs pruning to identify and retain
important prompt tokens [25], and P-Tuning v2 that introduces deep prompts across all transformer
layers [23]; (2) Encoder-based methods that leverage additional additional modules, such as P-
Tuning that incorporates an encoder to learn dependencies between continuous embeddings [24],
Residual Prompt Tuning (RPT) that employs a residual part with down/up-projection layers for stable
optimization [31], and Prefix Tuning that prepends trainable key-value pairs at each layer through a
reparameterization section [16]; (3) Decomposition methods that decompose prompt embeddings,
including Decomposed Prompt Tuning (DPT) that applies low-rank matrix decomposition to reduce
parameter count [37], and DePT that combines shorter soft prompts with low-rank updates to word
embeddings [33]; and (4) MoE approaches such as Sparse Mixture-of-Prompts (SMoP) that employs
multiple shorter prompts with a dynamic gating mechanism to route inputs to the most suitable
prompt representations [2].

Transfer learning approaches in prompt tuning have developed into three categories: (1) General
approaches that directly transfer prompt knowledge, including SPoT that introduces both generic
transfer through multi-task pre-training and targeted transfer via task similarity matching [34], and
ATTEMPT that dynamically combines multiple source prompts through an attention-based mixing
mechanism with instance-level adaptation [1]; (2) Encoder-based methods that facilitate knowledge
transfer through additional architectures, such as TransPrompt that employs parallel task-specific and
universal encoders with balancing mechanisms for obtaining both task-dependent and task-agnostic
knowledge [35], and Cross-Task Prompt Tuning (CTPT) that leverages multi-head attention for
cross-task knowledge transfer with dimension reduction and derivative-free optimization [38]; and (3)
Decomposition methods exemplified by Multitask Prompt Tuning (MPT) that decomposes prompts
into shared and task-specific components through knowledge distillation, enabling efficient transfer
while preserving task-specific adaptability through a rank-one decomposition strategy [36].

3 Methods

Figure 2: Architecture of PT-MoE. Each soft
prompt is decomposed into an input-specific ma-
trix Ai and a shared matrix B, with a router adap-
tively selecting and combining prompt compo-
nents based on input. The resulting soft prompt is
prepended to the input for the frozen LLM.

Building upon the insights from prior work, we
propose a new parameter-efficient prompt tun-
ing framework, PT-MoE, shown in Figure 2 and
Algorithm 1.

Framework Overview. PT-MoE integrates ma-
trix decomposition and dynamic routing. Given
an input sequence x, our framework first gener-
ates routing weights w through a router network
R: w = R(x). These weights determine the
selection among N decomposed prompts, where
each prompt Pi is decomposed as Pi = AiB,
with Ai being prompt-specific and B being
shared across all prompts. The final soft prompt
P is computed as P =

∑N
i=1 wiAiB, which

is then prepended to the input sequence for the
frozen language model.

Matrix Decomposition. To achieve parame-
ter efficiency, we decompose each prompt ma-
trix Pi ∈ RT×H into a prompt-specific matrix
Ai ∈ RT×R and a shared matrix B ∈ RR×H ,
where T , H , and R denote the prompt length,
hidden dimension, and low-rank dimension respectively. This reduces parameters from O(NTH) to

3

Algorithm 1 Pseudo code of PT-MoE
Require: Base model M; input batch X = x1, ..., xb; parameters θ

Notation: b - batch size; s - sequence length; n - number of prompts; k - tokens per prompt; d - low-rank dimension; h - hidden dimension
for batch x ∈ X do

Get input embeddings E = Membed(x) where E ∈ Rb×s×h

Calculate mean embeddings µ = mean(E, dim = 1) where µ ∈ Rb×h

Compute router logits l = Wµ + b where W ∈ Rn×h, b ∈ Rn, l ∈ Rb×n

Get router weights w = softmax(l) where w ∈ Rb×n

for each sample j in batch do
Find indices of top-k weights: itopk = argsort(wj)[−k :]
Zero all weights except top-k: wj [i] = 0 for all i /∈ itopk

end for
Initialize prompt embeddings P = 0, P ∈ Rb×k×d

for each weight wi in w do
Compute weighted prompts P = P + wiAi where Ai ∈ Rk×d

end for
Project to model dimension P = P × B where B ∈ Rd×h

Combine with input: C = concat(P,E) where C ∈ Rb×(k+s)×h

Generate through base model: y = M(C)
end for

Ensure: Model predictions y

MRQA (Extractive QA)
In-domain SQuAD [30], TriviaQA [9], SearchQA [5], HotpotQA [39], NaturalQuestions [12]
Out-of-domain BioASQ [28], DROP [4], DuoRC [32], RACE [13], RelationExtraction [15], Text-

bookQA [10]
Mathematics (Problem Solving)
In-domain GSM8K [3]
Out-of-domain SVAMP: Subtraction, Addition, Common-Division, Multiplication [29]; ASDIV [26];

MAWPS [11]; MATH_PROBLEMS [27]

Table 1: Overview of training and evaluation datasets. The experiments span two task categories:
extractive QA (MRQA benchmark with 12 QA datasets) and mathematical problem solving (GSM8K
and specialized mathematical datasets). For each category, datasets are divided into in-domain sets
used for training, validation, and evaluation, and out-of-domain sets used exclusively for testing
generalization capability.

