

000 001 002 003 004 005 ROTATE: REGRET-DRIVEN OPEN-ENDED TRAINING 006 FOR AD HOC TEAMWORK 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

030 ABSTRACT 031

032 Learning to collaborate with previously unseen partners is a fundamental generalization challenge in multi-agent learning, known as Ad Hoc Teamwork (AHT).
033 Existing AHT approaches often adopt a two-stage pipeline, where first, a fixed population of teammates is generated with the idea that they should be representative of the teammates that will be seen at deployment time, and second, an AHT agent is trained to collaborate well with agents in the population. To date, the research community has focused on designing separate algorithms for each stage. This separation has led to algorithms that generate teammates with limited coverage of possible behaviors, and that ignore whether the generated teammates are easy to learn from for the AHT agent. Furthermore, algorithms for training AHT agents typically treat the set of training teammates as static, thus attempting to generalize to previously unseen partner agents without assuming any control over the set of training teammates. This paper presents a unified framework for AHT by reformulating the problem as an open-ended learning process between an AHT agent and an adversarial teammate generator. We introduce ROTATE, a regret-driven, open-ended training algorithm that alternates between improving the AHT agent and generating teammates that probe its deficiencies. Experiments across diverse two-player environments demonstrate that ROTATE significantly outperforms baselines at generalizing to an unseen set of evaluation teammates, thus establishing a new standard for robust and generalizable teamwork.
034
035
036
037
038
039
040
041
042
043

044 1 INTRODUCTION 045

046 As AI agents are deployed in diverse applications, it is increasingly crucial that they can collaborate effectively with previously unseen AI agents and humans. While methods for training teams of agents have been explored in cooperative multi-agent reinforcement learning (CMARL) (Foerster et al., 2018; Rashid et al., 2020), prior work highlighted that CMARL agents fail to perform optimally when collaborating with unfamiliar teammates (Vezhnevets et al., 2020; Rahman et al., 2021). Rather than learning strategies that are only effective against jointly trained teammates, dealing with previously unseen teammates requires adaptive AI agents that efficiently approximate the optimal strategy for collaborating with diverse teammates. The training of such adaptive agents has been explored within ad hoc teamwork (AHT) (Bowling & McCracken, 2005; Stone et al., 2010; Mirsky et al., 2022) and zero-shot coordination (ZSC) (Hu et al., 2020; Cui et al., 2021; Lupu et al., 2021).
047
048
049
050
051
052
053

054 Most work has decomposed AHT learning into two stages (Mirsky et al., 2022), consisting of first creating a fixed set of teammates, and then training an AHT agent using reinforcement learning (RL), based on interactions with teammates sampled from the set. Methods that focus on AHT agent learning typically rely on a human-designed heuristic-based or pretrained teammates (Papoudakis et al., 2021; Zintgraf et al., 2021; Rahman et al., 2021) and therefore struggle to handle novel behaviors outside the predefined set of teammates (Strouse et al., 2021; Carroll et al., 2019). Recent work enhances the generalization capabilities of AHT agent learning methods by substituting the predefined set of teammates with a generated collection of diverse teammates (Lupu et al., 2021; Rahman et al., 2024), which are trained to maximize different notions of diversity. One such diversity notion is *adversarial diversity* (Rahman et al., 2023; Charakorn et al., 2023), which seeks to generate a set of teams that cooperate well within teams, but not across teams. However, prior work (Cui et al., 2023; Sarkar et al., 2023; Charakorn et al., 2024) empirically demonstrates that adversarial diversity

Figure 1: *ROTATE Overview*. ROTATE is an open-ended learning framework for AHT. The core idea of ROTATE is to improve the AHT agent by iteratively generating diverse teammates with whom the AHT agent struggles to collaborate, yet not so adversarial that effective teamwork becomes impossible.

often leads to teammate policies that actively diminish returns when interacting with agents other than their identified teammate, a phenomenon sometimes called *self-sabotage*.

This paper addresses two issues that cause current methods to fail to learn policies that effectively collaborate with some teammates. First, two-stage AHT methods (Papoudakis et al., 2021; Zintgraf et al., 2021; Rahman et al., 2021; 2023) learn from interacting with teammates from a small fixed training set. Even when the training set is diverse, the AHT agent remains incapable of collaborating effectively with some teammates sampled from the vast space of possible strategies, specifically those with significantly different behavior from the policies in the training set (Vezhnevets et al., 2020; Rahman et al., 2021). Second, other work designs a diverse training set of teammate policies by maximizing adversarial diversity (Charakorn et al., 2023; Rahman et al., 2023), which yields self-sabotaging teammates whose return-diminishing tendencies make it challenging for a randomly initialized RL-based AHT agent to learn to collaborate effectively (Cui et al., 2023; Sarkar et al., 2023). Despite addressing the first issue, some methods remain susceptible to the second issue by optimizing adversarial diversity (Yuan et al., 2023).

We address the shortcomings of using a small, fixed training set by proposing an open-ended learning framework that continually generates new teammates with whom the AHT agent interacts to enhance its collaborative capabilities. We formulate our learning objective by observing that maximizing the expected returns of an AHT agent on a known set of teammates is equivalent to minimizing its expected *cooperative regret*: the utility gap between the best response to a given teammate, and the AHT agent’s performance with that teammate. While not knowing the teammates that will be encountered, we take inspiration from unsupervised environment design (UED) methods (Wang et al., 2020; Dennis et al., 2020; Jiang et al., 2021a; Rutherford et al., 2024a) and train an AHT agent to minimize its regret against generated teammates that maximize the AHT agent’s cooperative regret. We propose a novel and practical objective that, unlike UED methods that optimize regret only at the initial state, also maximizes regret in states encountered later in an interaction. We build on these foundations to propose a practical algorithm, ROTATE (Fig. 1), which optimizes a cooperative regret-based minimax objective while maintaining a population of all teammates explored. We demonstrate that ROTATE significantly improves the robustness of AHT agents when faced with previously unseen teammates, compared to a range of baselines on two-player Level-Based Foraging and Overcooked tasks.

This paper makes three main contributions. First, it defines a novel problem formulation for AHT, enabling open-ended AHT training that continually generates new teammates. Second, it introduces a novel algorithm, ROTATE, that instantiates the proposed open-ended AHT framework. Third, it provides empirical evaluations demonstrating that ROTATE significantly improves return against unseen teammates compared to representative baselines from AHT and open-ended learning.

2 RELATED WORK

Training AHT Agents. The training of ego agent policies that near-optimally collaborate with diverse previously unseen teammates has been explored in AHT (Stone et al., 2010). Most AHT methods follow the two-stage design process, where the generation of a fixed training set of teammate policies is followed by AHT training. Given teammates from the training set, AHT methods (Mirskey et al., 2022) train an ego agent to model teammates (Albrecht & Stone, 2018) by first identifying their important characteristics (e.g., goals, beliefs, policies) based on their observed behavior, and

then estimating the best-response policy to these teammates based on the inferred characteristics. Recent AHT methods (Rahman et al., 2021; Papoudakis et al., 2021; Zintgraf et al., 2021; Wang et al., 2024a) use neural networks trained using reinforcement learning (Schulman et al., 2017; Mnih et al., 2016). To further improve AHT training, several approaches learn a distribution for sampling teammate policies during training based on maximizing the worst-case returns (Villin et al., 2025) or regret (Erlebach & Cook, 2024; Chaudhary et al., 2025) of trained agents. While few, exceptions to the two-stage process include methods designed for continual AHT (Nekoei et al., 2021; 2023; Yuan et al., 2023), methods that co-evolve populations of ego agents and teammates (Xue et al., 2025; Yuan et al., 2023), self-play based methods, which do not explicitly optimize for diversity (Yan et al., 2023; Cornelisse & Vinitsky, 2024), and empirical game theoretic methods that optimize for cooperative diversity as a heuristic to induce generalization to unseen teammates (Li et al., 2023).

