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Abstract

Recent advances in flow-matching models have enabled high-
quality text-to-image generation. However, the deterministic
nature of flow-matching makes these models poorly suited to
reinforcement learning, a key paradigm for improving image
quality and aligning outputs with human preferences. Prior
work introduces stochasticity by perturbing latents with noise
sampled uniformly at random, but most such perturbations
yield low-reward generations and lead to inefficient, unsta-
ble optimization. We propose Smart-GRPO, the first method
to optimize noise perturbations for reinforcement learning
in flow-matching models. Smart-GRPO employs an iterative
search strategy that decodes candidate perturbations, evalu-
ates them with a reward model, and progressively refines the
noise distribution toward higher-reward regions. Experiments
show that Smart-GRPO improves both reward optimization
and visual quality over baseline methods under comparable
compute budgets. These results highlight a practical path to-
ward reinforcement learning in flow-matching frameworks,
narrowing the gap between efficient training and human-
aligned generation.

Introduction

Flow-matching models (Lipman et al. 2023) have recently
been introduced as an alternative to diffusion-based genera-
tive models (Ho, Jain, and Abbeel 2020), offering more sta-
ble training and deterministic sampling. While large-scale
pre-training enables these models to produce high-quality
outputs, it is often insufficient for ensuring alignment with
human preferences. Reinforcement learning with human
feedback (RLHF) (Ouyang et al. 2022), originally developed
for aligning large language models, has since been adapted
to generative vision models, including diffusion architec-
tures (Black et al. 2023; Yang et al. 2024).

Extending RL to flow-matching models, however,
presents distinct challenges. The deterministic nature of
flow-matching sampling is fundamentally misaligned with
the stochasticity required for policy optimization. Flow-
GRPO (Liu et al. 2025) addresses this by introducing ran-
dom perturbations to the inputs prior to denoising, thereby
enabling the use of Group Relative Policy Optimization
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(GRPO) (Shao et al. 2024). While this modification per-
mits reinforcement learning, it is intrinsically inefficient:
most noise seeds sampled uniformly at random produce low-
reward generations that contribute little to policy improve-
ment, resulting in wasted training signal. This observation
motivates a more principled treatment of noise selection as
a key factor in improving the efficiency of RL for flow-
matching models.

Intuitively, different noise seeds induce different trajec-
tories through the flow model’s latent space: some seeds
reliably lead to generations whose rewards are highly sen-
sitive to policy updates, while others produce low-reward,
low-informative samples. Treating all seeds as equally valu-
able forces the learner to spend a significant portion of its
optimization budget on trajectories that convey little gradi-
ent information about human preferences. This perspective
suggests that the choice of noise is not merely a technical
detail, but an important lever for shaping the effectiveness
of reinforcement learning on flow-matching models.

Prior works have focused primarily on improving train-
ing stability (Wang et al. 2025; Xue et al. 2025), efficiency
through optimization strategies (Li et al. 2025a,b), or gen-
erative fidelity (He et al. 2025). Our work specifically fo-
cuses on the noise used to perturb the inputs. We hypothe-
size that, by directly optimizing the sampling of input noise,
we provide a complementary pathway for improving both
efficiency and alignment in reinforcement learning for flow-
based generative models.

In this work, we introduce Smart-GRPO, a framework
that augments Flow-GRPO with reward-guided noise se-
lection. Our central hypothesis is that noise seeds vary in
their contribution to effective learning, and that preferen-
tially sampling informative seeds can accelerate conver-
gence. Smart-GRPO employs a pretrained reward model to
evaluate candidate noise seeds and selects those predicted
to yield higher-quality generations. This procedure can be
viewed as constructing an adaptive curriculum over the noise
distribution, where training gradually emphasizes seeds that
produce more informative trajectories. By iteratively refin-
ing the noise distribution in this manner, Smart-GRPO im-
proves the efficiency of policy optimization while maintain-
ing compatibility with existing RLHF pipelines.



