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Abstract

Modern text-to-image generation models are
capable of producing realistic and high-quality
images. However, user prompts often contain
ambiguities, making it difficult for these sys-
tems to interpret users’ actual intentions. Con-
sequently, users often need to modify their
prompts several times to ensure the generated
images meet their expectations. Although some
previous works aim to refine prompts for gener-
ating images that align with user requirements,
comprehending the true needs of users, partic-
ularly non-expert individuals, remains a chal-
lenge for the model. In this research, we aim
to enhance the visual parameter-tuning process,
making the model user-friendly for individu-
als without specialized knowledge and it can
better understand user needs. We propose a
human-machine co-adaption strategy by max-
imizing the mutual information between the
user’s prompts and the pictures under mod-
ification as the optimizing target in order to
make the system better adapt to user needs. We
find that an improved model can reduce the
necessity for multiple rounds of adjustments.
We also collect multi-round dialogue datasets
with prompts and images pairs and user intent.
Various experiments demonstrate the effective-
ness of the proposed method in our proposed
dataset.

1 Introduction

Generative image models guided by text prompts
have significantly advanced in quality and ver-
satility over the past few years. Models like
DALL-E 2 (Ramesh et al., 2022), IMAGEN (Sa-
haria et al., 2022), Stable Diffusion (Rombach et al.,
2022), and Muse (Chang et al., 2023) can produce
novel and realistic images based on textual de-
scriptions (Gozalo-Brizuela and Garrido-Merchan,
2023). Despite significant progress, there’s still
room for improvement, especially in generating
higher-resolution images that better reflect the se-

mantics of input text and in creating more user-
friendly interfaces (Frolov et al., 2021). Many
models struggle to understand nuanced human in-
structions, often resulting in a mismatch between
user expectations and generated outputs. Addition-
ally, the impact of variable adjustments on the final
image is not always clear, posing challenges for
non-expert users who haven’t systematically stud-
ied prompt engineering. This complexity hinders
those without technical backgrounds from fully
utilizing advanced Al models. To address these
challenges, we introduce an innovative approach to
enhance the user experience for non-professional
users. Unlike traditional models that require a deep
understanding of underlying mechanisms and con-
trol elements, our approach enables users to ad-
just and optimize image generation with minimal
technical knowledge. Inspired by human-in-the-
loop co-adaptation (Reddy et al., 2022), our model
evolves with user feedback to better meet user ex-
pectations. Figure 3 illustrates the operational flow
as interacted by users. Our main contributions are:

* Adaptive Prompt Engineering and Person-
alized Image Generation: We propose vi-
sual co-adaptation (VCA), an adaptive frame-
work that fine-tunes user prompts using a pre-
trained language model enhanced through re-
inforcement learning, aligning image outputs
more closely with user preferences and creat-
ing images that truly reflect individual styles
and intentions.

* Human-in-the-Loop Feedback Integration:
Our work considers incorporating human feed-
back within the training loops of diffusion
models. By assessing its impact, we demon-
strate how human-in-the-loop methods can
surpass traditional reinforcement learning in
enhancing model performance and output
quality.
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Initial Prompt: A cartoon picture of a squirrel eating a small hurger.

LE s
P
al >
|
3
{2%b Ithinkitis good enough, what's your feeling?
| think the burgur should be smaller. 5_7\
LER =y
- o)
[l
v 3
Thatsgreatt S

Multi-round Dialogue - User Correction

Initial Prompt: A cartoon eats a hurger.

2 What's the size of the burger?

smat. SU
r{f;ﬁ What's style you want?
Gl 8L
& QIR
£33
&
@ What's your feeling about?
1 think the burgur should be smaller. jl
That's great! j;L

Figure 1: Users have the choice between single-round dialogue, where they provide detailed inputs for the model to
generate and self-adjust an image on the left, or multi-round dialogue on the right, where the model engages in
iterative refinement based on user feedback, asking questions to clarify any unclear requirements. This allows for
either model-driven optimization through self-reflection or user-driven customization to meet specific needs. Our
proposed visual co-adaption system can successfully handle both scenarios.

* Comparative Analysis and Tool Develop-
ment for Non-Experts: Through compara-
tive analysis, we explore the superiority of mu-
tual information maximization over conven-
tional reinforcement learning in tuning model
outputs to user preferences. Additionally, we
introduce an interactive tool that grants non-
experts easy access to advanced generative
models, enabling the creation of personalized,
high-quality images, thus broadening the ap-
plicability of text-to-image technologies in
creative domains.