O(NTR + RH) for N prompts. The low-rank dimension R is either manually specified or auto-
matically computed to maintain parameter efficiency. For initialization, we first encode task-relevant
text to obtain embeddings E ∈ RT×H , then perform SVD: E = UΣV⊤. Each Ai is initialized
as U: RΣR1/2 and the shared B as ΣR1/2V⊤

R:, where subscript R indicates truncation to the first
R components. This approach ensures the initial prompts encode task-relevant information while
maintaining the parameter efficiency of the decomposition.

Dynamic Router. The router network adaptively selects prompts based on input context. Given an
input sequence embedding x ∈ RH (obtained by averaging token embeddings), the router computes
logits through a linear projection: l = Wx + b, where W ∈ RN×H and b ∈ RN . During
training, we apply multiplicative Gaussian noise to encourage exploration: l′ = l⊙ (1 + ϵ), where
ϵ ∼ N (0, σ2). The routing weights are computed as w = softmax(l′)⊙ 1argmax, where 1argmax is
a one-hot vector with 1 at the position of the maximum value. This hard selection strategy reduces
interference between prompts while maintaining end-to-end differentiability through straight-through
estimation.

Training and Prediction. During training, we optimize both the router parameters and decom-
posed prompt matrices while keeping the base model frozen. For language model training, we
use negative log-likelihood loss computed only on non-prompt positions using a binary mask:
L = −

∑
t∈M log p(yt|x<t), where M denotes non-prompt positions. We employ AdamW opti-

mizer with warmup followed by a constant learning rate schedule, and gradient accumulation for
stable optimization. At inference, noise is not added in the router, ensuring deterministic prompt
selection.

4 Experimental Design

Datasets. We conduct evaluations across 17 diverse datasets, as shown in Table 1, where in-
domain datasets are split into training, validation, and test sets, while out-of-domain datasets are

4

used exclusively for testing. For QA, we utilize 12 MRQA datasets [6], with in-domain sets like
SQuAD [30] testing information extraction abilities and out-of-domain sets like DROP [4] evaluating
domain adaptation. For mathematical problem solving, we use GSM8K [3] from MetaMath [40]
as our in-domain benchmark, complemented by specialized out-of-domain datasets including the
subject-specific subsets of SVAMP [29], ASDIV [26], MAWPS [11], and MATHPROBLEMS [27].

Gold Standard and Baselines. We employ full model fine-tuning as our gold standard, which
updates all parameters but requires computational resources. Our baselines2 include representative
methods from prompt tuning categories: For direct prompt tuning, we select (1) PT from general
approaches, (2) DPT from decomposition methods, and (3) SMoP from MoE approaches. While
transfer learning methods like (4) ATTEMPT typically involve multi-turn training, we also evaluate
its architecture under similar training for comprehensive comparison. We additionally compare
against other PEFT methods including (5) LoRA and (6) HydraLoRA, with HydraLoRA adopting a
MoE-like architecture that uses a shared down-projection matrix and multiple routed up-projection
matrices. These two LoRA-based methods require model architecture modifications unlike the
modular nature of prompt tuning methods.

Evaluation Metrices. We employ task-specific evaluation metrics. For extractive QA tasks from
MRQA, we adopt two metrics: F1 score, which evaluates the token-level overlap between predicted
and ground truth answer spans, balancing precision and recall; and Exact Match (EM), which
measures the percentage of predictions that exactly match the ground truth. For mathematical
problem solving tasks, we use accuracy, defined as the percentage of correctly solved problems with
exact answer matches.

Models. We conduct our main experiments using LLaMA-3.2-1B-Instruct as the base model for
fine-tuning methods [7]. For ablation studies on model size, we additionally employ LLaMA-3.2-
3B-Instruct.

5 Results

5.1 Question Answering

The experimental results on MRQA datasets shown in Table 2 and 3 demonstrate the effectiveness
of PT-MoE across various QA tasks. We highlight seven key findings: (1) PT-MoE achieves
superior overall performance with an average F1 score of 58.26%, outperforming SMoP (56.25%)
by 2.01 points and the standard PT (56.77%) by 1.49 points, establishing a new state-of-the-art
on the MRQA benchmark. (2) This advancement is further validated by Exact Match metrics,
where PT-MoE demonstrates even more gains (47.13% for average, surpassing SMoP and PT by
2.16 and 1.61 points respectively). (3) PT-MoE exhibits strong generalization capabilities across
both in-domain and out-of-domain scenarios. It achieves the highest performance on four out
of six in-domain datasets and three out of six out-of-domain datasets. (4) The stability of PT-
MoE is evidenced by consistent improvements over PT across 11 out of 12 datasets, with only
marginal decreases in the RACE dataset. In contrast, SMoP shows performance decrease on 5
datasets compared to PT. (5) Individual architectural components show limited gains: both matrix
decomposition (DPT, 55.77% F1) and MoE (SMoP, 56.25% F1) underperform standard prompt
tuning (PT, 56.77% F1). (6) PT-MoE’s integration of matrix decomposition and MoE yields
complementary benefits, outperforming both DPT and SMoP by 2.49 and 2.01 points for F1
respectively. This improvement over individual approaches proves the mutually beneficial
nature of these techniques. (7) Notably, while PT-MoE achieves lower overall performance
than FT, it reaches comparable or even higher scores than FT on specific datasets such as DROP
(48.02% vs 43.87% F1) while using only 80K parameters compared to FT’s 1.2B. These results
collectively validate the effectiveness of the architectural design of PT-MoE and demonstrate its
superior performance in accuracy and generalization across diverse QA scenarios.

