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Abstract

Recent advancements in flow-matching have enabled high-
quality text-to-image generation. However, the deterministic
nature of flow-matching models makes them poorly suited for
reinforcement learning, a key tool for improving image qual-
ity and human alignment. Prior work has introduced stochas-
ticity by perturbing latents with random noise, but such per-
turbations are inefficient and unstable. We propose Smart-
GRPO, the first method to optimize noise perturbations for re-
inforcement learning in flow-matching models. Smart-GRPO
employs an iterative search strategy that decodes candidate
perturbations, evaluates them with a reward function, and re-
fines the noise distribution toward higher-reward regions. Ex-
periments demonstrate that Smart-GRPO improves both re-
ward optimization and visual quality compared to baseline
methods. Our results suggest a practical path toward rein-
forcement learning in flow-matching frameworks, bridging
the gap between efficient training and human-aligned gener-
ation.

Introduction

Flow-matching models (Lipman et al. 2023) have emerged
as a reliable alternative to diffusion-based generative mod-
els (Ho, Jain, and Abbeel 2020), offering deterministic sam-
pling and stable training dynamics. While large-scale pre-
training enables high-quality generation, such models of-
ten lack mechanisms to ensure consistent and dependable
behavior aligned with human intent. Reinforcement learn-
ing with human feedback (RLHF) (Ouyang et al. 2022),
originally designed to improve the reliability of large lan-
guage models, has been extended to visual generation tasks,
including diffusion-based architectures (Black et al. 2023;
Yang et al. 2024).

Adapting RLHF to flow-matching models introduces
unique reliability challenges. The inherently deterministic
sampling process conflicts with the stochastic exploration
required for robust policy optimization. Flow-GRPO (Liu
et al. 2025) mitigates this by adding random perturbations
to the inputs before denoising, enabling Group Relative Pol-
icy Optimization (GRPO) (Shao et al. 2024). However, such
noise injection remains unreliable: most randomly sampled
perturbations lead to unstable or low-reward outcomes, of-
fering weak learning signals and inconsistent improvement
across training. This limitation highlights the need for archi-

tectures and training paradigms that explicitly manage un-
certainty to ensure dependable performance.

Recent advances have sought to improve the reliabil-
ity of flow-based RL through better optimization (Li et al.
2025a,b), training stability (Wang et al. 2025; Xue et al.
2025), and generative fidelity (He et al. 2025). Our work in-
stead focuses on the reliability of noise selection itself. We
introduce Smart-GRPO, a reliability-aware extension of
Flow-GRPO that integrates reward-guided noise selection.
Smart-GRPO leverages a pretrained reward model to eval-
uate candidate noise seeds and preferentially sample those
expected to yield more reliable, high-quality generations. By
adaptively refining the noise distribution over time, Smart-
GRPO improves the consistency, efficiency, and robustness
of reinforcement learning for flow-based generative models,
enhancing both model dependability and alignment with hu-
man preferences.

Related Works

Flow-matching models: Let xy € X be a sample from a
true distribution and let z; € X be a sample from a known
distribution (e.g. a Gaussian). Flow-matching models (Esser
et al. 2024) define a path between the data and the noise as a
linear interpolation:

xy = (1 —t)xo +tay, t€][0,1]. (1)

Taking the derivative with respect to t yields the target
velocity field:

dIt

dt

The goal is then to learn a parameterized velocity predic-
tor vg(x¢,t) that approximates this ground-truth field. This

is achieved by minimizing the following loss (Lipman et al.
2023):

= x1 — Zo. 2

L(0) = Et g, [I(21 = 20) = vo(ze, O)?].  (3)
Compared to diffusion (Ho, Jain, and Abbeel 2020) mod-
els, which learn a score function or directly predict noise,
flow-matching instead learns the velocity of the probability
flow ODE. This provides a more direct parameterization of
the generative process, and in practice can lead to faster and
more stable training.



Reinforcement Learning for Flow-matching models:
Due to the deterministic nature of flow-matching models,
they are not intrinsically designed for reinforcement learn-
ing. The probability flow ODE deterministically maps inputs
to outputs, leaving little room for the stochastic exploration
that reinforcement learning requires. This mismatch makes
direct application of standard policy optimization methods
ineffective.

Flow-GRPO (Liu et al. 2025) addresses this by converting
the deterministic probability flow ODE into an equivalent
stochastic differential equation (ODE-to-SDE), which in-
jects randomness while preserving the model’s marginal dis-
tributions, and by introducing a denoising reduction strategy
that reduces the number of denoising steps during training
while keeping the full schedule at inference. These modifica-
tions enable the incorporation of GRPO into flow-matching
models. Empirically, Flow-GRPO achieves substantial gains
in compositional image generation, text rendering, and hu-
man preference alignment, while maintaining image quality
and minimizing reward hacking.