Teammate Generation for AHT & ZSC. Recent work removes the need to predefine teammate policy sets by generating diverse teammates during or before agent training. Other-Play (Hu et al., 2020) creates symmetry-equivalent teammates while training the agent policy, while E3T (Yan et al., 2023) mixes the agent’s current policy with a random policy to encourage diversity. FCP (Strouse et al., 2021) trains teammates via repeated CMARL runs with different seeds, later improved by methods maximizing information-theoretic diversity objectives such as Jensen-Shannon divergence (Lupu et al., 2021), mutual information (Lucas & Allen, 2022), and entropy (Xing et al., 2021; Zhao et al., 2023). More recent approaches (Charakorn et al., 2023; Rahman et al., 2024; Yuan et al., 2023) generate teammates that require distinct best-response strategies by maximizing adversarial diversity metrics, similar to ROTATE’s cooperative regret. Unlike ROTATE, these methods (i) maximize regret between generated teammates rather than with the trained agent, (ii) fix the teammate set prior to training, and (iii) evaluate regret only at the initial state. This last property leads to sabotaging teammates that harm cooperation in states unseen in self-play, motivating heuristic solutions in prior work (Cui et al., 2023; Sarkar et al., 2023), and a systematic objective in ROTATE.

Open-Ended Learning (OEL). OEL (Langdon, 2005; Taylor, 2019) studies algorithms that continually generate novel tasks to train generally capable agents (Hughes et al., 2024; Baker et al., 2019). Many OEL approaches in RL take the form of unsupervised environment design (UED) (Dennis et al., 2020), which improves generalization by designing or sampling new environments with varied initial states. Some methods directly train neural networks to propose environments that induce high regret in the agent (Dennis et al., 2020), while others selectively sample curated tasks generated by procedural generators based on criteria such as expected return (Wang et al., 2020), TD-error (Jiang et al., 2021b), regret (Jiang et al., 2021a), or learnability (Rutherford et al., 2024a). In competitive MARL, OEL often produces new opponents through self-play (Silver et al., 2016; Lin et al., 2023). For AHT, MACOP (Yuan et al., 2023) generates novel teammates via an adversarial diversity objective optimized with evolutionary methods and similar to the objectives studied by Charakorn et al. (2023) and Rahman et al. (2023). Thus, the objective can yield sabotaging teammates when applied only to the initial state. In contrast, ROTATE adopts a more systematic training objective that we demonstrate leads to performance gains.

3 BACKGROUND

The interaction between agents in an AHT setting may be modeled as a decentralized Markov decision process (Dec-MDP) (Bernstein et al., 2002). A Dec-MDP is characterized by a 7-tuple, $\langle N, S, \{\mathcal{A}^i\}_{i=1}^{|N|}, P, p_0, R, \gamma \rangle$, where N , S , and γ respectively denote the index set of agents within an interaction, the state space, and a discount rate, $0 \leq \gamma \leq 1$. Every interaction between agents begins from a state sampled from the initial state distribution, $s_0 \sim p_0(s)$. At timestep t , each agent, $i \in N$, jointly executes an action selected from its action space, $a_t^i \in \mathcal{A}^i$, based on the observed state, s_t , and its policy, $\pi^i(s_t)$. We assume that teammates choose their actions only based on the current state. Meanwhile, the AHT agent, also referred to as the *ego agent*, selects actions based on its state-action history, which is necessary to distinguish between different types of teammates effectively. Denoting the set of all probability distributions over a set X as $\Delta(X)$, the execution of the joint action, $a_t = (a_t^1, \dots, a_t^{|N|})$, results in agents observing a new state, s_{t+1} , sampled according to the environment transition function, $P : S \times \mathcal{A}^1 \times \dots \times \mathcal{A}^{|N|} \mapsto \Delta(S)$, and a common scalar reward, r_t , based on the reward function, $R : S \times \mathcal{A}^1 \times \dots \times \mathcal{A}^{|N|} \mapsto \mathbb{R}$.

162 4 AD HOC TEAMWORK PROBLEM FORMULATION

164 AHT methods aim to train an adaptive policy that an ego agent can follow to achieve maximal re-
 165 turn when collaborating with an unknown set of evaluation teammates. Formalizing the interaction
 166 between agents as a Dec-MDP, this section outlines the objective of AHT. While the most general
 167 AHT setting considers a possibly varying number of ego agents and teammates within an interaction
 168 (Wang et al., 2024a; Rahman et al., 2021), this formalization addresses the more straightforward
 169 case where there is only a single ego agent within a team.

170 Let π^{ego} refer to the ego agent’s policy, and π^{-i} denote the $|N| - 1$ policies of the AHT agent’s
 171 teammates. We denote the returns of an ego agent that follows π^{ego} to collaborate with teammates
 172 controlled by π^{-i} , starting from state s , as:

$$173 \quad V(s|\pi^{-i}, \pi^{\text{ego}}) = \mathbb{E}_{\substack{a_t^{\text{ego}} \sim \pi^{\text{ego}} \\ a_t^{-i} \sim \pi^{-i}, P}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \middle| s_0 = s \right]. \quad (1)$$

177 Let Π^{eval} denote the unknown set of joint teammate policies encountered during evaluation, which
 178 is assumed to only contain competent and non-adversarial policies, as defined in the seminal work
 179 of Stone et al. (2010). Let $\psi^{\text{eval}}(\Pi^{\text{eval}})$ denote the probability distribution over Π^{eval} defining how
 180 teammates are sampled during evaluation. An ego agent policy, π^{ego} , is evaluated by its ability
 181 to maximize the expected returns when collaborating with joint teammate policies sampled from
 182 $\psi^{\text{eval}}(\Pi^{\text{eval}})$, which is formalized as:

$$183 \quad \max_{\pi^{\text{ego}}} V(\psi^{\text{eval}}, \Pi^{\text{eval}}, \pi^{\text{ego}}) = \max_{\pi^{\text{ego}}} \mathbb{E}_{\pi^{-i} \sim \psi^{\text{eval}}(\Pi^{\text{eval}}), s_0 \sim p_0} [V(s_0|\pi^{-i}, \pi^{\text{ego}})]. \quad (2)$$

185 An optimal π^{ego} that maximizes Eq. 2 closely approximates the *best response policy* performance
 186 when collaborating with $\pi^{-i} \in \Pi^{\text{eval}}$. Given a teammate policy π^{-i} , $\text{BR}(\pi^{-i})$ is a best response
 187 policy to π^{-i} if and only the team policy formed by π^{-i} and $\text{BR}(\pi^{-i})$ achieves maximal return:

$$188 \quad \text{BR}(\pi^{-i}) \in \arg \max_{\pi} \mathbb{E}_{s \sim p_0} [V(s|\pi, \pi^{-i})]. \quad (3)$$

191 In some cases, AHT algorithms can estimate this optimal policy by using Π^{eval} to train an ego agent
 192 policy that maximizes $V(\psi^{\text{eval}}, \Pi^{\text{eval}}, \pi^{\text{ego}})$ when Π^{eval} is known.¹ However, most AHT methods
 193 address the more challenging case where Π^{eval} is unknown, which is the setting that this paper adopts
 194 as well. While our methods assume no knowledge of Π^{eval} during training, we follow standard
 195 practice (Papoudakis et al., 2021; Rahman et al., 2021; Zintgraf et al., 2021; Wang et al., 2024a) by
 196 manually designing a diverse Π^{eval} for evaluation purposes, as we later describe in Section 7.