5.2 Mathematical Problem Solving

The experimental results on mathematical tasks (Table 4) reveal several distinctive characteristics
compared to QA tasks. We highlight six key findings: (1) PT-MoE achieves state-of-the-art per-

2All methods are controlled to have similar parameter budgets, with detailed configurations shown in Table 9
of the Appendix.

5

FT LoRA HydraLoRA PT DPT SMoP ATTEMPT PT-MoE
para. 1.2B 106k 278k 81k 81k 86k 90k 80k

In-domain
SQ 78.76 69.82 74.24 72.31 70.99 74.15 74.22 73.85

News 48.69 39.91 44.05 48.18 48.42 48.96 48.18 48.24
Tri 71.04 70.61 71.38 65.93 65.41 66.13 65.31 67.34

Srch 71.35 55.56 60.13 49.74 46.94 41.08 37.64 51.33
HP 72.96 63.29 64.02 58.69 58.49 58.96 60.18 62.16
NQ 67.56 65.92 66.31 62.18 61.65 61.17 59.59 62.95

Out-of-domain
BSQ 70.19 65.38 68.76 68.59 65.56 68.59 66.69 69.33
DP 43.87 35.25 34.38 40.39 38.80 39.92 45.32 48.02

DRC 48.11 43.69 44.36 43.30 43.64 42.07 42.86 43.96
RC 43.44 38.04 40.00 42.10 41.89 42.34 43.01 42.51
RE 81.60 74.09 77.97 82.43 80.85 83.73 84.11 83.70
TB 52.71 52.00 52.44 47.34 46.62 47.85 46.91 45.71

Avg. 62.52 56.13 58.17 56.77 55.77 56.25 56.17 58.26

Table 2: Evaluation results (F1 scores) for various PEFT methods on QA datasets. SQ: SQuAD;
News: NewsQA; Tri: TriviaQA; Srch: SearchQA; HP: HotpotQA; NQ: NaturalQuestions; BSQ:
BioASQ; DP: DROP; DRC: DuoRC; RC: RACE; RE: RelationExtraction; TB: TextbookQA. The
bold values indicate the best performance among prompt tuning-based methods.

FT LoRA HydraLoRA PT DPT SMoP ATTEMPT PT-MoE
para. 1.2B 106k 278k 81k 81k 86k 90k 80k

In-domain
SQ 65.28 56.26 61.63 61.25 58.49 63.15 63.71 63.34

News 32.76 25.26 27.80 32.62 32.88 32.81 32.50 32.85
Tri 62.29 64.11 64.32 59.49 58.56 59.48 58.71 60.87

Srch 61.50 46.10 50.06 42.40 39.65 34.51 31.24 43.98
HP 56.19 47.48 47.73 44.45 44.33 43.80 45.77 47.29
NQ 50.45 49.54 49.59 47.28 46.54 46.39 45.66 48.18

Out-of-domain
BSQ 49.06 42.02 44.01 51.79 49.46 50.06 49.26 52.06
DP 32.26 25.48 24.75 30.60 28.74 29.94 36.06 37.12

DRC 38.84 33.24 33.57 34.64 35.64 34.11 34.84 35.64
RC 29.52 24.92 26.11 29.82 30.26 30.56 30.41 31.75
RE 66.99 58.58 62.68 72.45 70.48 74.59 75.13 74.18
TB 43.71 44.17 43.97 39.52 38.72 40.25 39.52 38.25

Avg. 49.07 43.09 44.69 45.52 44.48 44.97 45.23 47.13

Table 3: Evaluation results (Exact Match) for QA datasets.

