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Abstract

Modern text-to-image generation models are001
capable of producing realistic and high-quality002
images. However, user prompts often contain003
ambiguities, making it difficult for these sys-004
tems to interpret users’ actual intentions. Con-005
sequently, users often need to modify their006
prompts several times to ensure the generated007
images meet their expectations. Although some008
previous works aim to refine prompts for gener-009
ating images that align with user requirements,010
comprehending the true needs of users, partic-011
ularly non-expert individuals, remains a chal-012
lenge for the model. In this research, we aim013
to enhance the visual parameter-tuning process,014
making the model user-friendly for individu-015
als without specialized knowledge and it can016
better understand user needs. We propose a017
human-machine co-adaption strategy by max-018
imizing the mutual information between the019
user’s prompts and the pictures under mod-020
ification as the optimizing target in order to021
make the system better adapt to user needs. We022
find that an improved model can reduce the023
necessity for multiple rounds of adjustments.024
We also collect multi-round dialogue datasets025
with prompts and images pairs and user intent.026
Various experiments demonstrate the effective-027
ness of the proposed method in our proposed028
dataset.029

1 Introduction030

Generative image models guided by text prompts031

have significantly advanced in quality and ver-032

satility over the past few years. Models like033

DALL·E 2 (Ramesh et al., 2022), IMAGEN (Sa-034

haria et al., 2022), Stable Diffusion (Rombach et al.,035

2022), and Muse (Chang et al., 2023) can produce036

novel and realistic images based on textual de-037

scriptions (Gozalo-Brizuela and Garrido-Merchan,038

2023). Despite significant progress, there’s still039

room for improvement, especially in generating040

higher-resolution images that better reflect the se-041

mantics of input text and in creating more user- 042

friendly interfaces (Frolov et al., 2021). Many 043

models struggle to understand nuanced human in- 044

structions, often resulting in a mismatch between 045

user expectations and generated outputs. Addition- 046

ally, the impact of variable adjustments on the final 047

image is not always clear, posing challenges for 048

non-expert users who haven’t systematically stud- 049

ied prompt engineering. This complexity hinders 050

those without technical backgrounds from fully 051

utilizing advanced AI models. To address these 052

challenges, we introduce an innovative approach to 053

enhance the user experience for non-professional 054

users. Unlike traditional models that require a deep 055

understanding of underlying mechanisms and con- 056

trol elements, our approach enables users to ad- 057

just and optimize image generation with minimal 058

technical knowledge. Inspired by human-in-the- 059

loop co-adaptation (Reddy et al., 2022), our model 060

evolves with user feedback to better meet user ex- 061

pectations. Figure 3 illustrates the operational flow 062

as interacted by users. Our main contributions are: 063

• Adaptive Prompt Engineering and Person- 064

alized Image Generation: We propose vi- 065

sual co-adaptation (VCA), an adaptive frame- 066

work that fine-tunes user prompts using a pre- 067

trained language model enhanced through re- 068

inforcement learning, aligning image outputs 069

more closely with user preferences and creat- 070

ing images that truly reflect individual styles 071

and intentions. 072

• Human-in-the-Loop Feedback Integration: 073

Our work considers incorporating human feed- 074

back within the training loops of diffusion 075

models. By assessing its impact, we demon- 076

strate how human-in-the-loop methods can 077

surpass traditional reinforcement learning in 078

enhancing model performance and output 079

quality. 080
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Figure 1: Users have the choice between single-round dialogue, where they provide detailed inputs for the model to
generate and self-adjust an image on the left, or multi-round dialogue on the right, where the model engages in
iterative refinement based on user feedback, asking questions to clarify any unclear requirements. This allows for
either model-driven optimization through self-reflection or user-driven customization to meet specific needs. Our
proposed visual co-adaption system can successfully handle both scenarios.

