
Proceedings of Machine Learning Research – Under Review:1–19, 2022 Full Paper – MIDL 2022 submission

Contrastive Representations for Unsupervised Anomaly
Detection and Localization

Author name(s) withheld email(s) withheld

Address withheld

Editors: Under Review for MIDL 2022

Abstract

Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary
anomalies without requiring labels during training. Generally, this is achieved by learning a
data distribution of normal samples and detecting anomalies as regions in the image which
deviate from this distribution. In the medical imaging domain, most current state-of-the-
art methods use latent variable generative models. Because such models operate directly
on sample space, they tend to primarily encode low-level statistics (like pixel intensities),
while having problems capturing fine semantic information within their representations.
Recent work has shown that representations obtained from a feature extractor trained
with a discriminative task are rich in semantic information. This, however, requires labeled
datasets - a prerequisite that is often not fulfilled. We propose CRADL, a framework for
unsupervised anomaly detection and localization consisting of a feature extractor trained
with a contrastive pretext-task and a generative model which learns the distribution of
representations. Through this, we circumvent the need for labels while still being able to
fit the generative model on semantic-rich representations. We further compare the quality
of these contrastive representations with representations obtained from a VAE and ceVAE
in the context of anomaly localization. We evaluate CRADL on the BraTS and ISLES
datasets, as well as an in-house dataset, and demonstrate state-of-the-art performance on
the task of anomaly localization in our comparison with a VAE and ceVAE.

Keywords: Anomaly Detection, Self-supervised Learning, Contrastive Training.

1. Introduction

Detecting and localizing anomalies is a long-standing problem in medical image analysis.
Given a specific problem and sufficient annotated training data at hand, supervised machine
learning models can be extremely effective at solving this task. However, most supervised
models are not explicitly designed to handle out-of-distribution data and thus might struggle
to extrapolate beyond the training distribution. As a consequence, each new class of pathol-
ogy or imaging modality necessitates the creation of new annotated datasets—a process that
scales poorly with the large number of existing pathologies and the ever-increasing amount
of image acquisition methods. In contrast, unsupervised anomaly detection promises to de-
liver predictions in the absence of labeled data. Thus, overcoming the need for cumbersome
manual annotations, this class of methods could offer a far greater breadth of applications.
In principle, this can be realized by learning a distribution of healthy samples. Images
(or rather some voxels in the images) ‘deviating’ from this distribution are then defined as
outliers. The problem of detecting these deviations can be stated as an Out-of-Distribution
(OoD) detection problem, more specifically near OoD localization (Winkens et al., 2020)
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because healthy and anomalous samples commonly only differ in specific small regions. In
the medical imaging domain, the current state-of-the-art methods for anomaly detection
are latent variable generative models operating directly in pixel space, mainly different sub-
types of and scoring methods based on Variational Autoencoders (VAEs) and Generative
Adversarial Networks (GANs) (Baur et al., 2021; Chen et al., 2020b; Schlegl et al., 2019).
It has been shown, however, that these methods tend to focus on low-level features such
as background characteristics (Nalisnick et al., 2019; Ren et al., 2019; Xiao et al., 2020;
Meissen et al., 2021) and that their representations have problems capturing semantic in-
formation (Nalisnick et al., 2019; Zimmerer et al., 2018). This makes the anomaly scores of
these methods heavily dependent on background statistics such as brightness and contrast.
Recently, generative models trained not on pixels directly but rather on representations of
supervised discriminative models have achieved state-of-the-art results on sample-level OoD
detection benchmarks (Lee et al., 2018; Liang et al., 2020; Hendrycks and Gimpel, 2018;
Zhang et al., 2020). Since representations of discriminative models are rich in semantic
information (Zeiler and Fergus, 2014), generative models operating on their representations
are, due to the inductive bias which is introduced with the discriminative task, arguably
less prone to the previously mentioned problem of focusing on low-level pixel characteristics.
The training of the discriminative model, however, requires a labeled dataset.

In this work we wanted to investigate if self-supervised contrastive learning can aid
unsupervised anomaly localization. For this, we propose CRADL, a simple unsupervised
representation-based OoD framework consisting of a feature extractor and a generative
model. These semantically rich and low dimensional representations obtained with a fea-
ture extractor trained with a contrastive self-supervised task (Chen et al., 2020a) allow to
fit a wide variety of generative models such as Gaussian Mixture Models and Flow-based
Deep Generative Models in a very short time. We show that anomalies can be localized by
back-propagating the negative log-likelihood of representations into the sample. Finally, in
our experimental evaluation, we find that the representations of CRADL can yield improve-
ments over reconstruction-based representations for anomaly localization and show compet-
itive performance to state-of-the-art methods like the VAE and context encoding VAE. In
summary, our contributions are: (1) we investigate contrastive learning for anomaly local-
ization (2) we use SimCLR with GMMs in the OoD context, (3) we use the gradients of
a “not-VAE” model (but rather a composite model) to identify anomalies, giving a valid
alternative to reconstruction based approaches.

2. Method

2.1. Related Work

Contrastive Learning Contrastive Learning can be used to obtain rich semantic repre-
sentations or to pretrain a model for a specific downstream task. This is done by enforcing
a clustering of similar data points by pulling together positive pairs (semantically similar
data points) while pushing away negative pairs (semantically different data points) in la-
tent space. This can be achieved using the NT-Xent (the normalized temperature-scaled
cross-entropy) loss as in SimCLR (Chen et al., 2020a). Several Contrastive Training meth-
ods have been proposed, mostly differing by the method used to obtain the positive and
negative pairs. In the Computer Vision domain, a trend for using data augmentation trans-
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formations to obtain these positive and negative pairs has recently emerged (Chen et al.,
2020a; Falcon and Cho, 2020; Hénaff et al., 2020). These methods are commonly used to
pretrain the encoder of a classifier with unlabelled data, leading to a significantly reduced
amount of labeled data required to train a classifier to a comparable accuracy as a model
with access to more labels. The representations obtained by these methods allow for bet-
ter classification than that of Autoencoder-based and many other self-supervised methods,
which have historically been used as pretraining for classifiers (Chen et al., 2020a; Falcon
and Cho, 2020; Hénaff et al., 2020).