197 When Π^{eval} is unknown, AHT algorithms (Mirsky et al., 2022) learn by interacting with policies from
 198 the training set, Π^{train} , which are learned or manually designed by leveraging an expert’s domain
 199 knowledge about the characteristics of Π^{eval} . After forming the set of training teammates, current
 200 AHT algorithms use RL to discover an ego agent policy based on interactions with joint policies
 201 sampled from Π^{train} . While the precise training objective varies with the AHT algorithm, methods
 202 commonly estimate the ego agent policy maximizing the expected return during interactions with
 203 joint policies sampled uniformly from Π^{train} , which we describe below:

$$204 \quad \pi^{*,\text{ego}}(\Pi^{\text{train}}) = \operatorname{argmax}_{\pi^{\text{ego}}} \mathbb{E}_{\pi^{-i} \sim \mathcal{U}(\Pi^{\text{train}}), s_0 \sim p_0} [V(s_0|\pi^{-i}, \pi^{\text{ego}})]. \quad (4)$$

206 Naturally, even $\pi^{*,\text{ego}}(\Pi^{\text{train}})$ may be suboptimal with respect to Π^{eval} and ψ^{eval} , due to the potential
 207 distribution shift caused by differences between the training and evaluation objectives.

209 5 REFORMULATING AD HOC TEAMWORK AS AN OPEN-ENDED LEARNING 210 PROBLEM

212 In this section, we show how the idealized ad hoc teamwork objective—training ego agents to col-
 213 laborate well with unknown teammates (Eq. 2, Section 4)—can be operationalized as a cooperative

215 ¹In the context of reinforcement-learning-based AHT algorithms, “known” means that an AHT algorithm
 has unlimited sampling access to the teammate policies.

216 regret-driven, open-ended learning procedure. In particular, we show that for a fixed set of team-
 217 mates Π^{eval} and sampling distribution ψ^{eval} over Π^{eval} , maximizing the return of the ego agent is
 218 equivalent to minimizing its cooperative regret. In absence of knowledge about Π^{eval} and ψ^{eval} ,
 219 we argue that minimizing the *worst-case* cooperative regret of the ego agent with respect to regret
 220 maximizing teammates leads to ego agents that cooperate well with any unknown teammate. Based
 221 on this, we propose a novel *minimax regret* objective (Eq. 7). Finally, we present an algorithmic
 222 framework for optimizing the minimax regret objective in an iterative fashion (Alg. 1).

223 We define the *cooperative regret* of an ego agent policy π^{ego} when interacting with some joint team-
 224 mate policy π^{-i} from a starting state s as:

$$\text{CR}(\pi^{\text{ego}}, \pi^{-i}, s) = V(s|\pi^{-i}, \text{BR}(\pi^{-i})) - V(s|\pi^{-i}, \pi^{\text{ego}}). \quad (5)$$

227 Any optimal AHT policy that maximizes Eq. 2 must also minimize the expected regret over joint
 228 teammate policies sampled based on $\psi^{\text{eval}}(\Pi^{\text{eval}})$, which we formally express as:

$$\text{CR}(\psi^{\text{eval}}, \Pi^{\text{eval}}, \pi^{\text{ego}}) = \mathbb{E}_{\pi^{-i} \sim \psi^{\text{eval}}(\Pi^{\text{eval}}), s_0 \sim p_0} [\text{CR}(\pi^{\text{ego}}, \pi^{-i}, s_0)]. \quad (6)$$

231 This property is a consequence of $V(s|\pi^{-i}, \text{BR}(\pi^{-i}))$ being independent of π^{ego} for any π^{-i} and
 232 s , leaving maximizing expected regret equivalent to minimizing the negative expected returns when
 233 collaborating with joint teammate policies sampled from $\psi^{\text{eval}}(\Pi^{\text{eval}})$.

234 Without knowing Π^{eval} to optimize $\text{CR}(\psi^{\text{eval}}, \Pi^{\text{eval}}, \pi^{\text{ego}})$, we instead take inspiration from ap-
 235 proaches in UED (Wang et al., 2020; Dennis et al., 2020), and propose optimizing π^{ego} to minimize
 236 the *worst-case regret* that could be induced by any teammate policy π^{-i} :

$$\min_{\pi^{\text{ego}}} \max_{\pi^{-i} \in \Pi^{-i}} \mathbb{E}_{s_0 \sim p_0} [\text{CR}(\pi^{\text{ego}}, \pi^{-i}, s_0)], \quad (7)$$

239 where Π^{-i} denotes the set of all competent and non-adversarial (Stone et al., 2010) joint teammate
 240 policies. Limiting the considered joint policies is important, as teams that consistently perform
 241 poorly against any π^{ego} are unlikely to be encountered in coordination scenarios and may introduce
 242 unnecessary learning challenges for RL-based AHT learning algorithms.

244 Finding π^{ego} that achieves zero worst-case regret is equivalent to finding an ego agent that achieves
 245 the best-response return with any joint teammate policy π^{-i} . If such a π^{ego} exists, then this AHT
 246 agent would maximize Eq. 2 for any ψ^{eval} and Π^{eval} . However, its existence is not guaranteed (Loftin
 247 & Oliehoek, 2022). In practice, we are content with *minimizing* the worst-case regret. While mini-
 248 mizing worst-case regret still applies to AHT problems with more than one teammate, we limit our
 249 method for optimizing Eq. 7 and our experiments to two-player, fully observable AHT games.

Algorithm 1 Open-Ended Ad Hoc Teamwork Framework

Require:

Environment, Env.

 Total of training iterations, T^{iter} .

 Initial ego agent policy parameters, θ^{ego} .

```

1:  $B_\pi \leftarrow \langle \rangle$                                  $\triangleright$  Init teammate policy parameter buffer.
2: for  $j = 1, 2, \dots, T^{\text{iter}}$  do
3:    $B_\pi^{\text{new}} \leftarrow \text{TeammateGenerator}(\text{Env}, \theta^{\text{ego}}, B_\pi)$        $\triangleright$  Train teammates to maximize regret.
4:    $\theta^{\text{ego}} \leftarrow \text{EgoUpdate}(\text{Env}, \theta^{\text{ego}}, B_\pi^{\text{new}})$            $\triangleright$  Train ego agent to minimize regret.
5:    $B_\pi \leftarrow B_\pi^{\text{new}}$ 
6: end for
7: Return  $\theta^{\text{ego}}$ 

```

262 Algorithm 1 outlines our general framework for training an ego agent to minimize the worst-case
 263 cooperative regret induced by any teammate $\pi^{-i} \in \Pi^{-i}$. Algorithm 1 resembles coordinate ascent
 264 algorithms (d’Esopo, 1959), which alternate between optimizing for π^{-i} and π^{ego} for T^{iter} iterations,
 265 while assuming the other is fixed. We call a phase where we fix π^{ego} and update π^{-i} to maximize
 266 the ego agent’s regret, the *teammate generation phase*. Meanwhile, assuming that π^{-i} is fixed, the
 267 *ego agent update phase* updates π^{ego} to minimize regret.

269 Our practical algorithm, ROTATE, instantiates Algorithm 1 by specifying the **TeammateGenerator**
 and **EgoUpdate** procedures, and is described in Section 6. It is an open-ended learning procedure

according to the definition proposed by [Hughes et al. \(2024\)](#), because it continually generates *novel* yet *learnable* artifacts (i.e., teammates) for an observer (i.e., ego agent). A discussion of how ROTATE satisfies the definition of [Hughes et al. \(2024\)](#) is provided in App. C.1.