Methods

We introduce Smart-GRPO, an efficient algorithm for fine-
tuning flow-matching models with reinforcement learning.
Our method improves upon GRPO-style approaches by di-
rectly searching over the noise variables that determine the
decoded output. Instead of perturbing latents with random
noise (as in GRPO), Smart-GRPO searches for noise that
maximizes reward in one-shot decoding. We treat the noise
distribution as a parameterized search space. Instead of
blindly perturbing latents, we iteratively refine a Gaussian
noise distribution toward regions of higher reward using a
Cross-Entropy Method (CEM)-like update.

Algorithm

Let X; denote the latent at timestep t, and let f : X — R
be a scalar reward function. Smart-GRPO proceeds as fol-
lows: We first initialize a Gaussian distribution over noise
variables, parameterized by mean ;¢ = 0 and standard devi-
ation o0 = I. In each iteration, we sample K candidate noises
as:

m; = u+ong,n; ~ N(0,I) “
We then perturb the latent with the noise via the following
equation:

Z; =Xy +V—dtoym; ©)

where o is the noise scale and dt is the step size. To eval-

uate the effect of each perturbation, we form a one-step ap-

proximation of the decoded image using the predicted ve-
locity wvy.

x((f) ~ z; — tvg(z, 1) 6)

This is intended to provide a rough estimate of the final
image without requiring the full reverse process. Note that
at earlier timesteps (high noise levels), the one-step approxi-
mation produces near-random outputs, making reward eval-
uation unreliable. Smart-GRPO is therefore most effective

Algorithm 1: Smart-GRPO

Require: Latent image X;, number of sampled noises K,
number of iterations N, saving fraction P € [0, 1], re-
ward function f(z) : X - R

Ensure: Optimized latent mean p or sampled latent m =
nw+o-n

1: Initialize p = 0, o = I of the shape of latent variable

2: forn =1to N do

3:  Sample K random noises {n; } £ ; and compute mod-
ified noises m; = u+ o - n;

4:  Perturb the latent with noise:

Zi:X+\/—dt~ot'mi

5. Decode latents Z; from m; and compute reward R; =
(Zi)

6:  Selecttop 7' = | P - K| noises with highest rewards

7. Update mean and standard deviation:

T

1 ¢ 2 1 2
M:TZmi, g :fZ(mi_M)
i=1 i=1

8: end for
9: return p or m=pu-+on

at later timesteps where the latent has a stronger correlation
with the decoded image

We then decode the image, and calculate the reward
R, = f(ac((f)). We then select the top T = | P - K |, where
P € [0, 1] candidates with the highest rewards, using these
noises to update the ;o and o used to sample. This process is
repeated N times.

This update step shifts the distribution toward higher-
reward regions while adaptively controlling its spread, en-
suring a balance between exploration and exploitation.

Once this process is complete, either the mean noise p or
a final sample m = p + on is drawn to be used to perturb
the latent for training.

Experiments

This section describes the methods used to empirically eval-
uate whether Smart-GRPO improves performance of flow-
matching models. To show this, we utilize two baselines and
train our model on two reward functions and analyze results.
Baselines: To compare the performance of our algorithm
on fine-tuning flow-matching models, we have two base-
lines: base Stable-Diffusion 3.5-M (Esser et al. 2024), base
Stable-Diffusion 3.5-L (Esser et al. 2024), base FLUX.1-dev
(Batifol et al. 2025), and Stable-Diffusion 3.5-M fine-tuned
with Flow-GRPO (Liu et al. 2025) without our algorithm.
We selected ImageReward and Aesthetic Score as reward
functions because they capture complementary aspects of
text-to-image generation. ImageReward is a general-purpose
model trained to evaluate prompt-image alignment, visual fi-
delity, and harmlessness, making it a broad measure of gen-
eration quality. In contrast, the Aesthetic Score directly tar-
gets visual appeal, reflecting how pleasing an image is to



human perception. Using both rewards allows us to evalu-
ate Smart-GRPO across semantic alignment and visual qual-
ity, demonstrating its effectiveness under different alignment
objectives.

We choose a prompt dataset of 3000 prompts sampled
from datasets provided by Flow-GRPO, generated from
GenEval scripts (Ghosh, Hajishirzi, and Schmidt 2023) to
train our models on, which was randomly sampled. We split
our dataset into a training and evaluation dataset of 2700
training prompts and 300 evaluation prompts.