Representation-based Out of Distribution detection Influential works for OoD de-
tection were ODIN (Liang et al., 2020), the Maximum Softmax Probability (Hendrycks and
Gimpel, 2018) as well as (Lee et al., 2018; Hsu et al., 2020). These methods were commonly
evaluated on far OoD tasks on different datasets, which are not directly translatable to
anomaly detection (Winkens et al., 2020; Ahmed and Courville, 2020). Another method
that only uses the representations in the last encoder layer in combination with Flow-
based Deep Generative Models was presented by Zhang et al. (2020). Ahmed and Courville
(2020) demonstrated that a discriminative model which is trained with an additional self-
supervised task learns semantically richer representations, leading to better OoD detection.
Similarly, Winkens et al. (2020) proposed a framework consisting of a discriminative trained
classifier with an additional SimCLR inspired task. They used the Mahalanobis distance
to fit the distribution of the trained model features, achieving state-of-the-art OoD detec-
tion. Concurrently to our work, Sehwag et al. (2021) proposed a similar model to Winkens
et al. (2020) but using a self-supervised task exclusively. While having some conceptual
similarities to the approach presented here, they only consider the case of far sample-level
OoD.

Generative Models for Medical Anomaly Detection The current state-of-the-art
for image anomaly detection are generative methods such as VAEs and GANs. Baur et al.
(2021) compared the most common methods based on their anomaly localization capabilities
(pixel-level OoD). In their setting, a VAE-based iterative image restoration setting (Chen
et al., 2020b) performed best across most datasets they evaluated (slightly better than
the VAE-based reconstruction difference scoring). However, this iterative restoration is
orthogonal to our proposed method and could be directly applied here in analogy to VAEs.
As such, we chose to use the by Baur et al. (2021) recommended latent variable model
as baseline: a VAE (due to its performance, simplicity, and optimization). Chen et al.
(2020b) employed a GMVAE for anomaly detection with good results. But despite its
architectural similarities to CRADL, we chose only to focus on VAEs as our main baseline,
as its performance was shown to be inferior to a VAE while being harder to optimize (Baur
et al., 2021; Meissen et al., 2021). Recently, different self-supervised approaches, such as
context-encoding (Zimmerer et al., 2018), image perturbation prediction (Li et al., 2021),
and Multi-Task prediction (Venkatakrishnan et al., 2020) have incorporated simple self-
supervision tasks in an anomaly-localization framework. Here, we want to continue this
line of research but using a two-step approach disentangle the feature learning from the
distribution fit and use the recently proposed contrastive pretraining task.
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Figure 1: (a) Visualization of the fitting pipeline, from contrastive pretext (SimCLR) (1) to
fitting of the generative model (2). (b) Pixel-wise scores - clamped and normalized
for visual inspection.

2.2. Methodology

We propose CRADL, a method using Contrastive Representations for unsupervised Anomaly
Detection and Localization. CRADL is comprised of two stages as shown in Figure 1. Dur-
ing the first stage, the encoder f , which maps from the image space X to a learned fea-
ture/representation space Z : z = f(x), is trained. In the second stage, a generative model
p is fitted on the representations, allowing for a likelihood estimate of a representation. The
negative-log-likelihood (NLL) of its representations is given as: s(x) = − log(p(f(x))).
The pixel-level anomaly scores are obtained by back-propagating the gradients of the rep-
resentation NLL into the sample. This approach assumes that regions with large gradients
exhibit anomalies.

Contrastive Training Our contrastive pretext task is inspired by SimCLR (Chen et al.,
2020a), where positive pairs are obtained by using data augmentations t drawn randomly
from a set of augmentations T . Each sample xi in a minibatch of N examples is transformed
twice, yielding two different views which make up the positive pair. The representations
produced by feeding the views through the encoder and projection head, ũi = g(f(t̃(xi)))
and ûi = g(f(t̂(xi))), are encouraged to be similar by optimizing the NT-Xent contrastive
loss:

l(x̃i, x̂i) = − log
exp(sim(ũi, ûi)/τ)∑

ū∈Λ− exp(sim(ũi, ū))/τ)
(1)

Here the set Λ− consists of all examples except ũi, all other 2N−1 examples in the minibatch.
The loss over the whole minibatch is obtained by summing all positive pairs (with both
permutations).

Generative Model In general, an arbitrary generative model can be fitted on the rep-
resentations. Our experiments used a Gaussian Mixture Model (GMM) as the generative
model, since it is one of the simplest generative models used for anomaly detection. The
probability distribution of a GMM with K components is noted in equation 2. We fit the
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GMM with the Expectation-Maximization (EM) Algorithm (Dempster et al., 1977) with K
being the number of components (specified before the fit).

p(x; Θ) =
K∑
k=1

N (x;µk,Σk) · πk (2)

3. Experiments

Data In our experiments, we used T2-weighted brain MRI datasets. All models were
trained on a subset of the HCP dataset (Van Essen et al., 2012), which purely consists of
‘normal’ MRI Scans, using 894 scans split into training and validation sets. We created a
synthetic anomaly dataset (similar to Zimmerer et al. (2020)) from 100 HCP separate scans
(HCP Synth.) by rendering real-world objects into brain regions. This allows the test set
to have the same original distribution (i.e., same scanner, site, ...) as the training set, with
only the anomalies differing. We split HCP Synth. dataset into two distinct parts with
49 scans each, one for model development (i.e., to choose our hyperparameter settings and
setting of K) and one for testing only. We also applied the same models without any changes
or retraining to the BraTS-2017 (tumor segmentation) (Bakas et al., 2017) and ISLES-2015
(stroke lesion segmentation) (Maier et al., 2017) datasets to test the approach in real-world
settings with different pathologies. Our BraTS-2017 and ISLES test sets consist of 266 and
20 scans, respectively, as well as validation sets comprised of 20 and 8 scans for selecting K.
All datasets were preprocessed similarly, with a patient-wise z-score normalization and slice-
wise resampling to a resolution of 128 x 128, followed by clipping the range of intensities
from -1.5 to 1.5. For the statistics of the datasets and visual examples, we refer to the
supplementary material (Suppl.).