6 PRACTICAL ALGORITHM: ROTATE

This section presents our practical algorithm for optimizing the minimax regret objective proposed in Section 5, ROTATE. We first describe the teammate generation procedure in Section 6.1, focusing on motivating the objective used to generate teammate policies. Next, we describe the ego agent update method in Section 6.2. App. A provides the ROTATE pseudocode and a more detailed discussion of the losses and exact update procedure.

6.1 ROTATE TEAMMATE GENERATOR

Given a fixed π^{ego} , ROTATE’s teammate generator seeks to discover a teammate policy that maximizes the cooperative regret of π^{ego} . Maximizing cooperative regret requires estimating the teammate policy, π^{-i} , and its best response policy, $\text{BR}(\pi^{-i})$. In the following, we abbreviate $\text{BR}(\pi^{-i})$ to BR for brevity. ROTATE’s teammate generator estimates both policies using the Proximal Policy Optimization (PPO) algorithm ([Schulman et al., 2017](#)).

The *per-trajectory regret* of π^{ego} (i.e., the inner objective of Eq. 7) is the regret from trajectories starting from the initial state distribution:

$$\max_{\pi^{-i}} \mathbb{E}_{s_0 \sim p_0} [\text{CR}(\pi^{\text{ego}}, \pi^{-i}, s_0)]. \quad (8)$$

Eq. 8 resembles the objectives used in past UED ([Wang et al., 2020](#); [Dennis et al., 2020](#)) and the teammate generation literature ([Rahman et al., 2024](#); [Charakorn et al., 2023](#)) to generate tasks or teammate policies. Recent work demonstrates that maximizing per-trajectory regret is prone to yielding self-sabotaging teammates ([Cui et al., 2023](#); [Sarkar et al., 2023](#)). Maximizing the cooperative regret only from $s_0 \sim p_0$ implicitly encourages $\text{BR}(\pi^{-i})$ to select actions leading to future states that are distinguishable from those encountered during the interaction between π^{-i} and π^{ego} . When encountering future states from interactions with π^{ego} , π^{-i} ends up choosing actions that sabotage cooperation by minimizing the teammate’s returns against π^{-i} . Thus, training π^{ego} to minimize regret (i.e., by maximizing the expected returns) when collaborating with π^{-i} using RL becomes challenging because π^{-i} actively chooses actions that undermine collaboration.

We mitigate the emergence of self-sabotage by training π^{-i} to maximize two objectives across states sampled from different state visitation distributions. These state visitation distributions result from: (i) teammate and BR interactions (self-play, SP), (ii) teammate and ego agent interactions (cross-play, XP), and (iii) cross-play continued by self-play interactions (SXP), where the teammate is first interacting with the ego agent, but switches at a random timestep t to interacting with its BR. Let $d(\pi^1, \pi^2; p)$ denote the state visitation distribution when π^1 and π^2 interact based on a starting state distribution p . We use the following shorthand to denote the SP, XP, and SXP state visitation distributions:

$$p_{\text{SP}} := d(\pi^{-i}, \text{BR}(\pi^{-i}); p_0), \quad p_{\text{XP}} := d(\pi^{-i}, \pi^{\text{ego}}; p_0), \quad p_{\text{SXP}} := d(\pi^{-i}, \text{BR}(\pi^{-i}); p_{\text{XP}}). \quad (9)$$

Based on these distributions, we define the following *per-state regret* objective for training π^{-i} :

$$\max_{\pi^{-i}} (\mathbb{E}_{s \sim 0.5 p_{\text{XP}} + 0.5 p_{\text{SP}}} [\text{CR}(\pi^{\text{ego}}, \pi^{-i}, s)] + \mathbb{E}_{s \sim p_{\text{SXP}}} [V(s | \pi^{-i}, \text{BR}(\pi^{-i}))]). \quad (10)$$

The difference between the per-trajectory and per-step regret objectives is visualized in Figure 2. Both terms in the per-state regret objective discourage adversarial behavior from π^{-i} . The first term in Expr. 10 corresponds to the ego agent’s regret starting from both SP and XP states. Estimating regret from XP and SP requires collecting SXP data as well as an analogous type of data called XSP (SP continued by XP interactions), as detailed in App. A.2. In general, optimizing the ego agent’s regret encourages discovering π^{-i} for which the ego agent policy has a high room for improvement. Optimizing regret starting from XP states requires π^{-i} to be able to coordinate with its BR starting from any state encountered during interactions with the ego agent, thus preventing π^{-i} from irrecoverably sabotaging an interaction. On the other hand, optimizing regret from SP states requires π^{-i} to be able to decrease the return of the ego agent starting from any state encountered

324 during interactions between the teammate and the BR, thus disincentivizing the emergence of unconditional cooperation signals. Finally, we find that training π^{-i} to collaborate well with its BR even
 325 during SXP interactions helps ensure that π^{-i} is a good-faith collaborator with at least one partner.
 326

328 While obtaining states from p_{SP} and p_{XP} is
 329 straightforward, states from p_{SXP} and p_{XSP} are collected using either environment re-
 330 setting or policy switching. Using SXP as
 331 an example, if an environment supports re-
 332 setting to any arbitrary state, then states en-
 333 countered during XP interaction can be
 334 stored and used as the initial state for SP
 335 interactions. Otherwise, we may sample
 336 a random timestep t , run XP interaction
 337 until timestep t , and then switch to SP in-
 338 teraction (Sarkar et al., 2023). Only data
 339 gathered after timestep t should be used to
 340 compute objectives based on p_{SXP} .
 341

342 6.2 ROTATE EGO AGENT UPDATE

344 At each iteration, ROTATE creates a teammate that attempts to discover cooperative weaknesses
 345 of the previous iteration’s ego agent, by maximizing its per-state regret. To allow the ROTATE
 346 ego agent to improve its robustness over time and reduce the possibility that it forgets how to cope
 347 with previously generated teammates, the ROTATE ego agent maintains a *population buffer* of
 348 generated teammates. During the ego agent update phase of each iteration, the ROTATE ego agent is
 349 trained using PPO (Schulman et al., 2017) against teammates sampled uniformly from the population
 350 buffer. We find experimentally that for the ego agent to learn effectively against the nonstationary
 351 population buffer, it is important to define a lower entropy coefficient and learning rate than when
 352 training the teammate and BR agents (typically in the range of 1×10^{-4} for the entropy coefficient
 353 and 1×10^{-5} for the learning rate).

354 7 EXPERIMENTAL RESULTS

355 This section presents the empirical evaluation of ROTATE compared to baseline methods, as well
 356 as several ablations. The experiments consider one illustrative matrix game and six benchmark
 357 tasks. Supplemental results, implementation details, and code link are provided in the Appendix.
 358 The main research questions are:

- 359 • **RQ1:** Does ROTATE better generalize to unseen teammates, compared to baseline methods from
 360 the AHT and UED literature? (Yes)
- 361 • **RQ2:** Does per-state regret mitigate sabotage and improve generalization to unseen teammates
 362 compared to per-trajectory regret? (Yes)
- 363 • **RQ3:** Does the SXP return term of the ROTATE teammate generation objective improve learning
 364 and generalization? (Yes)
- 365 • **RQ4:** Is the population buffer necessary for ROTATE to learn well? (Yes)

367 7.1 EXPERIMENTAL SETUP

369 This section describes the experimental setting, including tasks, baselines, construction of the eval-
 370 uation set, and the evaluation metric.