formance with an average accuracy of 56.91%, improving upon PT (46.16%) by 10.75 points,
demonstrating its effectiveness in mathematical reasoning. (2) The benefits of MoE integration
show method-dependent characteristics: in prompt tuning approaches, PT-MoE and SMoP demon-
strate different changes over PT (by +10.75 and -5.11 points respectively); when applied to LoRA
methods, HydraLoRA shows slightly performance decrease compared to LoRA. (3) LoRA-based
methods demonstrate advantages in mathematical tasks compared to their performance in
QA. While LoRA underperformed PT by 5.36 points in MRQA, it outperforms PT by 10.31
points in mathematical tasks, indicating task-specific strengths of different PEFT approaches.
(4) PT-MoE demonstrates unique cross-task consistency: while prompt tuning methods excel in
QA tasks and LoRA-based methods in mathematical tasks, PT-MoE achieves the highest average
performance in both domains, indicating robust adaptability across different problem types. (5)
While PEFT methods consistently underperform full fine-tuning, the performance gap is larger in
mathematical tasks compared to QA tasks, with a wider performance range among different methods.
Notably, PT-MoE achieves comparable or higher performance to full fine-tuning on specific datasets
such as Division and MP500. (6) PT-MoE demonstrates superior parameter efficiency, achieving
higher performance than LoRA while using only 75% of its parameters (80k vs 106k), and outper-
forming HydraLoRA which uses 3.5 times more parameters. These findings highlight both the unique
challenges of mathematical tasks and the robust adaptability of PT-MoE across different problem
domains.

5.3 Case Study

To better understand the performance characteristics of PT-MoE, we present a detailed case study
of polynomial addition in Table 5. In this example, the response of the base model suffers from

6

FT LoRA HydraLoRA PT DPT SMoP ATTEMPT PT-MoE
para. 1.2B 106k 278k 81k 81k 86k 90k 80k

In-domain
GSM8K 58.15 41.77 41.31 34.11 26.08 27.97 27.36 35.63

Out-of-domain
Sub. 68.75 67.50 57.50 41.87 43.12 38.12 40.00 55.62
Add. 64.40 61.01 62.71 50.84 35.59 35.59 35.59 55.93
Div. 62.50 52.08 52.08 66.66 64.58 33.33 37.50 79.16

Multi. 48.48 33.33 39.39 33.33 27.27 33.33 27.27 36.36
SVAMP 61.03 53.48 52.92 48.18 42.64 35.09 35.09 56.77
ASDIV 86.04 73.42 74.08 60.13 56.14 49.50 24.91 77.74

MAWPS 82.53 70.70 76.05 57.18 43.09 65.91 49.01 71.83
MP500 30.60 43.00 33.40 31.20 18.20 26.80 14.60 42.60

Avg. 63.67 56.47 55.55 46.16 37.23 41.05 30.19 56.91

Table 4: Accuracy (%) on mathematical problem-solving tasks with the number of trainable
parameters shown in the second row. The first four out-of-domain datasets are from the SVAMP
dataset: Sub. (Subtraction), Add. (Addition), Div. (Common-Division), and Multi. (Multiplication).
MP500 denotes the first 500 questions from MATH_PROBLEMS.

Question: Let f(y) = y4 − 3y3 + y − 3 and g(y) = y3 + 7y2 − 2. Find f(y) + g(y). Write your answer as a polynomial with terms of
decreasing degree. Standard Answer: y4 − 2y3 + 7y2 + y − 5
Original:
Step 1: Identify the polynomials f(y) and g(y)
The polynomial f(y) is given as f(y) = y4 −
3y3 + y − 3 and the polynomial g(y) is given
as g(y) = y3 + 7y2 − 2.
Step 2: Add the polynomials f(y) and g(y)
To find the sum of f(y) and g(y), we need to add
the corresponding terms of each polynomial.
Step 3: Perform the addition
f(y) + g(y) = (y4 − 3y3 + y − 3) +

(y3 + 7y2 − 2)
Step 4: Combine like terms
Combine the terms with the same degree to sim-
plify the expression.
Step 5: Simplify the expression
f(y)+g(y) = y4−3y3+y3+7y2−2−3
Step 6: Combine like terms
Combine the terms with the same degree.
Step 7: Simplify the expression
f(y) + g(y) = y4 − 2y3 + 7y2−2
Step 8: Write the final answer
The final answer is: y4 − 2y3 + 7y2−2

Prompt Tuning:
Step 1: To find the sum of the two polynomials
f(y) and g(y), we need to add their correspond-
ing terms.
Step 2: The polynomial f(y) = y4−3y3+
y− 3 has terms of degree 4, 3, 2, and 1, while the
polynomial g(y) = y3 + 7y2 − 2 has terms
of degree 3, 2, and 1.
Step 3: When we add these two polynomi-
als, we need to combine like terms, which means
adding the coefficients of terms with the same de-
gree.
Step 4: The terms with degree 4 are y4 and
y4 , so their sum is 2y4 .
Step 5: The terms with degree 3 are −3y3 and
−3y3 , so their sum is −6y3 .
Step 6: The terms with degree 2 are y and 7y2 ,
so their sum is 7y2 .
Step 7: The terms with degree 1 are 1 and −2,
so their sum is −1.
Step 8: Therefore, the sum of the two polynomi-
als f(y) and g(y) is 2y4 − 6y3 + 7y2−1.
Step 9: The answer is 2y4 − 6y3+7y2−1.