Model We used a unified model architecture for our experiments which is based on the
deep convolutional architecture from Radford et al. (2016), so our encoder solely consists of
2D-Conv-Layers and our decoder (for the VAE models) of 2D-Transposed-Conv-Layers (for
more details, please refer to the Suppl.). We chose an initial feature map size of 64 and a
latent dimension of 512. For the projection head, we use a simple 2-layer MLP with ReLU
non-linearities, a 512 dim. hidden layer, and 256 dim. output.

Training The contrastive pretext training of the encoder is performed for 100 epochs on
the HCP training set using the Adam Optimizer, a learning rate of 1e-4, Cosine Annealing
(Loshchilov and Hutter, 2017), 10 Warm-up Epochs and a weight decay of 1e-6, the tem-
perature of the contrastive loss is 0.5. The encoder for later evaluation is chosen based on
the smallest loss on the HCP validation set. As transformations for generating different
views for the contrastive task, we used a combination of random cropping, random scaling,
random mirroring, rotations, and multiplicative brightness, and Gaussian noise. We fitted
the GMM on representations of the encoder from all samples in the HCP training set with-
out any augmentation. The means of the components were randomly initialized, and the
convergence limit for the EM algorithm was set to 0.1 . In the supplementary, we present
the performance of CRADL with relation to K. The best K value on the HCP dataset does
not transfer to the other dataset settings (however, it seems consistent within the same
dataset, i.e., between the validation set and test set). This behavior is probably caused by
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the distribution shifts between the datasets stemming from different acquisition strategies
and scanners. Thus, for the evaluation of each anomalous dataset, we pick the optimal K
based on a small validation set where we observe the best AUPRC score. We believe this
is a clinically very reasonable approach since the fit of the GMM takes only 10 minutes on
a GPU compared to more than 8 hours for the VAE and ceVAE.

Baselines We trained both the VAE and ceVAE for 100 epochs using the Adam Opti-
mizer, a learning rate of 1e-4, and the unified architecture for both encoder and decoder
on the HCP training dataset. The final models for evaluation were chosen based on the
lowest loss on the HCP validation set. The transformations used during training of the
VAE consisted of random scaling, random mirroring, rotations, multiplicative brightness,
and Gaussian noise, which have shown clear performance improvements in our early exper-
iments. For the ceVAE, we added random cutout transformations (Zimmerer et al., 2018).
We selected the best scoring method for each evaluation dataset based on the validation
sets (see Suppl.).

Metrics We are mainly interested in the localization of anomalies within the brain. As
a performance measure, we used the pixel-wise AUROC and AUPRC metrics with pixel-
level scores, as it is common practice. The discriminative power of the scoring function
is measured using the Area Under Receiver Operator Curve (AUROC) and Area Under
Precision-Recall Curve (AUPRC) due to their independence of a threshold with anomalies
being defined as positives. In our setting, it is more important to detect outliers and
a significant imbalance due to a larger number of healthy pixels than anomalous pixels.
Hence, we emphasize the importance of the AUPRC score because it better captures the
detection of anomalies.

Post-processing of Anomalies The post-processing pipeline for the pixel-level scores
is identical for all methods evaluated and, based on the approach from Baur et al. (2021),
restricted to only use one sample (2D): We zero out all pixel scores outside the brain region.
In the next step, 2D median pooling (kernel size=5) is applied to filter out edges and
single outliers. As the last step, Gaussian smoothing is applied, inspired by the finding of
sparse gradients and convolutional artifacts by Zimmerer et al. (2018). Empirically, also
the reconstruction-based scores of the VAE and ceVAE benefited from this step.

4. Results & Discussion

First, we analyze the discriminative power of the representations obtained with contrastive
learning to that of generative models in the context of anomaly localization. Here, we want
to verify whether the contrastive representations are beneficial for capturing and detecting
the nuanced semantic differences between normal and anomalous regions. In the next step,
we compare the anomaly localization with the VAE and ceVAE state-of-the-art methods
(Baur et al., 2021; Zimmerer et al., 2019, 2018). Additionally, we compared ourselves with
a Flow-based Deep Generative Models (implemented as INN with GLOW-like architecture
(Kingma and Dhariwal, 2018)), where we show the results in the Supplement. For the
results regarding slice-wise OoD detection, we refer to the Supplement as well.
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Figure 2: Performance comparison of different representations for pixel-level anomaly local-
ization (x̄±σx). We compare features from CRADL (SimCLR + GMM), a ceVAE
(VAE + self-supervised context encoding task), a VAE all fitted with a GMM
and for both VAE and ceVAE the gradient of the KL-Divergence (see Suppl.).

