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ABSTRACT

Learning to collaborate with previously unseen partners is a fundamental gener-
alization challenge in multi-agent learning, known as Ad Hoc Teamwork (AHT).
Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed
population of teammates is generated with the idea that they should be repre-
sentative of the teammates that will be seen at deployment time, and second, an
AHT agent is trained to collaborate well with agents in the population. To date,
the research community has focused on designing separate algorithms for each
stage. This separation has led to algorithms that generate teammates with limited
coverage of possible behaviors, and that ignore whether the generated teammates
are easy to learn from for the AHT agent. Furthermore, algorithms for training
AHT agents typically treat the set of training teammates as static, thus attempting
to generalize to previously unseen partner agents without assuming any control
over the set of training teammates. This paper presents a unified framework for
AHT by reformulating the problem as an open-ended learning process between
an AHT agent and an adversarial teammate generator. We introduce ROTATE,
a regret-driven, open-ended training algorithm that alternates between improving
the AHT agent and generating teammates that probe its deficiencies. Experiments
across diverse two-player environments demonstrate that ROTATE significantly
outperforms baselines at generalizing to an unseen set of evaluation teammates,
thus establishing a new standard for robust and generalizable teamwork.

1 INTRODUCTION

As AI agents are deployed in diverse applications, it is increasingly crucial that they can collabo-
rate effectively with previously unseen AI agents and humans. While methods for training teams of
agents have been explored in cooperative multi-agent reinforcement learning (CMARL) (Foerster
et al., 2018; Rashid et al., 2020), prior work highlighted that CMARL agents fail to perform opti-
mally when collaborating with unfamiliar teammates (Vezhnevets et al., 2020; Rahman et al., 2021).
Rather than learning strategies that are only effective against jointly trained teammates, dealing with
previously unseen teammates requires adaptive AI agents that efficiently approximate the optimal
strategy for collaborating with diverse teammates. The training of such adaptive agents has been
explored within ad hoc teamwork (AHT) (Bowling & McCracken, 2005; Stone et al., 2010; Mirsky
et al., 2022) and zero-shot coordination (ZSC) (Hu et al., 2020; Cui et al., 2021; Lupu et al., 2021).

Most work has decomposed AHT learning into two stages (Mirsky et al., 2022), consisting of first
creating a fixed set of teammates, and then training an AHT agent using reinforcement learning (RL),
based on interactions with teammates sampled from the set. Methods that focus on AHT agent learn-
ing typically rely on a human-designed heuristic-based or pretrained teammates (Papoudakis et al.,
2021; Zintgraf et al., 2021; Rahman et al., 2021) and therefore struggle to handle novel behaviors
outside the predefined set of teammates (Strouse et al., 2021; Carroll et al., 2019). Recent work en-
hances the generalization capabilities of AHT agent learning methods by substituting the predefined
set of teammates with a generated collection of diverse teammates (Lupu et al., 2021; Rahman et al.,
2024), which are trained to maximize different notions of diversity. One such diversity notion is
adversarial diversity (Rahman et al., 2023; Charakorn et al., 2023), which seeks to generate a set
of teams that cooperate well within teams, but not across teams. However, prior work (Cui et al.,
2023; Sarkar et al., 2023; Charakorn et al., 2024) empirically demonstrates that adversarial diversity
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Figure 1: ROTATE Overview. ROTATE is an open-ended learning framework for AHT. The core idea of
ROTATE is to improve the AHT agent by iteratively generating diverse teammates with whom the AHT agent
struggles to collaborate, yet not so adversarial that effective teamwork becomes impossible.

often leads to teammate policies that actively diminish returns when interacting with agents other
than their identified teammate, a phenomenon sometimes called self-sabotage.

This paper addresses two issues that cause current methods to fail to learn policies that effectively
collaborate with some teammates. First, two-stage AHT methods (Papoudakis et al., 2021; Zintgraf
et al., 2021; Rahman et al., 2021; 2023) learn from interacting with teammates from a small fixed
training set. Even when the training set is diverse, the AHT agent remains incapable of collaborating
effectively with some teammates sampled from the vast space of possible strategies, specifically
those with significantly different behavior from the policies in the training set (Vezhnevets et al.,
2020; Rahman et al., 2021). Second, other work designs a diverse training set of teammate policies
by maximizing adversarial diversity (Charakorn et al., 2023; Rahman et al., 2023), which yields
self-sabotaging teammates whose return-diminishing tendencies make it challenging for a randomly
initialized RL-based AHT agent to learn to collaborate effectively (Cui et al., 2023; Sarkar et al.,
2023). Despite addressing the first issue, some methods remain susceptible to the second issue by
optimizing adversarial diversity (Yuan et al., 2023).