PT-MoE:
Step 1: Identify the polynomials f(y) and g(y)
The given polynomials are f(y) = y4−3y3+

y − 3 and g(y) = y3 + 7y2 − 2.
Step 2: Add the polynomials f(y) and g(y)
To find f(y) + g(y), we need to add the corre-
sponding terms of the two polynomials.
Step 3: Perform the addition
f(y) + g(y) = (y4 − 3y3 + y − 3) +

(y3 + 7y2 − 2)
Step 4: Combine like terms
Combine the terms with the same degree of y:
y4+(y3−3y3)+(y3+7y2)+(y−3)−2
Step 5: Simplify the expression
Simplify the expression by combining the coeffi-
cients of like terms: y4 − 2y3 +7y2 + y− 5
Step 6: Write the final expression
The expression f(y) + g(y) is y4 − 2y3 +

7y2 + y − 5.
Note: y is the variable, and the answer is y4 −
2y3 + 7y2 + y − 5.

Table 5: A case study comparing three solution approaches (Original, Prompt Tuning, and PT-MoE)
for a polynomial addition problem. Errors in the outputs are highlighted in red (incorrect terms),
orange (missing terms), and blue (hallucinated terms).

information loss, specifically omitting the linear term during simplification steps, leading to an
incorrect final result. The conventional prompt tuning approach exhibits hallucinations and conceptual
errors, particularly in degree identification and term combination, resulting in spurious terms like
2y4 and −6y3. PT-MoE maintains information integrity throughout the solution process and avoids
hallucinations, ultimately producing the correct polynomial expression. Notably, PT-MoE achieves
this with a more concise solution structure, demonstrating efficient problem-solving steps while
maintaining accuracy.

5.4 Ablation Studies

To systematically evaluate the design choices in PT-MoE, we conduct ablation studies on five influ-
encing variables: soft prompt length, trainable parameters, number of experts, routing mechanisms,
and model size. For each experiment, we keep other variables fixed at their default values (soft
prompt length=40, trainable parameters≈80K, number of experts=2, probationary-selective routing,
1B base model) while varying the target component to isolate its influences on model performance.

Soft prompt length. We evaluate prompt lengths ranging from 20 to 80 tokens (Figure 3 Left).
Three consistent observations emerge: (1) In-domain performance exceeds out-of-domain across
all lengths, maintaining a 5-6% F1 score margin; (2) Both domains achieve optimal performance at
40 tokens, with peak F1 scores of 60.66% and 55.28% respectively; and (3) Performance in both
domains follows a similar trajectory, improving up to 40 tokens then declining. These findings

7

Figure 3: Ablation studies on key components of PT-MoE, showing the influences of (Left) prompt
length, (Center left) number of experts, (Center right) trainable parameters, and (Right) routing
mechanisms ((N)S: (Non-)Selective, (N)P: (Non-)Probationary) on in-domain (ID) and out-of-domain
(OOD) performance.

indicate that the optimal prompt length is domain-agnostic, though the absolute performance levels
remain domain-dependent.

Number of experts. We investigate the influences of expert count by varying it from 1 to 8 (Figure 3
Center left). There are three key points: (1) Single-expert configuration yields the poorest performance
(58.90% and 52.64% F1 for in-domain and out-of-domain), demonstrating the necessity of MoE;
(2) Performance exhibits an initial increase followed by decrease, with in-domain peaking at N=2
(60.66% F1) and out-of-domain at N=4 (55.84% F1), suggesting different optimal routing capacities
for each domain; (3) In-domain tasks consistently outperform out-of-domain scenarios by a 4-6% F1
margin across all expert counts. These observations demonstrate that the optimal number of experts
varies by domain type and highlight the importance of balancing expert specialization with routing
complexity.

Trainable parameters. We vary the parameter count from 18K to 163K to analyze its influence on
model performance (Figure 3 Center Right). Three key observations emerge: (1) Performance consis-
tently improves with increasing parameters, from 57.51% to 61.04% F1 for in-domain and 53.96% to
55.38% F1 for out-of-domain tasks, and notably maintains stability even at higher parameter counts,
contrasting with conventional prompt tuning methods; (2) While both in-domain and out-of-domain
tasks show positive scaling, they exhibit distinct parameter sensitivity behaviours, in-domain tasks
demonstrate rapid improvement before 80K parameters, while out-of-domain tasks show accelerated
growth in the 40K-80K range; (3) In-domain performance maintains a consistent advantage over
out-of-domain tasks across all parameter settings, with F1 scores differing by approximately 4-6%.
These findings suggest that PT-MoE effectively leverages additional parameters to achieve continuous
performance gains.

Routing mechanisms. We examine two key routing design choices (Figure 3 Right): selective
routing, which activates only the highest-weighted expert versus non-selective routing that utilizes
all experts with their respective weights, and probationary routing, which scales the output by
the router’s selection probability versus non-probationary routing that uses unscaled outputs. Our
experiments reveal four key findings: (1) The combination of selective and probationary routing (S,
P) consistently outperforms other configurations (NS, P and S, NP) across both in-domain (60.66%
vs 59.24% and 58.78% F1) and out-of-domain tasks (55.28% vs 53.41% and 52.64% F1), suggesting
the complementary benefits of focused expert utilization and confidence-based output scaling; (2)
Probationary routing demonstrates superior performance over its non-probationary counterpart,
indicating the value of incorporating router confidence in the final output; (3) Under probationary
conditions, selective routing achieves 1.42% higher F1 score while reducing active parameters
compared to non-selective routing, highlighting the effectiveness and efficiency of specialized expert
knowledge; (4) All routing configurations maintain higher performance on in-domain tasks compared
to out-of-domain scenarios, though the relative performance remains consistent across domains.
These findings collectively demonstrate that the selective probationary routing mechanism achieves
an optimal balance between model performance and computational efficiency.