4.1. Discriminative Power of Representations for Anomaly Localization

To get an estimate of the discriminative power of representations from generative models,
in particular VAE and ceVAE, we decided to fit a GMM on their representations in an
identical scheme to CRADL (see Sec. 3). We believe this choice is well-founded because,
in theory, the representations of a VAE should be distributed like a unimodal Gaussian.
For the VAE models, we additionally compare the gradient of the KL-Divergence, since it
also models the feature distribution deviations and is inherent to the model. We depict
the performance of the anomaly localization methods in Fig. 2, where it becomes apparent
that CRADL-based representations outperform both VAE and ceVAE based representa-
tions: for both ISLES and HCP Synth. significantly, while on BraTS the KL-Divergence of
the ceVAE showed performance within 1 σ, however with lower mean performance. This
strengthens the hypothesis that the self-supervised representations of CRADL carry more
semantic information, enabling a better localization of fine semantic differences between
anomalous and normal brain volumes. A further supporting fact is that the ceVAE, which
also employs a self-supervised task, outperforms the VAE. To verify that the main benefits
of CRADL stem from its representations and not purely that the GMM fits the features
of SimCLR better than those of a VAE, we also conducted experiments with a Flow-based
Deep Generative Models (Real NVP (Dinh et al., 2017)) showing the same trend as for
the GMMs. For details on these experiments, we refer the reader to the supplementary
material.

4.2. Comparison to State-of-the-Art Anomaly Localization

Here, we further compare CRADL with our re-implementations of the state-of-the-art meth-
ods VAE and ceVAE, in the context of anomaly localization. The quantitative results are
shown in Table 1 and qualitative results can be seen in Fig. 1b. For the HCP Synth. dataset,
CRADL obtained the best AUROC and AUPRC metrics by a large margin, followed by
the VAE and the ceVAE baseline. On the BraTS dataset, the ceVAE outperforms all other
methods regarding the AUPRC score and AUROC. We believe this can also be partially
attributed to the domain gap between the BraTS dataset and HCP dataset (similarly with
HCP and ISLES), i.e., different scanners, image quality, and the patients’ overall health.
This leads to a change in the pixel intensities of the overall pixel distribution. Therefore,
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Table 1: Pixel-wise anomaly localization metrics for different datasets.

CRADL VAE ceVAE

HCP Synth. AUROC 0.978±0.001 0.951±0.001 0.921±0.004
AUPRC 0.288±0.010 0.210±0.003 0.172±0.015

ISLES AUROC 0.898±0.003 0.853±0.002 0.879±0.002
AUPRC 0.186±0.039 0.051±0.001 0.145±0.013

BraTS AUROC 0.942±0.001 0.925±0.001 0.948±0.003
AUPRC 0.380±0.016 0.298±0.004 0.483±0.003

one could argue that even the brain slices without any pathology could be categorized as
OoD (perhaps the anomalous samples are more OoD, but the accuracy of an OoD mea-
surement in the high OoD regions could be considered questionable). On the ISLES-2015
dataset, CRADL shows the best performance, and again, the ceVAE delivers slightly better
performance than a reconstruction-based VAE detection.

5. Discussion & Conclusion

In this work, we propose a simple framework for unsupervised Anomaly Detection and Lo-
calization based on representations obtained with a contrastive pretext task. We show that
the representations obtained with this contrastive framework outperform representations
obtained with latent variable generative models for anomaly localization and overall allow
competitive anomaly localization performance compared to a VAE and ceVAE. An evident
weakness of our approach is the hand-picked selection of the number of components (K)
of the GMM, which varies between datasets. However, we suspect for a generative model
trained on a representative dataset, minimizing the distribution shift between test and train-
ing data, a GMM with multiple components should lead to the best overall performance
similar to the HCP Synth. dataset. We further believe that using CRADL as prior for an
iterative image restoration approach might show further performance improvements (Baur
et al., 2021; Chen et al., 2020b). Additionally, we are interested in a comparison with self-
supervised anomaly segmentation models, which during training use self-supervised proxy
anomalies (e.g. patch-interpolations (Tan et al., 2020, 2021)) and after training aim at
directly segmenting more general anomalies, and investigating how the features learned
by such models relate to contrastively trained models. Consequently, the often addressed
question of the best self-supervised/pretraining task is open to discussion. While we have
shown here that a SimCLR-like task can show improvements over context-encoding based
masking, other masking tasks have recently shown great promise (Li et al., 2021; He et al.,
2021) rivaling the performance of contrastive learning.
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Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali
Eslami, and Aaron van den Oord. Data-Efficient Image Recognition with Contrastive
Predictive Coding. arXiv:1905.09272 [cs], July 2020.

Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-of-
Distribution Examples in Neural Networks. arXiv:1610.02136 [cs], October 2018.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized ODIN: De-
tecting Out-of-distribution Image without Learning from Out-of-distribution Data.
arXiv:2002.11297 [cs, eess], March 2020.

Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. arXiv:1807.03039 [cs, stat], July 2018.

9



withheld

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A Simple Unified Framework for
Detecting Out-of-Distribution Samples and Adversarial Attacks. arXiv:1807.03888 [cs,
stat], October 2018.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised
learning for anomaly detection and localization. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9659–9669, 2021. doi: 10.
1109/CVPR46437.2021.00954.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing The Reliability of Out-of-distribution
Image Detection in Neural Networks. arXiv:1706.02690 [cs, stat], August 2020.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts.
arXiv:1608.03983 [cs, math], May 2017.

Oskar Maier, Bjoern H. Menze, Janina von der Gablentz, Levin Häni, Mattias P. Hein-
rich, Matthias Liebrand, Stefan Winzeck, Abdul Basit, Paul Bentley, Liang Chen, Daan
Christiaens, Francis Dutil, and et al. ISLES 2015 - A public evaluation benchmark for
ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis, 35:
250–269, January 2017. ISSN 13618415. doi: 10.1016/j.media.2016.07.009.

Felix Meissen, Georgios Kaissis, and Daniel Rueckert. Challenging current semi-supervised
anomaly segmentation methods for brain mri, 2021.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lak-
shminarayanan. Do Deep Generative Models Know What They Don’t Know?
arXiv:1810.09136 [cs, stat], February 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learn-
ing with Deep Convolutional Generative Adversarial Networks. arXiv:1511.06434 [cs],
January 2016.