Analysis

(a) ImageReward performance (b) Aesthetic performance

‘Smart-GRPO: 6.238878
Smart-GRPO: 0.85753

ImageReward score
Aestheti

Figure 1: Training results of Smart-GRPO over 360 epochs.
Figure (a) is trained with ImageReward, and Figure (b) is
trained using the Aesthetic score

For both rewards we experimented on, our method has
both better performance and more stable compared to base
Flow-GRPO. Figure 1 shows that Smart-GRPO consistently
improves ImageReward scores across training epochs, con-
verging faster and achieving higher final reward than Flow-
GRPO. Over our evaluation dataset, Smart-GRPO consis-
tently outperforms the baseline models, as shown in Table ??

Ablation Study

(a) Removing iterations

(b) Removing greedy sampling

‘Smart-GRPO: 6.238878
Smart-GRPO: 0.85753

ImageReward score

Figure 2: Figure for ablation studies

To better understand the contribution of Smart-GRPO’s
core mechanisms, we conduct ablation studies on its two
central components: iterative refinement and greedy noise
selection. All ablations were performed under the same
training hyperparameters and with the ImageReward reward
function.

Iterative refinement. Instead of progressively updating
the noise distribution, we evaluate a one-shot alternative in
which 25 noise samples are drawn, the top 12 are selected,
and their mean is used to perturb the latent. We compare this
baseline to Smart-GRPO with N = 5 iterations and K = 5

sampled noises per iteration. As shown in Figure 2a, both
approaches achieve similar performance, but Smart-GRPO
consistently outperforms the one-shot baseline. This sug-
gests that iterative refinement enables the model to repeat-
edly concentrate its sampling distribution around higher-
quality noise regions, yielding stronger overall performance.

Greedy noise selection. To assess the role of greedy se-
lection, we replace high-reward noise selection with random
sampling, keeping N = 5 and K = 5. As shown in Fig-
ure 2b, this variant exhibits highly unstable training: repeat-
edly updating with low-quality noise often leads to collapse
and degraded generations. In contrast, greedy selection sta-
bilizes training by systematically steering updates toward
high-reward regions.

Limitations

Prompt: A steaming cup of coffee }

Decoded

t=5

t=1

Figure 3: Intermediate approximations from Equation 6 dur-
ing flow-matching generation of the prompt ‘A steaming
cup of coffee’. Starting from a noise level of 0.6 and de-
coded over 10 steps, earlier timesteps yield outputs resem-
bling noise, while later timesteps progressively form low-
quality images.

While Smart-GRPO demonstrates promising improve-
ments, it also has several limitations. First, the effective-
ness of our approach depends heavily on the choice of re-
ward function. Many reward models are not well calibrated
to evaluate poor-quality or highly noisy images, which con-
strains their ability to guide the noise selection process. For
example, our experiments with PickScore (Kirstain et al.
2023) and CLIPScore (Hessel et al. 2021) did not yield
statistically significant gains, suggesting that these metrics
may be ill-suited for reinforcement learning in high-noise
regimes. A further limitation arises from the greedy approx-
imation used in equation 6: as illustrated in Figure 3, this ap-
proximation does not hold well at earlier timesteps. Two is-
sues follow: (1) the reward model is not designed to reliably
score low-quality images, and (2) the early approximations
themselves often fail to capture a meaningful representation
of the final image. Exploring alternative metrics to evaluate
high-quality noise could potentially be beneficial in improv-
ing model generations.

Second, due to computational constraints, we were un-
able to fully explore larger-scale experiments, longer train-
ing schedules, or higher values of K and N, which could
further clarify the method’s benefits.

Conclusion

We introduced Smart-GRPO, one of the first works in op-
timizing the noise sampling for fine-tuning flow-matching



Model

ImageReward Aesthetic Score

Stable Diffusion 3.5M

Stable Diffusion 3.5L
FLUX.1-dev

SD 3.5M (with Flow-GRPO)
SD 3.5M (with Smart-GRPO)

0.6658 5.769
-0.0310 5.602
0.5121 6.093
0.8237 6.111
0.8575 6.238

Table 1: Smart-GRPO model results over evaluation dataset. Dataset consists of 1000 sample prompts generated from GenEval
scripts, provided in Flow-GRPQO’s repository. Results are means over scores of generated images from prompt dataset.

generative models with reinforcement learning. By guiding
noise sampling toward higher-reward regions, Smart-GRPO
reduces wasted updates and improves both stability and con-
vergence compared to existing methods. Importantly, this is
the first approach to explicitly optimize the noise process
for reinforcement learning in flow-matching models, offer-
ing a novel perspective on noise-aware training. We hope
this work paves the way for future research on noise opti-
mization, reward design, and scalable reinforcement learn-
ing for generative modeling.
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