• Comparative Analysis and Tool Develop-081

ment for Non-Experts: Through compara-082

tive analysis, we explore the superiority of mu-083

tual information maximization over conven-084

tional reinforcement learning in tuning model085

outputs to user preferences. Additionally, we086

introduce an interactive tool that grants non-087

experts easy access to advanced generative088

models, enabling the creation of personalized,089

high-quality images, thus broadening the ap-090

plicability of text-to-image technologies in091

creative domains.092

2 Related Work093

2.1 Memory Mechanism for LLM-based094

Agents095

In LLM-based agents, the memory module is con-096

sidered one of the critical components for storing,097

processing, and retrieving information relevant to098

the agent’s tasks. Memory plays a crucial role099

in determining how the agent accumulates knowl-100

edge, processes historical experiences, and sup-101

ports its actions. To enhance the self-evolution102

capabilities of LLM-based agents, researchers are103

focused on designing and optimizing memory mod-104

ules. Past research has explored various designs105

and implementations of memory modules. For106

example, some researchers combine information 107

from trials and cross-trials to construct memory 108

modules, thereby enhancing the agent’s reasoning 109

abilities. Other researchers store memory informa- 110

tion in natural language form to improve the mod- 111

ule’s interpretability and user-friendliness. Addi- 112

tionally, some studies focus on designing memory 113

read-write operations, enabling agents to interact 114

effectively with their environment and complete 115

tasks. Although past research has made progress in 116

the design and implementation of memory modules, 117

further improvement in the self-adjustment capabil- 118

ities and memory management efficiency of LLM- 119

based agents is still needed to address complex 120

problems in real-world applications. Therefore, 121

our approach introduces a memory optimization 122

mechanism, allowing agents to better cope with 123

complex and dynamic task environments. 124

2.2 Human Preference-Driven Optimization 125

for Text-to-Image Generation Models 126

Zhong et al. (Zhong et al., 2024) significantly ad- 127

vance the adaptability of large language models 128

(LLMs) to human preferences through their in- 129

novative approach. Their method utilizes SVD- 130

based low-rank adaptation for nuanced, preference- 131

sensitive model adjustments, eliminating the need 132

for exhaustive model retraining. Xu et al. (Xu et al., 133
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Figure 2: The diagram shows our model’s architecture with cross attention in the first row and self attention in
the second. It incorporates an improved cross attention mechanism that maintains shape consistency and aligns
well with prompt tokens, enabling effective multi-round modifications based on user feedback. The model captures
intricate cross attention details, optimizing parameters for progressively better single-generation performance,
demonstrating few-shot learning adaptation with minimal dialogue iterations.

2024) adopt a distinctive strategy by harnessing134

extensive expert insights to develop their ImageRe-135

ward system, setting a new benchmark for creating136

images that resonate deeply with human desires.137

Together, these advancements represent a pivotal138

shift towards more intuitive, user-centric LLM tech-139

nologies, heralding a future where AI seamlessly140

aligns with the intricate mosaic of individual hu-141

man expectations.142

2.3 Exploration of Self-Correction Strategies143

Advances in large language models (LLMs) self-144

correction such as, Pan et al (Pan et al., 2023),145

Shinn et al. (Shinn et al., 2023), Madaan et146

al (Madaan et al., 2024), improving language under-147

standing and production. Huang et al (Huang et al.,148

2022) showcased self-debugging and zero-shot149

learning for reasoning evaluation, underscoring the150

potential and limits of self-correction. These con-151

tributions collectively highlight the progress and fu-152

ture challenges in enhancing LLMs’ self-corrective153

capabilities (Hertz et al., 2022; Rosenman et al.,154

2023; Mehrabi et al., 2022; Xu et al., 2024). Mean-155

while, we can find that multi-modal self-correction 156

is less investigated. It is also very important to 157

teach the vision model to think it step by step. We 158

explore the integration of self-correction strategies 159

into image generation to produce images that more 160

closely align with user intentions. 161

2.4 Ambiguity Resolution in Text-to-Image 162

Generation 163

Natural dialogue often contains ambiguity due to 164

grammar, polysemy, and vagueness. Humans man- 165

age this ambiguity with clarifying questions and 166

contextual cues, but machines find it challenging. 167

To address this, text-to-image generation employs 168

various strategies. For example, masked trans- 169

formers (Chang et al., 2023) and visual annota- 170

tions (Endo, 2023) help clarify prompts, while 171

model evaluation benchmarks (Lee et al., 2024) and 172

auto-regressive models (Yu et al., 2022) improve 173

image alignment. Frameworks for abstract (Liao 174

et al., 2023) and inclusive imagery (Zhang et al., 175

2023), as well as layout guidance (Qu et al., 2023) 176

and feedback mechanisms (Liang et al., 2023), fur- 177
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Figure 3: This figure illustrates our reinforcement learning framework. In training, the policy (three editing
operations with trainable parameters, more details in section 3.1.1 and A.3) updates based on human feedback
(environment), where the state is the prompt and the action is the generated image. In testing, few-shot adaptation
refines the policy (πnew) to generate images, allowing efficient model adaptation with minimal dialogue interactions.