2 Related Work

2.1 Memory Mechanism for LLM-based
Agents

In LLM-based agents, the memory module is con-
sidered one of the critical components for storing,
processing, and retrieving information relevant to
the agent’s tasks. Memory plays a crucial role
in determining how the agent accumulates knowl-
edge, processes historical experiences, and sup-
ports its actions. To enhance the self-evolution
capabilities of LLM-based agents, researchers are
focused on designing and optimizing memory mod-
ules. Past research has explored various designs
and implementations of memory modules. For

example, some researchers combine information
from trials and cross-trials to construct memory
modules, thereby enhancing the agent’s reasoning
abilities. Other researchers store memory informa-
tion in natural language form to improve the mod-
ule’s interpretability and user-friendliness. Addi-
tionally, some studies focus on designing memory
read-write operations, enabling agents to interact
effectively with their environment and complete
tasks. Although past research has made progress in
the design and implementation of memory modules,
further improvement in the self-adjustment capabil-
ities and memory management efficiency of LLM-
based agents is still needed to address complex
problems in real-world applications. Therefore,
our approach introduces a memory optimization
mechanism, allowing agents to better cope with
complex and dynamic task environments.

2.2 Human Preference-Driven Optimization
for Text-to-Image Generation Models

Zhong et al. (Zhong et al., 2024) significantly ad-
vance the adaptability of large language models
(LLMs) to human preferences through their in-
novative approach. Their method utilizes SVD-
based low-rank adaptation for nuanced, preference-
sensitive model adjustments, eliminating the need
for exhaustive model retraining. Xu et al. (Xu et al.,
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Figure 2: The diagram shows our model’s architecture with cross attention in the first row and self attention in
the second. It incorporates an improved cross attention mechanism that maintains shape consistency and aligns
well with prompt tokens, enabling effective multi-round modifications based on user feedback. The model captures
intricate cross attention details, optimizing parameters for progressively better single-generation performance,
demonstrating few-shot learning adaptation with minimal dialogue iterations.

2024) adopt a distinctive strategy by harnessing
extensive expert insights to develop their ImageRe-
ward system, setting a new benchmark for creating
images that resonate deeply with human desires.
Together, these advancements represent a pivotal
shift towards more intuitive, user-centric LLM tech-
nologies, heralding a future where Al seamlessly
aligns with the intricate mosaic of individual hu-
man expectations.

2.3 Exploration of Self-Correction Strategies

Advances in large language models (LLMs) self-
correction such as, Pan et al (Pan et al., 2023),
Shinn et al. (Shinn et al., 2023), Madaan et
al (Madaan et al., 2024), improving language under-
standing and production. Huang et al (Huang et al.,
2022) showcased self-debugging and zero-shot
learning for reasoning evaluation, underscoring the
potential and limits of self-correction. These con-
tributions collectively highlight the progress and fu-
ture challenges in enhancing LLMs’ self-corrective
capabilities (Hertz et al., 2022; Rosenman et al.,
2023; Mehrabi et al., 2022; Xu et al., 2024). Mean-

while, we can find that multi-modal self-correction
is less investigated. It is also very important to
teach the vision model to think it step by step. We
explore the integration of self-correction strategies
into image generation to produce images that more
closely align with user intentions.

2.4 Ambiguity Resolution in Text-to-Image
Generation

Natural dialogue often contains ambiguity due to
grammar, polysemy, and vagueness. Humans man-
age this ambiguity with clarifying questions and
contextual cues, but machines find it challenging.
To address this, text-to-image generation employs
various strategies. For example, masked trans-
formers (Chang et al., 2023) and visual annota-
tions (Endo, 2023) help clarify prompts, while
model evaluation benchmarks (Lee et al., 2024) and
auto-regressive models (Yu et al., 2022) improve
image alignment. Frameworks for abstract (Liao
et al., 2023) and inclusive imagery (Zhang et al.,
2023), as well as layout guidance (Qu et al., 2023)
and feedback mechanisms (Liang et al., 2023), fur-
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Figure 3: This figure illustrates our reinforcement learning framework. In training, the policy (three editing
operations with trainable parameters, more details in section 3.1.1 and A.3) updates based on human feedback
(environment), where the state is the prompt and the action is the generated image. In testing, few-shot adaptation
refines the policy (7,ew) to generate images, allowing efficient model adaptation with minimal dialogue interactions.

ther enhance quality. The TIED framework and
TAB dataset (Mehrabi et al., 2023) use user interac-
tion to refine prompt clarity. Our model integrates
these techniques across multiple dialogue rounds
to elicit users’ true intentions, effectively reduc-
ing prompt ambiguity and generating results that
align with user expectations, thus enhancing image
generation quality.