8

PT SMoP PT-MoE
GSM8K 56.70 61.78 59.74
SVAMP 69.36 74.69 72.81
ASDIV 76.41 80.06 81.39

MAWPS 70.70 70.70 78.02
MP500 59.00 60.80 63.60
Average 66.43 69.61 71.11

Table 6: Performance comparison (accuracy %) of
standard and MoE-based prompt tuning methods
on mathematical problem solving tasks using a
3B base model.

Model size. We conduct additional experiments
using a 3B version of the base model, compar-
ing PT-MoE with PT and the MoE-integrated
method, SMoP (Table 6). Three key findings
emerge: (1) PT-MoE maintains its competitive-
ness at larger scales, achieving the highest aver-
age accuracy of 71.11%, surpassing standard PT
(66.43%) and SMoP (69.61%). (2) SMoP shows
scale-dependent behavior: while underperform-
ing PT on the 1B model (56.77% vs 56.25%),
it surpasses PT on the 3B model (69.61% vs
66.43%). (3) PT-MoE demonstrates robust per-
formance by outperforming the baselines on three
out of five mathematical datasets. These findings collectively validate the scalability and stability of
PT-MoE across different model sizes.

5.5 Efficiency Analysis

Results in Figure 4 demonstrate PT-MoE’s efficiency across both computational and parametric
dimensions. PT-MoE achieves the highest performance with only moderate training steps and
minimal parameters (80k). In contrast, LoRA and HydraLoRA require more parameters and training
steps to achieve comparable performance. Other prompt tuning methods such as PT, SMoP, and
DPT converge fast but achieve lower performance, suggesting a potential trade-off between training
efficiency and model effectiveness. This evidence validates that PT-MoE balances the computational
cost, parameter efficiency, and model performance.

Figure 4: Parameter and training ef-
ficiency comparison across different
methods. The x-axis shows training
steps for the highest performance af-
ter training parameter search, while the
y-axis shows the average accuracy on
math datasets. Circle sizes indicate the
number of trainable parameters, with
larger circles representing more param-
eters. Circle markers represent mod-
ular methods (PT-based) that preserve
model architecture, while x markers in-
dicate LoRA-based methods requiring
model structure modifications. Though
PT-MoE introduces a router, it’s imple-
mented as a shallow layer with negligi-
ble inference overhead compared to gen-
eration time.

6 Conclusions

This work introduces PT-MoE, a novel parameter-efficient framework that integrates matrix decom-
position with MoE routing for prompt tuning. Our experiments across 16 datasets demonstrate that
PT-MoE achieves state-of-the-art performance while maintaining parameter efficiency, outperforming
existing methods in both QA and mathematical tasks. Through ablation studies, we identify optimal
configurations for prompt length, expert count, and routing mechanisms, providing insights for future
parameter-efficient tuning approaches.

Future directions include using different routers to manage different task, and extending PT-MoE to
continual learning scenarios for efficient adaptation and knowledge transfer across tasks.

9

References
[1] Akari Asai, Mohammadreza Salehi, Matthew Peters, and Hannaneh Hajishirzi. ATTEMPT:

Parameter-efficient multi-task tuning via attentional mixtures of soft prompts. In Yoav Goldberg,
Zornitsa Kozareva, and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 6655–6672, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics.

[2] Joon-Young Choi, Junho Kim, Jun-Hyung Park, Wing-Lam Mok, and SangKeun Lee. SMop:
Towards efficient and effective prompt tuning with sparse mixture-of-prompts. In The 2023
Conference on Empirical Methods in Natural Language Processing, 2023.

[3] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[4] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. DROP: A reading comprehension benchmark requiring discrete reasoning over
paragraphs. In Jill Burstein, Christy Doran, and Thamar Solorio, editors, Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2368–
2378, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[5] Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur Guney, Volkan Cirik, and Kyunghyun
Cho. Searchqa: A new q&a dataset augmented with context from a search engine, 2017.

[6] Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eunsol Choi, and Danqi Chen. MRQA
2019 shared task: Evaluating generalization in reading comprehension. In Proceedings of 2nd
Machine Reading for Reading Comprehension (MRQA) Workshop at EMNLP, 2019.

[7] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, ...,
and Zhiyu Ma. The llama 3 herd of models, 2024.

[8] Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-
tuning for large models: A comprehensive survey. Transactions on Machine Learning Research,
2024.

[9] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
Min-Yen Kan, editors, Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1601–1611, Vancouver, Canada, July 2017.
Association for Computational Linguistics.