Related Works

Flow-matching models: Let xy € X, be a sample from a
true distribution and let z; € X; be a sample from a known
distribution (e.g. a Gaussian). Flow-matching models (Esser
et al. 2024) define a path between the data and the noise as a
linear interpolation:

= (1 —t)axo +tay, te<][0,1]. (D

Taking the derivative with respect to t yields the target
velocity field:

E = X1 — Xg-. (2)

The goal is then to learn a parameterized velocity predic-
tor vg(x¢,t) that approximates this ground-truth field. This
is achieved by minimizing the following loss (Lipman et al.
2023):

L(0) = Et 40,0, [|[(x1 — 20) —va(ze,)I?].  (3)

Compared to diffusion (Ho, Jain, and Abbeel 2020) mod-
els, which learn a score function or directly predict noise,
flow-matching instead learns the velocity of the probability
flow ODE. This provides a more direct parameterization of
the generative process, and in practice can lead to faster and
more stable training.

Reinforcement Learning for Generative Models: Rein-
forcement learning from human feedback (RLHF) (Ouyang
et al. 2022) has become a standard approach for aligning
large language models with human preferences. The frame-
work typically involves first training a reward model on col-
lected preference data, and then fine-tuning the language
model using Proximal Policy Optimization (PPO) (Schul-
man et al. 2017). More recently, alternatives such as Direct
Preference Optimization (DPO) (Rafailov et al. 2023) and
Group Relative Policy Optimization (GRPO) (Shao et al.
2024) have been proposed, offering simpler and more flexi-
ble formulations of preference-based training.

Recently, reinforcement learning has also been adapted to
diffusion models, which present unique challenges due to
their iterative denoising process. Approaches such as De-
noising Diffusion Policy Optimization (DDPQO) (Wallace
et al. 2024) and Direct Preference for Denoising Diffu-
sion Policy Optimization (D3PO) (Yang et al. 2024) extend
preference-based optimization to the diffusion setting, en-
abling alignment with human or other task-specific objec-
tives.

Reinforcement Learning for Flow-matching models:
Due to the deterministic nature of flow-matching models,
they are not intrinsically designed for reinforcement learn-
ing. The probability flow ODE deterministically maps inputs
to outputs, leaving little room for the stochastic exploration
that reinforcement learning requires. This mismatch makes
direct application of standard policy optimization methods
ineffective.

Flow-GRPO (Liu et al. 2025) addresses this by converting
the deterministic probability flow ODE into an equivalent

stochastic differential equation (ODE-to-SDE), which in-
jects randomness while preserving the model’s marginal dis-
tributions, and by introducing a denoising reduction strategy
that reduces the number of denoising steps during training
while keeping the full schedule at inference. These modifica-
tions enable the incorporation of GRPO into flow-matching
models. Empirically, Flow-GRPO achieves substantial gains
in compositional image generation, text rendering, and hu-
man preference alignment, while maintaining image quality
and minimizing reward hacking.

Methods

We introduce Smart-GRPO, an efficient algorithm for fine-
tuning flow-matching models with reinforcement learning.
Our method improves upon GRPO-style approaches by di-
rectly searching over the noise variables that determine the
decoded output. Instead of perturbing latents with random
noise (as in GRPO), Smart-GRPO searches for noise that
maximizes reward in one-shot decoding. We treat the noise
distribution as a parameterized search space. Instead of
blindly perturbing latents, we iteratively refine a Gaussian
noise distribution toward regions of higher reward using a
Cross-Entropy Method (CEM)-like update.

Algorithm

Let X; denote the latent at timestep t, and let f : X — R
be a scalar reward function. Smart-GRPO proceeds as fol-
lows: We first initialize a Gaussian distribution over noise
variables, parameterized by mean ¢ = 0 and standard devi-
ation 0 = I. Importantly, we assume independence, so as to
prevent costly covariance calculations. In each iteration, we
sample K candidate noises as:

m; =+ ong,n; ~ N(0,I) 4)

We then perturb the latent with the noise via the following
equation:

Zi = Xt + vV —dtUtmi (5)

where o is the noise scale and dt is the step size. To eval-
uate the effect of each perturbation, we form a one-step ap-
proximation of the decoded image using the predicted ve-
locity vg.

a:(()i) R~ z; — tug(zi, t) (6)

This is intended to provide a rough estimate of the final
image without requiring the full reverse process. Note that
at earlier timesteps (high noise levels), the one-step approxi-
mation produces near-random outputs, making reward eval-
uation unreliable. Smart-GRPO is therefore most effective
at later timesteps where the latent has a stronger correlation
with the decoded image

We then decode the image, and calculate the reward
R, = f(xél)). We then select the top T = | P - K |, where
P € [0,1] candidates with the highest rewards, using these
noises to update the i and o used to sample. This process is
repeated N times.



