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Abstract— Localizing a person from a moving monocular
camera is critical for Human-Robot Interaction (HRI). To
estimate the 3D human position from a 2D image, existing
methods either depend on the geometric assumption of a
fixed camera or use a position regression model trained on
datasets containing little camera ego-motion. These methods are
vulnerable to severe camera ego-motion, resulting in inaccurate
person localization. We consider person localization as a part
of a pose estimation problem. By representing a human with a
four-point model, our method jointly estimates the 2D camera
attitude and the person’s 3D location through optimization.
Evaluations on both public datasets and real robot experiments
demonstrate our method outperforms baselines in person lo-
calization accuracy. Our method is further implemented into a
person-following system and deployed on an agile quadruped
robot.

I. INTRODUCTION

Person localization is critical for robotic applications like
Robot Person Following (RPF) [1] and crowd analysis [2].
While many monocular localization methods exist [3]-[5],
they often rely on the restrictive assumption of a fixed camera
height and attitude [1]. This assumption fails in real-world
scenarios, such as for quadruped robots traversing rough
terrains [6], [7], where severe ego-motion challenges stable
person tracking (Fig. 1).

To mitigate ego-motion, common solutions involve extra
sensors like UWB [6], LiDAR [8]-[12], or RGB-D cameras
[8], but monocular cameras are desirable for their low cost.
Another approach is compensating for ego-motion using
state estimation from IMU [11], [13] or odometry [8], [9],
[14], [15]. However, state estimation for highly dynamic
robots like quadrupeds is prone to significant drift, leading to
accumulating errors in the person’s estimated location [16],
[17].

Monocular person localization is also widely studied in
computer vision [18], [19] and autonomous driving [20].
Deep learning methods for depth estimation [21], [22],
3D human pose [23], [24], or mesh recovery [25] often
lack generalizability to new scenarios and camera motions.
Meanwhile, methods based on complex non-rigid models like
SMPL [26] are too computationally intensive for real-time
applications.

To address these issues, we propose a real-time,
optimization-based method that estimates 3D person loca-
tion from a single-frame observation, avoiding reliance on
potentially error-prone odometry. We represent the human
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Robot View

Fig. 1. A scenario of a quadruped robot following a person through a
rugged lawn. The robot view is from an onboard panoramic camera (see
Sec. IV-C). The robot’s dynamic motion induces severe camera ego-motion
and vibration, which bring challenges for person localization.

body as a four-point model and simultaneously optimize for
the camera attitude and the person’s 3D location based on
2D-3D correspondences. Our method achieves state-of-the-
art accuracy on public and custom datasets. We demonstrate
its effectiveness in a real-world RPF system on a Unitree
Gol quadruped [6] traversing rough terrain, achieving accu-
rate and stable localization despite severe ego-motion. Our
code and dataset are available at https://medlartea.
github.io/rpf-quadruped/.

II. RELATED WORK

Estimating a person’s 3D location from a monocular image
is an ill-posed problem. Existing methods rely on geometric
constraints (Sec. II-A), optimization (Sec. II-B), or learning-
based regression (Sec. II-C). We focus on methods suitable
for real-time robotic systems.

A. Person Localization with Geometric Model

These methods model the human as a line segment,
assuming an upright posture on a ground plane to solve
for 3D position from 2D joint detections. Early works for
surveillance or moving cameras relied on strong assumptions
like known human height [27], fixed camera pose [28],
or a fixed horizon [29]. More recent methods designed
for robotics [3], including extensions for occlusion [4] and
omnidirectional cameras [5], still fundamentally assume a
fixed camera pose relative to the ground. This assumption
is violated on agile robots like quadrupeds that exhibit
significant ego-motion, leading to inaccurate localization.

B. Pose Optimization from Semantic Keypoints

Other approaches recover 6-DoF poses using semantic
keypoints. Pavlakos et al. [30] pioneered optimizing 6-DoF
poses for rigid objects using CNN-predicted keypoints and a
deformable model, a concept later applied to drone tracking
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Fig. 2. The geometry of our observation model. (a) In the raw camera-centric view, the person appears tilted due to the robot’s ego-motion. (b) Our
model assumes an upright person, representing the ego-motion as a corresponding tilt of the camera.