ther enhance quality. The TIED framework and178

TAB dataset (Mehrabi et al., 2023) use user interac-179

tion to refine prompt clarity. Our model integrates180

these techniques across multiple dialogue rounds181

to elicit users’ true intentions, effectively reduc-182

ing prompt ambiguity and generating results that183

align with user expectations, thus enhancing image184

generation quality.185

3 Method186

3.1 Policy Model: Controlling187

Cross-Attention in a Reinforcement188

Learning Framework189

In our framework, the Imagen text-guided synthe-190

sis model (Saharia et al., 2022) constructs the basic191

composition and geometric layout of images at a192

64 × 64 resolution. The model uses a U-shaped193

network during each diffusion step t to predict194

the noise component ϵ based on the text embed-195

ding ψ(P ) and the noise-added image zt. Crucial196

to shaping the image’s final appearance I = z0,197

the attention maps M = Softmax
(
QKT
√
d

)
influ-198

ence its spatial and geometric properties. Here,199

Q and K are the query and key matrices formed200

from image and text features, respectively. We201

define the diffusion step function DM(zt, P, t, s)202

that computes a single step of the diffusion pro-203

cess, outputting the noisy image zt−1 and the atten-204

tion map Mt, if utilized. Overriding the attention205

map with an additional map Mc while maintain-206

ing the values V from the prompt is indicated as207

DM(zt, P, t, s){M ←Mc}. The modified prompt208

P ∗ generates a new attention map M∗
t , and the 209

general edit function Edit(Mt,M
∗
t , t) manages the 210

attention maps at any step t for both the original 211

and modified images. 212

3.1.1 Editing Operations 213

In our framework, we employ three strategic edit- 214

ing operations—Word Swap, Adding a New Phrase, 215

and Attention Re-weighting. Each operation is op- 216

timized through reinforcement learning (RL) as the 217

policy model to maximize a reward function. This 218

reward function is based on the interaction results 219

between the action output in a specific context state 220

and the environment (human feedback), using gra- 221

dient ascent. This approach learns parameters that 222

are highly aligned with human preferences. For 223

more details about the RL training framework, re- 224

fer to Appendix A.2. 225

In the Word Swap method, users replace tokens in 226

the prompt (e.g., "a big red bicycle" to "a big red 227

car"), and we control attention map injection steps 228

to manage compositional freedom: 229

Edit(Mt,M
∗
t , t) :=

{
M∗

t if t < τ

Mt otherwise
230

The attention map M∗
t is updated as follows: 231

M∗
t =M∗

t + η∇M∗
t
R(M∗

t ) 232

In the Adding a New Phrase method, new 233

tokens are added to the prompt (e.g., "a 234

castle next to a river" to "children draw- 235

ing of a castle next to a river"), targeting 236

shared tokens with an alignment function A: 237
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(Edit(Mt,M
∗
t , t))i,j :=

{
(Mt)i,A(j) if A(j) ̸= None
(Mt)i,j otherwise

238

The alignment function At is updated as follows:239

At = At + η∇AtR(At)240

In the Attention Re-weighting method, token in-241

fluence is adjusted to enhance or diminish features242

(e.g., scaling the attention map of "fluffy red ball"243

for token j∗ with a parameter c ∈ [−2, 2]):244

(Edit(Mt,M
∗
t , t))i,j :=

{
c · (Mt)i,j if j = j∗

(Mt)i,j otherwise
245

This parameter c provides intuitive control over the246

induced effect. The scaling parameter ct is updated247

as follows:248

ct = ct + η∇ctR(ct) (1)249

Each operation refines text-image interactions250

through cross-attention layers, aligning outputs251

with human preferences. The RL framework op-252

timizes these strategies by updating Mt, At, and253

ct through gradient ascent. For detailed optimiza-254

tion processes of the three editing operations, see255

Appendix A.3.256

3.2 Human-Machine Co-Adaptation with257

Mutual Information Maximization258

In this section, we explain how our model can adapt259

to human intent. Let X denote the user inputs and260

Y the images generated by the model. The adap-261

tation mechanism seeks to maximize the mutual262

information I(X;Y ), which quantifies the amount263

of information shared between X and Y . The mu-264

tual information is given by:265

I(X;Y ) =

∫
x∈X

∫
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
dy dx,

(2)266

where p(x, y) is the joint probability of x and y,267

and p(x) and p(y) are the marginal probability of268

x and y, respectively.269

Adaptive Feedback Loop270

The adaptive feedback loop updates the model pa-271

rameters θ to better align with human intent, utiliz-272

ing the gradient of mutual information that is now273

conditioned on user feedback f . This feedback274

directly represents human preferences and intents,275

guiding the model towards desired outcomes:276

θnew = θold + η∇θI(X;Y | f), (3)277

where η is the learning rate and f encapsulates278

the feedback signals from users. This adaptive279

approach measures effectiveness through an in-280

crease in conditional mutual information, reflecting281

improved alignment with user expectations, and 282

higher user satisfaction scores in image generation 283

tasks. 284

Algorithm 1 Prompt-to-Prompt Image Editing
with Human-Machine Co-Adaptation (Training)
Input: Original prompt P0, Edited prompt P1, Initial image

I0
Output: Edited image I1

1: Initialize interface π with parameters θ
2: Generate initial attention maps A0 for I0 using π(P0)
3: Set It ← I0
4: Initialize user feedback loop
5: for t = 1 to Convergence do
6: Collect user feedback on image It and prompt Pt

7: Adapt π (Using editing operation in Section 3.1.1) to
maximize mutual information I(A; I|P ) incorporat-
ing feedback

8: Apply P1 to generate new attention maps A1

9: Generate I1 by applying A1 in diffusion step
10: Evaluate I(A; I|P ) between (P0, P1) and (I0, I1)
11: Update θ to align more closely with user preferences
12: end for
13: Conduct final evaluation of I1 with user
13: returnI1 =0

285
Algorithm 2 Evaluation of Adaptation to New User
Preferences
Input: Trained interface π with parameters θ, New user ini-

tial prompt Pnew
Output: Adapted image Iadapted aligns with new user prefer-

ences
1: Initialize new user interaction session
2: for i = 1 to few-shot rounds do
3: Present Icurrent generated from Pnew using π
4: Collect new user feedback on Icurrent
5: Update Pnew based on user feedback
6: Adapt pre-trained θ minimally to reflect new user pref-

erences
7: Generate new Icurrent using updated π(Pnew)
8: if user feedback is positive then
9: Break the loop and finalize Iadapted

10: end if
11: end for
12: Evaluate user satisfaction with Iadapted
12: returnIadapted =0