371 **Tasks** ROTATE is evaluated on a didactic matrix game and six benchmark tasks. For clarity,
 372 the matrix game is described with the corresponding results. The benchmark tasks are Level-Based
 373 Foraging (LBF) (Albrecht & Ramamoorthy, 2013), and the five classic layouts from the Overcooked
 374 suite (Carroll et al., 2019): Cramped Room (CR), Asymmetric Advantages (AA), Counter Circuit
 375 (CC), Coordination Ring (CoR), and Forced Coordination (FC). All six tasks are cooperative, permit
 376 a variety of possible conventions, and are commonly used within the AHT literature (Albrecht &
 377 Ramamoorthy, 2013; Christianos et al., 2020; Papoudakis et al., 2021). In LBF, two agents must
 378 navigate to apples that are randomly placed within a gridworld, and cooperate to pick up the apples.

379 Figure 2: Teammate policy optimization objectives: per-
 380 trajectory regret vs per-state regret.

Figure 3: (Left) ROTATE outperforms all baseline methods across all tasks in evaluation return. (Right) ROTATE with per-state regret (ours) outperforms ROTATE with per-trajectory regret in 5/6 tasks. 95% bootstrapped CI's are shown, computed across all evaluation teammates and trials.

In all Overcooked tasks, two agents collaborate in varying gridworld kitchen layouts to prepare dishes. All experiments were implemented with JAX (Bradbury et al., 2018).

Baselines As our method is most closely related to methods from UED and teammate generation, we compare against two UED methods adapted for AHT (PAIRED (Dennis et al., 2020), Minimax Return (Morimoto & Doya, 2005; Villin et al., 2025)) and three teammate generation methods (Fictitious Co-Play (Strouse et al., 2021), BRDiv (Rahman et al., 2023), CoMeDi (Sarkar et al., 2023)). While curator-based methods such as PLR (Jiang et al., 2021a;b) are prevalent in UED, we do not compare against them as they are orthogonal to ROTATE (Erlebach & Cook, 2024; Villin et al., 2025; Chaudhary et al., 2025). Similarly, we do not compare against AHT algorithms for ego learning (Albrecht & Stone, 2018). Each baseline is described in detail in App. B. For fair comparison, all open-ended and UED methods were trained for a similar number of environment interactions, or until best performance on the evaluation set. All teammate generation approaches were ran using a similar number of environment interactions as their original implementations, as scaling them up to use a similar number of steps as the open-ended approaches proved challenging (see discussion in App. B). All results are reported with three trials.

Construction of Π^{eval} We wish to evaluate all methods on as diverse a set of evaluation teammates as practically feasible, while ensuring that each teammate acts in “good faith”. To achieve this goal, for each task, we construct 9 to 13 evaluation teammates using three methods: IPPO with varied seeds and reward shaping, BRDiv, and manually programmed heuristic agents. Full descriptions of the teammate generation procedure and all teammates in Π^{eval} are provided in App. G.

Evaluation Metric Ego agent policies are evaluated with each teammate in Π^{eval} for 64 evaluation episodes, where the return is computed for each episode, and normalized using a lower return bound of zero and an estimated best response return as the upper bound for each teammate. Performance of a method on Π^{eval} is reported as the normalized mean return with bootstrapped 95% confidence intervals, computed via the `rliable` library (Agarwal et al., 2021). Our normalized return metric is similar to the BRProx metric recommended by Wang et al. (2024b). Details about the normalization procedure and specific bounds for each teammate are reported in the App. G.

7.2 RESULTS

This section addresses the research questions introduced at the beginning of Section 7. Supplemental analysis considering alternative regret-based objectives, independent utility of the ROTATE population, performance breakdowns by evaluation teammate, learning curves for all variants of ROTATE, and a human proxy evaluation on Overcooked, are provided in App. D.

RQ1: Does ROTATE better generalize to unseen teammates compared to baselines? (Yes) We evaluate ROTATE’s generalization capabilities by comparing its performance against baselines on Π^{eval} . Fig. 3a compares the normalized mean returns for ROTATE and baseline methods across the six tasks. The results show that ROTATE significantly outperforms all baselines on 5/6 tasks.

432 Among the baseline methods, the next best performing baselines are CoMeDi and FCP. We attribute
 433 CoMeDi’s strong performance to the resemblance of its mixed-play objective to our per-state regret
 434 objective, which we discuss in App. C.3. FCP’s performance may be attributed to the large number
 435 of partners that FCP was trained with (approximately 100 teammates per task). We found that FCP
 436 tends to perform especially well with the IPPO policies in Π^{eval} , likely because the IPPO evaluation
 437 teammates are in-distribution for the distribution of teammates constructed by FCP.

438 Minimax Return performs surprisingly well in AA, which may be attributed to AA’s particular char-
 439 acteristics. In AA, agents operate in separated kitchen halves, possessing all necessary resources
 440 for individual task completion, with pots on the dividing counter being the only shared resource. A
 441 team where both agents act fully independently may achieve high returns—albeit coordination leads
 442 to still higher returns.² Visualizing the trained policies reveals that the adversarial teammate trained
 443 by Minimax Return cannot drive the ego agent’s return to zero, and does not prevent the ego agent
 444 from learning how to perform the task independently. However, on LBF and FC, where coordination
 445 is crucial to obtain positive returns, Minimax Return is the worst-performing baseline.

446 BRDiv and PAIRED exhibit comparatively poor performance, which may be partially attributed
 447 to their teammate generation objectives that resemble per-trajectory regret. As we find for **RQ2**,
 448 per-state regret outperforms per-trajectory regret within the ROTATE framework. Furthermore,
 449 PAIRED’s update structure involves a lockstep training process for the teammate generator, best
 450 response, and ego agent. This synchronized training may hinder the natural emergence of robust
 451 conventions that are crucial for effective AHT.

	<i>H</i>	<i>T</i>	<i>S</i>
<i>H</i>	1	0	-1
<i>T</i>	0	1	-1
<i>S</i>	-1	-1	-1

452
 453
 454 Table 1: Payoff matrix
 455 for the sabotage game.
 456
 457

RQ2a: Does per-state regret mitigate sabotage compared to per-trajectory regret? (Yes) We design a simple *sabotage game* to investigate the whether the per-state regret objective leads to teammate policies that sabotage less often compared to the per-trajectory regret objective. The sabotage game is a fully cooperative, iterated matrix game with payoff matrix shown in Table 1. Each agent observes a game state that consists of the complete history of joint actions. Both agents have three actions: H, T, and S(abortage). The first two actions lead to two possible cooperative outcomes, while the last action leads to a reward of -1 if selected by either agent and immediate episode termination. Thus,

461 the last action corresponds to sabotaging the team’s payoffs. By default, the game lasts for five
 462 timesteps.

463 We train ROTATE with both per-state and per-trajectory regret. To measure the extent to which
 464 the learned teammate policies engage in sabotage, we enumerate the 341 non-terminal states in the
 465 game and measure the probability of the sabotage action at each state for the last generated teammate
 466 policy. Fig. 4 shows that ROTATE with per-state regret has a near-zero probability of taking the
 467 sabotage action at all non-terminal states, while the per-trajectory regret objective leads to over a
 468 third of states that have P(S) near 1.0.

469
 470 **RQ2b: Does per-state regret lead to improved generalization compared to per-trajectory re-
 471 gret? (Yes)** **RQ2a** demonstrated that ROTATE with per-state regret (ours) leads to teammate
 472 policies that sabotage less often in an illustrative matrix game, compared to ROTATE with per-
 473 trajectory regret. Here, we investigate whether this translates to improved generalization against
 474 the unseen evaluation teammates. All configurations other than the teammate’s policy objective are
 475 kept identical, including the data used to train the teammate value functions. Fig. 3b shows that
 476 ROTATE with per-state regret outperforms ROTATE with per-trajectory regret on all tasks except
 477 AA, confirming the superiority of per-state regret. As discussed in **RQ1**, we observe that AA is a
 478 layout where an ego agent is less susceptible to sabotage, due to the separated kitchen layout. App.
 479 C.4 presents additional experiments testing ROTATE with CoMeDi-style mixed-play rollouts, and
 480 alternative methods to compute per-state regret—ultimately finding that ROTATE outperforms all
 481 variations.

