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Abstract
Data imputation is the most popular method of
dealing with missing values, but in most real life
applications, large missing data can occur and
it is difficult or impossible to evaluate whether
data has been imputed accurately (lack of ground
truth). This paper addresses these issues by
proposing an effective and simple principal com-
ponent based method for determining whether in-
dividual data features can be accurately imputed -
feature imputability. In particular, we establish a
strong linear relationship between principal com-
ponent loadings and feature imputability, even in
the presence of extreme missingness and lack of
ground truth. This work will have important im-
plications in practical data imputation strategies.

1. Introduction
Data imputation (replacing missing values with estimated
values) is used for dealing with missing data. Appropriate
data imputation approaches are necessary to ensure reliable
and robust model classification performances (Friedjungová
et al., 2019). There is a large literature evaluating the im-
putation and classification accuracy of various imputation
methods. Almost all of this literature consists of simula-
tion studies where synthetic missing data is introduced into
originally complete data, and imputation accuracy over the
whole dataset is evaluated against the known ground truth -
for example (Zhang; Waljee et al.; Malarvizhi & Thanamani;
Baneshi & Talei, 2012; Srivastava & Dolatabadi)
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However, with large and heterogeneous data, it is often not
clear what data features (variables) should be considered
for data imputation - the problem of feature imputability.
(Saar-Tsechansky & Provost, 2007) introduces and explores
the concept of feature imputability, which is the degree to
which any feature can be imputed as a function of the other
features in a dataset. However there is a surprising lack
of literature exploring feature imputability in simulation
studies. In particular, there is no work that actually allows
efficient prediction regarding feature imputability when the
ground truth is unknown.

This work addresses the above issue by proposing the use of
a simple yet efficient algorithm, nonlinear iterative partial
least squares (NIPALS) (Wold, 1975), to evaluate feature
imputability even when the proportion of missing data is
large. NIPALS was developed for conducting principal com-
ponents analysis (PCA) in the presence of missing data. As
a case study, we evaluate data imputation accuracy and fea-
ture imputability using an open dementia dataset in which
a very large amount of missing data is synthetically intro-
duced, mimicking the missingness pattern in clinical data.
We found that there is a linear relationship between feature
imputability and principal component loadings computed
by NIPALS.

2. Materials and Methods
2.1. Data

The data for analysis was extracted from the ADNIMERGE
table from the Alzheimers Disease Neuroimaging Initia-
tive (ADNI)merge R package, which amalgamates sev-
eral key tables from the ADNI open source dementia data
(adni.loni.usc.edu). The ADNI open database included clin-
ical and neuropsychological assessments with diagnosis
labelled as healthy, mild cognitive impairment (MCI) and
early Alzheimer’s Disease (AD).

2.1.1. FEATURE SELECTION TO REDUCE DATA SIZE

Feature selection was performed on the ADNIMERGE table
using the information gain (IG) algorithm (Battiti, 1994).
IG of a given feature is the reduction in disorder of the
class variable, when the class variable is separated accord-
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ing to that feature. We used the IG implementation in the
FSelector R package (Romanski et al., 2018). Feature selec-
tion was used here to reduce the large size of the original
dataset. Multivariate feature selection which optimises for
orthogonality among selected features was not used as we
wish to simulate real world clinical data which may have
many highly correlated features. The 8 Cognitive and Func-
tional Assessments (CFAs) which had the highest IG with
respect to CDR-SB (clinical dementia rating - sum of boxes,
an objective measurement of disease severity - see (Ding
et al., 2018) were selected). Gender and Age were also
included in this base dataset. The variables selected in-
cluded subscales of the Everyday Cognition scale (Farias
et al., 2008) (Ecog*), the Montreal Cognitive Assessment
(Nasreddine) (MOCA), and Logical Memory - Delayed Re-
call from the Weschler Memory Scale (Weschler & Stone,
1997) (LDELTOTAL).

2.1.2. INTRODUCTION OF MISSING VALUES

We mimicked a missingness pattern observed in data from
our local memory clinic. Missing values were syntheti-
cally introduced into the CFA variables in the base dataset.
No missingness was introduced into Gender or Age. The
missingness introduced was the MAR (missing at ran-
dom) type, increasing with disease severity with a formula
Pmiss = 0.48± (0.06 ∗ MMSE), where Pmiss is the probabil-
ity of any given value being missing, and MMSE was the
normalised Mini Mental State Examination (Molloy & Stan-
dish, 1997) score in ADNIMERGE. MMSE was used in
the formula due to its common use in both clinical and
open datasets. The 0.48 was implemented to provide 48%
missingness among the CFA variables. In total, 10 syn-
thetic datasets with different random missing patterns were
generated, to ensure robustness in the results.

2.2. Analysis

2.2.1. PRINCIPAL COMPONENTS ANALYSIS

We performed PCA on the base dataset using the
princomp command built in to the stats package in R (R
Core Team, 2019). Correlation (not covariance) method was
used. Number of principal components was not specified in
advance.