3.3 TD Error Historical Experience Replay 286

with Gradient Descent and Joint Gradient 287

Ascent Training for Reward Function 288

Our reinforcement learning framework uses 289

Human Feedback (E) to optimize a Text-to-Image 290

model with Proximal Policy Optimization (PPO). 291

The state (st) includes the generated image and 292

text, while the action (at) is the image generation. 293

The reward (rt) is calculated by the CLIP model. 294

Temporal Difference Learning computes the TD 295

error (δt = rt + γV (st+1) − V (st)) to guide up- 296

dates (measuring the difference between predicted 297

and actual rewards). Prioritized Experience Replay 298

samples experiences ((st, at, rt, st+1)) based on 299
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TD error magnitude (pt ∝ |δt|+ ϵ), with learning300

rates adjusted by αt =
1

(n·pt)β . New experiences301

have their TD error set to the maximum value to302

ensure priority. PPO maximizes the objective:303

LPPO(θ) = Et

[
min

(
πθ(at|st)
πθold (at|st)

Ât,Clip
(

πθ(at|st)
πθold (at|st)

, 1− ϵ, 1 + ϵ
)
Ât

)]
,304

balancing new and old policy probability ra-305

tios. This combines reward maximization306

(maxθ
∑

t γ
trt) and TD error minimization307

(minθ
∑

t δ
2
t ). Joint training optimizes both reward308

and TD error, deriving policy gradients for parame-309

ters (θrew, θref, and θrep). The reward maximization310

objective (J(θrew, θref, θrep) = Eπ

[∑
t γ

trt
]
)311

is optimized by ascending the gradient312

(∇θJ = Eπ [rt∇θ log π(at|st)]). The TD313

Error Learning process involves action se-314

lection (at = π(st, θ)), state transition315

((st+1, rt) ∼ P (st, at)), TD error calcula-316

tion (δt = rt + γV (st+1, θ) − V (st, θ)), and317

parameter update (θ ← θ − α∇θ(δ
2
t )). Iterative318

updates minimize TD error. Integrating these319

objectives refines the policy for optimal perfor-320

mance, ensuring the generation of high-quality,321

text-aligned images (combining reward maximiza-322

tion and TD error minimization leads to better323

policy).324

4 Experiments325

4.1 Dataset326

We developed QA software that annotates prompts327

on our platform, generating JSON files with de-328

tailed multi-turn dialogue information. An exam-329

ple of user interface annotations is shown in Ap-330

pendix A.4. Our training set includes 1673 JSON331

files, annotated with prompts, QA sequences, im-332

age paths, unique identifiers, and ratings for image333

alignment and fidelity. This dataset instructs our334

model on user expectations and artistic intentions,335

analyzing subjects, emotions, settings, styles, per-336

spectives, and extra elements. Feedback refines337

prompts, enabling the model to grasp complex artis-338

tic directions. We use 95% of the data for training339

and 5% for validation, supporting efficient few-shot340

learning to enhance performance and user satisfac-341

tion.342

4.2 Comparison Study343

4.2.1 Trends Across Baselines Over Iterative344

Rounds345

Figure 4 showcases our model’s superior perfor-346

mance on a validation prompt describing "A serene347

ancient fantasy sanctuary constructed of stone, with348

Figure 4: This graph shows CLIP score trends over 10
rounds for various text-to-image models (PTP (Hertz
et al., 2022), SD 2.1-base, DALL-E 3, and ours)

Figure 5: Illustrated in the graph are the trends of LPIPS
scores for several text-to-image models (PTP, SD 2.1-
base, DALL-E 3, and ours) over 10 rounds.

white birds flying in the distance." and achieves 349

high CLIP scores early, our model reaches 0.78 by 350

round 3 and peaks at 0.91 by round 7, surpassing 351

competitors. It also excels in Lpips, as is shown 352

in Figure 5 recording a score of 0.42 by round 3 353

and stabilizing at 0.22 by round 8. This rapid sta- 354

bilization highlights our model’s adaptability and 355

efficiency, maintaining high consistency and user 356

satisfaction across fewer dialogue rounds. Each 357

round incrementally builds on the last, refining de- 358

tails without altering the prompt’s core structure. 359
360

4.2.2 Prompt Refinement 361

Table 1 compares self-reflection prompt refine- 362

ment and multi-round dialogue prompt refine- 363

ment. Self-reflection is faster (3.4s vs. 12s), but 364

multi-round dialogue better captures user prefer- 365

ences, leading to higher satisfaction (4.7 vs. 3.0). 366

It also shows improved Purpose Adaptability (4.8 367

vs. 3.3), Clarity (4.7 vs. 4.2), and Detail Level (4.2 368

vs. 4.1). For algorithm details, see Appendix A.7. 369

4.3 Ablation Study: Reinforcement Learning 370

for Parameter Tuning 371

Table 2 highlights the impact of Reinforcement 372

Learning (RL) tuning on dialogue system perfor- 373
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Figure 6: The chart shows user feedback on a model, highlighting mixed responses with positive feedback on image
coherence and capturing intentions, but concerns over response time.

Table 1: Comparative Analysis of Prompt Refinement
from 100 users, averaged and rounded to one decimal.
Metrics are scored on a 0-5 scale. Response Time in-
dicates average duration for self-reflection and multi-
dialogue processes.