[31], but this is less effective for non-rigid humans. BodyS-
LAM++ [32] tightly couples human pose estimation (using
the SMPL model) with stereo Visual Inertial Odometry
(VIO) in a factor graph. While achieving real-time, metric-
scale accuracy, it depends on multi-image input and VIO,
making it costly for resource-constrained robots, and its
performance under severe ego-motion is untested.

C. Learning-based Pose Regression

Data-driven methods regress 3D location from 2D infor-
mation.

Regressing 3D Location from 2D Joints. Methods like
MonoLoco++ [24], [33] regress probabilistic 3D locations
from 2D keypoints [24] or semantic patches [34]. However,
their reliance on datasets like KITTI [35], which features
limited camera perspectives, leads to poor generalization on
robots with large roll/pitch ego-motion [20].

Learning-based Human Pose Estimation. End-to-end
frameworks reconstruct a human’s full pose, shape, and
location from a single image [18], [19]. However, they
often prioritize root-relative accuracy over absolute camera-
relative pose, suffering from depth ambiguity in “in-the-wild”
settings [18], [19]. High computational costs and restrictive
camera model assumptions [25] further limit their practicality
on mobile robots. Thus, few methods simultaneously achieve
absolute accuracy, real-time performance, and generalization
across domains.

III. METHODOLOGY

We propose an optimization-based person localiza-
tion method robust to camera ego-motion. Our method
models a human with a four-point skeleton (P,; =
{Precks Prip, Pinee, Pankie })- By fitting this 3D model to 2D
image observations, we simultaneously estimate the camera’s
2D attitude (roll, pitch) and the person’s 3D location. We then
integrate this method into a Robot Person Following (RPF)
system on a quadruped robot.

A. Human Model and Observations

We model an upright human as a rigid body of four
collinear points, P,y;. The projected lengths and relative
ratios of the segments on the image plane (Fig. 2a) encode
the person’s distance and the camera’s viewing angle. We
obtain the 2D projections of P,;; using YOLOX [36] for

person detection and AlphaPose [37] for 2D joint estimation,
which is robust to occlusion and distortion [4]. The four
keypoints are the median of corresponding left/right joints.
All 2D points are back-projected to a normalized image
plane, yielding points N,;. This normalization makes our
method independent of specific camera intrinsics, enhancing
generalizability.

B. Parameterization and Constraints

The pose of our human model relative to the camera has 5-
DoF (3D translation, 2D rotation). We ignore the body’s yaw,
which can be recovered separately [38]. We assume a hu-
man’s footprint F € R3 in the camera frame {C} represents
their position, and the heights of the points in P,;; relative
to F' are known as Hall = {hneck’; hhipa hkneeahankle}- In
frame {C}, the human’s central axis is a unit vector V4 (Fig.
2a). Due to ego-motion, V7 is rotated from the camera’s y-
axis Vo = (0,—1,0)T.

We assume the human is upright, moving on a virtual
plane perpendicular to V7 (Fig. 2b). The robot frame {R}
also lies on this plane. The rotation from {C} to {R} is
given by roll and pitch Euler angles {6, ¢}:

R =R, (¢)Rx(9), 1

where R,(¢) and Ry (0) are elementary rotation matrices.
The system state vector s to be estimated consists of the
person’s location (X g, Zp) on the virtual plane, the camera
height h¢, and the camera attitude:

S:{XFaZF;h0797¢} (2)

In robot frame {R}, the vector from the camera center C to
a point P; € Py is:

CP; = (Xp.he — his Zp)" hi € Hat ()
In the camera frame, this becomes:
PC=R!.CP; )
where PF are the coordinates of P; in {C}.