Jie Ren, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo,
Joshua V. Dillon, and Balaji Lakshminarayanan. Likelihood Ratios for Out-of-
Distribution Detection. arXiv:1906.02845 [cs, stat], December 2019.
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Appendix A. Baselines

• VAE, x̂ = Dec(Enc(x)), q(z|x) = Enc(x)

– LVAE = LRec(x, x̂) + β · DKL(q(z|x)||p(z))

• ceVAE, x̂ = Dec(Enc(x)), q(z|x) = Enc(x)

– LceVAE = LRec(x, x̂) + β · DKL(q(z|x)||p(z)) + LRecCE
(x, x̃)

Table 2: Anomaly Scores
Level Name Formula

Samples elbo s(x) = LVAE(x)
Samples kl s(x) = DKL(q(z|x)||p(z))
Samples rec s(x) = LRec(x, x̂)

Pixel nll-grad (proposed) rnll−grad(x) =

∣∣∣∣∂(− log(p(f(x)))

∂x

∣∣∣∣
Pixel Reconstruction rrec(x) = |x− x̂|

Pixel KL-Div (grad) (Zimmerer et al., 2018) rkl−grad(x) =

∣∣∣∣∂DKL(q(z|x)||p(z))
∂x

∣∣∣∣
Pixel Combi (Zimmerer et al., 2018) rcombi(x) = rkl−grad(x) · rrec(x)

Appendix B. Experiments

• Implementation: Pytorch and Pytorch Lightining.

• Hardware for Training: Single Nvidia GPUs with 12Gb VRAM (Titan XP, 2080Ti).

• Training times: SimCLR ∼ 12h, GMM ∼ 1m, RealNVP ∼ 30m, VAE ∼ 24h.

• Data augmentation:

– SimCLR: random mirroring, random cropping, random scaling, random multi-
plicative brightness, additive gaussian noise

– VAE: random scaling, random mirroring, rotations, multiplicative brightness,
additive gaussian noise

– Framework: batchgenerators (https://github.com/MIC-DKFZ/batchgenerators)
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Table 3: Deep Convolutional Architecture, nf and nz are the hyperparameters for the archi-
tecture and bottleneck width. All experiments shown were conducted with nz=512
and nf=64. In the case of VAE and ceVAE nz= 512 ·2 (BN: Batch Normalization)

DC-Encoder DC-Decoder

Input x Input z
4 x 4 Convnf Stride 2, BN, ReLU 4 x 4 Trans-Conv16xnf Stride 1, BN, ReLU
4 x 4 Conv2xnf Stride 2, BN, ReLU 4 x 4 Trans-Conv8xnf Stride 2 Padding 1, BN, ReLU
4 x 4 Conv4xnf Stride 2, BN, ReLU 4 x 4 Trans-Conv4xnf Stride 2 Padding 1, BN, ReLU
4 x 4 Conv8xnf Stride 2. BN, ReLU 4 x 4 Trans-Conv2xnv Stride 2 Padding 1, BN, ReLU
4 x 4 Conv16xnf Stride 2, BN, ReLU 4 x 4 Trans-Convnf Stride 2 Padding 1, BN, ReLU
4 x 4 Convnz Stride 2 4 x 4 Trans-Convnc Stride 2 Padding 1, Sigmoid
Z X

13
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GLOW-like INN

• Architecture: We used the Multi Scale Architecture from Dinh et al. (2017) based on
7 blocks with 8 GLOW-flows (Kingma and Dhariwal, 2018)

– block

1. checkerboard downsampling (c, h, w) −→ (4 · c, h/2, w/2)
2. GLOW-flow × 8

3. split of half of the channels for next block and half to the end

– GLOW-flow

1. ActNorm

2. InvConv2dLU

3. convolutional Couplingblock

Training Scheme:

– We added Gaussian noise on our samples (identical to the scheme for the VAE) as
preprocessing instead of the standard GLOW preprocessing (we do this because
we do not use photos in an image format)

– Optimization criterion for the flow f : L(x) = f(x)

2
· | det(Jf (x))|

– Optimization Parameters: 100 epochs on the HCP training set with Adam Op-
timizer and the following parameters: learning rate 1E-4, weight decay 1E-5,
gradient clipping (grad clip val=10).

– We chose the model for later evaluation based on the smallest loss on the HCP
validation set.

Real NVP

• Architecture: We used the 8 consecutive flows of the Real NVP Architecture without
splitting. Since the Model operates on the representations z (dim=512), we use Linear
layers inside the coupling blocks parametrized by cblock=512 and cout = cin = 256.

– Flow:

1. Coupling Block (Linear(cin, cblock), ReLU, Linear(cblock, cout))

2. Random Permutation of Dimensions

• Training Scheme:

– We added additional Gaussian noise (σ =1E-3) to our samples as preprocessing

– Optimization Parameters: 60 epochs on the representations of the HCP train-
ing set with Adam Optimizer and the following parameters: learning rate 1E-3,
weight decay 1E-4, gradient clipping (grad clip val=5 and additionally the learn-
ing rate is divided by 10 every 20 epochs

– We chose the model for later evaluation based on the smallest loss on the HCP
validation set.
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Appendix C. Results

Table 4: Pixel-Wise anomaly detection metrics on test datasets: : Values are shown in the
Results & Discussion section and selected based on the results of the best AUPRC
scores on the validation set (Tab. 5)

HCP Synth. HCP Synth. BraTS BraTS ISLES ISLES
Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC

VAE GMM 1 Comp nll-grad 0.0236±0.0011 0.8501±0.0035 0.1282±0.0123 0.8889±0.0023 0.0563±0.0033 0.86±0.0016
GMM 2 Comp nll-grad 0.0206±0.0006 0.8436±0.0022 0.1095±0.0096 0.8808±0.0021 0.0471±0.0024 0.8523±0.0036
GMM 4 Comp nll-grad 0.0348±0.004 0.8851±0.0054 0.1295±0.0173 0.8918±0.0038 0.0562±0.0057 0.8578±0.0035
GMM 8 Comp nll-grad 0.048±0.0086 0.9019±0.007 0.1345±0.013 0.8949±0.0026 0.0584±0.0058 0.8605±0.0028
Real NVP nll-grad 0.04±0.0066 0.8885±0.0077 0.0978±0.012 0.8666±0.009 0.0498±0.0098 0.8516±0.0048