Metric & Category Refine Type
Self-reflection Multi-dialogue

Prompt Quality
Clarity 4.2/5 4.7/5
Detail Level 4.1/5 4.2/5
Purpose Adaptability 3.3/5 4.8/5

Image Reception
User Satisfaction 3.0/5 4.7/5
CLIP Value 0.8/1 0.9/1

Response Time 3.4s 12s

mance. RL systems require fewer dialogue rounds374

(4.3 vs. 6.9), showing greater efficiency. The CLIP375

score improves from 0.83 to 0.92, indicating better376

alignment of images with prompts. User satisfac-377

tion increases from 4.14 to 4.73 out of 5, reflecting378

a better user experience. Both systems perform379

similarly in aesthetic quality (4.89 vs. 4.88), but380

RL tuning enhances functionality and user satis-381

faction. Users noted lower consistency in image382

quality from non-RL-tuned models, emphasizing383

RL’s effectiveness in dynamically adapting to user384

feedback. For detailed parameter updates with RL385

tuning, see Appendix A.5.386

4.4 Ablation Study: Comparing Edited Cross387

Attention with Normal Cross Attention.388

Table 3 highlights the superior performance of389

edited cross attention (CA) over normal CA in dia-390

logue systems, emphasizing their distinct adaptabil-391

ity. Normal CA computes static attention weights,392

Table 2: Ablation result on the effects of RL using data
averaged from randomly selected 10 users, with final
interaction CLIP and Aesthetic Scores.

Metrics With RL Without RL

Rounds 4.3 6.9
CLIP Score 0.92/1.0 0.83/1.0
User Satisfaction 4.73/5 4.14/5
Aesthetic Score 4.89/5 4.88/5

Table 3: Ablation results for edited cross attention (CA),
averaging data from randomly selected 10 users, with
CLIP and Aesthetic Scores from the final interaction.

Metrics Edited CA Normal CA

Rounds 3.7 6.1
CLIP Score 0.88/1.0 0.81/1.0
User Satisfaction 4.82/5 3.94/5
Aesthetic Score 4.71/5 4.48/5

while edited CA dynamically adjusts these weights 393

in response to dialogue context and user feedback. 394

This adaptability reduces dialogue rounds to an 395

average of 3.7 compared to 6.1 for normal CA, en- 396

hancing system performance. For instance, edited 397

CA achieves a higher CLIP score of 0.88 versus 398

0.81 and increases user satisfaction from 3.94 to 399

4.82 out of 5. The aesthetic quality of images also 400

improves with edited CA, scoring 4.71 compared to 401

4.48 for normal CA. These results underscore the 402

effectiveness of integrating reinforcement learning 403

with edited CA to refine tuning and improve output 404

consistency and relevance in denoising tasks. For 405

an in-depth exploration of edited cross attention 406

mechanisms, refer to Appendix A.6. 407

4.5 Visualization Results 408

Dialogue Rounds Across Different Models 409

Figure 2 compares dialogue rounds across different 410
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Figure 7: The comparison demonstrates our
model’s few-shot learning capability, effec-
tively adapting to user preferences with mini-
mal dialogue.

Figure 8: The chart shows the rapid decline
in user interaction rounds needed for satisfac-
tion, peaking by Round 5, demonstrating the
model’s efficient few-shot learning.