3 Method

3.1 Policy Model: Controlling
Cross-Attention in a Reinforcement
Learning Framework

In our framework, the Imagen text-guided synthe-
sis model (Saharia et al., 2022) constructs the basic
composition and geometric layout of images at a
64 x 64 resolution. The model uses a U-shaped
network during each diffusion step ¢ to predict
the noise component ¢ based on the text embed-
ding ¢(P) and the noise-added image z;. Crucial
to shaping the image’s final appearance I = 2y,

the attention maps M = Softmax (Q—j(;) influ-

ence its spatial and geometric properties. Here,
Q@ and K are the query and key matrices formed
from image and text features, respectively. We
define the diffusion step function DM(z;, P, t, s)
that computes a single step of the diffusion pro-
cess, outputting the noisy image z;_1 and the atten-
tion map My, if utilized. Overriding the attention
map with an additional map M, while maintain-
ing the values V' from the prompt is indicated as
DM(z, P, t,s){M < M_.}. The modified prompt

P* generates a new attention map M/, and the
general edit function Edit(M;, M, t) manages the
attention maps at any step ¢ for both the original
and modified images.

3.1.1 Editing Operations

In our framework, we employ three strategic edit-
ing operations—Word Swap, Adding a New Phrase,
and Attention Re-weighting. Each operation is op-
timized through reinforcement learning (RL) as the
policy model to maximize a reward function. This
reward function is based on the interaction results
between the action output in a specific context state
and the environment (human feedback), using gra-
dient ascent. This approach learns parameters that
are highly aligned with human preferences. For
more details about the RL training framework, re-
fer to Appendix A.2.

In the Word Swap method, users replace tokens in
the prompt (e.g., "a big red bicycle" to "a big red
car"), and we control attention map injection steps
to manage compositional freedom:

M,

ift<r

Edit(My, My, t) = { otherwise

The attention map M/ is updated as follows:
My = M{ + 0V R(M)

In the Adding a New Phrase method, new
tokens are added to the prompt (e.g., "a
castle next to a river" to 'children draw-
ing of a castle next to a river"), targeting

shared tokens with an alignment function A:



(Bdit(My, My, )i = (M) a¢j)  if A(j) # None
B (My); 5 otherwise

The alignment function A; is updated as follows:
Ay = A + V4, R(Ar)

In the Attention Re-weighting method, token in-
fluence is adjusted to enhance or diminish features
(e.g., scaling the attention map of "fluffy red ball"
for token j* with a parameter ¢ € [—2, 2|):

¢ (M)
(M¢)ij

This parameter c provides intuitive control over the
induced effect. The scaling parameter c; is updated
as follows:

T
(Bdit(My, M}, 1));; = =7
otherwise

et =c +nVe,R(er) (1
Each operation refines text-image interactions
through cross-attention layers, aligning outputs
with human preferences. The RL framework op-
timizes these strategies by updating M;, Ay, and
¢ through gradient ascent. For detailed optimiza-
tion processes of the three editing operations, see
Appendix A.3.
3.2 Human-Machine Co-Adaptation with
Mutual Information Maximization

In this section, we explain how our model can adapt
to human intent. Let X denote the user inputs and
Y the images generated by the model. The adap-
tation mechanism seeks to maximize the mutual
information I(X;Y"), which quantifies the amount
of information shared between X and Y. The mu-
tual information is given by:
(z,y)

I(X;Y) = / / p(x,y) log Y gy dx,
zeX JyeY p(x)p(y)
2
where p(z,y) is the joint probability of x and vy,
and p(z) and p(y) are the marginal probability of
x and y, respectively.
Adaptive Feedback Loop
The adaptive feedback loop updates the model pa-
rameters 6 to better align with human intent, utiliz-
ing the gradient of mutual information that is now
conditioned on user feedback f. This feedback
directly represents human preferences and intents,
guiding the model towards desired outcomes:
Ohew = Oola + nVQI(Xv Y ’ f)> (3)
where 7 is the learning rate and f encapsulates
the feedback signals from users. This adaptive
approach measures effectiveness through an in-
crease in conditional mutual information, reflecting

improved alignment with user expectations, and
higher user satisfaction scores in image generation
tasks.

Algorithm 1 Prompt-to-Prompt Image Editing
with Human-Machine Co-Adaptation (Training)

Input: Original prompt Py, Edited prompt P, Initial image
Iy
Output: Edited image [;
: Initialize interface 7 with parameters 0
Generate initial attention maps Ag for Iy using 7(FP)
Set Iy < Io
Initialize user feedback loop
for t = 1 to Convergence do
Collect user feedback on image I; and prompt P;
Adapt 7 (Using editing operation in Section 3.1.1) to
maximize mutual information I (A; I|P) incorporat-
ing feedback
8:  Apply P to generate new attention maps A
9:  Generate I; by applying A; in diffusion step
10:  Evaluate I(A; I|P) between (P, P1) and ({o, I1)
11:  Update 0 to align more closely with user preferences
12: end for
13: Conduct final evaluation of I; with user
13: return/; =0

AR A ol ey

Algorithm 2 Evaluation of Adaptation to New User
Preferences

Input: Trained interface 7 with parameters 6, New user ini-
tial prompt Prew
Output: Adapted image Iydapiea aligns with new user prefer-
ences
1: Initialize new user interaction session
2: for ¢ = 1 to few-shot rounds do