C. Optimization Details

To account for body articulation, we assign lower weights
to mobile points (Pgpnee, Pankie) and higher weights to
stable points (Py,cck, Phip). We then minimize the weighted



reprojection error f:
F(Xp, Zrhe,0,6) = > wi [ — (PO (3
i=1

where 7(-) is the camera projection function. We optimize
the state vector s by partitioning it into translation t =
{XF,Zp,hc} and rotation r = {6, ¢} and updating them
alternately [30]:

t* < argmin f(t,r)

Repeat until convergence: . ¢

r* < argmin f(t,r)
r

We solve this bounded nonlinear least-squares problem using
the Dogbox method [39], [40] with a Cauchy cost function
[41] for robustness.

D. Implementation in RPF Framework

Our RPF framework (Fig. 3) follows a standard pipeline
[11, [3]-[5], taking an image stream and outputting veloc-
ity commands. The key steps are our normalization and
optimization-based localization modules.

Person localization involves two phases. First, in an offline
initialization with the robot static (known camera pose), we
solve for the target’s joint heights H,;; and initial position
by minimizing the reprojection error:

(6)

n
9(Xp, Zp, Han) = Zwi ||ni - 7"(1:’ic)||2
i=1

This is a linear least squares problem solved via SVD [42]:

Xpy Zpy Hoy = arg 9(Xp, Zp, Har) (1)

min
XFr,Zr,Han
Second, in the online person-following phase, the calibrated
Hau 1s used to estimate the person’s location and camera
attitude in real-time. Downstream modules perform data
association, trajectory smoothing, person re-identification
[43], and control based on the target’s estimated location

(XF,ZF).

IV. EXPERIMENTS
A. Baselines

We compare our method against geometric and deep-
learning baselines from Sec. II-A and Sec. II-C:
Geo-model-based:

o Koide’s Method [3]: Locates person via neck point,
assuming a fixed camera.

e Ye’s Method [4]: Extends [3] using four points to
handle occlusion, but still assumes a fixed camera.

Deep-learning-based.:

o MonoLoco++ [24]: Regresses 3D location from 2D
joints, trained on KITTT [35].

o Depth Anything [21]: Estimates a relative depth map.
We use average joint depth for distance.

o Multi-HMR [25]: Recovers human mesh and estimates
absolute distance between the pelvis and the camera.

B. Datasets

We evaluate on two public datasets: FieldSAFE [44],
featuring a tractor in a field, and KITTI [35], an autonomous
driving dataset that lacks severe ego-motion. We also intro-
duce our RPF-Quadruped dataset, recorded on a Unitree
Gol [6] (Fig. 4a). It contains three scenarios (Fig. 4b-
4d) with ground truth from a motion capture system or
UWB. As shown in Table I, our dataset features closer-
range interaction and significantly larger camera pitch/roll
variations than others.

Dataset KITTI [35] FieldSAFE [44] RPF-Quadruped
Distance from Camera (m) 1844 + 11.20 7.50 + 1.50 3.50 £ 3.00
Camera Height (m) 2.31 +0.29 4.50 + 0.09 0.50 &+ 0.15
Camera Pitch (deg) / 16.01 + 5.27 0.5 + 1546
Camera Roll (deg) / 0.32 + 4.18 0.8 + 10.30

TABLE I.  Statistical comparison of mean and standard deviation of key
parameters across different datasets.
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Fig. 4. (a) Our quadruped robot platform. (b-d) Scenarios from our RPF-
Quadruped dataset.

C. Platform and Implementation Details

Our platform is a Unitree Gol quadruped [6] (Fig. 4a)
with an Intel NUC (i7/RTX 2060), using pin-hole, fisheye,
and panoramic cameras. A UWB sensor provides ground-
truth distance. The Gol’s small size and high step frequency
result in more severe ego-motion than platforms in prior
RPF work [8], [10], [11]. All methods were evaluated on the
robot’s NUC, except for Multi-HMR [25], which ran offline
on a desktop PC (RTX 3070). 2D joint detection for relevant
methods was standardized as per Sec. III-A and accelerated
with TensorRT.