models: ChatGPT, Stable Diffusion v2.1, Prompt-411

to-Prompt (Hertz et al., 2022), and our model. Ini-412

tially, images from Stable Diffusion, Prompt-to-413

Prompt, and our model are similar due to the lack414

of feedback. By the second round, "pea soup" pref-415

erences cause significant changes in ChatGPT-4416

and Stable Diffusion, affecting consistency. In the417

third round, with croutons added, our model ex-418

cels by fine-tuning parameters via reinforcement419

learning, maintaining balance, while Prompt-to-420

Prompt struggles, and ChatGPT-4 shows inconsis-421

tencies. By the fourth round, our model achieves422

satisfactory results and opts out, while the oth-423

ers continue ineffective adjustments. This high-424

lights our model’s superior ability to understand425

and respond to user feedback, achieving optimal re-426

sults by the third round and demonstrating effective427

multi-round dialogue learning. Despite ChatGPT-428

4’s realistic visuals, it struggles with consistency 429

and adapting to human preferences. Our model, 430

preferred by 89% of users, effectively adapts with 431

minimal dialogue. 432

User Satisfaction Distribution for Our Model 433

Over Multiple Rounds 434

Figure 8 illustrates our model’s efficiency in adapt- 435

ing to user feedback. Initially, the satisfaction rate 436

increases rapidly, with 59 users satisfied by Round 437

3, demonstrating the model’s quick alignment with 438

user preferences. By Round 5, satisfaction peaks at 439

99 out of 100 users, underscoring the model’s effec- 440

tiveness in achieving high user satisfaction swiftly. 441

Users’ Overall Evaluation of Our Model 442

Figure 6 presents user evaluations across various 443

model aspects. The majority found the automated 444

prompt refinement to be helpful, indicating ap- 445

proval. In contrast to typical concerns about speed 446

in models with complex computations, most users 447

disagreed with the notion that the model’s response 448

time per dialogue round was slow, suggesting that 449

the integration of reinforcement learning for fine- 450

tuning did not significantly impact perceived effi- 451

ciency. The model was highly praised for its co- 452

herence across images generated in each dialogue 453

round and received commendations for aesthetic 454

quality. It was also recognized for adeptly cap- 455

turing user intentions within just a few rounds of 456

dialogue. Overall, the participants showed a strong 457

preference for this model over others, reflecting its 458

effectiveness and user satisfaction. 459

5 Conclusion and Future Work 460

In this study, we introduced a new image genera- 461

tion method using a human-in-the-loop approach 462

that enhances user interaction and responsiveness 463

to ambiguous prompts. Our findings highlight the 464

model’s ability to closely match user expectations 465

through adaptive prompt engineering and mutual 466

information optimization. Looking ahead, we plan 467

to release our training dataset, improving trans- 468

parency and enabling broader testing. Additionally, 469

we aim to refine the model’s interpretive skills, ex- 470

pand its applications across different domains, and 471

conduct comprehensive benchmarks to gauge the 472

alignment between user intentions and generated 473

images. These initiatives will advance personal- 474

ized and intuitive image generation technologies, 475

making advanced modeling tools more accessible 476

without requiring deep technical expertise. 477
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6 Limitation478

The study’s limitations mainly involve the model’s479

reliance on user feedback and its generalization480

capabilities. The model may struggle with highly481

ambiguous or contextually complex prompts, espe-482

cially those needing subtle cultural nuances or spe-483

cialized knowledge. Its performance relies heavily484

on iterative user feedback, which may not always485

be practical or available. This dependency could486

limit the model’s applicability in scenarios requir-487

ing rapid, autonomous decision-making, restricting488

its utility in diverse or less interactive environments489

where adaptability and minimal human interven-490

tion are crucial.491
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A Appendix 635

A.1 Reinforcement Learning configuration 636

To train our policy model, we employ Proximal 637

Policy Optimization (PPO) (Schulman et al., 2017), 638

initializing the value and policy networks from a 639

supervised fine-tuned model. We use diverse beam 640

search (Vijayakumar et al., 2016) with a beam size 641

of 8 and a diversity penalty of 1.0 to ensure explo- 642

ration quality and diversity. The maximum gener- 643

ation length is randomly set between 15 to 75 at 644

each step, and one completion is randomly selected 645

to update the policy. Each prompt generates one 646

image, computing the clip score as the reward func- 647

tion to reduce variance. Training involves 12,000 648

episodes, four PPO epochs per batch, a batch size 649

of 256, and a learning rate of 5e-5, with value 650

and KL reward coefficients set at 2.2 and 0.3, re- 651

spectively. Based on human fragmented language 652

feedback, ChatGPT provides new prompts with 653

minimal structural changes but reflects human in- 654

tent very well. 655

A.2 Reinforcement Learning Framework 656

The reinforcement learning framework for our 657

human-machine co-adaptation system in image 658

editing involves the following elements: 659

State (S) 660

The state in our framework represents the current 661

situation of the system, which includes: 662

• The current image It being edited. 663

• The current prompt Pt describing desired 664

modifications or features in the image. 665

• Optionally, it can also include historical user 666

interactions and feedback to provide context 667

to the state, enabling the model to better un- 668

derstand and predict user preferences. 669

Action (A) 670

Actions in this context refer to the modifications 671

applied to the image based on the input prompt and 672

model’s interpretation: 673

• Adjustments or transformations applied to the 674

image It to generate a new image It+1. 675

• These actions are driven by the interpretation 676

of the user’s prompt, potentially influenced 677

by machine learning algorithms that predict 678

optimal changes. 679
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Reward (R)680

The reward function is crucial as it guides the train-681

ing of the RL model by quantifying the success of682

actions taken based on the state:683

• It could be defined using objective metrics684

such as the similarity between the generated685

image and user’s expected outcome, measured686

by tools like CLIP score.687

• Feedback from users after viewing the mod-688

ified image can also be used as part of the689

reward, where positive feedback increases the690

reward and negative feedback decreases it.691

• The reward aims to maximize the alignment692

between the user’s intent and the image output,693

effectively training the model to interpret and694

act upon ambiguous prompts accurately.695

This reinforcement learning setup enables our696

system to iteratively learn and adapt from each697

user interaction, improving its ability to decode698

ambiguous prompts and align image outputs with699

user expectations.700

A.3 Optimization Details701

To optimize image generation, the model dy-702

namically selects among three strategies (adding703

phrases, word swapping, re-weighting) using the704

CLIP score as the reward function to update all705

parameters of the chosen strategy. This feedback-706

driven approach optimizes parameters within one707

strategy per iteration, yielding three well-adjusted708

parameter sets that adapt image generation to hu-709

man preferences. The strategies correspond to three710

controllers: Attention-Replace, Attention-Refine,711

and Attention-Reweight. Our text-to-image model712

uses controllers to adjust cross-attention during713

generation, with each controller utilizing cross-714

attention information between images and prompts715

in each dialogue round. The controllers correspond716

to three strategies with trainable parameters, includ-717

ing the dynamic proportion of self-attention dur-718

ing the sampling process, the proportion of atten-719

tion injection steps, and adaptive updates to cross-720

attention maps based on dialogue feedback. The721

optimization process for parameter updates can be722

mathematically represented as follows:723

Reward function:724

This is computational framework for the reward725

function R(θ) in a reinforcement learning con-726

text, where the CLIP score assesses the similar-727

ity between generated images and textual prompts. 728

Specifically: 729

R(θ) = CLIPScore(Igen, Pprev) + λ · CLIPScore(Igen, Pnew)