3:  Present Lcurent generated from Phew using m
4: Collect new user feedback on current
5:  Update P,ew based on user feedback
6:  Adapt pre-trained 6 minimally to reflect new user pref-
erences
7:  Generate new Ieyrent using updated 7 ( Phew)
8:  if user feedback is positive then
9: Break the loop and finalize idapted
10:  endif
11: end for

12: Evaluate user satisfaction with Jagapted
12: return/ugaped =0

3.3 TD Error Historical Experience Replay
with Gradient Descent and Joint Gradient
Ascent Training for Reward Function

Our reinforcement learning framework uses
Human Feedback (F) to optimize a Text-to-Image
model with Proximal Policy Optimization (PPO).
The state (s¢) includes the generated image and
text, while the action (a;) is the image generation.
The reward (r;) is calculated by the CLIP model.
Temporal Difference Learning computes the TD
error (0; = 14 + YV (s¢+1) — V(s¢)) to guide up-
dates (measuring the difference between predicted
and actual rewards). Prioritized Experience Replay
samples experiences ((s¢, at, 7t, St+1)) based on



TD error magnitude (p; o |d¢| + €), with learning
rates adjusted by a; = W. New experiences
have their TD error set to the maximum value to
ensure priority. PPO maximizes the objective:
L7P0(6) = By [min (255005 Ay, Clip (480505.1 — 1 +-¢) Ay )]
balancing new and old policy probability ra-
tios. This combines reward maximization
(maxg y_,7'r;) and TD error minimization
(ming >, 5?). Joint training optimizes both reward
and TD error, deriving policy gradients for parame-
ters (Orew, Oref, and Orep). The reward maximization
objective (J(erew, Oret, erep) = Er [Zt ’Yt'rt] )
is optimized by ascending the gradient
(VoJ = Er[r:Vglogm(at|st)]). The TD
Error Learning process involves action se-
lection (a; = 7(s4,0)), state transition
((st41,7¢) ~ P(st,ar)), TD error calcula-
tion (0; = 7 + YV (s¢41,0) — V(s,0)), and
parameter update (6 < 0 — aVy(6?)). Tterative
updates minimize TD error. Integrating these
objectives refines the policy for optimal perfor-
mance, ensuring the generation of high-quality,
text-aligned images (combining reward maximiza-
tion and TD error minimization leads to better

policy).

4 Experiments

4.1 Dataset

We developed QA software that annotates prompts
on our platform, generating JSON files with de-
tailed multi-turn dialogue information. An exam-
ple of user interface annotations is shown in Ap-
pendix A.4. Our training set includes 1673 JSON
files, annotated with prompts, QA sequences, im-
age paths, unique identifiers, and ratings for image
alignment and fidelity. This dataset instructs our
model on user expectations and artistic intentions,
analyzing subjects, emotions, settings, styles, per-
spectives, and extra elements. Feedback refines
prompts, enabling the model to grasp complex artis-
tic directions. We use 95% of the data for training
and 5% for validation, supporting efficient few-shot
learning to enhance performance and user satisfac-
tion.

4.2 Comparison Study

4.2.1 Trends Across Baselines Over Iterative
Rounds

Figure 4 showcases our model’s superior perfor-
mance on a validation prompt describing "A serene
ancient fantasy sanctuary constructed of stone, with

095 Multi-Turn Dialogue: Trend of CLIP Scores Across Rounds with Different Text-to-Image Models
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Figure 4: This graph shows CLIP score trends over 10
rounds for various text-to-image models (PTP (Hertz
et al., 2022), SD 2.1-base, DALL-E 3, and ours)
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Figure 5: Illustrated in the graph are the trends of LPIPS
scores for several text-to-image models (PTP, SD 2.1-
base, DALL-E 3, and ours) over 10 rounds.

white birds flying in the distance." and achieves
high CLIP scores early, our model reaches 0.78 by
round 3 and peaks at 0.91 by round 7, surpassing
competitors. It also excels in Lpips, as is shown
in Figure 5 recording a score of 0.42 by round 3
and stabilizing at 0.22 by round 8. This rapid sta-
bilization highlights our model’s adaptability and
efficiency, maintaining high consistency and user
satisfaction across fewer dialogue rounds. Each
round incrementally builds on the last, refining de-
tails without altering the prompt’s core structure.

4.2.2 Prompt Refinement

Table 1 compares self-reflection prompt refine-
ment and multi-round dialogue prompt refine-
ment. Self-reflection is faster (3.4s vs. 12s), but
multi-round dialogue better captures user prefer-
ences, leading to higher satisfaction (4.7 vs. 3.0).
It also shows improved Purpose Adaptability (4.8
vs. 3.3), Clarity (4.7 vs. 4.2), and Detail Level (4.2
vs. 4.1). For algorithm details, see Appendix A.7.