We address the shortcomings of using a small, fixed training set by proposing an open-ended learn-
ing framework that continually generates new teammates with whom the AHT agent interacts to
enhance its collaborative capabilities. We formulate our learning objective by observing that maxi-
mizing the expected returns of an AHT agent on a known set of teammates is equivalent to minimiz-
ing its expected cooperative regret: the utility gap between the best response to a given teammate,
and the AHT agent’s performance with that teammate. While not knowing the teammates that will
be encountered, we take inspiration from unsupervised environment design (UED) methods (Wang
et al., 2020; Dennis et al., 2020; Jiang et al., 2021a; Rutherford et al., 2024a) and train an AHT agent
to minimize its regret against generated teammates that maximize the AHT agent’s cooperative re-
gret. We propose a novel and practical objective that, unlike UED methods that optimize regret only
at the initial state, also maximizes regret in states encountered later in an interaction. We build on
these foundations to propose a practical algorithm, ROTATE (Fig. 1), which optimizes a coopera-
tive regret-based minimax objective while maintaining a population of all teammates explored. We
demonstrate that ROTATE significantly improves the robustness of AHT agents when faced with
previously unseen teammates, compared to a range of baselines on two-player Level-Based Foraging
and Overcooked tasks.

This paper makes three main contributions. First, it defines a novel problem formulation for AHT,
enabling open-ended AHT training that continually generates new teammates. Second, it introduces
a novel algorithm, ROTATE, that instantiates the proposed open-ended AHT framework. Third, it
provides empirical evaluations demonstrating that ROTATE significantly improves return against
unseen teammates compared to representative baselines from AHT and open-ended learning.

2 RELATED WORK
Training AHT Agents. The training of ego agent policies that near-optimally collaborate with di-
verse previously unseen teammates has been explored in AHT (Stone et al., 2010). Most AHT meth-
ods follow the two-stage design process, where the generation of a fixed training set of teammate
policies is followed by AHT training. Given teammates from the training set, AHT methods (Mirsky
et al., 2022) train an ego agent to model teammates (Albrecht & Stone, 2018) by first identifying
their important characteristics (e.g., goals, beliefs, policies) based on their observed behavior, and
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then estimating the best-response policy to these teammates based on the inferred characteristics.
Recent AHT methods (Rahman et al., 2021; Papoudakis et al., 2021; Zintgraf et al., 2021; Wang
et al., 2024a) use neural networks trained using reinforcement learning (Schulman et al., 2017; Mnih
et al., 2016). To further improve AHT training, several approaches learn a distribution for sampling
teammate policies during training based on maximizing the worst-case returns (Villin et al., 2025)
or regret (Erlebach & Cook, 2024; Chaudhary et al., 2025) of trained agents. While few, excep-
tions to the two-stage process include methods designed for continual AHT (Nekoei et al., 2021;
2023; Yuan et al., 2023), methods that co-evolve populations of ego agents and teammates (Xue
et al., 2025; Yuan et al., 2023), self-play based methods, which do not explicitly optimize for di-
versity (Yan et al., 2023; Cornelisse & Vinitsky, 2024), and empirical game theoretic methods that
optimize for cooperative diversity as a heuristic to induce generalization to unseen teammates (Li
et al., 2023).

Teammate Generation for AHT & ZSC. Recent work removes the need to predefine teammate pol-
icy sets by generating diverse teammates during or before agent training. Other-Play (Hu et al., 2020)
creates symmetry-equivalent teammates while training the agent policy, while E3T (Yan et al., 2023)
mixes the agent’s current policy with a random policy to encourage diversity. FCP (Strouse et al.,
2021) trains teammates via repeated CMARL runs with different seeds, later improved by methods
maximizing information-theoretic diversity objectives such as Jensen-Shannon divergence (Lupu
et al., 2021), mutual information (Lucas & Allen, 2022), and entropy (Xing et al., 2021; Zhao et al.,
2023). More recent approaches (Charakorn et al., 2023; Rahman et al., 2024; Yuan et al., 2023) gen-
erate teammates that require distinct best-response strategies by maximizing adversarial diversity
metrics, similar to ROTATE’s cooperative regret. Unlike ROTATE, these methods (i) maximize re-
gret between generated teammates rather than with the trained agent, (ii) fix the teammate set prior
to training, and (iii) evaluate regret only at the initial state. This last property leads to sabotaging
teammates that harm cooperation in states unseen in self-play, motivating heuristic solutions in prior
work (Cui et al., 2023; Sarkar et al., 2023), and a systematic objective in ROTATE.