(4) 730

This formula ensures that the parameters are 731

finely tuned, with λ serving as a balancing factor 732

between aligning the generated image with the pre- 733

vious prompt and the new prompt, fostering both 734

continuity and responsiveness to new requirements. 735

Extensive experimentation has determined that set- 736

ting λ = 0.2 is optimal, as it allows the CLIP score 737

to converge more rapidly to its maximum value. 738

When incrementally increasing λ from 0.1 to 1, the 739

performance peaks at 0.2. However, increasing λ 740

beyond 1 leads to a significant decline in perfor- 741

mance, falling even below the levels observed at 742

λ = 0.1. Further, to underscore the iterative update 743

mechanism integral to the reinforcement learning 744

cycle: 745

I
(k+1)
gen = Update(I(k)gen , θ

(k)) 746

Here, I(k)gen signifies the image generated at iteration 747

k, and θ(k) indicates the parameters at that itera- 748

tion. The update function modifies the image based 749

on the current parameters, capturing the dynamic 750

nature of the learning process across successive 751

rounds. 752

Attention-Replace Strategies: update method di- 753

rectly adjusts the mapping matrix M using gra- 754

dient ascent and then multiplies it with the cross- 755

attention matrix Mcross_attention called mapper to al- 756

ter the attention distribution, impacting the gener- 757

ated image’s features and quality. 758

Mnew = (M + η ·∆M) ·Mcross_attention (5) 759

Attention-Refine Strategies: Update the atten- 760

tion weights by combining the original and new 761

attention maps derived from the modified prompt. 762

In the Attention-Refine class, the mapper aligns 763

base attention weights with the new prompt struc- 764

ture while alphas blend original and modified 765

weights, ensuring the final output accurately re- 766

flects user modifications and maintains consistency. 767

The mapper tensor aligns tokens between prompts, 768

enabling correct transfer of attention weights; up- 769

dated as 770

θ′m = θm + η∇θmE[R] 771

to maximize the expected reward (E[R]) using gra- 772

dient ascent with learning rate η. The alphas 773
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weights control the blending of original and mod-774

ified attention weights, determining each token’s775

influence; updated as776

θ′α = θα + η∇θαE[R]777

to maximize the expected reward (E[R]) using gra-778

dient ascent with learning rate η. Sure, here is the779

updated explanation and mathematical representa-780

tion:781

The attention weights are updated by combin-782

ing the original and new attention maps derived783

from the modified prompt. The original attention784

is processed using the mapper, which aligns the785

attention weights by permuting dimensions based786

on the mapped indices:787

attn_base_replaceijk = attn_baseijk ·mapperkj788

789
=⇒ (attn_base_replace)permute(2,0,1,3)790

Here, mapperkj indicates the mapping791

from index k in the original prompt to in-792

dex j in the new prompt. The operation793

(attn_base_replace)permute(2,0,1,3) permutes the794

dimensions of the resulting tensor to align with795

the expected structure for further processing. The796

updated attention weights are calculated as:797

M
(t)
update = βt ·M (t)

orig + (1− βt) ·M (t)
new(6)798

Attention-Reweight Strategies:modifies799

the distribution of attention by first blending800

the original and new attention maps, and then801

scaling the weights according to user prefer-802

ences. The blending of attention maps is given by:803

M
(t)
refine = βt ·M (t)

orig + (1− βt) ·M (t)
new, βt = βt−1 + γ · ∇βtR(θ)(7)804

with βt adjusting the blending ratio dynamically805

based on feedback, and γ is the learning rate806

for βt. After blending, the attention distribu-807

tion is further modified by scaling the weights:808

M
(t)
reweight =

∑
i γt,i ·M

(t,i)
refine, γt,i = γt−1,i + κ · ∇γt,iR(θ)(8)809

where γt,i are the weight multipliers that adapt the810

emphasis on specific features, and κ is the learning811

rate for γt,i. Below is the pseudocode:812

In addition to these, we also update the propor-813

tions related to specific attention mechanisms:814

αt+1 = αt + η∇αtR(θ) (9)815

816
ζt+1 = ζt + γ∇ζtR(θ) (10)817

818
δt+1 = δt + κ∇δtR(θ) (11)819

Here, α represents the proportion of self-820

attention features injected at different stages of the821

sampling process, ζ represents the replacement pro- 822

portion of the cross-attention map, and δ represents 823

the overall number of sampling steps. 824

A.4 Q&A Software Annotation Interface 825

Figure 9: Screenshot of the Q&A software annotation
interface.