4.3 Ablation Study: Reinforcement Learning
for Parameter Tuning

Table 2 highlights the impact of Reinforcement
Learning (RL) tuning on dialogue system perfor-
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Figure 6: The chart shows user feedback on a model, highlighting mixed responses with positive feedback on image
coherence and capturing intentions, but concerns over response time.

Table 1: Comparative Analysis of Prompt Refinement
from 100 users, averaged and rounded to one decimal.
Metrics are scored on a 0-5 scale. Response Time in-
dicates average duration for self-reflection and multi-
dialogue processes.

Refine Type

Metric & Category Self-reflection ~ Multi-dialogue

Prompt Quality
Clarity 4.2/5 4.7/5
Detail Level 4.1/5 4.2/5
Purpose Adaptability 3.3/5 4.8/5
Image Reception
User Satisfaction 3.0/5 4.7/5
CLIP Value 0.8/1 0.9/1
Response Time 34s 12s

mance. RL systems require fewer dialogue rounds
(4.3 vs. 6.9), showing greater efficiency. The CLIP
score improves from 0.83 to 0.92, indicating better
alignment of images with prompts. User satisfac-
tion increases from 4.14 to 4.73 out of 5, reflecting
a better user experience. Both systems perform
similarly in aesthetic quality (4.89 vs. 4.88), but
RL tuning enhances functionality and user satis-
faction. Users noted lower consistency in image
quality from non-RL-tuned models, emphasizing
RL’s effectiveness in dynamically adapting to user
feedback. For detailed parameter updates with RL
tuning, see Appendix A.5.

4.4 Ablation Study: Comparing Edited Cross
Attention with Normal Cross Attention.

Table 3 highlights the superior performance of
edited cross attention (CA) over normal CA in dia-
logue systems, emphasizing their distinct adaptabil-
ity. Normal CA computes static attention weights,

Table 2: Ablation result on the effects of RL using data
averaged from randomly selected 10 users, with final
interaction CLIP and Aesthetic Scores.

Metrics With RL  Without RL
Rounds 4.3 6.9
CLIP Score 0.92/1.0 0.83/1.0
User Satisfaction 4.73/5 4.14/5
Aesthetic Score 4.89/5 4.88/5

Table 3: Ablation results for edited cross attention (CA),
averaging data from randomly selected 10 users, with
CLIP and Aesthetic Scores from the final interaction.

Metrics Edited CA  Normal CA
Rounds 3.7 6.1
CLIP Score 0.88/1.0 0.81/1.0
User Satisfaction 4.82/5 3.94/5
Aesthetic Score 4.71/5 4.48/5

while edited CA dynamically adjusts these weights
in response to dialogue context and user feedback.
This adaptability reduces dialogue rounds to an
average of 3.7 compared to 6.1 for normal CA, en-
hancing system performance. For instance, edited
CA achieves a higher CLIP score of 0.88 versus
0.81 and increases user satisfaction from 3.94 to
4.82 out of 5. The aesthetic quality of images also
improves with edited CA, scoring 4.71 compared to
4.48 for normal CA. These results underscore the
effectiveness of integrating reinforcement learning
with edited CA to refine tuning and improve output
consistency and relevance in denoising tasks. For
an in-depth exploration of edited cross attention
mechanisms, refer to Appendix A.6.

4.5 Visualization Results

Dialogue Rounds Across Different Models
Figure 2 compares dialogue rounds across different
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Figure 8: The chart shows the rapid decline
in user interaction rounds needed for satisfac-
tion, peaking by Round 5, demonstrating the
model’s efficient few-shot learning.

models: ChatGPT, Stable Diffusion v2.1, Prompt-
to-Prompt (Hertz et al., 2022), and our model. Ini-
tially, images from Stable Diffusion, Prompt-to-
Prompt, and our model are similar due to the lack
of feedback. By the second round, "pea soup" pref-
erences cause significant changes in ChatGPT-4
and Stable Diffusion, affecting consistency. In the
third round, with croutons added, our model ex-
cels by fine-tuning parameters via reinforcement
learning, maintaining balance, while Prompt-to-
Prompt struggles, and ChatGPT-4 shows inconsis-
tencies. By the fourth round, our model achieves
satisfactory results and opts out, while the oth-
ers continue ineffective adjustments. This high-
lights our model’s superior ability to understand
and respond to user feedback, achieving optimal re-
sults by the third round and demonstrating effective
multi-round dialogue learning. Despite ChatGPT-

4’s realistic visuals, it struggles with consistency
and adapting to human preferences. Our model,
preferred by 89% of users, effectively adapts with
minimal dialogue.