482
 483 ²Optimal behavior in AA still requires effective coordination due to layout asymmetry. In the “left” kitchen,
 484 the delivery zone is adjacent to the pots while the onions are farther, while in the “right” kitchen, the opposite is
 485 true. Thus, an optimal team consists of the “left” agent delivering finished soup, and the “right” agent placing
 onions in the pots—and indeed, we observe that teams of IPPO agents converge to this behavior.

486
 487 **RQ3: Does the SXP return term of the ROTATE teammate**
 488 **generation objective improve learning and generalization?**
 489 **(Yes)** The ROTATE objective (Eq. 10) includes two terms: the
 490 per-state regret term and a SXP return term, introduced to en-
 491 sure that the teammate collaborates well with its BR, even during
 492 SXP interactions. This helps ensure that the teammate is a good-
 493 faith collaborator. In Fig. 3b, the heldout return of an ablation of
 494 ROTATE where the SXP return term is removed is shown. We
 495 find that the ablated version performs significantly worse than
 496 the non-ablated across 5/6 of the tasks, confirming that the aux-
 497 iiliary return term plays an important role in the teammate gen-
 498 eration objective.
 499

500 **RQ4: Is the population buffer necessary for ROTATE to**
 501 **learn well? (Yes)** We hypothesize that collecting all previ-
 502 ously generated teammates in a population buffer helps the RO-
 503 TATE agent improve in robustness against all previously dis-
 504 covered conventions. On the other hand, if there is no population
 505 buffer, then it becomes possible for the ROTATE ego agent to forget how to collaborate with team-
 506 mate seen at earlier iterations of open-ended learning (Kirkpatrick et al., 2017), which creates the
 507 possibility that the ego agent and teammate generator oscillates between conventions. As shown in
 508 Fig. 6a, ROTATE without the population buffer attains lower evaluation returns than the full RO-
 509 TATE method on all tasks except for AA, thus supporting the hypothesis that the population buffer
 510 improves ego agent learning. As discussed in RQ1, AA is a unique layout where agents can com-
 511 plete the task independently, even in the presence of an adversarial partner. As a corollary, there are
 512 few meaningful cooperative conventions that can be discovered, and no scenarios where convention
 513 mismatch leads to zero return (unlike LBF and FC).
 514

515 8 DISCUSSION AND CONCLUSION

516 This paper reformulates AHT as an open-ended learning problem and introduces ROTATE, a regret-
 517 driven algorithm. ROTATE iteratively alternates between improving an AHT agent and gener-
 518 ating challenging yet cooperative teammates by optimizing a per-state regret objective designed to
 519 discover teammates that exploit cooperative vulnerabilities while mitigating self-sabotage. Experi-
 520 ments on an illustrative matrix game demonstrate that the per-state regret objective mitigates self-
 521 sabotage. Extensive evaluations across six benchmark tasks demonstrate that ROTATE significantly
 522 enhances the generalization capabilities of AHT agents when faced with previously unseen team-
 523 mates, outperforming baselines from both AHT and UED.
 524

525 The current work has several limitations. First, while this paper provides intuitive justification and
 526 strong empirical evidence for the efficacy of the per-state regret objective, an exciting line of follow-
 527 up work is to formally define the concept of self-sabotage and theoretically analyze the properties
 528 of the proposed regret objectives. Second, the paper only validates ROTATE on two-agent, fully
 529 observable, and fully cooperative scenarios, which leaves the question of whether it scales to more
 530 complex scenarios for future work. Finally, this work has focused on the teammate generation phase
 531 of open-ended AHT. Future work might explore ego agent training methods that better handle the
 532 nonstationarity induced by open-ended teammate generation.
 533

534 **Figure 4:** Probability of the sabo-
 535 tage action at all states in the sabo-
 536 tage game for ROTATE teammates
 537 trained with per-state regret (ours) vs
 538 per-trajectory regret. Results are ag-
 539 gregated across three trials.

540 REPRODUCIBILITY STATEMENT
541

542 As part of our submission, we provide additional information to ensure the reproducibility of our pa-
543 per. Codes to run our experiments, including instructions to set up and run our experiments, are pro-
544 vided in this anonymous repository: <https://anonymous.4open.science/r/rotate/>.
545 A detailed specification of the environments used in our experiments, including information on the
546 reward function, length of the interaction episode, the environment’s action space, and the envi-
547 ronment’s observation space, is provided in App. E. Meanwhile, a precise description of teammate
548 policies from the holdout teammate policy sets used in evaluation, alongside the estimated per-
549 formance of their respective best response policies, is provided in App. G. Finally, details of the
550 hyperparameters and a specification of the compute infrastructure for our experiments are provided
551 in App. F.

552 REFERENCES
553

554 Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
555 mare. Deep Reinforcement Learning at the Edge of the Statistical Precipice. In *Advances in*
556 *Neural Information Processing Systems*, volume 34, pp. 29304–29320. Curran Associates, Inc.,
557 2021. URL [https://proceedings.neurips.cc/paper_files/paper/2021/
558 hash/f514cec81cb148559cf475e7426eed5e-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html).

559 Stefano V. Albrecht and Subramanian Ramamoorthy. A game-theoretic model and best-response
560 learning method for ad hoc coordination in multiagent systems. In *Proceedings of the 2013*
561 *international conference on Autonomous agents and multi-agent systems*, AAMAS ’13, pp. 1155–
562 1156, Richland, SC, May 2013. International Foundation for Autonomous Agents and Multiagent
563 Systems. ISBN 978-1-4503-1993-5.

564 Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
565 survey and open problems. *Artificial Intelligence*, 258:66–95, 2018. ISSN 0004-3702. doi:
566 <https://doi.org/10.1016/j.artint.2018.01.002>. URL [https://www.sciencedirect.com/
567 science/article/pii/S0004370218300249](https://www.sciencedirect.com/science/article/pii/S0004370218300249).

568 Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
569 Mordatch. Emergent Tool Use From Multi-Agent Autocurricula. In *International Conference*
570 *on Learning Representations*, September 2019. URL [https://openreview.net/forum?
571 id=SkxpxJBKws](https://openreview.net/forum?id=SkxpxJBKws).

572 Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
573 decentralized control of markov decision processes. *Mathematics of operations research*, 27(4):
574 819–840, 2002.

575 Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duck-
576 worth, Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma
577 Mahjoub, Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cem-
578 lyn Neil Waters, Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock,
579 Siddarth Singh, Daniel Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Ju-
580 manji: a Diverse Suite of Scalable Reinforcement Learning Environments in JAX. In *The*
581 *Twelfth International Conference on Learning Representations*, October 2023. URL <https://openreview.net/forum?id=C4CxQmp9wc>.

582 Michael Bowling and Peter McCracken. Coordination and adaptation in impromptu teams. In *AAAI*,
583 volume 5, pp. 53–58, 2005.

584 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
585 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
586 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

587 Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and
588 Anca Dragan. On the Utility of Learning about Humans for Human-AI Coordination. In
589 *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
590 2019.

594 2019. URL [https://proceedings.neurips.cc/paper_files/paper/2019/
595 hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html](https://proceedings.neurips.cc/paper_files/paper/2019/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html).

596

597 Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Generating diverse coopera-
598 tive agents by learning incompatible policies. In *The Eleventh International Conference on Learn-
599 ing Representations*, 2023. URL https://openreview.net/forum?id=UkU05GOH7_6.