[10] Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Han-
naneh Hajishirzi. Are you smarter than a sixth grader? textbook question answering for
multimodal machine comprehension. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 5376–5384, 2017.

[11] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow,
editors, Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1152–1157, San Diego,
California, June 2016. Association for Computational Linguistics.

[12] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

[13] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale
ReAding comprehension dataset from examinations. In Martha Palmer, Rebecca Hwa, and
Sebastian Riedel, editors, Proceedings of the 2017 Conference on Empirical Methods in Natural

10

Language Processing, pages 785–794, Copenhagen, Denmark, September 2017. Association
for Computational Linguistics.

[14] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045–3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics.

[15] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction
via reading comprehension. In Roger Levy and Lucia Specia, editors, Proceedings of the 21st
Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342,
Vancouver, Canada, August 2017. Association for Computational Linguistics.

[16] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582–4597,
Online, August 2021. Association for Computational Linguistics.

[17] Zongqian Li and Jacqueline M Cole. Auto-generating question-answering datasets with domain-
specific knowledge for language models in scientific tasks. Digital Discovery, 4(4):998–1005,
2025.

[18] Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language
models: A survey. In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Proceedings of the
2025 Conference of the Nations of the Americas Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 7182–7195,
Albuquerque, New Mexico, April 2025. Association for Computational Linguistics.

[19] Zongqian Li, Ehsan Shareghi, and Nigel Collier. ReasonGraph: Visualization of reasoning
methods and extended inference paths. In Pushkar Mishra, Smaranda Muresan, and Tao
Yu, editors, Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), pages 140–147, Vienna, Austria, July 2025.
Association for Computational Linguistics.

[20] Zongqian Li, Yixuan Su, and Nigel Collier. 500xCompressor: Generalized prompt compression
for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
mad Taher Pilehvar, editors, Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 25081–25091, Vienna, Austria, July
2025. Association for Computational Linguistics.

[21] Zongqian Li, Yixuan Su, and Nigel Collier. A survey on prompt tuning, 2025.

[22] Zongqian Li, Yixuan Su, Han Zhou, Zihao Fu, and Nigel Collier. Flexi-loRA: Efficient loRA
finetuning with input-adaptive dynamic ranks. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models, 2025.

[23] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio, editors, Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
61–68, Dublin, Ireland, May 2022. Association for Computational Linguistics.

[24] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too, 2023.

[25] Fang Ma, Chen Zhang, Lei Ren, Jingang Wang, Qifan Wang, Wei Wu, Xiaojun Quan, and Dawei
Song. XPrompt: Exploring the extreme of prompt tuning. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang, editors, Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 11033–11047, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics.

11

[26] Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and
developing English math word problem solvers. In Dan Jurafsky, Joyce Chai, Natalie Schluter,
and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975–984, Online, July 2020. Association for Computational
Linguistics.

[27] Nebrelbug. Math problems. Hugging Face Hub, 2024.

[28] Ioannis Partalas, Eric Gaussier, Axel-Cyrille Ngonga Ngomo, et al. Results of the first bioasq
workshop. In BioASQ@ CLEF, pages 1–8, 2013.

[29] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve
simple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and
Yichao Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2080–2094,
Online, June 2021. Association for Computational Linguistics.

[30] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+
questions for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras,
editors, Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November 2016. Association for Computational
Linguistics.

[31] Anastasiia Razdaibiedina, Yuning Mao, Madian Khabsa, Mike Lewis, Rui Hou, Jimmy Ba, and
Amjad Almahairi. Residual prompt tuning: improving prompt tuning with residual reparam-
eterization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of
the Association for Computational Linguistics: ACL 2023, pages 6740–6757, Toronto, Canada,
July 2023. Association for Computational Linguistics.

[32] Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and Karthik Sankaranarayanan. DuoRC:
Towards complex language understanding with paraphrased reading comprehension. In Iryna
Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1683–1693, Melbourne,
Australia, July 2018. Association for Computational Linguistics.

[33] Zhengxiang Shi and Aldo Lipani. DePT: Decomposed prompt tuning for parameter-efficient
fine-tuning. In The Twelfth International Conference on Learning Representations, 2024.

[34] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’, and Daniel Cer. SPoT: Better frozen
model adaptation through soft prompt transfer. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 5039–5059, Dublin, Ireland, May
2022. Association for Computational Linguistics.

[35] Chengyu Wang, Jianing Wang, Minghui Qiu, Jun Huang, and Ming Gao. TransPrompt: Towards
an automatic transferable prompting framework for few-shot text classification. In Marie-
Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih, editors, Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pages 2792–2802,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[36] Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Mul-
titask prompt tuning enables parameter-efficient transfer learning. In The Eleventh International
Conference on Learning Representations, 2023.

[37] Yao Xiao, Lu Xu, Jiaxi Li, Wei Lu, and Xiaoli Li. Decomposed prompt tuning via low-rank
reparameterization. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 13335–13347, Singapore,
December 2023. Association for Computational Linguistics.