User Satisfaction Distribution for Our Model
Over Multiple Rounds

Figure 8 illustrates our model’s efficiency in adapt-
ing to user feedback. Initially, the satisfaction rate
increases rapidly, with 59 users satisfied by Round
3, demonstrating the model’s quick alignment with
user preferences. By Round 5, satisfaction peaks at
99 out of 100 users, underscoring the model’s effec-
tiveness in achieving high user satisfaction swiftly.
Users’ Overall Evaluation of Our Model

Figure 6 presents user evaluations across various
model aspects. The majority found the automated
prompt refinement to be helpful, indicating ap-
proval. In contrast to typical concerns about speed
in models with complex computations, most users
disagreed with the notion that the model’s response
time per dialogue round was slow, suggesting that
the integration of reinforcement learning for fine-
tuning did not significantly impact perceived effi-
ciency. The model was highly praised for its co-
herence across images generated in each dialogue
round and received commendations for aesthetic
quality. It was also recognized for adeptly cap-
turing user intentions within just a few rounds of
dialogue. Overall, the participants showed a strong
preference for this model over others, reflecting its
effectiveness and user satisfaction.

5 Conclusion and Future Work

In this study, we introduced a new image genera-
tion method using a human-in-the-loop approach
that enhances user interaction and responsiveness
to ambiguous prompts. Our findings highlight the
model’s ability to closely match user expectations
through adaptive prompt engineering and mutual
information optimization. Looking ahead, we plan
to release our training dataset, improving trans-
parency and enabling broader testing. Additionally,
we aim to refine the model’s interpretive skills, ex-
pand its applications across different domains, and
conduct comprehensive benchmarks to gauge the
alignment between user intentions and generated
images. These initiatives will advance personal-
ized and intuitive image generation technologies,
making advanced modeling tools more accessible
without requiring deep technical expertise.



6 Limitation

The study’s limitations mainly involve the model’s
reliance on user feedback and its generalization
capabilities. The model may struggle with highly
ambiguous or contextually complex prompts, espe-
cially those needing subtle cultural nuances or spe-
cialized knowledge. Its performance relies heavily
on iterative user feedback, which may not always
be practical or available. This dependency could
limit the model’s applicability in scenarios requir-
ing rapid, autonomous decision-making, restricting
its utility in diverse or less interactive environments
where adaptability and minimal human interven-
tion are crucial.
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A Appendix

A.1 Reinforcement Learning configuration

To train our policy model, we employ Proximal
Policy Optimization (PPO) (Schulman et al., 2017),
initializing the value and policy networks from a
supervised fine-tuned model. We use diverse beam
search (Vijayakumar et al., 2016) with a beam size
of 8 and a diversity penalty of 1.0 to ensure explo-
ration quality and diversity. The maximum gener-
ation length is randomly set between 15 to 75 at
each step, and one completion is randomly selected
to update the policy. Each prompt generates one
image, computing the clip score as the reward func-
tion to reduce variance. Training involves 12,000
episodes, four PPO epochs per batch, a batch size
of 256, and a learning rate of Se-5, with value
and KL reward coefficients set at 2.2 and 0.3, re-
spectively. Based on human fragmented language
feedback, ChatGPT provides new prompts with
minimal structural changes but reflects human in-
tent very well.

A.2 Reinforcement Learning Framework

The reinforcement learning framework for our
human-machine co-adaptation system in image
editing involves the following elements:

State (S)

The state in our framework represents the current
situation of the system, which includes:

* The current image I; being edited.

* The current prompt P; describing desired
modifications or features in the image.

* Optionally, it can also include historical user
interactions and feedback to provide context
to the state, enabling the model to better un-
derstand and predict user preferences.

Action (A)

Actions in this context refer to the modifications
applied to the image based on the input prompt and
model’s interpretation:

* Adjustments or transformations applied to the
image I; to generate a new image [ .

* These actions are driven by the interpretation
of the user’s prompt, potentially influenced
by machine learning algorithms that predict
optimal changes.



Reward (R)

The reward function is crucial as it guides the train-
ing of the RL model by quantifying the success of
actions taken based on the state:

* It could be defined using objective metrics
such as the similarity between the generated
image and user’s expected outcome, measured
by tools like CLIP score.

* Feedback from users after viewing the mod-
ified image can also be used as part of the
reward, where positive feedback increases the
reward and negative feedback decreases it.

* The reward aims to maximize the alignment
between the user’s intent and the image output,
effectively training the model to interpret and
act upon ambiguous prompts accurately.

This reinforcement learning setup enables our
system to iteratively learn and adapt from each
user interaction, improving its ability to decode
ambiguous prompts and align image outputs with
user expectations.