600

601 Rujikorn Charakorn, Poramate Manoonpong, and Nat Dilokthanakul. Diversity is not all
602 you need: Training a robust cooperative agent needs specialist partners. In A. Globerson,
603 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in
604 Neural Information Processing Systems*, volume 37, pp. 56401–56423. Curran Associates, Inc.,
605 2024. URL [https://proceedings.neurips.cc/paper_files/paper/2024/
606 file/66b35d2e8d524706f39cc21f5337b002-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/66b35d2e8d524706f39cc21f5337b002-Paper-Conference.pdf).

607

608 Paresh Chaudhary, Yancheng Liang, Daphne Chen, Simon S. Du, and Natasha Jaques. Improving
609 human-ai coordination through adversarial training and generative models, 2025. URL <https://arxiv.org/abs/2504.15457>.

610

611 Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Shared experience actor-critic for
612 multi-agent reinforcement learning. In *Advances in Neural Information Processing Systems
(NeurIPS)*, 2020.

613

614 Daphne Cornelisse and Eugene Vinitsky. Human-compatible driving partners through data-
615 regularized self-play reinforcement learning, June 2024. URL [http://arxiv.org/abs/
616 2403.19648](http://arxiv.org/abs/2403.19648).

617

618 Brandon Cui, Hengyuan Hu, Luis Pineda, and Jakob Foerster. K-level reasoning for zero-shot
619 coordination in hanabi. *Advances in Neural Information Processing Systems*, 34:8215–8228,
620 2021.

621

622 Brandon Cui, Andrei Lupu, Samuel Sokota, Hengyuan Hu, David J Wu, and Jakob Nicolaus Fo-
623 erster. Adversarial diversity in hanabi. In *The Eleventh International Conference on Learning
624 Representations*, 2023. URL https://openreview.net/forum?id=uLE3WF3-H_5.

625

626 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
627 and Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised Environment
628 Design. In *Advances in Neural Information Processing Systems*, volume 33, pp. 13049–13061.
629 Curran Associates, Inc., 2020. URL [https://proceedings.neurips.cc/paper/
630 hash/985e9a46e10005356bbaf194249f6856-Abstract.html](https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html).

631

632 DA d’Esopo. A convex programming procedure. *Naval Research Logistics Quarterly*, 6(1):33–42,
633 1959.

634

635 Hannah Erlebach and Jonathan Cook. RACCOON: Regret-based adaptive curricula for cooperation.
636 In *Coordination and Cooperation for Multi-Agent Reinforcement Learning Methods Workshop*,
637 2024. URL <https://openreview.net/forum?id=jAH5JNY3Qd>.

638

639 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
640 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI conference on artificial
intelligence*, volume 32, 2018.

641

642 Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. *Communications of the
643 ACM*, 33(10):75–84, 1990.

644

645 Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. “other-play” for zero-shot
646 coordination. In *International Conference on Machine Learning*, pp. 4399–4410. PMLR, 2020.

647

648 Edward Hughes, Michael D. Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar,
649 Yuge Shi, Tom Schaul, and Tim Rocktäschel. Position: Open-Endedness is Essential for Ar-
650 tificial Superhuman Intelligence. In *Proceedings of the 41st International Conference on Ma-
651 chine Learning*, pp. 20597–20616. PMLR, July 2024. URL [https://proceedings.mlr.
652 press/v235/hughes24a.html](https://proceedings.mlr.press/v235/hughes24a.html).

648 Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
 649 Rocktäschel. Replay-guided adversarial environment design. *Advances in Neural Information
 650 Processing Systems*, 34:1884–1897, 2021a.

651 Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. In *International
 652 Conference on Machine Learning*, pp. 4940–4950. PMLR, 2021b.

653 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In *3rd Inter-
 654 national Conference for Learning Representations*, San Diego, CA, 2015. doi: 10.48550/arXiv.
 655 1412.6980. URL <http://arxiv.org/abs/1412.6980>. arXiv:1412.6980 [cs].

656 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
 657 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
 658 abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forget-
 659 ting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–3526,
 660 March 2017. doi: 10.1073/pnas.1611835114. URL <https://www.pnas.org/doi/10.1073/pnas.1611835114>. Publisher: Proceedings of the National Academy of Sciences.

661 WB Langdon. Pfeiffer—a distributed open-ended evolutionary system. In *AISB*, volume 5, pp. 7–13.
 662 Citeseer, 2005.

663 Yang Li, Shao Zhang, Jichen Sun, Yali Du, Ying Wen, Xinbing Wang, and Wei Pan. Cooperative
 664 Open-ended Learning Framework for Zero-Shot Coordination. In *Proceedings of the 40th
 665 International Conference on Machine Learning*, pp. 20470–20484. PMLR, July 2023. URL
 666 <https://proceedings.mlr.press/v202/li23au.html>. ISSN: 2640-3498.

667 Fanqi Lin, Shiyu Huang, Tim Pearce, Wenze Chen, and Wei-Wei Tu. TiZero: Mastering Multi-
 668 Agent Football with Curriculum Learning and Self-Play. In *Proceedings of the 2023 International
 669 Conference on Autonomous Agents and Multiagent Systems*, AAMAS ’23, pp. 67–76, Richland,
 670 SC, May 2023. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
 978-1-4503-9432-1.

671 Robert Loftin and Frans A Oliehoek. On the impossibility of learning to cooperate with adaptive
 672 partner strategies in repeated games. In *International Conference on Machine Learning*, pp.
 673 14197–14209. PMLR, 2022.

674 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Nicolaus Foerster, Satinder Singh,
 675 and Feryal Behbahani. Structured State Space Models for In-Context Reinforcement Learning.
 676 In *Thirty-seventh Conference on Neural Information Processing Systems*, November 2023. URL
 677 <https://openreview.net/forum?id=4W9FVg1j6I¬eId=38Anv4M4TW>.

678 Keane Lucas and Ross E Allen. Any-play: An intrinsic augmentation for zero-shot coordination. In
 679 *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems*,
 680 pp. 853–861, 2022.

681 Andrei Lupu, Brandon Cui, Hengyuan Hu, and Jakob Foerster. Trajectory diversity for zero-shot
 682 coordination. In *International conference on machine learning*, pp. 7204–7213. PMLR, 2021.

683 Reuth Mirsky, Ignacio Carlacho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
 684 Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In *European
 685 conference on multi-agent systems*, pp. 275–293. Springer, 2022.

686 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 687 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 688 learning. In *International conference on machine learning*, pp. 1928–1937. PmLR, 2016.

689 Jun Morimoto and Kenji Doya. Robust Reinforcement Learning. *Neural Comput.*, 17(2):335–359,
 690 February 2005. ISSN 0899-7667. doi: 10.1162/0899766053011528. URL <https://doi.org/10.1162/0899766053011528>.

691 Hadi Nekoei, Akilesh Badrinaaraayanan, Aaron Courville, and Sarath Chandar. Continuous Co-
 692 ordination As a Realistic Scenario for Lifelong Learning. In *Proceedings of the 38th Inter-
 693 national Conference on Machine Learning*, pp. 8016–8024. PMLR, July 2021. URL <https://proceedings.mlr.press/v139/nekoei21a.html>. ISSN: 2640-3498.

702 Hadi Nekoei, Xutong Zhao, Janarthanan Rajendran, Miao Liu, and Sarath Chandar. Towards Few-
 703 shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi. In *Pro-
 704 ceedings of The 2nd Conference on Lifelong Learning Agents*, pp. 861–877. PMLR, Novem-
 705 ber 2023. URL <https://proceedings.mlr.press/v232/nekoei23b.html>. ISSN:
 706 2640-3498.