Open-Ended Learning (OEL). OEL (Langdon, 2005; Taylor, 2019) studies algorithms that contin-
ually generate novel tasks to train generally capable agents (Hughes et al., 2024; Baker et al., 2019).
Many OEL approaches in RL take the form of unsupervised environment design (UED) (Dennis
et al., 2020), which improves generalization by designing or sampling new environments with varied
initial states. Some methods directly train neural networks to propose environments that induce high
regret in the agent (Dennis et al., 2020), while others selectively sample curated tasks generated by
procedural generators based on criteria such as expected return (Wang et al., 2020), TD-error (Jiang
et al., 2021b), regret (Jiang et al., 2021a), or learnability (Rutherford et al., 2024a). In competitive
MARL, OEL often produces new opponents through self-play (Silver et al., 2016; Lin et al., 2023).
For AHT, MACOP (Yuan et al., 2023) generates novel teammates via an adversarial diversity ob-
jective optimized with evolutionary methods and similar to the objectives studied by by Charakorn
et al. (2023) and Rahman et al. (2023). Thus, the objective can yield sabotaging teammates when
applied only to the initial state. In contrast, ROTATE adopts a more systematic training objective
that we demonstrate leads to performance gains.

3 BACKGROUND

The interaction between agents in an AHT setting may be modeled as a decentralized Markov de-
cision process (Dec-MDP) (Bernstein et al., 2002). A Dec-MDP is characterized by a 7-tuple,
⟨N,S, {Ai}|N |

i=1, P, p0, R, γ⟩, where N , S, and γ respectively denote the index set of agents within
an interaction, the state space, and a discount rate, 0 ≤ γ ≤ 1. Every interaction between agents
begins from a state sampled from the initial state distribution, s0 ∼ p0(s). At timestep t, each agent,
i ∈ N , jointly executes an action selected from its action space, ait ∈ Ai, based on the observed
state, st, and its policy, πi(sit). We assume that teammates choose their actions only based on the
current state. Meanwhile, the AHT agent, also referred to as the ego agent, selects actions based on
its state-action history, which is necessary to distinguish between different types of teammates ef-
fectively. Denoting the set of all probability distributions over a setX as ∆(X), the execution of the
joint action, at = (a1t , . . . , a

|N |
t ), results in agents observing a new state, st+1, sampled according

to the environment transition function, P : S × A1 × · · · × A|N | 7→ ∆(S), and a common scalar
reward, rt, based on the reward function, R : S ×A1 × · · · × A|N | 7→ R.
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4 AD HOC TEAMWORK PROBLEM FORMULATION

AHT methods aim to train an adaptive policy that an ego agent can follow to achieve maximal re-
turn when collaborating with an unknown set of evaluation teammates. Formalizing the interaction
between agents as a Dec-MDP, this section outlines the objective of AHT. While the most general
AHT setting considers a possibly varying number of ego agents and teammates within an interac-
tion (Wang et al., 2024a; Rahman et al., 2021), this formalization addresses the more straightforward
case where there is only a single ego agent within a team.

Let πego refer to the ego agent’s policy, and π−i denote the |N | − 1 policies of the AHT agent’s
teammates. We denote the returns of an ego agent that follows πego to collaborate with teammates
controlled by π−i, starting from state s, as:

V (s|π−i, πego) = E aego
t ∼πego,

a−i
t ∼π−i,P

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 = s

]
. (1)

Let Πeval denote the unknown set of joint teammate policies encountered during evaluation, which
is assumed to only contain competent and non-adversarial policies, as defined in the seminal work
of Stone et al. (2010). Let ψeval(Πeval) denote the probability distribution over Πeval defining how
teammates are sampled during evaluation. An ego agent policy, πego, is evaluated by its ability
to maximize the expected returns when collaborating with joint teammate policies sampled from
ψeval(Πeval), which is formalized as:

max
πego

V (ψeval,Πeval, πego) = max
πego

Eπ−i∼ψeval(Πeval),s0∼p0
[
V (s0|π−i, πego)

]
. (2)

An optimal πego that maximizes Eq. 2 closely approximates the best response policy performance
when collaborating with π−i ∈ Πeval. Given a teammate policy π−i, BR(π−i) is a best response
policy to π−i if and only the team policy formed by π−i and BR(π−i) achieves maximal return:

BR(π−i) ∈ argmax
π

Es∼p0
[
V (s|π, π−i)

]
. (3)

In some cases, AHT algorithms can estimate this optimal policy by using Πeval to train an ego agent
policy that maximizes V (ψeval,Πeval, πego) when Πeval is known.1 However, most AHT methods
address the more challenging case where Πeval is unknown, which is the setting that this paper adopts
as well. While our methods assume no knowledge of Πeval during training, we follow standard
practice (Papoudakis et al., 2021; Rahman et al., 2021; Zintgraf et al., 2021; Wang et al., 2024a) by
manually designing a diverse Πeval for evaluation purposes, as we later describe in Section 7.