D. Evaluation and Results

We evaluate localization accuracy and runtime. Accu-
racy is measured by Average Location/Distance Error
(ALE/ADE) [4], [24]. For sequences with continuous mo-
tion, we also report the Variance of Location/Distance
Error (VLE/VDE) to assess stability.

As shown in Table II, our method achieves the lowest error
and variance on our dataset and FieldSAFE. MonoLoco++
[24] performs best on KITTI, its training domain. In the
challenging Rugged Lawn scenario, our method is visibly
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Our proposed framework for monocular Robot Person Following (RPF). The modules highlighted in orange represent our key contributions: (1)

a normalization step for camera-agnostic processing, and (2) a subsequent optimization-based person localization method.

TABLE II. Comparison of localization accuracy. We evaluate our method
against several baselines and present an ablation study. Metrics include:
Average Location/Distance Error (ALE/ADE) in meters (m), and their
corresponding variances (VLE/VDE) in m?2.

Scenarios | Turning Head | Indoor Slope | Rugged Lawn | FieldSAFE [44] | KITTI [35]
m ALE | ALE | ADE | VDE | | ALE | VLE | ALE |
Koide’s Method [3] 0.396 0.289 03/03 1.924 /5.012 1.451
Ye’s Method [4] 0.294 0.261 03703 1.856 / 3.952 1.420
MonoLoco++ [24] 0.820 0.510 0.6/0.2 4.152 /1 4.705 0.940
Depth Anything [21] 0.571 0.523 0.5/0.6 1.528 / 1.022 2.963
Multi-HMR [25] 0.493 0.254 04/03 3.066 / 0.424 1.520
Ours 0.178 0.101 0.1/0.0 1.287 / 0.356 1.220
Ours w/o neck 0.238 0.196 0.27/0.1 1.324 / 0.865 1.320
Ours w/o ankle 0.204 0.141 0.1/0.0 1.308 / 0.401 1.275
Ours on fisheye images 0.182 0.119 0.1/0.0 / /
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Fig. 5. A box plot illustrating the distance error of our method compared
to baselines in Rugged Lawn scenario.

more accurate and stable, as shown by the error distribution
(Fig. 5) and time-series distance plot (Fig. 6). Fig. 6(a)
shows that learning-based methods generalize poorly to
our scenarios, while Fig. 6(b) shows that geo-model-based
methods produce large errors during ego-motion. Table III
confirms our method’s real-time performance, outperforming
deep-learning approaches in efficiency.

TABLE III. Comparison of per-frame average runtime. The preprocessing
time accounts for 2D human joint detection. *Runtime for Multi-HMR was
measured on a different PC (see Sec. IV-C).

Method Preprocessing (s)  Estimation (s) Total (s)
Koide’s Method [3] 0.02 0.0006 0.0206
Ye’s Method [4] 0.02 0.0008 0.0208
MonoLoco++ [24] 0.02 0.09 0.11
Depth Anything [21] / 0.23 0.23
Multi-HMR [25]* / 1.24 1.24
Ours 0.02 0.005 0.025
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Fig. 6. Comparison of estimated distance over time on a sequence from
the Rugged Lawn dataset (10s—57s). The plot shows the output of (a) deep-
learning-based and (b) geo-model-based baselines.

V. CONCLUSIONS

In this paper, we presented a real-time (40 FPS),
optimization-based method for monocular person localiza-
tion under severe camera ego-motion. Our approach uses a
four-point human model to jointly estimate camera attitude
and person location. We demonstrated its effectiveness in a
Robot Person Following (RPF) system on an agile quadruped
robot and contributed a new dataset to foster research in
this area, which is critical for HRI applications [1], [2].
Experiments on public and our own datasets validate our
method’s superior performance against geometric and deep-
learning baselines. Future work will focus on handling more
diverse postures with expressive human models, improving
accuracy via ground plane estimation, and evaluating on
large-scale egocentric datasets such as TPT-bench [45].
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