707 Georgios Papoudakis, Filippos Christianos, and Stefano V. Albrecht. Agent modelling under partial
 708 observability for deep reinforcement learning. In *Advances in Neural Information Processing
 709 Systems*, 2021.

710 Arrasy Rahman, Niklas Höpner, Filippos Christianos, and Stefano V. Albrecht. Towards Open Ad
 711 Hoc Teamwork Using Graph-based Policy Learning. In *Proceedings of the 38 th International
 712 Conference on Machine Learning*, volume 139. PMLR, June 2021.

713 Arrasy Rahman, Elliot Fosong, Ignacio Carlacho, and Stefano V Albrecht. Generating teammates
 714 for training robust ad hoc teamwork agents via best-response diversity. *Transactions on Machine
 715 Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=15BzfQhR01>.

716 Muhammad Rahman, Jiaxun Cui, and Peter Stone. Minimum coverage sets for training robust ad hoc
 717 teamwork agents. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
 718 pp. 17523–17530, 2024.

719 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 720 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 721 learning. *Journal of Machine Learning Research*, 21:1–51, 2020.

722 Alexander Rutherford, Michael Beukman, Timon Willi, Bruno Lacerda, Nick Hawes, and
 723 Jakob Nicolaus Foerster. No regrets: Investigating and improving regret approximations for cur-
 724 riculum discovery. In *The Thirty-eighth Annual Conference on Neural Information Processing
 725 Systems*, 2024a. URL <https://openreview.net/forum?id=iEeiZ1Tbts>.

726 Alexander Rutherford, Benjamin Ellis, Matteo Gallici, Jonathan Cook, Andrei Lupu, Garðar
 727 Ingvarsson, Timon Willi, Ravi Hammond, Akbir Khan, Christian S. de Witt, Alexan-
 728 dra Souly, Saptarashmi Bandyopadhyay, Mikayel Samvelyan, Minqi Jiang, Robert Lange,
 729 Shimon Whiteson, Bruno Lacerda, Nick Hawes, Tim Rocktäschel, Chris Lu, and Jakob
 730 Foerster. JaxMARL: Multi-Agent RL Environments and Algorithms in JAX. In *Ad-
 731 vances in Neural Information Processing Systems*, volume 37, pp. 50925–50951, December
 732 2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/5aee125f052c90e326dcf6f380df94f6-Abstract-Datasets_and_Benchmarks_Track.html.

733 Bidipta Sarkar, Andy Shih, and Dorsa Sadigh. Diverse conventions for human-AI collaboration.
 734 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=MljeRycu9s>.

735 John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and P. Abbeel. High-dimensional
 736 continuous control using generalized advantage estimation. *CoRR*, abs/1506.02438, 2015. URL
 737 <https://api.semanticscholar.org/CorpusID:3075448>.

738 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
 739 mal policy optimization algorithms. *ArXiv*, abs/1707.06347, 2017. URL <https://api.semanticscholar.org/CorpusID:28695052>.

740 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 741 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 742 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

743 Peter Stone, Gal Kaminka, Sarit Kraus, and Jeffrey Rosenschein. Ad Hoc Autonomous Agent
 744 Teams: Collaboration without Pre-Coordination. In *Proceedings of the AAAI Conference on
 745 Artificial Intelligence*, volume 24, pp. 1504–1509, July 2010. doi: 10.1609/aaai.v24i1.7529. URL
 746 <https://ojs.aaai.org/index.php/AAAI/article/view/7529>.

756 DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett. Collaborating
 757 with Humans without Human Data. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
 758 and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, volume 34,
 759 pp. 14502–14515, 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/797134c3e42371bb4979a462eb2f042a-Paper.pdf.

760

761 Tim Taylor. Evolutionary innovations and where to find them: Routes to open-ended evolution in
 762 natural and artificial systems. *Artificial life*, 25(2):207–224, 2019.

763

764 Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z Leibo. Options as
 765 responses: Grounding behavioural hierarchies in multi-agent reinforcement learning. In *International
 766 Conference on Machine Learning*, pp. 9733–9742. PMLR, 2020.

767

768 Victor Villin, Thomas Kleine Buening, and Christos Dimitrakakis. A minimax approach to ad hoc
 769 teamwork, 2025. URL <https://arxiv.org/abs/2502.02377>.

770

771 Caroline Wang, Arrasy Rahman, Ishan Durugkar, Elad Liebman, and Peter Stone. N-agent ad hoc
 772 teamwork. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 2024a. URL <https://openreview.net/forum?id=q7TxGUWlhD>.

773

774 Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
 775 Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
 776 challenges and their solutions. In *International conference on machine learning*, pp. 9940–9951.
 777 PMLR, 2020.

778

779 Xihuai Wang, Shao Zhang, Wenhao Zhang, Wentao Dong, Jingxiao Chen, Ying Wen, and Weinan
 780 Zhang. ZSC-Eval: An Evaluation Toolkit and Benchmark for Multi-agent Zero-shot Coordi-
 781 nation. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets
 782 and Benchmarks Track*, November 2024b. URL <https://openreview.net/forum?id=9aXjIBLwKc#discussion>.

783

784 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 785 learning. *Machine learning*, 8:229–256, 1992.

786

787 Dong Xing, Qianhui Liu, Qian Zheng, and Gang Pan. Learning with generated teammates to
 788 achieve type-free ad-hoc teamwork. In Zhi-Hua Zhou (ed.), *Proceedings of the Thirtieth Inter-
 789 national Joint Conference on Artificial Intelligence, IJCAI-21*, pp. 472–478. International Joint
 790 Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/66. URL
 791 <https://doi.org/10.24963/ijcai.2021/66>. Main Track.

792

793 Ke Xue, Yutong Wang, Cong Guan, Lei Yuan, Haobo Fu, Qiang Fu, Chao Qian, and Yang Yu.
 794 Heterogeneous Multiagent Zero-Shot Coordination by Coevolution. *IEEE Transactions on Evo-
 795 lutionary Computation*, 29(5):2229–2243, October 2025. ISSN 1941-0026. doi: 10.1109/TEVC.
 796 2024.3485177. URL <https://ieeexplore.ieee.org/document/10730789>.

797

798 Xue Yan, Jiaxian Guo, Xingzhou Lou, Jun Wang, Haifeng Zhang, and Yali Du. An efficient end-
 799 to-end training approach for zero-shot human-AI coordination. In *Thirty-seventh Conference on
 800 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=6ePsuwXUwf>.

801

802 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and
 803 Yi Wu. The Surprising Effectiveness of PPO in Cooperative Multi-Agent Games. In *Ad-
 804 vances in Neural Information Processing Systems*, volume 35, pp. 24611–24624, December
 805 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/9c1535a02f0ce079433344e14d910597-Abstract-Datasets_and_Benchmarks.html.

806

807 Lei Yuan, Lihe Li, Ziqian Zhang, Feng Chen, Tianyi Zhang, Cong Guan, Yang Yu, and Zhi-Hua
 808 Zhou. Learning to coordinate with anyone. In *Proceedings of the Fifth International Conference
 809 on Distributed Artificial Intelligence*, pp. 1–9, 2023.

810

811 Rui Zhao, Jinming Song, Yufeng Yuan, Haifeng Hu, Yang Gao, Yi Wu, Zhongqian Sun, and Wei
 812 Yang. Maximum entropy population-based training for zero-shot human-ai coordination. In
 813 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 6145–6153, 2023.

810 Luisa Zintgraf, Sam Devlin, Kamil Ciosek, Shimon Whiteson, and Katja Hofmann. Deep interactive
811 bayesian reinforcement learning via meta-learning. *arXiv preprint arXiv:2101.03864*, 2021.
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863