When Πeval is unknown, AHT algorithms (Mirsky et al., 2022) learn by interacting with policies from
the training set, Πtrain, which are learned or manually designed by leveraging an expert’s domain
knowledge about the characteristics of Πeval. After forming the set of training teammates, current
AHT algorithms use RL to discover an ego agent policy based on interactions with joint policies
sampled from Πtrain. While the precise training objective varies with the AHT algorithm, methods
commonly estimate the ego agent policy maximizing the expected return during interactions with
joint policies sampled uniformly from Πtrain, which we describe below:

π∗,ego(Πtrain) = argmax
πego

Eπ−i∼U(Πtrain),s0∼p0
[
V (s0|π−i, πego)

]
. (4)

Naturally, even π∗,ego(Πtrain) may be suboptimal with respect to Πeval and ψeval, due to the potential
distribution shift caused by differences between the training and evaluation objectives.

5 REFORMULATING AD HOC TEAMWORK AS AN OPEN-ENDED LEARNING
PROBLEM

In this section, we show how the idealized ad hoc teamwork objective—training ego agents to col-
laborate well with unknown teammates (Eq. 2, Section 4)—can be operationalized as a cooperative

1In the context of reinforcement-learning-based AHT algorithms, “known" means that an AHT algorithm
has unlimited sampling access to the teammate policies.
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regret-driven, open-ended learning procedure. In particular, we show that for a fixed set of team-
mates Πeval and sampling distribution ψeval over Πeval, maximizing the return of the ego agent is
equivalent to minimizing its cooperative regret. In absence of knowledge about Πeval and ψeval,
we argue that minimizing the worst-case cooperative regret of the ego agent with respect to regret
maximizing teammates leads to ego agents that cooperate well with any unknown teammate. Based
on this, we propose a novel minimax regret objective (Eq. 7). Finally, we present an algorithmic
framework for optimizing the minimax regret objective in an iterative fashion (Alg. 1).

We define the cooperative regret of an ego agent policy πego when interacting with some joint team-
mate policy π−i from a starting state s as:

CR(πego, π−i, s) = V
(
s|π−i, BR(π−i)

)
− V

(
s|π−i, πego) . (5)

Any optimal AHT policy that maximizes Eq. 2 must also minimize the expected regret over joint
teammate policies sampled based on ψeval(Πeval), which we formally express as:

CR(ψeval,Πeval, πego) = Eπ−i∼ψeval(Πeval),s0∼p0
[
CR(πego, π−i, s0)

]
. (6)

This property is a consequence of V
(
s|π−i, BR(π−i)

)
being independent of πego for any π−i and

s, leaving maximizing expected regret equivalent to minimizing the negative expected returns when
collaborating with joint teammate policies sampled from ψeval(Πeval).

Without knowing Πeval to optimize CR(ψeval,Πeval, πego), we instead take inspiration from ap-
proaches in UED (Wang et al., 2020; Dennis et al., 2020), and propose optimizing πego to minimize
the worst-case regret that could be induced by any teammate policy π−i:

min
πego

max
π−i∈Π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
, (7)

where Π−i denotes the set of all competent and non-adversarial (Stone et al., 2010) joint teammate
policies. Limiting the considered joint policies is important, as teams that consistently perform
poorly against any πego are unlikely to be encountered in coordination scenarios and may introduce
unnecessary learning challenges for RL-based AHT learning algorithms.

Finding πego that achieves zero worst-case regret is equivalent to finding an ego agent that achieves
the best-response return with any joint teammate policy π−i. If such a πego exists, then this AHT
agent would maximize Eq. 2 for any ψeval and Πeval. However, its existence is not guaranteed (Loftin
& Oliehoek, 2022). In practice, we are content with minimizing the worst-case regret. While mini-
mizing worst-case regret still applies to AHT problems with more than one teammate, we limit our
method for optimizing Eq. 7 and our experiments to two-player, fully observable AHT games.

Algorithm 1 Open-Ended Ad Hoc Teamwork Framework

Require:
Environment, Env.
Total of training iterations, T iter.
Initial ego agent policy parameters, θego.

1: Bπ ← ⟨⟩ ▷ Init teammate policy parameter buffer.
2: for j = 1, 2, . . . , T iter do
3: Bnew

π ← TeammateGenerator(Env, θego, Bπ) ▷ Train teammates to maximize regret.
4: θego ← EgoUpdate(Env, θego, Bnew

π ) ▷ Train ego agent to minimize regret.
5: Bπ ← Bnew

π
6: end for
7: Return θego

Algorithm 1 outlines our general framework for training an ego agent to minimize the worst-case
cooperative regret induced by any teammate π−i ∈ Π−i. Algorithm 1 resembles coordinate ascent
algorithms (d’Esopo, 1959), which alternate between optimizing for π−i and πego for T iter iterations,
while assuming the other is fixed. We call a phase where we fix πego and update π−i to maximize
the ego agent’s regret, the teammate generation phase. Meanwhile, assuming that π−i is fixed, the
ego agent update phase updates πego to minimize regret.