2.2.2. MISSING DATA IMPUTATION

We used various algorithms to impute the synthetic datasets.

• Mean imputation - imputation of column mean, a com-
putationally simple baseline.

• Median imputation - imputation of column median, as
above.

• Predictive mean matching (PMM) from the multivari-
ate imputation via chained equations (MICE) package

in R (Buuren & Groothuis-Oudshoorn, 2010). PMM is
the default method for MICE, the most commonly used
multiple imputation package. It is a multiple imputa-
tion method and we used the mean of 15 PMM outputs
to calculate imputation accuracy. PMM takes a random
draw from the posterior predictive distribution of the
coefficients of a regression of observed values for each
variable x on the other variables, to produce a new set
of coefficients. These are used to predict x for both
missing and observed values. Multiple imputations for
each missing x are taken from cases with observed x
where predicted x is close in value.

• missForest imputation (Stekhoven & Buehlmann,
2012) from the missForest package (Stekhoven, 2013)
which is a popular iterative imputation method using
Random Forest (RF)(Breiman) models. missForest
begins with mean imputation. An RF model using ob-
served values in each column as the dependent variable
and all the other columns in the dataset as independent
variables is built to impute missing values for each
column in turn, until convergence.

• Probabilistic principal component analysis (PPCA)
(Tipping & Bishop, 1999) is a probabilistic extension
of principal component analysis, which uses a maxi-
mum likelihood(ML) approach to estimating the param-
eters of the latent variable model underlying the data.
The probabilistic component allows for estimation of
missing values. PCA can be seen as a special case of
PPCA where the covariance of the error terms in the
PPCA model is zero. An Expectation Maximisation
(EM) iterative algorithm is used for ML estimation. We
used the implementation in the PCAmethods (Stacklies
et al., 2007) package in R with 3 principal components
specified as determined by the kEstimate function.

• Bayesian principal component analysis (BPCA)
(Nounou et al., 2002) s a computationally complex
approach using Bayesian methods for PPCA compo-
nent estimation. 3 principal components were speci-
fied. The implementation in the PCAmethods (Stack-
lies et al., 2007) package was used.

• Nonlinear iterative partial least squares (NIPALS)
(Wold, 1975). NIPALS uses an alternating least squares
algorithm to iteratively compute the scores and load-
ings of the first principal component (PC1), then PC1
is subtracted from the dataset and scores and loadings
for the second principal component (PC2) are calcu-
lated, etc. NIPALS deals with missing values by using
weighted regressions with missing values weighted at
null. The implementation in the nipals (Wright, 2020)
package was used; the number of principal components
was not specified in advance.

The R2 of the linear regression of the imputed values on
ground truth (complete data) was used as a measure of im-
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Table 1. Variable loadings on the first 3 principal components, and
missForest feature imputability R2

VARIABLE PC1 PC2 PC3 R2

CDR-SB 0.322 0.012 0.304 n/a
Gender 0.0719 -0.679 0.195 n/a
Age 0.079 -0.693 -0.303 n/a
EcogSPTotal 0.390 0.071 -0.194 0.862
EcogSPMem 0.368 0.045 -0.068 0.821
LDELTOTAL -0.316 0.017 -0.296 0.775
EcogSPLang 0.352 0.0350 -0.148 0.763
MOCA -0.297 0.144 -0.177 0.682
EcogSPPlan 0.356 0.103 -0.285 0.797
EcogSPVisspat 0.346 0.123 -0.306 0.791
EcogPtTotal 0.1959 0.0590 0.648 0.443

putation accuracy, with values ranging from 0 to 1 (poorest
to highest in accuracy, respectively). The mean, minimum
and maximum R2 measurements from each of the 10 syn-
thetic datasets were obtained. The average imputation R2 of
each individual variable using the missForest and PMM15
algorithms was also calculated.

2.2.3. REGRESSION ANALYSIS

The missForest and PMM15 imputation R2 values for each
CFA feature were regressed on the PC1 loadings of the
full dataset with no missing values (calculated using the
correlation method.) Further linear regression analyses was
performed for each of the 10 datasets with synthetic missing
values. missForest R2 values for each feature were regressed
on the PC1 loadings as calculated by the NIPALS method.

2.3. Software and Hardware

The above analyses and algorithms were run within R Studio
version 1.146 on a Windows machine with R version 3.5.2(R
Core Team, 2019) installed.

3. Results
3.1. Feature Selection and PCA Results

The 8 CFA features selected by IG and their load-
ings on the the first three principal components
(PC1-PC3) are shown in Table 1. We find that
most of the CFA variables selected (EcogSPTotal,
EcogSPMem, LDELTotal, EcogSPLang, MOCA,
EcogSPPlan, EcogSPVisspat) are loaded on PC1.
PC2 is dominated by Gender and Age. The variable
EcogPtTotal is loaded most strongly on PC3. The
remaining principal components could be considered noise
and are not shown in Table 1. This latent variable structure
makes some intuitive sense as EcogPtTotal is the only
selected Ecog* assessment which is completed by the
patient; the others refer to study partner assessments.