VAE combi 0.2491±0.0063 0.9546±0.0005 0.2269±0.0328 0.9198±0.0038 0.077±0.0122 0.8745±0.0059
kl-grad 0.0373±0.0032 0.8657±0.0014 0.0772±0.0091 0.8446±0.011 0.0409±0.0047 0.8466±0.0081
rec 0.2101±0.003 0.9511±0.0003 0.2976±0.0035 0.9248±0.0006 0.0513±0.0001 0.8532±0.0023

ceVAE GMM 1 Comp nll-grad 0.1072±0.0109 0.901±0.01 0.2343±0.0816 0.9129±0.0159 0.0618±0.0176 0.86±0.0089
GMM 2 Comp nll-grad 0.0757±0.0057 0.8952±0.0041 0.177±0.0426 0.9062±0.0097 0.0449±0.0093 0.8445±0.0068
GMM 4 Comp nll-grad 0.0967±0.0156 0.9116±0.0085 0.1906±0.0184 0.9105±0.004 0.0511±0.0123 0.8456±0.006
GMM 8 Comp nll-grad 0.1122±0.016 0.9223±0.0058 0.2068±0.033 0.9119±0.006 0.0612±0.0084 0.8488±0.0055
Real NVP nll-grad 0.0606±0.0148 0.9008±0.0101 0.1072±0.0159 0.8756±0.0079 0.0304±0.0007 0.8157±0.0013

VAE combi 0.1716±0.0146 0.9212±0.004 0.483±0.0299 0.9482±0.0032 0.1451±0.0125 0.8794±0.0022
kl-grad 0.0702±0.0069 0.8586±0.0047 0.3394±0.067 0.9252±0.0163 0.1085±0.0163 0.8785±0.0059
rec 0.0913±0.0023 0.9266±0.0017 0.4073±0.0389 0.9269±0.0074 0.0653±0.0044 0.8544±0.005

CRADL GMM 1 Comp nll-grad 0.2263±0.0112 0.9664±0.0017 0.3341±0.0402 0.9357±0.0035 0.1859±0.0385 0.8977±0.0033
GMM 2 Comp nll-grad 0.2243±0.0125 0.9685±0.0017 0.3802±0.0163 0.9418±0.0009 0.1653±0.02 0.8955±0.0029
GMM 4 Comp nll-grad 0.2875±0.0101 0.9741±0.0006 0.3383±0.0161 0.9384±0.0012 0.1441±0.0024 0.8935±0.003
GMM 8 Comp nll-grad 0.3246±0.0076 0.9779±0.0003 0.2908±0.0199 0.9309±0.0022 0.1257±0.0151 0.8906±0.0019
Real NVP nll-grad 0.0924±0.0097 0.9397±0.0031 0.1362±0.0102 0.8736±0.0068 0.0393±0.0044 0.8213±0.0153

INN nll-grad 0.0148±0.0005 0.7618±0.0018 0.3563±0.0023 0.9139±0.002 0.0443±0.0017 0.8307±0.0047

Table 5: Pixel-Wise anomaly localization metrics on validation datasets: Values show the
best AUPRC scores which are used for hyperparameter selection on the test set

HCP Synth. HCP Synth. BraTS BraTS ISLES ISLES
Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC

VAE GMM 1 Comp nll-grad 0.0353±0.0056 0.8547±0.0025 0.0935±0.0047 0.8841±0.0022 0.0676±0.0149 0.8745±0.0095
GMM 2 Comp nll-grad 0.0276±0.0018 0.8487±0.0031 0.0799±0.0046 0.8751±0.0038 0.0548±0.0102 0.8632±0.0067
GMM 4 Comp nll-grad 0.0503±0.0071 0.8859±0.0043 0.1009±0.0131 0.8897±0.0058 0.0627±0.0064 0.8701±0.0032
GMM 8 Comp nll-grad 0.0774±0.0035 0.9088±0.0023 0.0925±0.0073 0.8875±0.0041 0.0624±0.0029 0.8805±0.0006
Real NVP nll-grad 0.0395±0.0008 0.8665±0.0021 0.0691±0.0036 0.8584±0.0052 0.0509±0.0091 0.863±0.0091

VAE combi 0.2945±0.0059 0.9527±0.0005 0.1842±0.0403 0.9171±0.0061 0.0894±0.012 0.8812±0.0051
kl-grad 0.0735±0.0012 0.8771±0.0007 0.0677±0.0096 0.8553±0.0131 0.041±0.0009 0.8456±0.0044
rec 0.2081±0.0042 0.9426±0.0004 0.2248±0.0077 0.9119±0.0015 0.0543±0.0082 0.8618±0.0056

ceVAE GMM 1 Comp nll-grad 0.1212±0.024 0.9057±0.011 0.2313±0.0829 0.9181±0.0138 0.0609±0.0166 0.8633±0.0059
GMM 2 Comp nll-grad 0.0741±0.0142 0.8989±0.0065 0.1611±0.0291 0.9126±0.0051 0.0385±0.0056 0.8436±0.005
GMM 4 Comp nll-grad 0.1067±0.0132 0.9167±0.0039 0.1955±0.0214 0.9163±0.0024 0.0423±0.0058 0.8513±0.0033
GMM 8 Comp nll-grad 0.1464±0.0285 0.9286±0.007 0.1841±0.0162 0.911±0.0002 0.0404±0.0054 0.8471±0.0044
Real NVP nll-grad 0.0907±0.0144 0.9002±0.0081 0.0784±0.0144 0.8681±0.0088 0.0311±0.0017 0.8223±0.0094