Our practical algorithm, ROTATE, instantiates Algorithm 1 by specifying the TeammateGenerator
and EgoUpdate procedures, and is described in Section 6. It is an open-ended learning procedure
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according to the definition proposed by Hughes et al. (2024), because it continually generates
novel yet learnable artifacts (i.e., teammates) for an observer (i.e., ego agent). A discussion of
how ROTATE satisfies the definition of Hughes et al. (2024) is provided in App. C.1.

6 PRACTICAL ALGORITHM: ROTATE

This section presents our practical algorithm for optimizing the minimax regret objective proposed
in Section 5, ROTATE. We first describe the teammate generation procedure in Section 6.1, fo-
cusing on motivating the objective used to generate teammate policies. Next, we describe the ego
agent update method in Section 6.2. App. A provides the ROTATE pseudocode and a more detailed
discussion of the losses and exact update procedure.

6.1 ROTATE TEAMMATE GENERATOR

Given a fixed πego, ROTATE’s teammate generator seeks to discover a teammate policy that max-
imizes the cooperative regret of πego. Maximizing cooperative regret requires estimating the team-
mate policy, π−i, and its best response policy, BR(π−i). In the following, we abbreviate BR(π−i)
to BR for brevity. ROTATE’s teammate generator estimates both policies using the Proximal Policy
Optimization (PPO) algorithm (Schulman et al., 2017).

The per-trajectory regret of πego (i.e., the inner objective of Eq. 7) is the regret from trajectories
starting from the initial state distribution:

max
π−i

Es0∼p0
[
CR(πego, π−i, s0)

]
. (8)

Eq. 8 resembles the objectives used in past UED (Wang et al., 2020; Dennis et al., 2020) and the
teammate generation literature (Rahman et al., 2024; Charakorn et al., 2023) to generate tasks or
teammate policies. Recent work demonstrates that maximizing per-trajectory regret is prone to
yielding self-sabotaging teammates (Cui et al., 2023; Sarkar et al., 2023). Maximizing the coopera-
tive regret only from s0 ∼ p0 implicitly encourages BR(π−i) to select actions leading to future states
that are distinguishable from those encountered during the interaction between π−i and πego. When
encountering future states from interactions with πego, π−i ends up choosing actions that sabotage
cooperation by minimizing the teammate’s returns against π−i. Thus, training πego to minimize
regret (i.e., by maximizing the expected returns) when collaborating with π−i using RL becomes
challenging because π−i actively chooses actions that undermine collaboration.

We mitigate the emergence of self-sabotage by training π−i to maximize two objectives across states
sampled from different state visitation distributions. These state visitation distributions result from:
(i) teammate and BR interactions (self-play, SP), (ii) teammate and ego agent interactions (cross-
play, XP), and (iii) cross-play continued by self-play interactions (SXP), where the teammate is
first interacting with the ego agent, but switches at a random timestep t to interacting with its BR.
Let d(π1, π2; p) denote the state visitation distribution when π1 and π2 interact based on a starting
state distribution p. We use the following shorthand to denote the SP, XP, and SXP state visitation
distributions:

pSP := d
(
π−i,BR(π−i); p0

)
, pXP := d

(
π−i, πego; p0

)
, pSXP := d

(
π−i,BR(π−i); pXP

)
. (9)

Based on these distributions, we define the following per-state regret objective for training π−i:

max
π−i

(
Es∼0.5 pXP+0.5 pSP

[
CR(πego, π−i, s)

]
+ Es∼pSXP

[
V (s|π−i,BR(π−i))

])
. (10)

The difference between the per-trajectory and per-step regret objectives is visualized in Figure 2.
Both terms in the per-state regret objective discourage adversarial behavior from π−i. The first term
in Expr. 10 corresponds to the ego agent’s regret starting from both SP and XP states. Estimating
regret from XP and SP requires collecting SXP data as well as an analogous type of data called
XSP (SP continued by XP interactions), as detailed in App. A.2. In general, optimizing the ego
agent’s regret encourages discovering π−i for which the ego agent policy has a high room for im-
provement. Optimizing regret starting from XP states requires π−i to be able to coordinate with its
BR starting from any state encountered during interactions with the ego agent, thus preventing π−i

from irrecoverably sabotaging an interaction. On the other hand, optimizing regret from SP states
requires π−i to be able to decrease the return of the ego agent starting from any state encountered

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

during interactions between the teammate and the BR, thus disincentivizing the emergence of uncon-
ditional cooperation signals. Finally, we find that training π−i to collaborate well with its BR even
during SXP interactions helps ensure that π−i is a good-faith collaborator with at least one partner.

XP

SP

Per-Trajectory Regret

XP state SP stateInitial State

Self Play (SP) Cross Play (XP) Self Play from Cross Play States (SXP)

Init. State Dist.