Algorithm 1: Smart-GRPO

Require: Latent image X;, number of sampled noises K,
number of iterations N, saving fraction P € [0, 1], re-
ward function f(z) : X - R

Ensure: Optimized latent mean p or sampled latent m =
u+o-n

1: Initialize ¢ = 0, 0 = I of the shape of latent variable

2: forn =1to N do

3:  Sample K random noises {n;}X | and compute mod-
ified noises m; = u+o - n;

4:  Perturb the latent with noise:

Zi:X+V—dt'Ut'mi

5:  Decode latents Z; from m; and compute reward R; =
f(Z:)

6:  Selecttop T' = | P - K| noises with highest rewards

7. Update mean and standard deviation:

1 ¢ 2 1 2
,u:mei, o :TZ(mi_/i)
i=1 i

end for
return g or m=pu—+on

° %

This update step shifts the distribution toward higher-
reward regions while adaptively controlling its spread, en-
suring a balance between exploration and exploitation.

Once this process is complete, either the mean noise p or
a final sample m = p + on is drawn to be used to perturb
the latent for training.

Experiments
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Figure 1: Example generations from SD 3.5M from the (i)
base model, the (ii) model fine-tuned using FlowGRPO and

(iii) the model fine-tuned with SmartGRPO.

Experiments

This section describes the experimental setup used to empir-
ically evaluate whether Smart-GRPO improves the perfor-
mance of flow-matching models. We compare against strong
pretrained and RL-based baselines, optimize two comple-
mentary reward functions, and train and evaluate all methods
under carefully matched conditions.

Baselines

To assess the effectiveness of our algorithm for fine-tuning
flow-matching models, we consider three pretrained base
models and one RL baseline:

 Stable Diffusion 3.5-M (SD 3.5M) (Esser et al. 2024),
the medium-sized rectified-flow model that serves as our
primary backbone.

 Stable Diffusion 3.5-L (SD 3.5L) (Esser et al. 2024), a
larger-capacity variant used as a stronger pretrained ref-
erence model.

* FLUX.1-dev (Batifol et al. 2025), a recent flow-
matching model designed for high-quality in-context im-
age generation and editing.

e SD 3.5M + Flow-GRPO (Liu et al. 2025), where the
SD 3.5M backbone is fine-tuned using Flow-GRPO with-
out our noise-selection algorithm.

Smart-GRPO is applied on top of the SD 3.5M backbone,
and we compare against both the pretrained base models and
the Flow-GRPO fine-tuned model.

Reward Functions

We optimize and evaluate Smart-GRPO using two reward
models that capture complementary aspects of text-to-image
quality:

* ImageReward, a general-purpose reward model trained
to jointly assess prompt—image alignment, visual fidelity,
and harmlessness. It therefore serves as a broad proxy for
overall generation quality.

* Aesthetic Score, a model that directly targets visual ap-
peal and style, reflecting how pleasing an image is to hu-
man perception.

Using both rewards allows us to evaluate Smart-GRPO un-
der different alignment objectives. ImageReward empha-
sizes semantic consistency and robustness, whereas Aes-
thetic Score focuses on stylistic quality. In our experiments,
we consider both settings where a single reward is optimized
(either ImageReward or Aesthetic Score) and report perfor-
mance on both metrics.

Prompt Datasets

For RL fine-tuning, we follow the setup of Flow-GRPO and
build on its GenEval-based prompt pool (Ghosh, Hajishirzi,
and Schmidt 2023). Concretely, we randomly sample a train-
ing corpus of 3,000 prompts from the datasets provided in
the Flow-GRPO repository. We use 2,700 prompts for train-
ing and reserve 300 prompts as a held-out validation set for
monitoring reward curves and checking for overfitting dur-
ing training.

For the main quantitative comparison reported in Table 1,
we additionally evaluate all models on an independent set
of 1,000 prompts sampled from the same GenEval-based
pool. This evaluation set is fixed across methods and is used
only fcl)r offline comparison of ImageReward and Aesthetic
Score.