VAE combi 0.2183±0.0206 0.9148±0.0057 0.4321±0.005 0.9393±0.0038 0.1628±0.0242 0.8847±0.0042
kl-grad 0.096±0.0096 0.8655±0.0037 0.3337±0.04 0.9317±0.0078 0.0956±0.0278 0.8751±0.0092
rec 0.1163±0.0019 0.9117±0.0021 0.2884±0.0403 0.9068±0.0088 0.1321±0.029 0.8649±0.0041

CRADL GMM 1 Comp nll-grad 0.3176±0.0102 0.9671±0.0007 0.2796±0.0244 0.9294±0.0007 0.3295±0.0279 0.9251±0.0029
GMM 2 Comp nll-grad 0.3125±0.0095 0.9686±0.0005 0.3334±0.0105 0.9363±0.0012 0.3281±0.0155 0.9197±0.002
GMM 4 Comp nll-grad 0.3338±0.0111 0.9685±0.0009 0.2597±0.0451 0.9262±0.009 0.2989±0.0168 0.9117±0.0033
GMM 8 Comp nll-grad 0.3297±0.003 0.9721±0.0004 0.2518±0.0102 0.927±0.0003 0.2765±0.0136 0.9099±0.001
Real NVP nll-grad 0.1276±0.0043 0.9347±0.0004 0.137±0.0107 0.8876±0.0031 0.1039±0.0141 0.864±0.0095
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Table 6: Slice-Wise anomaly detection metrics on test datasets
HCP Synth. HCP Synth BraTS BraTS ISLES ISLES

Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC

VAE GMM 1 Comp nll 0.3851±0.0093 0.726±0.0075 0.8254±0.0079 0.8481±0.0034 0.5121±0.005 0.7093±0.0007
GMM 2 Comp nll 0.3652±0.0071 0.7255±0.006 0.8056±0.0072 0.8353±0.0039 0.4815±0.0061 0.6785±0.0025
GMM 4 Comp nll 0.4415±0.0141 0.7703±0.0074 0.827±0.0099 0.8473±0.0032 0.4896±0.0215 0.6947±0.0282
GMM 8 Comp nll 0.5012±0.0209 0.7914±0.0091 0.8428±0.0017 0.8546±0.0016 0.4945±0.0091 0.6999±0.0155
Real NVP nll 0.519±0.0239 0.7922±0.008 0.8229±0.0113 0.842±0.0103 0.5156±0.021 0.7094±0.0209

VAE kl 0.3583±0.0057 0.7291±0.002 0.8073±0.0069 0.8329±0.005 0.6068±0.0124 0.7612±0.003
rec 0.4945±0.0039 0.7989±0.0009 0.8397±0.0009 0.8618±0.0008 0.5126±0.0065 0.7108±0.0026
elbo 0.4916±0.0043 0.7947±0.001 0.8426±0.001 0.8626±0.0008 0.5188±0.0055 0.7174±0.0022

ceVAE GMM 1 Comp nll 0.4872±0.0252 0.7908±0.0111 0.8174±0.0147 0.8457±0.0079 0.4967±0.0191 0.6857±0.0083
GMM 2 Comp nll 0.4998±0.0349 0.7976±0.0127 0.7523±0.0276 0.8058±0.0084 0.3948±0.025 0.5843±0.0177
GMM 4 Comp nll 0.5393±0.0359 0.8084±0.0127 0.792±0.0407 0.8247±0.0233 0.4087±0.02 0.6005±0.0248
GMM 8 Comp nll 0.5878±0.033 0.8216±0.0097 0.7914±0.0078 0.8213±0.0103 0.3955±0.032 0.577±0.0225
Real NVP nll 0.6556±0.038 0.8418±0.0141 0.7247±0.0414 0.7674±0.0198 0.3938±0.0275 0.5845±0.0408

VAE kl 0.4091±0.0113 0.756±0.0048 0.7612±0.0063 0.8024±0.0033 0.5064±0.0071 0.6967±0.0088
rec 0.4328±0.0037 0.7682±0.0006 0.8434±0.0027 0.8638±0.0013 0.5467±0.009 0.7279±0.0003
elbo 0.436±0.002 0.7691±0.0009 0.843±0.0023 0.8631±0.001 0.5412±0.0082 0.7266±0.0008

CRADL GMM 1 Comp nll 0.6835±0.0047 0.859±0.0025 0.811±0.0031 0.8203±0.0015 0.5436±0.0036 0.6916±0.0038
GMM 2 Comp nll 0.7008±0.0033 0.8695±0.0023 0.7877±0.0046 0.7982±0.0031 0.4905±0.004 0.6483±0.0047
GMM 4 Comp nll 0.7403±0.0031 0.8786±0.0039 0.7893±0.0078 0.7987±0.0088 0.4863±0.0144 0.6471±0.0177
GMM 8 Comp nll 0.7573±0.0007 0.8826±0.0019 0.7848±0.0032 0.7981±0.005 0.4865±0.0063 0.6498±0.0109
Real NVP nll 0.7879±0.0119 0.9039±0.0043 0.6548±0.0201 0.6828±0.0239 0.424±0.0281 0.61±0.029

INN nll 0.3655±0.0007 0.7406±0.0004 0.7872±0.0007 0.8359±0.0003 0.4619±0.0011 0.789±0.0004

Table 7: Slice-Wise anomaly detection metrics on validation datasets
HCP Synth. HCP Synth BraTS BraTS ISLES ISLES