Per-State Regret

Obj = Regret(  )

XP

SP

SXP

V = Expected Return

maximize VSXP(  ) 

maximize Regret(  )

maximize Regret(  )maximize VSP(  )

minimize VXP(  )

Obj = Regret(   ∪   ) + VSXP(  )

XSP

Figure 2: Teammate policy optimization objectives: per-
trajectory regret vs per-state regret.

While obtaining states from pSP and pXP is
straightforward, states from pSXP and pXSP
are collected using either environment re-
setting or policy switching. Using SXP as
an example, if an environment supports re-
setting to any arbitrary state, then states
encountered during XP interaction can be
stored and used as the initial state for SP
interactions. Otherwise, we may sample
a random timestep t, run XP interaction
until timestep t, and then switch to SP in-
teraction (Sarkar et al., 2023). Only data
gathered after timestep t should be used to
compute objectives based on pSXP.

6.2 ROTATE EGO AGENT UPDATE

At each iteration, ROTATE creates a teammate that attempts to discover cooperative weaknesses
of the previous iteration’s ego agent, by maximizing its per-state regret. To allow the ROTATE
ego agent to improve its robustness over time and reduce the possibility that it forgets how to cope
with previously generated teammates, the ROTATE ego agent maintains a population buffer of
generated teammates. During the ego agent update phase of each iteration, the ROTATE ego agent is
trained using PPO (Schulman et al., 2017) against teammates sampled uniformly from the population
buffer. We find experimentally that for the ego agent to learn effectively against the nonstationary
population buffer, it is important to define a lower entropy coefficient and learning rate than when
training the teammate and BR agents (typically in the range of 1× 10−4 for the entropy coefficient
and 1× 10−5 for the learning rate).

7 EXPERIMENTAL RESULTS

This section presents the empirical evaluation of ROTATE compared to baseline methods, as well
as several ablations. The experiements consider one illustrative matrix game and six benchmark
tasks. Supplemental results, implementation details, and code link are provided in the Appendix.
The main research questions are:

• RQ1: Does ROTATE better generalize to unseen teammates, compared to baseline methods from
the AHT and UED literature? (Yes)

• RQ2: Does per-state regret mitigate sabotage and improve generalization to unseen teammates
compared to per-trajectory regret? (Yes)

• RQ3: Does the SXP return term of the ROTATE teammate generation objective improve learning
and generalization? (Yes)

• RQ4: Is the population buffer necessary for ROTATE to learn well? (Yes)

7.1 EXPERIMENTAL SETUP

This section describes the experimental setting, including tasks, baselines, construction of the eval-
uation set, and the evaluation metric.

Tasks ROTATE is evaluated on a didactic matrix game and six benchmark tasks. For clarity,
the matrix game is described with the corresponding results. The benchmark tasks are Level-Based
Foraging (LBF) (Albrecht & Ramamoorthy, 2013), and the five classic layouts from the Overcooked
suite (Carroll et al., 2019): Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit
(CC), Coordination Ring (CoR), and Forced Coordination (FC). All six tasks are cooperative, permit
a variety of possible conventions, and are commonly used within the AHT literature (Albrecht &
Ramamoorthy, 2013; Christianos et al., 2020; Papoudakis et al., 2021). In LBF, two agents must
navigate to apples that are randomly placed within a gridworld, and cooperate to pick up the apples.
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(a) ROTATE vs baselines.
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Figure 3: (Left) ROTATE outperforms all baseline methods across all tasks in evaluation return. (Right)
ROTATE with per-state regret (ours) outperforms ROTATE with per-trajectory regret in 5/6 tasks. 95%
bootstrapped CI’s are shown, computed across all evaluation teammates and trials.

In all Overcooked tasks, two agents collaborate in varying gridworld kitchen layouts to prepare
dishes. All experiments were implemented with JAX (Bradbury et al., 2018).

Baselines As our method is most closely related to methods from UED and teammate generation,
we compare against two UED methods adapted for AHT (PAIRED (Dennis et al., 2020), Minimax
Return (Morimoto & Doya, 2005; Villin et al., 2025)) and three teammate generation methods (Fic-
titious Co-Play (Strouse et al., 2021), BRDiv (Rahman et al., 2023), CoMeDi (Sarkar et al., 2023)).
While curator-based methods such as PLR (Jiang et al., 2021a;b) are prevalent in UED, we do not
compare against them as they are orthogonal to ROTATE (Erlebach & Cook, 2024; Villin et al.,
2025; Chaudhary et al., 2025). Similarly, we do not compare against AHT algorithms for ego learn-
ing (Albrecht & Stone, 2018). Each baseline is described in detail in App. B. For fair comparison,
all open-ended and UED methods were trained for a similar number of environment interactions, or
until best performance on the evaluation set. All teammate generation approaches were ran using a
similar number of environment interactions as their original implementations, as scaling them up to
use a similar number of steps as the open-ended approaches proved challenging (see discussion in
App. B). All results are reported with three trials.