'In all tables and plots, we report mean scores across all
prompts in the evaluation set.



Training Protocol

We initialize all RL runs from the publicly released Stability
Al Stable Diffusion 3.5-Medium checkpoint and reuse most
hyperparameters from the original Flow-GRPO implemen-
tation for a fair comparison.? All experiments are conducted
on a single NVIDIA H100 GPU.

During training, we generate images at a resolution of
512 x 512 using 10 sampling steps with a classifier-free
guidance scale of 4.5. Each training batch contains 4 im-
ages per prompt, yielding an effective batch size of 4. We
set the number of batches per outer epoch to 8 and con-
figure gradient accumulation such that two parameter up-
dates occur per epoch. We include a KL regularization term
with weight 8 = 0.04 and maintain an exponential moving
average (EMA) of model weights to stabilize training and
evaluation. Model checkpoints are saved every 60 epochs, at
which point we also run evaluation on the held-out prompts.

For Smart-GRPO, we set the number of refinement iter-
ations N and the number of candidate noises per iteration
K such that the total number of decoded candidates and
reward model evaluations is comparable to that of Flow-
GRPO. This ensures that any performance differences be-
tween the two methods cannot be attributed simply to using
more compute. Unless otherwise specified, we use N = 5
and K = 5, with a saving fraction P that retains the top-
scoring subset of candidates for updating the mean and vari-
ance of the noise distribution.

Evaluation Setup

At evaluation time, we use 40 sampling steps and keep the
classifier-free guidance scale fixed to 4.5 for all methods
to ensure comparability. For each prompt in the evaluation
set, we generate one image per model and compute both
ImageReward and Aesthetic Score. When optimizing a sin-
gle reward (e.g., ImageReward), we report the optimized re-
ward as the primary metric, and the auxiliary reward (e.g.,
Aesthetic Score) as a secondary metric to examine potential
trade-offs.

In addition to aggregate quantitative metrics (Table 1), we
inspect qualitative generations across a range of prompts.
Figure 1 illustrates representative samples from the SD 3.5M
base model, SD 3.5M fine-tuned with Flow-GRPO, and
SD 3.5M fine-tuned with Smart-GRPO. This combination
of quantitative and qualitative evaluation allows us to assess
not only whether Smart-GRPO yields higher rewards, but
also whether the resulting images are visually coherent, di-
verse, and aligned with the input prompts.

Analysis

For both rewards we experimented on, our method has both
better performance and more stable compared to base Flow-
GRPO. Figure 2 shows that Smart-GRPO consistently im-
proves ImageReward scores across training epochs, con-
verging faster and achieving higher final reward than Flow-
GRPO. Over our evaluation dataset, Smart-GRPO consis-
tently outperforms the baseline models, as shown in Table 1

?See the appendix for the full list of hyperparameters.

(a) ImageReward performance (b) Aesthetic performance
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Smart-GRPO: 0.85753
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Figure 2: Training results of Smart-GRPO over 360 epochs.
Figure (a) is trained with ImageReward, and Figure (b) is
trained using the Aesthetic score

Ablation Study

(a) Removing iterations

(b) Removing greedy sampling
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Figure 3: Training results for ablation studies. Figure (a)
compares the performance of the algorithm in model perfor-
mance when when we do or do not include iterations. Figure
(b) compared the performance of the algorithm in model per-
formance when when we do or do not include greedy sam-

pling.

To better understand the contribution of Smart-GRPO’s
core mechanisms, we conduct ablation studies on its two
central components: iterative refinement and greedy noise
selection. All ablations were performed under the same
training hyperparameters and with the ImageReward reward
function.

Iterative refinement. Instead of progressively updating
the noise distribution, we evaluate a one-shot alternative in
which 25 noise samples are drawn, the top 12 are selected,
and their mean is used to perturb the latent. We compare this
baseline to Smart-GRPO with N = 5 iterations and K = 5
sampled noises per iteration, so that both methods consume
a comparable total number of forward passes. As shown in
Figure 3a, both approaches achieve similar performance, but
Smart-GRPO consistently outperforms the one-shot base-
line across training steps. This suggests that iterative refine-
ment enables the model to repeatedly concentrate its sam-
pling distribution around higher-quality noise regions, grad-
ually filtering out suboptimal directions that would other-
wise be averaged in a single-shot update. In practice, this
leads to a tighter, more targeted exploration of the noise
space and yields stronger overall performance for roughly
the same compute budget.