12

[38] Yige Xu, Zhiwei Zeng, and Zhiqi Shen. Efficient cross-task prompt tuning for few-shot
conversational emotion recognition. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 11654–11666,
Singapore, December 2023. Association for Computational Linguistics.

[39] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii, editors,
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

[40] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. In The Twelfth International Conference on Learning
Representations, 2024.

[41] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2024.

13

A Appendix

A.1 Implementation Details

We provide implementation details, including training hyperparameters in Table 8, inference parame-
ters in Table 7, and method-specific configurations in Tables 9 to facilitate reproducibility.

QA Math
max_new_tokens 100 768

num_beams 1 1
do_sample False False
temperature 1.0 1.0

top_p 1.0 1.0
pad_token_id pad_token_id pad_token_id
eos_token_id eos_token_id eos_token_id

early_stopping True True
Table 7: Inference parameters for QA and mathematical tasks.

QA Math
Train steps {500, 1000, 1500} for PT-based methods {500, 1000, 1500}

{200, 600, 1000} for LoRA-based methods
Optimizer AdamW AdamW

Max length 512 768
warmup_steps 500 500
learning_rate 2e-5 2e-5

per_device_train_batch_size 32 16
lr_scheduler_type constant_with_warmup constant_with_warmup

gradient_accumulation_steps 2 2

Table 8: Training hyperparameters for QA and mathematical tasks. {} means parameter search.

Method Details
LoRA r=1; lora_alpha=16; target_modules=["q_proj", "v_proj"]; lora_dropout=0; bias="none";

task_type=TaskType.CAUSAL_LM
HydraLoRA r=1; alpha=16; target_modules=["q_proj", "v_proj"]; dropout=0.0; num_b_matrices=2;

Router: nn.Sequential(nn.Linear(input_dim, num_b_matrices)); Initialization: A:
nn.init.kaiming_uniform_(, a=math.sqrt(5)), B: nn.init.zeros_()

PT Soft prompt length: 40; Initialization: Specific words
DPT Soft prompt length: 40; low_rank_dim = 39; Initialization: Specific words;

Decomposition method: SVD
SMoP Total soft prompt length: 40; Number of experts: 2; Initialization: Specific

words; Noise: *(1+torch.randn_like()*0.01)
ATTEMPT Total soft prompt length: 40; Number of experts: 2; Encoder:

nn.Linear(embedding_dim, projection_dim=1), nn.Linear(projection_dim=1,
embedding_dim), nn.LayerNorm(embedding_dim); Initialization: Specific
words

PT-MoE Soft prompt length: 40; Number of expert: 2; Rank: 36; Router:
nn.Linear(embedding_dim, num_prompts); Noise: *(1+torch.randn_like()*0.01)

Table 9: Method configurations for various PEFT methods.

Prompt structure for MRQA:

<|start_header_id|>user <| end_header_id |>\n\nExtract the exact text span from
the given context that directly answers the question , without modifying or
combining multiple parts of the text.\n\nContext: {}\n\nQuestion: {}<| eot_id
|><| start_header_id|>assistant <| end_header_id |>\n\nAnswer:

Prompt structure for Math datasets:

14

<|start_header_id|>user <| end_header_id |>\n\nSolve the question and your
response should end with \"The answer is: [answer]\".\n\nQuestion: {}<| eot_id
|><| start_header_id|>assistant <| end_header_id |>\n\nAnswer:

Texts used to initialize soft prompt for finetuning on MRQA:

(
"Read the following context and answer the question. "
"Extract the answer from the context. "
"The answer is a span of the context ."
"Answer the question directly ."
"Use the original words in the context ."
"Do not introduce any words not present in the context ."

)

Texts used to initialize soft prompt for finetuning on Math datasets:

(
"Read the question carefully and make sure you understand it before
beginning. "
"Pay close attention to the details and requirements of the question. "
"Answer the question , ensuring your response is relevant to what is asked
. "
"Ensure your answer is both accurate and correct ."

)

A.2 Environment

python==3.11.5
torch==2.3.1+cu118
transformers==4.46.0
datasets==2.18.0
huggingface_hub==0.24.2
deepspeed==0.15.3
wandb==0.14.2
numpy==1.23.5
tqdm==4.66.4

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper shows relevant content (Section Abstract, Introduction).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations of the work (Section Conclusions).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

16

Justification: The paper provides related content (Section Methods).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all the information (Section Methods, Experimental Design,
Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

17

Answer: [Yes]
Justification: The paper provides related codes (Section Appendix and supplemental mate-
rial).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides related details (Section Methods, Experimental Design,
Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper provides relevant information (Section Results, Appendix).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides relevant information (Section Appendix).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper follows code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper follows the instructions (Section Appendix, supplemental material).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

20

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper follows the instructions (Section Appendix, supplemental material).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve content with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve content with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

21

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper follows the instructions (Section Appendix).
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Methods
	Experimental Design
	Results
	Question Answering
	Mathematical Problem Solving
	Case Study
	Ablation Studies
	Efficiency Analysis

	Conclusions
	Appendix
	Implementation Details
	Environment