Construction of Πeval We wish to evaluate all methods on as diverse a set of evaluation teammates
as practically feasible, while ensuring that each teammate acts in “good faith". To achieve this goal,
for each task, we construct 9 to 13 evaluation teammates using three methods: IPPO with varied
seeds and reward shaping, BRDiv, and manually programmed heuristic agents. Full descriptions of
the teammate generation procedure and all teammates in Πeval are provided in App. G.

Evaluation Metric Ego agent policies are evaluated with each teammate in Πeval for 64 evaluation
episodes, where the return is computed for each episode, and normalized using a lower return bound
of zero and an estimated best response return as the upper bound for each teammate. Performance
of a method on Πeval is reported as the normalized mean return with bootstrapped 95% confidence
intervals, computed via the rliable library (Agarwal et al., 2021). Our normalized return metric is
similar to the BRProx metric recommended by Wang et al. (2024b). Details about the normalization
procedure and specific bounds for each teammate are reported in the App. G.

7.2 RESULTS

This section addresses the research questions introduced at the beginning of Section 7. Supple-
mental analysis considering alternative regret-based objectives, independent utility of the ROTATE
population, performance breakdowns by evaluation teammate, learning curves for all variants of
ROTATE, and a human proxy evaluation on Overcooked, are provided in App. D.

RQ1: Does ROTATE better generalize to unseen teammates compared to baselines? (Yes)
We evaluate ROTATE’s generalization capabilities by comparing its performance against baselines
on Πeval. Fig. 3a compares the normalized mean returns for ROTATE and baseline methods across
the six tasks. The results show that ROTATE significantly outperforms all baselines on 5/6 tasks.
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Among the baseline methods, the next best performing baselines are CoMeDi and FCP. We attribute
CoMeDi’s strong performance to the resemblance of its mixed-play objective to our per-state regret
objective, which we discuss in App. C.3. FCP’s performance may be attributed to the large number
of partners that FCP was trained with (approximately 100 teammates per task). We found that FCP
tends to perform especially well with the IPPO policies in Πeval, likely because the IPPO evaluation
teammates are in-distribution for the distribution of teammates constructed by FCP.

Minimax Return performs surprisingly well in AA, which may be attributed to AA’s particular char-
acteristics. In AA, agents operate in separated kitchen halves, possessing all necessary resources
for individual task completion, with pots on the dividing counter being the only shared resource. A
team where both agents act fully independently may achieve high returns–albeit coordination leads
to still higher returns.2 Visualizing the trained policies reveals that the adversarial teammate trained
by Minimax Return cannot drive the ego agent’s return to zero, and does not prevent the ego agent
from learning how to perform the task independently. However, on LBF and FC, where coordination
is crucial to obtain positive returns, Minimax Return is the worst-performing baseline.

BRDiv and PAIRED exhibit comparatively poor performance, which may be partially attributed
to their teammate generation objectives that resemble per-trajectory regret. As we find for RQ2,
per-state regret outperforms per-trajectory regret within the ROTATE framework. Furthermore,
PAIRED’s update structure involves a lockstep training process for the teammate generator, best
response, and ego agent. This synchronized training may hinder the natural emergence of robust
conventions that are crucial for effective AHT.

H T S
H 1 0 -1
T 0 1 -1
S -1 -1 -1

Table 1: Payoff matrix
for the sabotage game.

RQ2a: Does per-state regret mitigate sabotage compared to per-
trajectory regret? (Yes) We design a simple sabotage game to in-
vestigate the whether the per-state regret objective leads to teammate
policies that sabotage less often compared to the per-trajectory regret ob-
jective. The sabotage game is a fully cooperative, iterated matrix game
with payoff matrix shown in Table 1. Each agent observes a game state
that consists of the complete history of joint actions. Both agents have
three actions: H, T, and S(abotage). The first two actions lead to two
possible cooperative outcomes, while the last action leads to a reward of
−1 if selected by either agent and immediate episode termination. Thus,

the last action corresponds to sabotaging the team’s payoffs. By default, the game lasts for five
timesteps.

We train ROTATE with both per-state and per-trajectory regret. To measure the extent to which
the learned teammate policies engage in sabotage, we enumerate the 341 non-terminal states in the
game and measure the probability of the sabotage action at each state for the last generated teammate
policy. Fig. 4 shows that ROTATE with per-state regret has a near-zero probability of taking the
sabotage action at all non-terminal states, while the per-trajectory regret objective leads to over a
third of states that have P(S) near 1.0.