A.3 Optimization Details

To optimize image generation, the model dy-
namically selects among three strategies (adding
phrases, word swapping, re-weighting) using the
CLIP score as the reward function to update all
parameters of the chosen strategy. This feedback-
driven approach optimizes parameters within one
strategy per iteration, yielding three well-adjusted
parameter sets that adapt image generation to hu-
man preferences. The strategies correspond to three
controllers: Attention-Replace, Attention-Refine,
and Attention-Reweight. Our text-to-image model
uses controllers to adjust cross-attention during
generation, with each controller utilizing cross-
attention information between images and prompts
in each dialogue round. The controllers correspond
to three strategies with trainable parameters, includ-
ing the dynamic proportion of self-attention dur-
ing the sampling process, the proportion of atten-
tion injection steps, and adaptive updates to cross-
attention maps based on dialogue feedback. The
optimization process for parameter updates can be
mathematically represented as follows:

Reward function:

This is computational framework for the reward
function R(#) in a reinforcement learning con-
text, where the CLIP score assesses the similar-
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ity between generated images and textual prompts.
Specifically:

R(6) = CLIPScore(Igen, Pprev) + A - CLIPScore(Zgen, Prew)
“
This formula ensures that the parameters are

finely tuned, with A serving as a balancing factor

between aligning the generated image with the pre-
vious prompt and the new prompt, fostering both

continuity and responsiveness to new requirements.
Extensive experimentation has determined that set-
ting A = 0.2 is optimal, as it allows the CLIP score

to converge more rapidly to its maximum value.
When incrementally increasing A from 0.1 to 1, the

performance peaks at 0.2. However, increasing A

beyond 1 leads to a significant decline in perfor-
mance, falling even below the levels observed at

A = 0.1. Further, to underscore the iterative update

mechanism integral to the reinforcement learning

cycle:

S

= Update(Ig(Q, k)
Here, I g(fg signifies the image generated at iteration
k, and 0%) indicates the parameters at that itera-
tion. The update function modifies the image based
on the current parameters, capturing the dynamic
nature of the learning process across successive
rounds.
Attention-Replace Strategies: update method di-
rectly adjusts the mapping matrix M using gra-
dient ascent and then multiplies it with the cross-
attention matrix Mcross_attention called mapper to al-
ter the attention distribution, impacting the gener-
ated image’s features and quality.
Mnew = (M + - AM) : Mcross_attention (5)

Attention-Refine Strategies: Update the atten-
tion weights by combining the original and new
attention maps derived from the modified prompt.
In the Attention-Refine class, the mapper aligns
base attention weights with the new prompt struc-
ture while alphas blend original and modified
weights, ensuring the final output accurately re-
flects user modifications and maintains consistency.
The mapper tensor aligns tokens between prompts,
enabling correct transfer of attention weights; up-
dated as

H;n =0m + nvemE[R]

to maximize the expected reward (E[R]) using gra-
dient ascent with learning rate . The alphas



weights control the blending of original and mod-
ified attention weights, determining each token’s
influence; updated as

to maximize the expected reward (E[R]) using gra-
dient ascent with learning rate n. Sure, here is the
updated explanation and mathematical representa-
tion:

The attention weights are updated by combin-
ing the original and new attention maps derived
from the modified prompt. The original attention
is processed using the mapper, which aligns the
attention weights by permuting dimensions based
on the mapped indices:

attn_base_replaceij r = attn_base; ;. - mappery, ;
= (attn_base_replace),.,..,1c(2.0,1,3)

Here, mapper;; indicates the mapping
from index k in the original prompt to in-
dex j in the new prompt. The operation
(attn_base_replace) ., . e(2,0,1,3) Permutes the
dimensions of the resulting tensor to align with
the expected structure for further processing. The
updated attention weights are calculated as:
Mlgziate = 5t ’ Mcgfi)g + (1 - 615) : Mn(ézv(6)
Attention-Reweight Strategies:modifies
the distribution of attention by first blending
the original and new attention maps, and then
scaling the weights according to user prefer-
ences. The blending of attention maps is given by:
MO =B MG+ (1= B) - M, By = Be1 + - Vg, R(O)D)
with f3; adjusting the blending ratio dynamically
based on feedback, and v is the learning rate
for B;. After blending, the attention distribu-
tion is further modified by scaling the weights:
A/[r(et\zleighl =i MS&?ev Vi = Vi1 T K- Vqy ;R(0)(8)
where y; ; are the weight multipliers that adapt the
emphasis on specific features, and & is the learning
rate for y; ;. Below is the pseudocode:

In addition to these, we also update the propor-
tions related to specific attention mechanisms:

i1 = o + Ve, R(0) &)
Cr1 =G +7V, R(9) (10)
Sei1 = 0 + KVs,R(0) (11)

Here, o represents the proportion of self-
attention features injected at different stages of the
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sampling process, ( represents the replacement pro-
portion of the cross-attention map, and J represents
the overall number of sampling steps.

A4 Q&A Software Annotation Interface

current:1/5 Outdoor Sce

Figure 9: Screenshot of the Q&A software annotation
interface.