Greedy noise selection. To assess the role of greedy se-
lection, we replace high-reward noise selection with ran-
dom sampling, keeping N = 5 and K = 5. As shown in



Model

ImageReward Aesthetic Score

Stable Diffusion 3.5M

Stable Diffusion 3.5L
FLUX.1-dev

SD 3.5M (with Flow-GRPO)
SD 3.5M (with Smart-GRPO)

0.6658 5.769
-0.0310 5.602
0.5121 6.093
0.8237 6.111
0.8575 6.238

Table 1: Smart-GRPO model results over evaluation dataset. Dataset consists of 1000 sample prompts generated from GenEval
scripts, provided in Flow-GRPQ’s repository. Results are means over scores of generated images from prompt dataset.

Figure 3b, this variant exhibits highly unstable training: re-
peatedly updating with low-quality noise often leads to col-
lapse and degraded generations. The resulting reward tra-
jectories fluctuate widely, indicating that the model is fre-
quently pushed toward regions of the noise space that are
only weakly aligned with the target objective. In contrast,
greedy selection stabilizes training by systematically steer-
ing updates toward high-reward regions, effectively imple-
menting a simple yet powerful curriculum over the sampled
noises. This targeted focus on promising directions helps
maintain generation quality throughout training and prevents
the large performance drops observed under random selec-
tion.

Sensitivity Analysis

< Smart-GRPO: 0.85753
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Figure 4: Sensitivity analysis for number of iterations used
for Smart-GRPO. For 1 iteration, performance is unstable
and fluctuates. When number of iterations increases, perfor-
mance increases as iterations improve parameters more reli-
ably.

We conducted a sensitivity analysis on the number of it-
erations to investigate how the choice of iterations influence
training stability and reward performance.

When only a single iteration (N = 1) is used, Smart-
GRPO effectively reduces to a one-shot update of the noise

distribution. In this setting, the method provides small im-
provements over random perturbations, but the refinement
process is too shallow: reward curves fluctuate noticeably
across training, and final performance remains inconsistent.

Increasing to three iterations (/N = 3) produces a marked
change. Training becomes significantly more stable, with re-
ward trajectories that are smoother and less noisy, and the
models consistently achieve higher ImageReward and Aes-
thetic scores compared to N = 1. This suggests that multi-
ple rounds of refinement allow the noise distribution to more
reliably concentrate probability mass in promising regions.

With five iterations (N = 5), Smart-GRPO reaches its
strongest performance. Both ImageReward and Aesthetic
scores converge to their highest values, and optimization
proceeds in a stable and predictable manner. Here, the re-
peated refinement cycles appear to provide the algorithm
with enough opportunities to progressively adjust the dis-
tribution toward high-reward samples without overfitting to
noise.

Taken together, these results highlight the importance of
iterative refinement. By repeatedly resampling and updating,
Smart-GRPO progressively guides the noise distribution to-
ward high-quality solutions, improving both convergence
speed and stability. While increasing N beyond 5 may yield
further gains, it also comes with higher computational cost.
Our experiments suggest that N € {3,5} strikes a practical
balance between efficiency and performance. Due to com-
putational constraints, we did not explore higher values of
N, leaving a more extensive exploration of this trade-off to
future work.

Limitations

While Smart-GRPO demonstrates promising improvements,
it also has several limitations. First, the effectiveness of our
approach depends heavily on the choice of reward func-
tion. Many reward models are not well calibrated to evaluate
poor-quality or highly noisy images, which constrains their
ability to guide the noise selection process. For example, our
experiments with PickScore (Kirstain et al. 2023) and CLIP-
Score (Hessel et al. 2021) did not yield statistically signifi-
cant gains, suggesting that these metrics may be ill-suited for
reinforcement learning in high-noise regimes. A further lim-



[ Prompt: A steaming cup of coffee }

t=9 Decoded

Figure 5: Intermediate approximations from Equation 6 dur-
ing flow-matching generation of the prompt ‘A steaming
cup of coffee’. Starting from a noise level of 0.6 and de-
coded over 10 steps, earlier timesteps yield outputs resem-
bling noise, while later timesteps progressively form low-
quality images.

itation arises from the greedy approximation used in equa-
tion 6: as illustrated in Figure 5, this approximation does not
hold well at earlier timesteps. Two issues follow: (1) the re-
ward model is not designed to reliably score low-quality im-
ages, and (2) the early approximations themselves often fail
to capture a meaningful representation of the final image.
Exploring alternative metrics to evaluate high-quality noise
could potentially be beneficial in improving model genera-
tions.