Pretext Gen. Model Score AUPRC AUROC AUPRC AUROC AUPRC AUROC

VAE GMM 1 Comp nll 0.4214 ± 0.0057 0.7269 ± 0.0054 0.8068 ± 0.0162 0.8463 ± 0.0032 0.7408 ± 0.0065 0.845 ± 0.0036
GMM 2 Comp nll 0.412 ± 0.0052 0.7269 ± 0.0053 0.7899 ± 0.0128 0.8273 ± 0.0019 0.7149 ± 0.0022 0.813 ± 0.0015
GMM 4 Comp nll 0.4479 ± 0.0065 0.7613 ± 0.0035 0.8117 ± 0.0147 0.8342 ± 0.0086 0.6913 ± 0.0167 0.8042 ± 0.0105
GMM 8 Comp nll 0.5236 ± 0.0105 0.789 ± 0.0046 0.8304 ± 0.0156 0.8506 ± 0.0064 0.7487 ± 0.0072 0.8353 ± 0.0041
Real NVP nll 0.5126 ± 0.0074 0.78 ± 0.0091 0.8024 ± 0.005 0.8321 ± 0.0031 0.7184 ± 0.0165 0.8149 ± 0.0043

VAE kl 0.4304 ± 0.0025 0.7686 ± 0.0045 0.7967 ± 0.0122 0.8438 ± 0.0048 0.6818 ± 0.0162 0.8439 ± 0.0133
rec 0.5717 ± 0.0031 0.8172 ± 0.0007 0.7803 ± 0.0037 0.8436 ± 0.0009 0.6905 ± 0.0204 0.8251 ± 0.0095
elbo 0.5724 ± 0.0035 0.8161 ± 0.0011 0.7871 ± 0.0026 0.8464 ± 0.001 0.7013 ± 0.0166 0.8312 ± 0.0078

ceVAE GMM 1 Comp nll 0.5333 ± 0.0198 0.7918 ± 0.0151 0.7935 ± 0.0051 0.8396 ± 0.0032 0.6492 ± 0.0785 0.8115 ± 0.0249
GMM 2 Comp nll 0.5365 ± 0.0322 0.7915 ± 0.0148 0.7345 ± 0.0302 0.7937 ± 0.012 0.5069 ± 0.1066 0.7083 ± 0.0393
GMM 4 Comp nll 0.5731 ± 0.037 0.8101 ± 0.0188 0.7999 ± 0.018 0.8246 ± 0.0103 0.5716 ± 0.081 0.751 ± 0.0268
GMM 8 Comp nll 0.6099 ± 0.0299 0.8238 ± 0.0127 0.7657 ± 0.0396 0.8107 ± 0.0199 0.5103 ± 0.1109 0.7065 ± 0.0487
Real NVP nll 0.6616 ± 0.0315 0.8372 ± 0.0153 0.6305 ± 0.0372 0.7233 ± 0.0324 0.5497 ± 0.1038 0.721 ± 0.0509

VAE kl 0.4563 ± 0.0107 0.7768 ± 0.0037 0.7722 ± 0.0069 0.8215 ± 0.0045 0.6165 ± 0.0198 0.8044 ± 0.0143
rec 0.534 ± 0.0021 0.803 ± 0.0012 0.7973 ± 0.0068 0.8546 ± 0.0032 0.727 ± 0.0192 0.8359 ± 0.01
elbo 0.536 ± 0.0019 0.8036 ± 0.0011 0.8016 ± 0.0035 0.857 ± 0.0011 0.7297 ± 0.0191 0.8381 ± 0.0095

CRADL GMM 1 Comp nll 0.7304 ± 0.0034 0.873 ± 0.0009 0.7354 ± 0.0042 0.7787 ± 0.0047 0.7331 ± 0.0071 0.8413 ± 0.0026
GMM 2 Comp nll 0.7396 ± 0.0031 0.878 ± 0.0006 0.7041 ± 0.0045 0.7403 ± 0.0052 0.6443 ± 0.0059 0.759 ± 0.0065
GMM 4 Comp nll 0.7733 ± 0.002 0.8887 ± 0.0006 0.6748 ± 0.0115 0.7252 ± 0.0043 0.641 ± 0.012 0.7579 ± 0.0153
GMM 8 Comp nll 0.7843 ± 0.0014 0.8926 ± 0.0001 0.6899 ± 0.0045 0.7372 ± 0.0052 0.6126 ± 0.0053 0.7319 ± 0.0077
Real NVP nll 0.8054 ± 0.0049 0.9 ± 0.0017 0.5675 ± 0.0094 0.6468 ± 0.0048 0.607 ± 0.0447 0.7298 ± 0.0241

INN nll 0.4678 ± 0.0012 0.7889 ± 0.0004 0.7527 ± 0.003 0.8313 ± 0.0006 0.5982 ± 0.0003 0.8349 ± 0.0006
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Appendix D. Data Description

Figure 3: Visual examples of the anomalies present in our synthetically created in-house
dataset HCP Synth., BraTS as well as ISLES. Shown are 6 exemplary images for
each dataset with their corresponding reference annotations. Please note, that
while for BraTS and ISLES the anomaly primarily differs from the normal tissue
by intensity (which can be seen as a bright area), for the HCP Synth. dataset
the anomalies also differ by texture and hence might present a better use-case for
anomaly detection methods (Meissen et al., 2021).
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Table 8: Description of statistically relevant characteristics of the anomalous datasets used
in our evaluation.

Data Type Test Validation

HCP Synth. Scans 49 49
Slices 7105 7105
Slice Prevalence 20.54% 19.76%
Pixel Prevalence 0.649% 0.770%

BraTS. Scans 266 20
Slices 35910 2700
Slice Prevalence 49.04% 45.95%
Pixel Prevalence 2.427% 1.926%

ISLES. Scans 20 8
Slices 2671 1069
Slice Prevalence 36.61% 34.05%
Pixel Prevalence 1.140% 1.099%
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Appendix E. Prediction visualization

Input Prediction

Figure 4: Visualization of the testing/ prediction phase of the model. The anomaly
score/prediction is calculated as the derivative of the predicted likelihood with
respect to the input image.
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