RQ2b: Does per-state regret lead to improved generalization compared to per-trajectory re-
gret? (Yes) RQ2a demonstrated that ROTATE with per-state regret (ours) leads to teammate
policies that sabotage less often in an illustrative matrix game, compared to ROTATE with per-
trajectory regret. Here, we investigate whether the this translates to improved generalization against
the unseen evaluation teammates. All configurations other than the teammate’s policy objective are
kept identical, including the data used to train the teammate value functions. Fig. 3b shows that
ROTATE with per-state regret outperforms ROTATE with per-trajectory regret on all tasks except
AA, confirming the superiority of per-state regret. As discussed in RQ1, we observe that AA is a
layout where an ego agent is less susceptible to sabotage, due to the separated kitchen layout. App.
C.4 presents additional experiments testing ROTATE with CoMeDi-style mixed-play rollouts, and
alternative methods to compute per-state regret—ultimately finding that ROTATE outperforms all
variations.

2Optimal behavior in AA still requires effective coordination due to layout asymmetry. In the “left" kitchen,
the delivery zone is adjacent to the pots while the onions are farther, while in the “right" kitchen, the opposite is
true. Thus, an optimal team consists of the “left" agent delivering finished soup, and the “right" agent placing
onions in the pots—and indeed, we observe that teams of IPPO agents converge to this behavior.
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Figure 4: Probability of the sabo-
tage action at all states in the sabo-
tage game for ROTATE teammates
trained with per-state regret (ours) vs
per-trajectory regret. Results are ag-
gregated across three trials.

RQ3: Does the SXP return term of the ROTATE teammate
generation objective improve learning and generalization?
(Yes) The ROTATE objective (Eq. 10) includes two terms: the
per-state regret term and a SXP return term, introduced to en-
sure that the teammate collaborates well with its BR, even during
SXP interactions. This helps ensure that the teammate is a good-
faith collaborator. In Fig. 3b, the heldout return of an ablation of
ROTATE where the SXP return term is removed is shown. We
find that the ablated version performs signfiicantly worse than
the non-ablated across 5/6 of the tasks, confirming that the aux-
iliary return term plays and important role in the teammate gen-
eration objective.

RQ4: Is the population buffer necessary for ROTATE to
learn well? (Yes) We hypothesize that collecting all previ-
ously generated teammates in a population buffer helps the RO-
TATE agent improve in robustness against all previously discov-
ered conventions. On the other hand, if there is no population
buffer, then it becomes possible for the ROTATE ego agent to forget how to collaborate with team-
mate seen at earlier iterations of open-ended learning (Kirkpatrick et al., 2017), which creates the
possibility that the ego agent and teammate generator oscillates between conventions. As shown in
Fig. 6a, ROTATE without the population buffer attains lower evaluation returns than the full RO-
TATE method on all tasks except for AA, thus supporting the hypothesis that the population buffer
improves ego agent learning. As discussed in RQ1, AA is a unique layout where agents can com-
plete the task independently, even in the presence of an adversarial partner. As a corollary, there are
few meaningful cooperative conventions that can be discovered, and no scenarios where convention
mismatch leads to zero return (unlike LBF and FC).

8 DISCUSSION AND CONCLUSION

This paper reformulates AHT as an open-ended learning problem and introduces ROTATE, a regret-
driven algorithm. ROTATE iteratively alternates between improving an AHT agent and generat-
ing challenging yet cooperative teammates by optimizing a per-state regret objective designed to
discover teammates that exploit cooperative vulnerabilities while mitigating self-sabotage. Experi-
ments on an illustrative matrix game demonstrate that the per-state regret objective mitigates self-
sabotage. Extensive evaluations across six benchmark tasks demonstrate that ROTATE significantly
enhances the generalization capabilities of AHT agents when faced with previously unseen team-
mates, outperforming baselines from both AHT and UED.

The current work has several limitations. First, while this paper provides intuitive justification and
strong empirical evidence for the efficacy of the per-state regret objective, an exciting line of follow-
up work is to formally define the concept of self-sabotage and theoretically analyze the properties
of the proposed regret objectives. Second, the paper only validates ROTATE on two-agent, fully
observable, and fully cooperative scenarios, which leaves the question of whether it scales to more
complex scenarios for future work. Finally, this work has focused on the teammate generation phase
of open-ended AHT. Future work might explore ego agent training methods that better handle the
nonstationarity induced by open-ended teammate generation.
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REPRODUCIBILITY STATEMENT

As part of our submission, we provide additional information to ensure the reproducibility of our pa-
per. Codes to run our experiments, including instructions to set up and run our experiments, are pro-
vided in this anonymous repository: https://anonymous.4open.science/r/rotate/.
A detailed specification of the environments used in our experiments, including information on the
reward function, length of the interaction episode, the environment’s action space, and the envi-
ronment’s observation space, is provided in App. E. Meanwhile, a precise description of teammate
policies from the holdout teammate policy sets used in evaluation, alongside the estimated per-
formance of their respective best response policies, is provided in App. G. Finally, details of the
hyperparameters and a specification of the compute infrastructure for our experiments are provided
in App. F.
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