A.5 Ablation of RL tuning 826

The RL tuning process and static parameter config- 827

uration are mathematically represented as: 828

θRL = θ0 +
T∑
t=1

η∇θR(θt), θFixed = θ0 (12) 829

Here, θRL are the parameters iteratively updated 830

with RL, θ0 is the initial parameter setting, η is the 831

learning rate, and∇θR(θt) is the gradient of the re- 832

ward function at iteration t. This setup without RL 833

results in more dialogue rounds and less optimal 834

outcomes. 835

A.6 Ablation of cross attention control 836

θ
(t+1)
Weighted = θ

(t)
Weighted + η∇θL(It,Feedbackt,M)

(13) 837838

θ
(t+1)
Empty = θ

(t)
Empty + η∇θL(It,Feedbackt,Mnew)

(14) 839

This setup employs only new attention without 840

blending it with the base cross attention. Each 841

strategy involves a distinct function to modify the 842

cross attention map, directed by its corresponding 843

controller. For standard cross attention, the con- 844

troller is set to ’empty control’ within the code. 845

A.7 LLM Prompt Refinement 846

The Multi-dialogue Refine process in ChatGPT- 847

4 iteratively refines prompts until they meet prede- 848

fined conditions and are ambiguity-free. Initially, 849
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Algorithm 3 Multi-dialogue Prompt Refine Pro-
cess for ChatGPT-4

0: Input: Initial prompt p0
0: Output: Refined prompt pi that meets condi-

tions and is ambiguity-free
0: Define C(p): Checks if prompt p meets all

predefined conditions.
0: Define A(p): Checks if prompt p is free of

ambiguities.
0: i← 0
0: while ¬C(pi) ∨ ¬A(pi) do
0: if ¬A(pi) then
0: pi+1 ← ResolveAmbiguities(pi)

{Clarify prompt, ensuring clarity.}
0: else if ¬C(pi) then
0: pi+1 ←

ModifyToMeetConditions(pi) {Adjust
prompt to meet conditions.}

0: end if
0: i← i+ 1
0: end while
0: return pi =0

the model assesses if the prompt p0 meets specific850

criteria and lacks ambiguities. If issues are identi-851

fied, the process loops to rectify them. The model852

evolves with each iteration, described mathemati-853

cally as:854

yt+1 =M(prefine ∥ x ∥ y0 ∥ fb0 ∥ . . . ∥ yt ∥ fbt),855

where yt is the output at iteration t, M represents856

the model, prefine is the refined prompt, x is the857

input data, and fbt is the feedback at iteration t.858

The model refines prompts by engaging in multi-859

turn dialogue, asking clarifying questions until860

the prompts are comprehensive and unambiguous.861

This self-reflection mechanism allows the model862

to produce initial responses and evaluate them for863

retrieval, relevance, support, and utility. Neces-864

sary modifications are made based on feedback to865

enhance accuracy and usefulness, represented as:866

yt+1 =M(x ∥ yt ∥ fbt).867

A.8 Experiments Settings868

The experiments are conducted using 4 NVIDIA869

4090 GPUs, This setup allows us to utilize com-870

plex algorithms such as diverse beam search with871

a beam size of 8 and a diversity penalty of 1.0,872

ensuring thorough exploration and diversity in the873

generated responses. The model parameters are874

initialized from a fine-tuned baseline, which pro- 875

vides a robust starting point for further optimiza- 876

tion. Over three days of training session, which 877

encompass 12,000 episodes, with four PPO epochs 878

per batch and a batch size of 256. The learning rate 879

is set at 5 × 10−5, and the value and KL reward 880

coefficients are meticulously calibrated to 2.2 and 881

0.3, respectively, to balance the learning dynamics. 882

For additional details due to page constraints, see 883

Appendix A.1. 884

A.9 Evaluation Metrics 885

The experimental framework of this study is metic- 886

ulously designed to evaluate our text-to-image gen- 887

eration model across three key dimensions. 888

LPIPS (Zhang et al., 2018): is a deep learning met- 889

ric that evaluates how image modifications preserve 890

the original structure, with lower scores indicating 891

minimal visual differences and alignment with hu- 892

man perception. It measures the consistency and 893

perceptual coherence of images generated in suc- 894

cessive dialogue rounds. 895

CLIP Score (Radford et al., 2021): Based on the 896

CLIP model, the system evaluates image-text align- 897

ment, assigning scores from 0 (no similarity) to 1 898

(perfect alignment). In dialogues, the LLM subtly 899

adjusts prompts and selects one of three strategies 900

following user feedback. The text-to-image model, 901

using reinforcement learning and CLIPScore, it- 902

eratively refines images until reaching a satisfac- 903

tory score. For detailed information on how the 904

ChatGPT-4 modifies prompts based on human in- 905

put, refer to the Appendix A.7. 906

Human Evaluation: In a study with 100 diverse 907

users, we utilize a randomized control trial with 908

stratified sampling based on age, gender, and tech- 909

nical proficiency. Using a blind design, participants 910

are unaware of the models or components being 911

tested to prevent biases. Detailed feedback is col- 912

lected through electronic surveys post-interaction, 913

utilizing standardized forms with scaled and open- 914

ended questions. A cross-over design ensures that 915

each user experiences all model variations in a ran- 916

domized order, maximizing exposure. Statistical 917

power analysis confirms that 100 participants pro- 918

vide sufficient power to detect significant results. 919
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