A.5 Ablation of RL tuning

The RL tuning process and static parameter config-
uration are mathematically represented as:

T
ORU =00+ Y nVeR(6:), 67 =6 (12)
t=1

Here, OR are the parameters iteratively updated
with RL, 6 is the initial parameter setting, 7 is the
learning rate, and VR (6;) is the gradient of the re-
ward function at iteration ¢. This setup without RL
results in more dialogue rounds and less optimal
outcomes.

A.6 Ablation of cross attention control

Overamed = Obighiea -+ V0 L(I1, Feedback;, M)
(13)

Ql(iltrjl_plt))/ = el(itrzlpty + nVGE(Ita Feedbathy Mnew)
(14)

This setup employs only new attention without
blending it with the base cross attention. Each
strategy involves a distinct function to modify the
cross attention map, directed by its corresponding
controller. For standard cross attention, the con-
troller is set to "empty control’ within the code.

A.7 LLM Prompt Refinement

The Multi-dialogue Refine process in ChatGPT-
4 iteratively refines prompts until they meet prede-
fined conditions and are ambiguity-free. Initially,



Algorithm 3 Multi-dialogue Prompt Refine Pro-
cess for ChatGPT-4
0: Input: Initial prompt pg
0: Output: Refined prompt p; that meets condi-
tions and is ambiguity-free
: Define C'(p): Checks if prompt p meets all
predefined conditions.
: Define A(p): Checks if prompt p is free of
ambiguities.
140
: while =C(p;) V —~A(p;) do
if = A(p;) then
pi+1 <  ResolveAmbiguities(p;)
{Clarify prompt, ensuring clarity. }
else if -C(p;) then
Pi+1
ModifyToMeetConditions(p; )
prompt to meet conditions. }
end if
1 1+1
: end while
. return p; =0

e

e

%
{Adjust

the model assesses if the prompt pg meets specific
criteria and lacks ambiguities. If issues are identi-
fied, the process loops to rectify them. The model
evolves with each iteration, described mathemati-
cally as:

Yt+1 = M(preﬁne || x H Yo H fbo H s H Yt H fbt)v

where y; is the output at iteration ¢, M represents
the model, prefine is the refined prompt, x is the
input data, and fb; is the feedback at iteration ¢.
The model refines prompts by engaging in multi-
turn dialogue, asking clarifying questions until
the prompts are comprehensive and unambiguous.
This self-reflection mechanism allows the model
to produce initial responses and evaluate them for
retrieval, relevance, support, and utility. Neces-
sary modifications are made based on feedback to
enhance accuracy and usefulness, represented as:

Yir1 = M(z || ye || Tbe).

A.8 Experiments Settings

The experiments are conducted using 4 NVIDIA
4090 GPUs, This setup allows us to utilize com-
plex algorithms such as diverse beam search with
a beam size of 8 and a diversity penalty of 1.0,
ensuring thorough exploration and diversity in the
generated responses. The model parameters are
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initialized from a fine-tuned baseline, which pro-
vides a robust starting point for further optimiza-
tion. Over three days of training session, which
encompass 12,000 episodes, with four PPO epochs
per batch and a batch size of 256. The learning rate
is set at 5 x 107°, and the value and KL reward
coefficients are meticulously calibrated to 2.2 and
0.3, respectively, to balance the learning dynamics.
For additional details due to page constraints, see
Appendix A.1.

A.9 Evaluation Metrics

The experimental framework of this study is metic-
ulously designed to evaluate our text-to-image gen-
eration model across three key dimensions.
LPIPS (Zhang et al., 2018): is a deep learning met-
ric that evaluates how image modifications preserve
the original structure, with lower scores indicating
minimal visual differences and alignment with hu-
man perception. It measures the consistency and
perceptual coherence of images generated in suc-
cessive dialogue rounds.

CLIP Score (Radford et al., 2021): Based on the
CLIP model, the system evaluates image-text align-
ment, assigning scores from 0 (no similarity) to 1
(perfect alignment). In dialogues, the LLM subtly
adjusts prompts and selects one of three strategies
following user feedback. The text-to-image model,
using reinforcement learning and CLIPScore, it-
eratively refines images until reaching a satisfac-
tory score. For detailed information on how the
ChatGPT-4 modifies prompts based on human in-
put, refer to the Appendix A.7.

Human Evaluation: In a study with 100 diverse
users, we utilize a randomized control trial with
stratified sampling based on age, gender, and tech-
nical proficiency. Using a blind design, participants
are unaware of the models or components being
tested to prevent biases. Detailed feedback is col-
lected through electronic surveys post-interaction,
utilizing standardized forms with scaled and open-
ended questions. A cross-over design ensures that
each user experiences all model variations in a ran-
domized order, maximizing exposure. Statistical
power analysis confirms that 100 participants pro-
vide sufficient power to detect significant results.
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