3.2. PCA based imputation methods outperformed by
RF and PMM
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Figure 1. Imputation R2 of imputation methods. Left-to-right
groupings: mean, median, missForest, predictive mean match-
ing average of 15 (PMM15), probabilistic principal component
analysis (PPCA), Bayesian principal component analysis (BPCA),
nonlinear iterative partial least squares (NIPALS). Least imputable
feature imputation R2, ECogPtTotal, light grey bars. Most
imputable feature imputation R2, ECogSPTotal, dark grey bars.
Overall imputation R2, black bars.

Using the synthetic missing datasets, we performed various
imputation methods. We found that the Predictive Mean
Matching (PMM) and Random Forest (RF) imputation meth-
ods provided the highest R2 when tested against the com-
plete dataset (ground truth) (Figure 1). We then investigate
feature imputability by calculating the imputation R2 of indi-
vidual feature imputed values regressed against ground truth
- feature imputability R2 results for missForest are shown
in Table 1, column 4 (Gender and Age, which are readily
accessible in clinical data, and CD-RSB, the class variable,
were not imputed). We find that missForest and PMM15
are the best performing imputation methods when measured
against ground truth, outperforming all the PCA based meth-
ods. NIPALs is the best performing PCA based imputation
method over the whole dataset. The feature imputability R2

of the most and least imputable features (ECogSpTotal
and EcogPtTotal) is also shown in Figure 1, in light
grey and dark grey bars respectively.

3.3. Feature imputability highly correlated with
principal component loadings

To explore the nature of feature imputability further, we
hypothesise that feature imputability may be linked to the
correlation of the features, as multivariate imputation algo-
rithms predict each missing value as a function of the other
features in the dataset (Stekhoven & Buehlmann, 2012;
Buuren & Groothuis-Oudshoorn, 2010). Therefore we hy-
pothesise that PCA methods may provide information about
feature imputability. To explore this hypothesis we regress
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feature imputability based on the best performing imputa-
tion methods (PMM15 and missForest) on the PC1 loadings
(by correlation) of the complete dataset.

Figure 2 shows the relationship is almost exactly linear with
R2 = 0.0.98p = 1.5x10−6 when imputation R2 by variable
of missForest(imp) is regressed on PC1 loadings(PC1). The
resultant regression equation is impx = 1.9PC1x + 0.19
where x is a feature in the dataset. The regression using the
imputation R2 by feature of PMM15 imputation looks sim-
ilar, with R2 = 0.987, p = 7.5x10−7. The least imputable
variable, ECogPtTotal, is furthest from the regression
line, and more accurately imputed than the regression would
predict.
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Figure 2. missForest imputation R2 by variables linearly
regressed on PC1 loadings of the complete dataset.
R2 = 0.98, p = 1.5x10−6

3.4. Strong relationship persists under extreme
missingness and absence of ground truth

To determine whether it is possible to predict variable im-
putability even in the absence of ground truth and under
conditions of large missing data, we use NIPALS, which
performed the best out of the PCA based imputation meth-
ods, to calculate PC1 loadings for the missing synthetic
datasets. For each dataset, we regress missForest imputation
R2 on PC1 loadings. The predictive power of PC1 load-
ings for variable imputability is still very strong, with R2

for the synthetic datasets within range 0.8− 0.95. Once
again the ECogPtTotal variable lies furthest from the re-
gression line in all cases. An example regression, with
R2 = 0.0.9116, p = 2.24x10−4 is shown in Figure 3.

4. Discussion
We have found that feature imputability (Saar-Tsechansky
& Provost, 2007) can be highly predicted from the principal
component loadings on the dataset (Figure 2). As far as
we know, this is the first time that such a relationship has
been established. This strong relationship persists even
when principal components are predicted from data with
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Figure 3. missForest R2 by variable linearly regressed on NIPALS
PC1 of a missing value dataset. R2 = 0.9116, p = 2.24x10−4.

extreme (48%) missingness (Figure 3). This means that even
when the ground truth is not known, it is possible to predict
with high accuracy which variables in this dataset can be
accurately imputed. This simple yet accurate determinant of
feature imputability could conveniently inform the decision
on whether to impute a feature or omit it from a data model
early in the pre-processing stage, and has the potential to
inform further analysis of imputed datasets.

The logic underlying this strong relationship is that most of
the correlations between variables in a dataset are captured
by PC1, therefore loadings on PC1 explain how much a
feature can be predicted from a basic linear model of other
features in the dataset. Given that multivariate imputation
methods impute each variable as a function of other vari-
ables in the dataset, PC1 may therefore provide an early
glimpse of feature imputability. Where some features sit
above the regression line, the imputation model for that fea-
ture has performed better than a simple linear combination
of the other variables could achieve.

Future work will investigate different datasets, different
types of missingness, and variations of current methods
such as nonlinear PCA. We also plan to investigate strate-
gies for handling less-imputable features, by designing data
processing pipelines which specifically account for feature
imputability. Overall, our work may potentially have impor-
tant implications in practical data imputation strategies.
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