Second, due to computational constraints, we were un-
able to fully explore larger-scale experiments, longer train-
ing schedules, or higher values of K and N, which could
further clarify the method’s benefits.

Conclusion

We introduced Smart-GRPO, a simple yet effective frame-
work for fine-tuning flow-matching generative models with
reinforcement learning. By guiding noise sampling toward
higher-reward regions, Smart-GRPO reduces wasted up-
dates and improves both stability and convergence compared
to existing methods. Importantly, this is the first approach
to explicitly optimize the noise process for reinforcement
learning in flow-matching models, offering a novel per-
spective on noise-aware training. We hope this work paves
the way for future research on noise optimization, reward
design, and scalable reinforcement learning for generative
modeling.

Future Works

For future work, we envision several directions. One is to de-
sign or identify reward functions that are more robust at dis-
tinguishing subtle improvements in image quality, especially
in the presence of noise. Another is to investigate alterna-
tive strategies for noise selection beyond mean and variance
updates, such as adaptive sampling or learned proposal dis-
tributions. Finally, scaling experiments to larger models and
more diverse benchmarks would provide a clearer picture of
the generality and practical impact of Smart-GRPO.

Impact Statement
Smart-GRPO introduces a lightweight and efficient frame-
work for reinforcement learning in flow-matching genera-
tive models. By directly optimizing the noise distribution,

it reduces wasted training signal and achieves higher re-
ward performance with fewer iterations. Because the method
requires no architectural modifications and only a simple
noise-selection loop, it can be seamlessly integrated into ex-
isting RLHF pipelines and deployed with modest computa-
tional resources.

In addition to these practical advantages, Smart-GRPO
represents the first attempt to explicitly optimize the noise
process for flow-matching models in the reinforcement
learning setting. By reframing noise as an optimization vari-
able, the method provides a novel perspective for improv-
ing generative modeling with reinforcement learning. This
contribution opens a new line of research in noise-aware op-
timization, complementing advances in reward design and
training objectives. Moreover, the generality of the approach
suggests that similar techniques may be extended to diffu-
sion models and other generative frameworks, paving the
way for broader methodological innovations.

References

Batifol, S.; Blattmann, A.; Boesel, F.; Consul, S.; Diagne,
C.; Dockhorn, T.; English, J.; English, Z.; Esser, P.; Ku-
lal, S.; et al. 2025. FLUX. 1 Kontext: Flow Matching for
In-Context Image Generation and Editing in Latent Space.
arXiv e-prints, arXiv—2506.

Black, K.; Janner, M.; Du, Y.; Kostrikov, I.; and Levine, S.
2023. Training diffusion models with reinforcement learn-
ing. arXiv preprint arXiv:2305.13301.

Esser, P.; Kulal, S.; Blattmann, A.; Entezari, R.; Miiller, J.;
Saini, H.; Levi, Y.; Lorenz, D.; Sauer, A.; Boesel, F.; et al.
2024. Scaling rectified flow transformers for high-resolution
image synthesis. In Forty-first international conference on
machine learning.

Ghosh, D.; Hajishirzi, H.; and Schmidt, L. 2023. Geneval:
An object-focused framework for evaluating text-to-image
alignment. Advances in Neural Information Processing Sys-
tems, 36: 52132-52152.

He, X.; Fu, S.; Zhao, Y.; Li, W.; Yang, J.; Yin, D.; Rao, F;
and Zhang, B. 2025. Tempflow-grpo: When timing matters
for grpo in flow models. arXiv preprint arXiv:2508.04324.

Hessel, J.; Holtzman, A.; Forbes, M.; Bras, R. L.; and Choi,
Y. 2021. Clipscore: A reference-free evaluation metric for
image captioning. arXiv preprint arXiv:2104.08718.

Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising diffusion
probabilistic models. Advances in neural information pro-
cessing systems, 33: 6840—6851.

Kirstain, Y.; Polyak, A.; Singer, U.; Matiana, S.; Penna, J.;
and Levy, O. 2023. Pick-a-pic: An open dataset of user pref-
erences for text-to-image generation. Advances in neural
information processing systems, 36: 36652—-36663.

Li, J.; Cui, Y.; Huang, T.; Ma, Y.; Fan, C.; Yang, M.;
and Zhong, Z. 2025a. Mixgrpo: Unlocking flow-based
grpo efficiency with mixed ode-sde.  arXiv preprint
arXiv:2507.21802.

Li, Y.; Wang, Y.; Zhu, Y.; Zhao, Z.; Lu, M.; She, Q.; and
Zhang, S. 2025b. BranchGRPO: Stable and Efficient GRPO



with Structured Branching in Diffusion Models. arXiv
preprint arXiv:2509.06040.

Lipman, Y.; Chen, R. T. Q.; Ben-Hamu, H.; Nickel, M.; and
Le, M. 2023. Flow Matching for Generative Modeling. The
Eleventh International Conference on Learning Representa-
tions.

Liu, J.; Liu, G.; Liang, J.; Li, Y.; Liu, J.; Wang, X.; Wan,
P; Zhang, D.; and Ouyang, W. 2025. Flow-grpo: Train-
ing flow matching models via online rl. arXiv preprint
arXiv:2505.05470.

Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in neural information pro-
cessing systems, 35: 27730-27744.

Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C. D.; Er-
mon, S.; and Finn, C. 2023. Direct preference optimization:
Your language model is secretly a reward model. Advances
in neural information processing systems, 36: 53728-53741.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Shao, Z.; Wang, P.; Zhu, Q.; Xu, R.; Song, J.; Bi, X.; Zhang,
H.; Zhang, M.; Li, Y.; Wu, Y.; et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open lan-
guage models. arXiv preprint arXiv:2402.03300.

Wallace, B.; Dang, M.; Rafailov, R.; Zhou, L.; Lou, A.; Pu-
rushwalkam, S.; Ermon, S.; Xiong, C.; Joty, S.; and Naik,
N. 2024. Diffusion model alignment using direct preference
optimization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 8228-8238.
Wang, Y.; Li, Z.; Zang, Y.; Zhou, Y.; Bu, J.; Wang, C.; Lu,
Q.; Jin, C.; and Wang, J. 2025. Pref-GRPO: Pairwise Pref-
erence Reward-based GRPO for Stable Text-to-Image Rein-
forcement Learning. arXiv preprint arXiv:2508.20751.
Xue, Z.; Wu, J.; Gao, Y.; Kong, F.; Zhu, L.; Chen, M.; Liu,
Z.; Liu, W.; Guo, Q.; Huang, W.; et al. 2025. DanceGRPO:
Unleashing GRPO on Visual Generation. arXiv preprint
arXiv:2505.07818.

Yang, K.; Tao, J.; Lyu, J.; Ge, C.; Chen, J.; Shen, W.; Zhu,
X.; and Li, X. 2024. Using human feedback to fine-tune dif-
fusion models without any reward model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 8941-8951.

Appendix
Hyperparameters

The hyperparameters used for training our models were
largely copied from the hyperparameters used for Flow-
GRPO. We only used 1 HI00 GPU for training our model
with GRPO. We initialized from the StabilityAl Stable Dif-
fusion 3.5 Medium checkpoint.

All images were generated at a resolution of 512 x 512.
During training, we used 10 sampling steps, while evalua-
tion employed 40 sampling steps. We applied a classifier-
free guidance scale of 4.5.

Each training batch contained 4 images per prompt, with
an effective training batch size of 4. To ensure balanced gra-
dient updates, we set the number of batches per epoch to 8,
which yielded an even number of batches per epoch. Gradi-
ent accumulation was configured such that two updates oc-
curred per epoch. The test batch size was fixed to 16.

We trained with 1 inner epoch per outer epoch, and sam-
pled timesteps with a fraction of 0.99. Optimization included
a KL loss term weighted by 5 = 0.04. We enabled exponen-
tial moving average (EMA) of model weights.

We saved model checkpoints every 60 epochs and per-
formed evaluation at the same frequency.



